digital integrated circuits - purdue universityvlsi/ece559_fall09/notes/...digital integrated...

61
Memories Digital Integrated Circuits A Design Perspective Semiconductor Memories

Upload: others

Post on 25-Jan-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Memories

    Digital Integrated

    CircuitsA Design Perspective

    Semiconductor

    Memories

  • Memories

    Chapter Overview

    Memory Classification

    Memory Architectures

    The Memory Core

    Periphery

    Reliability

    Case Studies

  • Memories

    Semiconductor Memory Classification

    Read-Write MemoryNon-Volatile

    Read-Write

    Memory

    Read-Only Memory

    EPROM

    E2PROM

    FLASH

    Random

    Access

    Non-Random

    Access

    SRAM

    DRAM

    Mask-Programmed

    Programmable (PROM)

    FIFO

    Shift Register

    CAM

    LIFO

  • Memories

    Memory Architecture: Decoders

    Word 0

    Word 1

    Word 2

    Word N 2 2

    Word N 2 1

    Storagecell

    M bits M bits

    Nwords

    S0

    S1

    S2

    SN 2 2

    A 0

    A 1

    A K 2 1

    K 5 log2N

    SN 2 1

    Word 0

    Word 1

    Word 2

    Word N 2 2

    Word N 2 1

    Storagecell

    S0

    Input-Output(M bits)

    Intuitive architecture for N x M memory

    Too many select signals:

    N words == N select signalsK = log2N

    Decoder reduces the number of select signals

    Input-Output(M bits)

    Decoder

  • Memories

    Array-Structured Memory Architecture

    Problem: ASPECT RATIO or HEIGHT >> WIDTH

    Amplify swing torail-to-rail amplitude

    Selects appropriateword

  • Memories

    Hierarchical Memory Architecture

    Advantages:

    1. Shorter wires within blocks2. Block address activates only 1 block => power savings

  • Memories

    Read-Only Memory Cells

    WL

    BL

    WL

    BL

    1WL

    BL

    WL

    BL

    WL

    BL

    0

    VDD

    WL

    BL

    GND

    Diode ROM MOS ROM 1 MOS ROM 2

  • Memories

    MOS OR ROM

    WL[0]

    VDD

    BL[0]

    WL[1]

    WL[2]

    WL[3]

    Vbias

    BL[1]

    Pull-down loads

    BL[2] BL[3]

    VDD

  • Memories

    MOS NOR ROM

    WL[0]

    GND

    BL [0]

    WL [1]

    WL [2]

    WL [3]

    VDD

    BL [1]

    Pull-up devices

    BL [2] BL [3]

    GND

  • Memories

    MOS NOR ROM Layout

    Programmming using the

    Active Layer Only

    Polysilicon

    Metal1

    Diffusion

    Metal1 on Diffusion

    Cell (9.5 x 7 )

  • Memories

    MOS NOR ROM Layout

    Polysilicon

    Metal1

    Diffusion

    Metal1 on Diffusion

    Cell (11 x 7 )

    Programmming using

    the Contact Layer Only

  • Memories

    MOS NAND ROM

    All word lines high by default with exception of selected row

    WL [0]

    WL [1]

    WL [2]

    WL [3]

    VDD

    Pull-up devices

    BL [3]BL [2]BL [1]BL [0]

  • Memories

    Precharged MOS NOR ROM

    PMOS precharge device can be made as large as necessary,but clock driver becomes harder to design.

    WL [0]

    GND

    BL [0]

    WL [1]

    WL [2]

    WL [3]

    VDD

    BL [1]

    Precharge devices

    BL [2] BL [3]

    GND

    pref

  • Memories

    Non-Volatile Memories

    The Floating-gate transistor (FAMOS)

    Floating gate

    Source

    Substrate

    Gate

    Drain

    n+ n+_p

    tox

    tox

    Device cross-section Schematic symbol

    G

    S

    D

  • Memories

    Floating-Gate Transistor Programming

    0 V

    2 5 V0 V

    DS

    Removing programming

    voltage leaves charge trapped

    5 V

    2 2.5 V5 V

    DS

    Programming results inhigher VT.

    20 V

    10 V 5 V 20 V

    DS

    Avalanche injection

  • Memories

    FLOTOX EEPROM

    Floating gate

    Source

    Substratep

    Gate

    Drain

    n1 n1

    FLOTOX transistorFowler-Nordheim

    I-V characteristic

    20–30 nm

    10 nm

    -10 V

    10 V

    I

    VGD

  • Memories

    EEPROM Cell

    WL

    BL

    VDD

    Absolute threshold control

    is hard

    Unprogrammed transistor

    might be depletion

    2 transistor cell

  • Memories

    Flash EEPROM

    Control gate

    erasure

    p-substrate

    Floating gate

    Thin tunneling oxide

    n 1 source n1 drainprogramming

    Many other options …

  • Memories

    Characteristics of State-of-the-art NVM

  • Memories

    Read-Write Memories (RAM)

    STATIC (SRAM)

    DYNAMIC (DRAM)

    Data stored as long as supply is applied

    Large (6 transistors/cell)

    Fast

    Differential

    Periodic refresh required

    Small (1-3 transistors/cell)

    Slower

    Single Ended

  • Memories

    6-transistor CMOS SRAM Cell

    WL

    BL

    VDD

    M5M6

    M4

    M1

    M2

    M3

    BL

    QQ

  • Memories

    CMOS SRAM Analysis (Read)WL

    BL

    VDD

    M 5

    M 6

    M 4

    M1VDDVDD VDD

    BL

    Q = 1Q = 0

    Cbit Cbit

  • Memories

    CMOS SRAM Analysis (Read)

    0

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0.5

    Voltage rise [V]

    1 1.2 1.5 2

    Cell Ratio (CR)

    2.5 3

    Vo

    lta

    ge

    Ris

    e (

    V)

  • Memories

    CMOS SRAM Analysis (Write)

    BL = 1 BL = 0

    Q = 0

    Q = 1

    M1

    M4

    M5

    M6

    VDD

    VDD

    WL

  • Memories

    6T-SRAM — Layout

    VDD

    GND

    QQ

    WL

    BLBL

    M1 M3

    M4M2

    M5 M6

  • Memories

    Resistance-load SRAM Cell

    Static power dissipation -- Want R L largeBit lines precharged to VDD to address tp problem

    M3

    RL RL

    VDD

    WL

    Q Q

    M1 M2

    M4

    BL BL

  • Memories

    SRAM Characteristics

  • Memories

    3-Transistor DRAM Cell

    No constraints on device ratios

    Reads are non-destructive

    Value stored at node X when writing a “1” = VWWL-VTn

    WWL

    BL1

    M1 X

    M3

    M2

    CS

    BL2

    RWL

    V DD

    VDD 2 VT

    D VV DD 2 VTBL 2

    BL 1

    X

    RWL

    WWL

  • Memories

    3T-DRAM — Layout

    BL2 BL1 GND

    RWL

    WWL

    M3

    M2

    M1

  • Memories

    1-Transistor DRAM Cell

    Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

    Voltage swing is small; typically around 250 mV.

    V BL VPRE– VBIT VPRE–CS

    CS CBL+------------= =V

  • Memories

    DRAM Cell Observations 1T DRAM requires a sense amplifier for each bit line, due

    to charge redistribution read-out.

    DRAM memory cells are single ended in contrast to

    SRAM cells.

    The read-out of the 1T DRAM cell is destructive; read

    and refresh operations are necessary for correct

    operation.

    Unlike 3T cell, 1T cell requires presence of an extra

    capacitance that must be explicitly included in the design.

    When writing a “1” into a DRAM cell, a threshold voltage

    is lost. This charge loss can be circumvented by

    bootstrapping the word lines to a higher value than VDD

  • Memories

    Sense Amp Operation

    D V(1)

    V(1)

    V(0)

    t

    VPRE

    VBL

    Sense amp activatedWord line activated

  • Memories

    1-T DRAM Cell

    Uses Polysilicon-Diffusion Capacitance

    Expensive in Area

    M1 wordline

    Diffusedbit line

    Polysilicongate

    Polysiliconplate

    Capacitor

    Cross-section Layout

    Metal word line

    Poly

    SiO2

    Field Oxiden+ n+

    Inversion layerinduced byplate bias

    Poly

  • Memories

    SEM of poly-diffusion capacitor 1T-DRAM

  • Memories

    Advanced 1T DRAM Cells

    Cell Plate Si

    Capacitor Insulator

    Storage Node Poly

    2nd Field Oxide

    Refilling Poly

    Si Substrate

    Trench Cell Stacked-capacitor Cell

    Capacitor dielectric layerCell plateWord line

    Insulating Layer

    IsolationTransfer gate

    Storage electrode

  • Memories

    Periphery

    Decoders

    Sense Amplifiers

    Input/Output Buffers

    Control / Timing Circuitry

  • Memories

    Row Decoders

    Collection of 2M complex logic gates

    Organized in regular and dense fashion

    (N)AND Decoder

    NOR Decoder

  • Memories

    Hierarchical Decoders

    • • •

    • • •

    A2A2

    A 2A3

    WL 0

    A2A3A2A 3A2A3

    A3 A3A 0A0

    A0A 1A 0A1A0A1A0A1

    A 1 A1

    WL 1

    Multi-stage implementation improves performance

    NAND decoder using

    2-input pre-decoders

  • Memories

    Dynamic Decoders

    Precharge devices

    VDD

    GND

    WL3

    WL2

    WL1

    WL0

    A0A0

    GND

    A1A1

    WL3

    A0A0 A1A1

    WL 2

    WL 1

    WL 0

    VDD

    VDD

    VDD

    VDD

    2-input NOR decoder 2-input NAND decoder

  • Memories

    4-input pass-transistor based column

    decoder

    Advantages: speed (tpd does not add to overall memory access time)

    Only one extra transistor in signal path

    Disadvantage: Large transistor count

    2-input NOR decoder

    A0S0

    BL 0 BL 1 BL 2 BL 3

    A1

    S1

    S2

    S3

    D

  • Memories

    4-to-1 tree based column decoder

    Number of devices drastically reducedDelay increases quadratically with # of sections; prohibitive for large decoders

    buffersprogressive sizingcombination of tree and pass transistor approaches

    Solutions:

    BL 0 BL 1 BL 2 BL 3

    D

    A 0

    A 0

    A1

    A 1

  • Memories

    Decoder for circular shift-register

    V DD

    V DD

    R

    WL 0

    V DD

    f

    ff

    f

    V DD

    R

    WL 1

    V DD

    f

    ff

    f

    V DD

    R

    WL 2

    V DD

    f

    ff

    f• • •

  • Memories

    Sense Amplifiers

    tp

    C V

    Iav

    ----------------=

    make V as small

    as possible

    smalllarge

    Idea: Use Sense Amplifer

    outputinput

    s.a.smalltransition

  • Memories

    Differential Sense Amplifier

    Directly applicable to

    SRAMs

    M 4

    M 1

    M 5

    M 3

    M 2

    VDD

    bitbit

    SE

    Outy

  • Memories

    Differential Sensing ― SRAMVDD

    VDD

    VDD

    VDD

    BL

    EQ

    Diff.SenseAmp

    (a) SRAM sensing scheme (b) two stage differential amplifier

    SRAM cell i

    WL i

    2xx

    VDD

    Output

    BL

    PC

    M3

    M1

    M5

    M2

    M4

    x

    SE

    SE

    SE

    Output

    SE

    x2x 2x

    y

    y

    2y

  • Memories

    Latch-Based Sense Amplifier (DRAM)

    Initialized in its meta-stable point with EQ

    Once adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

    EQ

    VDD

    BL BL

    SE

    SE

  • Memories

    Reliability and Yield

  • Memories

    Noise Sources in 1T DRam

    Ccross

    electrode

    a -particles

    leakageCS

    WL

    BL substrate Adjacent BL

    CWBL

  • Memories

    Open Bit-line Architecture —Cross Coupling

    SenseAmplifierC

    WL 1

    BL

    CBL

    CWBL CWBL

    CC

    WL 0

    C

    CBLC C

    WL D WL D WL 0 WL 1

    BL

    EQ

  • Memories

    Folded-Bitline Architecture

    SenseAmplifier

    C

    WL 1

    CWBL

    CWBL

    C

    WL 0 WL 0 WL D

    CC

    WL 1

    CC

    WL D

    BL CBL

    BL CBL

    EQ

    x

    x

    y

    y

  • Memories

    Transposed-Bitline Architecture

    SA

    Ccross

    (a) Straightforward bit-line routing

    (b) Transposed bit-line architecture

    BL 9

    BL

    BL

    BL 99

    SA

    CcrossBL 9

    BL

    BL

    BL 99

  • Memories

    Alpha-particles (or Neutrons)

    1 Particle ~ 1 Million Carriers

    WL

    BL

    V DD

    n 1

    a -particle

    SiO 21

    1

    1111

    22

    22

    2

    2

  • Memories

    Redundancy

    MemoryArray

    Column Decoder

    Row Decoder

    Redundantrows

    Redundantcolumns

    RowAddress

    ColumnAddress

    FuseBank

    :

  • Memories

    Error-Correcting Codes

    Example: Hamming Codes

    with

    e.g. B3 Wrong

    1

    1

    0

    = 3

  • Memories

    Redundancy and Error Correction

  • Memories

    Sources of Power Dissipation in

    Memories

    PERIPHERY

    ROW

    DEC

    selected

    non-selected

    CHIP

    COLUMN DEC

    nC DE VINT f

    mC DE VINT f

    CPTVINT f

    IDCP

    ARRAY

    m

    n

    m(n 2 1)ihld

    miact

    VDD

    VSS

    IDD 5 S C iD V if1S IDCP

    From [Itoh00]

  • Memories

    Programmable Logic Array

    GND GND GND GND

    GND

    GND

    GND

    V DD

    V DD

    X 0X 0 X 1 f0 f1X 1 X 2X 2

    AND-plane OR-plane

    Pseudo-NMOS PLA

  • Memories

    Dynamic PLA

    GND

    GNDVDD

    VDD

    X 0X 0 X 1 f0 f1X 1 X 2X 2

    ANDf

    ANDf

    ORf

    ORf

    AND-plane OR-plane

  • Memories

    Semiconductor Memory Trends

    (updated)

    From [Itoh01]

  • Memories

    Trends in Memory Cell Area

    From [Itoh01]

  • Memories

    Semiconductor Memory Trends

    Technology feature size for different SRAM generations