digital integrated circuits - universidade federal de ...guntzel/ine5442/evolucao.pdf · digital...

40
Universidade Federal de Santa Catarina Centro Tecnológico Computer Science & Electrical Engineering Digital Integrated Circuits INE 5442 / EEL 7312 Lectures 01-02 Technology evolution. design representation, design metrics. Prof. José Luís Güntzel [email protected]

Upload: phamanh

Post on 13-Dec-2018

252 views

Category:

Documents


2 download

TRANSCRIPT

Universidade Federal de Santa Catarina Centro Tecnológico

Computer Science & Electrical Engineering

Digital Integrated Circuits INE 5442 / EEL 7312

Lectures 01-02 Technology evolution. design representation,

design metrics.

Prof. José Luís Güntzel [email protected]

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 2

Historical Perspective The use of Digital Electronics in different application domains (a chronology):

1.  Digital data manipulation

2.  Instrumentation & control

3.  Telecommunications & consumer electronics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 3

The First Automatic Calculator (Computer?)

Charles Babbage’s Difference Engine I (1832) •  25.000 mechanical parts •  Price: £17,470 •  Decimal-coded data

© Jan Rabaey et al. 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 4

ENIAC: The First Electronic Computer Year: 1946 18.000 vacuum tubes Intended for computing artillery firing tables Problems: •  low reliability •  excessive power consumption

© Jan Rabaey et al. 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 5

The First Transistor Bell Labs. 1948

© Jan Rabaey et al. 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 6

Bipolar Junction Transistor 1949 - Schockly introduces the bipolar transistor

base

colector

emiter

ib ic

ie

Approximate behavior:

if ib < imin ⇒ ie = 0

if ib > imin ⇒ ie ≈ ic

The base current controls the emitter current

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 7

Key Dates 1949 - Schockly introduces the bipolar junction transistor

1956 - first bipolar digital logic gate, made by discrete components (by Harris)

1958 - Jack Kilby (Texas Instruments) conceives the integrated circuit (all components are integrated on a single semiconductor substrate). He was awarded the Nobel prize

1960 - first set of IC commercial logic gates, the Fairchild Micrologic family

1962 - TTL (transistor-transistor logic) IC logic family is launched as commercial product, given rise to some large semiconductor companies, Fairchild, National and Texas Instruments.

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 8

MOSFET (Metal-Oxide Silicon Field-Effect Transistor)

1925 - The MOSFET is proposed in a patent by J. Lilienfeld (Canada) 1935 – Independently, O. Heil proposes the MOSFET in a patent

(England) Problems concerning materials and the fabrication process postpone

the commercial use of MOS technology 1960 - MOS ICs with PMOS-only logic gates (used in calculators) 1971 - the Intel 4004, first microprocessor, uses NMOS technology 1970 - first MOS memory (4kbits) 1978 - Intel launches the 8080 microprocessor in NMOS technology 1980 - new fabrication processes allow the integration of both NMOS and

PMOS devices in the same IC. Consequence: reduction in power and increase of integration.

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 9

The First Microprocessador

Intel 4004 (1971)

1,000 transistors 1 MHz operation frequency

© Jan Rabaey et al. 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

slide 1.10 CTC/UFSC Circuitos e Sistemas Integrados

Pentium 4

© Jan Rabaey et al. 2003

Year: 2000

42M transistors 3 GHz

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 11

Itanium 2 (Year: 2003)

 410M transistors  374 mm2 die size  6MB on-die L2

cache  1.5 GHz at 1.3V

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 12

Number of Transistors in a Single Die

Source: Intel Corporation. http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

Intel Processors (until 2004)

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 13

Moore’s Law

Gordon E. Moore, Co-founder, Intel Corporation. Source: http://www.intel.com/museum/archives/history_docs/mooreslaw.htm

“The number of transistors incorporated in a chip will approximately double every 24 months.” Gordon Moore, Co-Founder Intel Co., 1965

Electronics, April 19, 1965.

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 14

Number of Transistors in a Single Die

1,000,000

100,000

10,000

1,000

10

100

1 1975 1980 1985 1990 1995 2000 2005 2010

8086 80286

i386 i486

Pentium® Pentium® Pro

K 1 billion transistors

Fonte: Intel

Pentium® II Pentium® III

  Pentium 4: 42M tr.   Core 2 Duo: 291M tr.   Core 2 Quad: 582M tr.

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 15

Moore’s Law (until the year 2000)

5KW 18KW

1.5KW 500W

4004 8008 8080 8085 8086 286 386

486

Pentium® proc

0.1

1

10

100

1000

10000

100000

1971 1974 1978 1985 1992 2000 2004 2008

Pow

er (W

atts

) P6

Pentium ® proc 486

386 286 8086 8085

8080 8008 4004 0.1

1

10

100

1000

10000

1970 1980 1990 2000 2010

Freq

uenc

y (M

hz) Doubles each 2

years

4004 8008 8080

8085 8086 286

386 486 Pentium® proc P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010

Tran

sisto

rs (M

T) Grows 2X in 1.96 years!

•  # of transistors •  Power •  Clock frequency

Source: Rabaey; Chandrakasan; Nikolic, 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 16

Power and clock rate are correlated...

Source: Patterson; Hennessy. 2009

The Power Wall

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 17

Para desktops, há um limite prático de resfriamento que restringe a potência máxima a 100W

Source: Patterson; Hennessy. 2009

The Power Wall

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 18

Consequência: mudança de paradigma nos microprocessadores

Source: Patterson; Hennessy. 2009

The Power Wall

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 19

Core 2 Duo (Year: 2006)

 291M transistors  374 mm2 die size  6MB on-die L2

cache  1.5 GHz at 1.3V

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 20 http://www.mpsoc-forum.org/2007/slides/Hattori.pdf

SH-Mobile G1: an MPSoC (Year: 2006/2007)

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 21

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

2003

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2005

2007

2009

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000 Logic Tr./Chip Tr./Staff Month.

x x x x

x x

x 21%/Yr. compound

Productivity growth rate

x

58%/Yr. compounded Complexity growth rate

10,000

1,000

100

10

1

0.1

0.01

0.001

Logi

c Tr

ansi

stor

per

Chi

p (M

)

0.01

0.1

1

10

100

1,000

10,000

100,000

Prod

uctiv

ity

(K) T

rans

./Sta

ff - M

o.

Source: Sematech

Com

plex

ity

Courtesy, ITRS Roadmap

The Productivity Gap

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

slide 1.22 CTC/UFSC Circuitos e Sistemas Integrados

CMOS Scaling   Technology shrinks by 0.7/generation   With every generation can integrate 2x more functions per

chip; chip cost does not increase significantly   Cost of a function decreases by 2x   But …

  How to design chips with more and more functions?   Design engineering population does not double every two

years…   Hence, a need for more efficient design methods

  Exploit different levels of abstraction

Source: Rabaey; Chandrakasan; Nikolic, 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 23

Levels of Abstraction

+ n n

n

Transistor Level

Electric Level

Logic Level RT Level MIPS

$-I

ucart

$-D

DPS

Bar.

System Level

Design Representation

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 24

Design “Visions” Descrição Estrutural •  Utiliza-se um conjunto de blocos e conexões que representam uma

possível implementação do sistema eletrônico. Pode-se usar linguagem de descrição de hardware (HDL) ou esquemáticos (em papel ou usando algum editor de esquemático).

Descrição Comportamental •  Faz uso de texto em linguagem natural, HDL ou equações para descrever

como o sistema eletrônico se comporta (i.e., funciona).

Descrição Física •  usada para implementaro sistema eletrônico. No caso de fabricação do

chip com tecnologia CMOS, descrição das geometrias das máscaras que serão usadas no processo de litografia fina.

Design Representation

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 25

Levels of Abstraction

Nível de Transistores: •  Transistores, •  Resistores, •  Capacitores, •  Indutores e •  Fios. Nível Lógico: •  Portas lógicas, •  Latches e •  Flip-flops.

Design Representation

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 26

Levels of Abstraction Nível RT (Register Transfer): •  Unidades funcionais (somadores, subtratores,

somadores/subtratores, multiplicadores etc) •  Rede de interconexão (fios, multiplexadores,

decodificadores, barramentos, buffers tri-state) •  Registradores e blocos de memória RAM, ROM etc Nível de Sistema: •  Processadores de uso genéricos (CPUs), •  Processadores para domínios específicos (ASIPs), •  Processadores específicos (ASICs), •  Barramentos, •  Memórias, •  Software embarcado.

Design Representation

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 27

Syntesis and Automatic Synthesis Síntese: Traduz uma dada descrição de um sistema eletrônico para uma nova descrição (sendo esta nova descrição em um nível inferior de abstração) por meio da adição de detalhes de implementação.

Síntese Automática: Síntse realizada com o auxílio de ferramentas computacionais (atualmente referenciadas por ferramentas de EDA- Electronic Design Automation).

Design Representation

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 28

Synchronous Digital Systems Registers are used to provide data barriers

Clock period R1

n

n

R2

k

k

Combi. logic ck

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 29

  How to evaluate performance of a digital circuit (gate, block, …)?   Cost   Reliability   Scalability   Speed (delay, operating frequency)   Power dissipation   Energy to perform a function

Design Metrics

Source: Rabaey; Chandrakasan; Nikolic, 2003

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 30

Cost of Integrated Circuits   Fixed or NRE (non-recurrent engineering) costs

  design time and effort, mask generation   one-time cost factor

  Variable or Recurrent costs   silicon processing, packaging, test   proportional to volume   proportional to chip area

Source: Rabaey; Chandrakasan; Nikolic, 2003

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 31

Cost of Integrated Circuits

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 32

Die Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm) Source: Rabaey; Chandrakasan; Nikolic, 2003

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 33

Cost per Transistor

Source: Rabaey; Chandrakasan; Nikolic, 2003

Fabrication capital cost per transistor (Moore’s law)

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 34

Yield

Source: Rabaey; Chandrakasan; Nikolic, 2003

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 35

Defects

Source: Rabaey; Chandrakasan; Nikolic, 2003

α is approximately 3

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 36

Examples (1994)

Source: Rabaey; Chandrakasan; Nikolic, 2003

Chip Metal layers

Line width

Wafer cost

Def./ cm2

Area mm2

Dies/wafer Yield Die cost

386DX 2 0.90 $900 1.0 43 360 71% $4

486 DX2 3 0.80 $1200 1.0 81 181 54% $12

Power PC 601 4 0.80 $1700 1.3 121 115 28% $53

HP PA 7100 3 0.80 $1300 1.0 196 66 27% $73

DEC Alpha 3 0.70 $1500 1.2 234 53 19% $149

Super Sparc 3 0.70 $1700 1.6 256 48 13% $272

Pentium 3 0.80 $1500 1.5 296 40 9% $417

Design Metrics

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 37

Apenas Componentes (dados de 2004)

•  Mercado de aprox. U$ 150 bilhões/ano •  Mercado de sistemas eletrônicos é de aprox. U$ 1

Trilhão •  2.6 Km2 de CIs (a maior parte em CMOS)

produzidos por ano •  Custo da fabricação: aprox. U$ 75 000/m2

•  1018 transistores produzidos por ano

The Semiconductor Industry

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 38

ST/Philips/Motorola Foundry in Crolles/Grenoble (FR)

The Semiconductor Industry

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 39

CEITEC (Porto Alegre, Brazil)

Design House

Foundry

http://www.ceitec-sa.com/

The Semiconductor Industry

Technology Evolution

Lectures 01-02 Prof. José L. Güntzel

INE 5442 / EEL 7312 Digital Integrated Circuits

Slide 40

Rabaey J.; Chandrakasan A.; Nikolic B. “Digital Integrated Circuits: a design perspective.”, 2nd Edition, Prentice Hall, USA, 2003.

Patterson, D.; Hennessy, J. “Computer Organization and Design: the hardware/software interface.” 4th Edition. Morgan Kaufmann, 2009.

References