digital photogrammetry applied to large physics …

24
1 DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS DETECTORS NCSX project – Visit PPPL, 8 and 9 October 2007 EDMS 873287 Basic Principles Why digital photogrammetry ? … CERN basic and specific photogrammetric equipment Estimation and preparatory works Some examples plus significant examples Original approach … the real object Arising problems and a wishing list Specific tests and results Conclusion R. Goudard - C. Lasseur - CERN - Geneva

Upload: others

Post on 01-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

1

DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS DETECTORS NCSX project – Visit PPPL, 8 and 9 October 2007

EDMS 873287

• Basic Principles Why digital photogrammetry ? …• CERN basic and specific photogrammetric equipment • Estimation and preparatory works • Some examples plus significant examples • Original approach … the real object• Arising problems and a wishing list • Specific tests and results• Conclusion

R. Goudard - C. Lasseur - CERN - Geneva

Page 2: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

2

Basic Principles Why digital photogrammetry ? …

A collider experiment is a composite element … CMSRussian-doll configuration : reference fiducial marks

portability, versatility, accuracy, reliability, reduced time, reduced team ...DIGITAL PHOTOGRAMMETRY since 1998 !

φ H7

What we see … What we want

To give the XYZ positions of the subsequent layers and also …- verification of forms and dimensions, deformation tests (control FEA results), - control after each assembly step, give ‘approximate’ values for on-line physics analysis, - from < 30 microns up to better than 500 microns : large range of dimensions and volumes - various assembly places and status : out-site , halls, caverns, mobile structures (in/out)

Page 3: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

3

- DCS 660 / D2X … ‘non metric camera’- 18 mm, 20 mm, 24 mm lenses - Format: 24 mm * 36 mm - Rollei DPAWin, 3DSTUDIO, option FiBun

CERN basic photogrammetric equipment …

retro-reflective targets centered in reference hole

f/16, f/22 … under-exposed photos … large depth of field

… 7 pixels in diameter illuminated, various dot diameters

strips and coded labels (paper or on magnetic supports): 12, 14 et 20 bits

… also ‘paper target’: un-and coded

Page 4: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

4

… and specific equipment Environmental constraints …

- long recording distances, cramped zones

- connections between numerous faces

- deformation under loading

large code-extended ring on magnetic foil around a 40 mm retro-button for long distances

synchronized up to 5 cameras …

- nearly on-line relative motion / deformation

- BUT precision limited by stability and no auto calibration of camera15 mm / 25 mm retro-sphere … wide view angle

Page 5: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

5

Some important ‘using’ and ‘users’ configurations

IMAGE RECORDING DISTANCE object dimensions … and form

TARGET DIAMETER image recording distance + object + target diameter

DEPTH OF FIELD recording distance, environment, aperture

UNCERTAINTY OF COORDINATES (‘plane’ and depth) recording distance, uncertainty images coordinates, configuration,

OFFSET MEASURED CENTER AND REAL CENTER ‘intersection’ angles, targets diameters

d (d’) : width/height CCD sensor, f = focal lenght, L : recording distance, D (D’) = WIDTH/HEIGHT OBJECT

D (D’) = d (d’) / f * L

dc Dc

f L

Camera Target

dc : target diameter on the sensor

Dc : real target diameterdc = (D × f / L) × 9.106 (pixel width)

d D

f L

Camera Object

Page 6: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

6

Profondeur de champ focale = 24 mm

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

Dist de mise au point (m)

Prof

onde

ur d

e ch

amp

(m)

Ouv. num. = 11Ouv. num. = 16

Ouv. num. = 22

Depth of field : 1 m to infinite …

Sig obj = object coordinates uncertainty (1 sigma)Sig img = image coordinates uncertainty (1 sigma) -f = focale lenghtL = recording distance q = configuration factor w.r.to the number of photos (literature, experience …)

q = 2 for : - Good intersection angles in the three planes !! - Good overlapping in both directions (1/3) - Good distribution and ‘full’ format - Object always in the image !!!

Sig obj = q × L × Sig img / f

Coordinates uncertainty

Standard Sigma image = around 0.3 μm namely 1/30 pixel.- IF bad conditions : hided targets requiring several close stations, poor lights

0.45 μm (1/20 pixel)-VERY good conditions : not too many points/stations) BUT well distributed in 3D, good lights and contrasts (some tests before for settings)

0.20μm (1/40 pixel)

Page 7: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

7

ε = offset between measured target and real centerr1 = image radius P’1r2 = image radius P’2rm = image radius P’m (real target center)α= incoming angle w.r.to the perpendicular line

ε = rm - (r1- r2) / 2P2 P1

P’1

P’2P’m

r1

r2r m

Foyer

Focale

Target plane

Incoming angle

Image plane

Image center

When the targets are oversized and the image plane rarely parallelto the object surface, (principalement si les cibles utilisées sont surdimensionnées), there is an offset that may be larger then the uncertainty, the circular target being projected as an ellipse

Example : f = 18mm, L recording distance = 2m, d cible =20mm

Offset = 0.55 μm for incoming angle of 60 grades

THEN … good choice of the target diameters so that the offset is always less than 0.3 μm (or less)

Page 8: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

8

Choix de la dista nce de prise de vue e n fonction de s dim e nsions de l'obje t - DCS 460 -

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Dis tance Cam é ra - Obje t (m )

Part

ie d

e l'o

bjet

vis

ible

sur

l'im

age

(m)

f = 18 - Largeur f = 18 - Hauteurf = 24 - Largeur f = 24 - Hauteur

Preparatory working tables …

Page 9: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

9

Estimation de l'offsetentre le centre mesuré et le centre vrai de la cible

pour une focale de 24mm et un rayon image maxi de 18mm.

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

-90

-80

-70

-60

-50

-40

-30

-20

-10 0 10 20 30 40 50 60 70 80 90

Angle d'incidence en grades

Offs

et e

n m

icro

ns

2m / 6mm

2m / 12mm

2m / 15mm

2m / 20mm

Estimation de l'offsetentre le centre mesuré et le centre vrai de la cible

pour une focale de 24mm et un rayon image maxi de 18mm.

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

-90

-80

-70

-60

-50

-40

-30

-20

-10 0 10 20 30 40 50 60 70 80 90

Angle d'incidence en gradesO

ffset

en

mic

rons

5m / 6mm

5m / 12mm

5m / 15mm

5m / 20mm

Page 10: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

10

Diamètre de l'image des ciblesDCS 460

focale = 24mm

0

10

20

30

40

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Distance Caméra - Objet (m)di

amèt

re a

ppar

ent (

pixe

ls)

diam. cibles = 5 mmdiam. cibles = 6 mmdiam. cibles = 12 mmdiam. cibles = 15 mmdiam. cibles = 23 mm

Diamètre de l'image des ciblesDCS 460

focale = 18 mm

0

10

20

30

40

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Distance Caméra - Objet (m)

Dia

mèt

re a

ppar

ent (

pixe

ls)

diam. cibles = 5 mmdiam. cibles = 6 mmdiam. cibles = 12 mmdiam. cibles = 15 mmdiam. cibles = 23 mm

Page 11: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

11

Sigma coord. photo en fonction de la distance et de la précision coord. image (une photo par station)

f = 24 mm

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1/20 1/25 1/30 1/35 1/40

Sigma coord. image (pixels)

Sigm

a co

ord.

obj

et (m

m)

dist. = 1mdist. = 2mdist. = 3mdist. = 4mdist. = 5mdist. = 6mdist. = 7m

Sigma coord. photo en fonction de la distance et de la précision coord. image (une photo par station)

f = 18 mm

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1/20 1/25 1/30 1/35 1/40

Sigma coord. image (pixels)

Sigm

a co

ord.

obj

et (m

m)

dist. = 1mdist. = 2mdist. = 3mdist. = 4mdist. = 5mdist. = 6mdist. = 7m

Page 12: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

12

1- Sig obj = 0.040 mm Sig img = 0.3 μm WHAT WE WANT uncertainty ratio / ‘scale factor’ 130

2- f = 24 mmRECOMMENDED recording distance L = 3.2 mpart of viewed object 2.5 m × 3.7 m

3- We fix the distance in between consecutive cameras stations at b=2/3 of the recording distance Lb = 2/3 * 2.8 = 2.1 muncertainty in depth = 0.060 mm

4- Target diameters :Minimum > 6 mm Maximum < 23 mm (OFFSET 0.19 microns)

Choice : 12 or 15 mmThe image diameter will be AT LEAST 10 pixels correctThe offset will be between 0.05 and 0.08 microns

A numerical example … practical BUT theoretical BUT … gives an help !!

ALSO SIMULATION WITH 3DSTUDIO FOR DIFFICULT CONFIGURATION …

Page 13: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

13

Some examples (1)

ATLAS : Diameter 25 m Lenght 42 m Weight 8000 t

192 modules

18 modules / wheel , 2 wheels

18 pieces : 6 m long

32 modules / wheel, 4 wheels

6 wheels, 25 m diameter

Page 14: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

14

Some examples (2) CMS : Diameter 15 m Lenght 22 m Weight 14500 t

module and pre-assembly

Page 15: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

15

CENTRAL TRACKER : carbon fiber wheel – 2.5 m

304 points, 14141 observations, 1443 inconnues, 87 images < 1 hour : photos plus results

EXTREME POINTS (mm) Point X Y Z Rayint ÕX ÕY ÕZ 125 1315.643 407.032 252.307 12 0.020 0.035 0.019 NewPt 126 -1314.309 407.271 252.486 14 0.019 0.028 0.016 NewPt 601 214.532 -394.180 1215.964 38 0.014 0.015 0.011 NewPt 618 -214.331 -394.798 1215.828 40 0.014 0.015 0.011 NewPt

SigmaO image co-ordinates : 0.000461 RMS- X : 0.017 mm RMS- Y : 0.027 mm RMS- Z : 0.015 mm

rétroreflective spheres

Scale bars

A very good and significant example … assembly and deformations

Page 16: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

16

CERN MODEL … scale 65 %

Original approach … CMS ring barrel yoke

- validation of the method - test of specific equipment - adapted procedure

CONSTRAINTS IN FACTORY :- Ø 14 m but top 18 m from the floor … connection of the 2 faces- required precision … better than 1 mm in XYZ

- immobilization time as short as possible

SIMULATION NEEDED MOCK-UP {

PORTABLE BENCH … control of the camera calibration

Page 17: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

17

...the real objectpoints hidden by feet and scaffoldings

270 photos/4h30/500 points … 100 µm … control long distances

shooting distances : 12 m to object, 18m from floor40 mm retro targets in reference holes with …

… 12 cm coded foil around plus spheres

long distances measuredwith a control tension device and calibrated tape

Blunder detection important : separation object / environment

SX = 0.091 mm SY = 0.082 mm SZ = 0.145 mm

Page 18: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

18

Arising problems and a wishing list …

Time table …Preparation : targets plus scale bars, distance measurements if any > 50 % but once !

Measurement : photo taking, data transfer 20 % / 30 % … D2X NIKON WITH WIRELESS

Calculation up to 3D co-ordinates < 20 % … WIRELESS / 3DSTUDIO …

Logistics and equipment …

Specific targets + supports if any must be designed and fabricated delay for the measurement

Targets must be available for different dimensions and recording distances investment

Risk of damages of targets in industrial environment regular control and cleaning

Needs of a quite versatile and adapted tooling box

THEREFORE …

- higher resolution, better stability (see next), speeding up the data transfer

- avoiding retro-reflective materials : possible with manual / semi-automated process …

Page 19: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

19

Specific tests ... ‘OLD’ CAMERAS DCS660 … BUT CALIBRATION PROCESS

- in some cases, internal accuracy optimistic w.r.to the external information (scale bars …) - DCS660 non-metric camera … Nikon lenses … shelf products TO-DAY D2X- stability of the camera and its interior orientation is a real question specifically when large sized projects image acquisition (example : CMS yoke … 300 photos … 5 hours)

TESTS DETECTION MOVEMENTS OF THE INTERIOR ORIENTATION …

- our approach … software CDW can attach one camera per image

principal point and focal length free for each image,

distortion invariant for the block

Test 1 …

… principal point/focal length within a priori standard deviations (Maas)

… principal point free, focal length fixed (Beyer)

- instability of the DCS … interior orientation … different for each image

literature : distortion fixed {

Page 20: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

20

focal length

-23.99

-23.98

-23.97

-23.96

-23.950 10 20 30 40 50 60 70 80 90 100

number of photo

mm

principal point in x-direction

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 10 20 30 40 50 60 70 80 90 100

number of photo

mm

tilt -90 = orange

principal point in y-direction

-0.53-0.52-0.51

-0.5-0.49-0.48-0.47-0.46-0.45-0.44

0 10 20 30 40 50 60 70 80 90 100

number of photo

mm

tilt -90 = orange

DCS 660 … results on a ring-shaped object 2.5 m diameter

focal length and principal point … 30-40 µm in both directions … 70 µm … the first 10 photos

20 µm principal point movement …co-ordinates by up to 0.5 µm …

CAMERA TURN UPSIDE DOWN

Page 21: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

21

Focal length in a project with a fixed camera

-24.33

-24.32

-24.31

-24.3

-24.29

-24.280 5 10 15 20 25 30

Number of image

Foca

l len

gth

in m

m

test 2 … results

test 1 … possible causes

test 2 … fixed camera

… small but rigid moving object

… no deformations camera + object

- camera transporting upside down and then turned by 180 0 …- not an electronic or temperature effect (PCMCIA card)- not easy to keep same tilt (charging, changing cards, climbing …)

- as if specific internal orientation parameters related to a given handling of the camera …

{

- focal length changes same range as test 1, and stable 2 µm when same camera/object relative position (see 6, 8, 9 and 27, 28, 29),

Page 22: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

22

Another test

Principle point movement w.r.to the rotation angle of the camera around its optical axis

Circular and symmetric object with depth + limited camera positions, 4 times 24 photos 1 each 15° … 6 ensembles different cameras + lens 24 mm some results

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

-0.13

-0.12

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Xh (mm)

Yh (m

m)

CMSEcal_24_1 CMSEcal_24_2CMSEcal_24_3 CMSEcal_24_4

Projet CAM2_24_1:Variation des coordonnées du point principal

24

2322

21

20

1918

17

1615

14

1312

11

10

9

87

6

5

4

32

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.05 0.06 0.07 0.08 0.09 0.1

Xh (mm)

Yh (m

m)

Page 23: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

23

Common project …The Institute for Applied Photogrammetry – University of Applied Sciences Oldenburg + AICON & CERN … analyse industrial projects, modelisation interior orientation parameters

Parameters Modelisation CDW Modelisation Oldenburg Principle distance f f Co-ord. Principle point xH, yH xH, yH Radial-symmetric lens distorsion A1, A2, A3 A1, A2, A3 Tangential and asymmmetric distorsion B1, B2

Affinity and sheering C1, C2 Unflatness of the sensor and errors None

Finite Elements Correction Model Grid-based correction model

Image-variant parameters and Finite elements Correction model (T.Luhmann / W.Tecklenburg)

at each point : a plane vector – FiBun option

- variation of principle distance affects lens distorsion on image plane modelled as a function of imaging angle and not of image coordinates

Page 24: DIGITAL PHOTOGRAMMETRY APPLIED TO LARGE PHYSICS …

24

…and conclusion59 object points, 35 images (10 rolled), 7 scalebars (1 for scale definition)

DCS 660 BUT process available for any camera calibration

Grid : a raster-width of 2.35 mm

… instabilities : now well considered

… still influence of configuration