digital power factor correction - handling the corner cases

29
copyright 2011 controltrix corp www. controltrix.com Digital Power Factor Correction Handling the corner cases Superior THD over entire operating range www.controltrix.com

Upload: nahar-anusheel

Post on 15-Jun-2015

361 views

Category:

Technology


2 download

TRANSCRIPT

Page 1: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Digital Power Factor Correction

Handling the corner cases

Superior THD over entire operating range

www.controltrix.com

Page 2: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Power Factor primer

Re

act

ive

Po

we

rReal Power

Ind

uct

ive

- L

ag

gin

gC

ap

aci

tive

- L

ea

din

g

Φ

cosΦ = Real Power Apparent Power

= Power Factor

Applies for ideal sinusoidal waveforms for both voltage and current

Page 3: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Calculating Power FactorPower factor = Real power / Apparent power = (Vrms * I1rms * CosΦ) / (Vrms * Irms)

= cosΦ * ( I1rms / Irms)

Power factor = KΦ * Kd

Kd = distortion factor (THD) KΦ = displacement factor (D.F)Vrms = AC input rms voltage Irms = AC input rms currentI1rms = Fundamental component of Irms

cos Φ = Phase angle between input AC voltage and the fundamental current

Irms = Sqrt (I12 + I2

2 + I32+ ………….+In

2)

Page 4: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

PF Degradation

Sinusoidal Current with phase shift

Current with harmonic content

Voltage

Resulting

Current

Voltage

Resulting

Current

Page 5: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Power factor correction• Reduce energy loss in transmission lines• Improve power quality • Cost• Regulatory needs

Page 6: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Useful Power

Φ Φ

Negative Power Region Applied Voltage

Resulting Current

Without PFC

Applied Voltage

Resulting Current

Useful Power

With Active PFC

Useful Power Region

Page 7: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Digital PFC system

AC Supply

Basic Components of the PFC Converter

Rectifier

DSP/DSC

Load

Vac Iac VdcPWM

Switch

Inductor

Capacitor

Diode

Boost

PFC

Page 8: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Boost Topology

IL

IS

ID

PFC Boost Converter

S

DL

C

-

+

+

-vIN

IL IDIS

tON

VOUT > VIN

IL

Average Inductor Current

Average Current Mode ControlThe average current through the inductor is made to follow the input voltage

Ref: AN1274 Interleaved PFC app note from microchip

Page 9: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Challenges Ideally ……• Low THD & high PF over entire 90 -265 Vac input• Low THD & high PF over entire 10 -100 % load range

Low line and high load meeting specifications is EASY !!!!Low load ( < 50%) & Hi Line (> 220 V) spec is HARD !!!!

Cause : Change of system dynamics

Page 10: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Typical specsLoad(%) THD(%)

10 <15

20 <10

30 <6

50 <5

70 <3

80 <3

100 <3

• (Typical Desired) State of the artspec.

• 2.4 KW bridgeless PFC spec. forpower supplies for server farms

• Digital (DSP) control• Fixed switching frequency

operation

Gets harder @ Hi line

Page 11: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

State of the art reviewApproach 1

• Determine Discontinuous/continuous conduction modeoperation

• Change the control laws

Challenge• Computation• If-else ladder• Parameter sensitivity• Non linearity of discontinuous mode of operation is hard• Fixed point implementation is challenging

Page 12: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

State of the art reviewApproach 2

• Harmonic injection

Challenge• Trial and error• Not plug and play / System specific• If-else ladder (discontinuities in code execution and dynamics)• Limited Code size Memory/MIPS

Page 13: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

State of the art summary• Computationally complex (MIPS, code size)• Fixed point implementation hard !!• Physical models sensitive to parameter estimates (e.g. inductor

saturation )• Poor convergence• Strange artefacts• Jumps/spikes/kinks/oscillations due to if-else ladder

Page 14: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Proposed solution features• Good THD at all operating conditions• Plug and play• Just enter parameter dependent coefficients• Low parameter and feedback sensitivity• Fast convergence

Page 15: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Proposed solution features .• No if-else ladder• Small extra code size• Low MIPS requirement ~ 12-14 MIPS (25% of 40 MIPS) @ 50 KHz

interrupt frequency

(Compares favorably with traditional methods)

Page 16: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Proposed solution features ..• System independent /scalable to any rating• Relevant for Interleaved PFC and bridgeless PFC topologies• Guaranteed convergence/no large scale oscillations• No if -else ladder• Patent pending technology

Page 17: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Switched mode Simulation Results• Fixed frequency operation ~100 KHz• Vac = 220V rms ac, Vdc = 400 V

( High line is hardest to handle !!! )• 330 W boost PFC system• 700 uH inductance • 300 uF output capacitance

Page 18: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Simulation Results:• Left plot:

Average inductor current• Right plot:

Switched mode inductor current (continuous and discontinuous conduction mode)

Page 19: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

100 % load • THD ~ 3%

Page 20: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

50 % load• THD ~ 5%

Page 21: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

10 % load • THD ~10%

Page 22: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

IPFC reference design from microchip 2.4 KW server power supply from delta

Switching frequency : 100 KHzOne side max load : 180 WInductance : 700 uH(much smaller value than equivalent server supply for that rating)

Switching Frequency : 65KhzInductance : 200uH

Comparison of Specifications

• A system for similar specification as server supply for 700 uH, 100 KHz the power rating would be, 2400 * 200 / 700 * 65 / 100 = 445 W

• Thus 87 W is effectively 19.5 % load• The results are thus very convincing

Page 23: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Experimental results (IPFC board 89 W only single phase enabled)

Voltage 90 110 160 220 RemarksMethodClassical PI controller (over damped) modeled on linear dynamics of continuous conduction mode system

5.98 7.2 17.0 18.4 PF and THD rapidly degrades at low loads

Classical PI controller modeled on linear (critically damped)

3.5 6.5 13.5 15.5 Easily ends up becoming unstable / sub harmonic oscillations due to parameter changes

Classical P I controller with voltage feedforward 3.35 5.35 7.65 17.75 Works great in CCM. But rapidly degrades in DCM /low load conditions

Proposed method 2.9 5.2 6.21 8.5 Works equally well in all regions of operation

89W load when corrected for inductance values and switching frequency is equivalent to 19.5 % load for comparable 2.4 KW system used in server power supply.

Page 24: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Scope shots (87 W load , 400 Vdc output)

110 V

Page 25: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Scope shots (87 W load , 400 Vdc output)

220 V

Page 26: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

110 V

Classical PI control w/o FF

Page 27: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

220 V

Classical PI control w/o FF

Page 28: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Results with AN1278 from microchipInput voltage: 220 V, Load: 180 W (50%) dual phase

180 W for IPFC is equivalent to 90 W with only one phase of IPFC operational.

Page 29: Digital Power Factor Correction - Handling the corner cases

copyright 2011 controltrix corp www. controltrix.com

Thank [email protected]