digital pulse processing of semiconductor detector signals · a. hennig, ikp, university of...

65
Digital Pulse Processing of Semiconductor Detector Signals A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals A. Hennig, M. Elvers, J. Endres, C. Fransen, J. Mayer, L. Netterdon, G. Pascovici, S. Pickstone, P. Scholz, T.-M. Streit, N. Warr, M. Weinert, and A. Zilges Institute for Nuclear Physics, University of Cologne Supported by the DFG under contract ZI 510/4-2, the BMBF under contract (06KY9136) and the Bonn-Cologne Graduate School of Physics and Astronomy Symposium of the Sino-German GDT Cooperation April 2013, Tübingen

Upload: lytruc

Post on 05-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

Digital Pulse Processing of Semiconductor Detector SignalsA. Hennig, IKP, University of Cologne, AG Zilges

Digital Pulse Processing of

Semiconductor Detector Signals

A. Hennig, M. Elvers, J. Endres, C. Fransen, J. Mayer, L. Netterdon,

G. Pascovici, S. Pickstone, P. Scholz, T.-M. Streit, N. Warr,

M. Weinert, and A. Zilges

Institute for Nuclear Physics, University of Cologne

Supported by the DFG under contract ZI 510/4-2, the BMBF

under contract (06KY9136) and the Bonn-Cologne Graduate

School of Physics and Astronomy

Symposium of the Sino-German GDT

Cooperation

April 2013, Tübingen

Page 2: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Outline

Motivation of digital pulse processing

The DGF-4C module

Results with HPGe and Silicon detectors

Summary

Page 3: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The HORUS spectrometer

8 DE-E sandwich silicon detectors

for charged particle spectroscopy

Solid angle coverage of 4%

The SONIC array:

Particle identification

14 HPGe detectors for high

resolution spectroscopy

BGO shields

The HORUS spectrometer at

the University of Cologne:

Absolute efficiency of up to 5%

at 1.33 MeV

Page 4: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The HORUS spectrometer

8 DE-E sandwich silicon detectors

for charged particle spectroscopy

Solid angle coverage of 4%

The SONIC array:

Particle identification

14 HPGe detectors for high

resolution spectroscopy

BGO shields

The HORUS spectrometer at

the University of Cologne:

Absolute efficiency of up to 5%

at 1.33 MeV

Page 5: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Analog vs. digital spectroscopy

Analog signal processing Digital signal processing

Filtering of signals in different

modules to obtain

spectroscopic quantities

Pulse shape analysis hard to

implement

Noise important at all stages

Highly specialized electronics

Optimized in ≈ 50 years of use

Sampling of the signal in the

MHz regime provides all

spectroscopic information

Pulse shape analysis can be

easily implemented

Noise important only before

sampling

Commonly used components

(consumer electronics)

Page 6: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Signal processing - sampling

Sampling of the preamplifier signal at a rate of 10‟s of MHz

Page 7: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Signal processing - sampling

Sampling of the preamplifier signal at a rate of 10‟s of MHz

Online signal processing using a combination of FPGA and DSP

Page 8: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Signal processing - sampling

Sampling of the preamplifier signal at a rate of 10‟s of MHz

Online signal processing using a combination of FPGA and DSP

Length L

Length LGap G

Page 9: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Trapezoidal filter algorithm

Slow filter: Energy determination → filter amplitude

Fast filter: Time determination → leading edge trigger

Trigger to select events of interest (e.g. Pile-up rejection)

[ms]

Page 10: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The Digital Gamma Finder (DGF-4C) [1,2]

Pipeline ADC: digitizing

sampling rate 80 MHz

depth: 14 bit

FPGA: filter algorithms

signal shaping and

pile-up rejection

Readout of the data via

USB in event-by-event

mode

DSP: signal processing

determination of energy

and time of the signal

[1] W.K. Warburton et al., Appl. Rad. and Isot. 53 (2000) 913

[2] XIA LLC, Hayward, CA, USA – http//www.xia.com

digital analog

ADC

Trigger/Filter

FPGADSP

System

FPGA

Revision F modules

cost: about 7000 €

Page 11: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The Digital Gamma Finder (DGF-4C) [1]

Pipeline ADC: digitizing

sampling rate 80 MHz

depth: 14 bit

FPGA: filter algorithms

signal shaping and

pile-up rejection

Readout of the data via

USB in event-by-event

mode

DSP: signal processing

determination of energy

and time of the signal

Four input-channels

per module

Channel specific

VETO inputs

Trigger

inputs/outputs

Multiplicity

input / output[1] W.K. Warburton et al., Appl. Rad. and Isot. 53 (2000) 913

[2] XIA LLC, Hayward, CA, USA – http//www.xia.com

Page 12: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results - energy resolution

Test with 80% (*) HPGe detectors:

(*) Relative to 3 x 3 inch cylindrical NaI detector

Page 13: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Energy resolution is slightly worsened due to beam-induced noise

and higher countrate

Results - energy resolution

Test with 80% (*) HPGe detectors:

(*) Relative to 3 x 3 inch cylindrical NaI detector

Page 14: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Signal processing of Silicon detector signals

Offbeam test:

Energy resolution measured

with triple-a calibration source:

DE (5486 keV): 12.00(8) keV

239Pu 241Am

244Cm

Page 15: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Signal processing of Silicon detector signals

Offbeam test:

Energy resolution measured

with triple-a calibration source:

DE (5486 keV): 12.00(8) keV

239Pu 241Am

244Cm

Page 16: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – timing resolution

Time determination in DGF-4C: leading edge trigger

Amplitude and risetime-walk effect worsens the

timing resolution

Page 17: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – timing resolution

Time determination in DGF-4C: leading edge trigger

Amplitude and risetime-walk effect worsens the

timing resolution

Page 18: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – timing resolution

Time determination in DGF-4C: leading edge trigger

Amplitude and risetime-walk effect worsens the

timing resolution

t1 t2 t3

Threshold

Page 19: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – timing resolution

Correction for amplitude walk:

Page 20: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – timing resolution

Correction for amplitude walk:

Page 21: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Results – Timing Resolution

Correction for amplitude walk:

Timing resolution in coincidence with 1173 keV: DT ≈ 30 ns

Improvements with a digital constant fraction algorithm planned [1]

[1] A. Fallu-Labruyere et al., NIM A 579 (2007) 247

Page 22: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Deadtime contribution in the DGF„s

Pile-up rejection in the FPGA

– Depends on count rate and filter length:

)2exp( inFinout RTRR

DSP deadtime

– DSP blocked by signal processing

Readout deadtime

– Readout of data from DGF-4C to EM/host

14 detectors at 9.6 kHz (av.) / ch.

9.9 %

12.6 %

with TF: filter length

6.3 %

28.8 %Fraction of events lost per channel in the DGF:

Events not processed in the DGF

→ Average values, obtained with 226Ra calibration source

Page 23: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

External gating conditions

Input

Discrimi-

nator

Mult-out Mult-out

GFLT GFLT

Applications:

pulsed beam

→ “beam-on” condition

-coincidence experiments

→ multiplicity filter

Advantages:

reduced background

reduced deadtime

→ less data to process for DSP

→ less data to readout

DGF-4C modules:

late event validation via GFLT

input

-coincidence experiment:

number of detected events

increased by 30%

1

2

3

Page 24: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Summary

Digital signal processing yields various benefits compared to analog

spectroscopy

→ Easy PSA, low-cost, less bulky setup, ….

DGF-4C modules for readout of HORUS and SONIC

→ Processing Silicon and Germanium detector signals

→ Channel specific VETO input for BGO suppression

→ Good energy and time resolution

→ Reduced deadtime compared to analog systems

Thanks to:

V. Derya, M. Elvers, J. Endres, C. Fransen, W. Hennig, J. Mayer, L. Netterdon,

S. Pascu, G. Pascovici, S. Pickstone, P. Scholz, A. Sauerwein, M. Spieker,

T.-M. Streit, N. Warr, M. Weinert and A. Zilges

Page 25: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Page 26: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Advantages of Digital Data Acquisition

Preamplifier signal is sampled

right away

Reduction of signal instabilities

Conservation of signal quality

Cost and space saving

Reduced deadtime

Processing of higher countrates

Digital data acquisition with

DGF-4C modules

Comparable energy and timing

resolution for Silicon and HPGe

detectors

60 cm

48 cm

Page 27: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Advantages of Digital Data Acquisition – Deadtime

Contributions to deadtime - analog:

Spectroscopy amplifier

– Pile-up rejection

ADC

– Comparison to reference ladder

Data acquisition

– Blocked by inhibit logic

Examples:

one HPGe at 10 kHz: 10 – 25 %

one HPGe at 10 kHz: 11%

20 % at 15 kHz master trigger rate*

* measured with a 14 HPGe detector array at the HORUS spectrometer

Total: 41-56 % events lost

** measured with a 8 HPGe detector array at KVI Groningen

51 % at 5 kHz master trigger rate**

Page 28: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

Energy Resolution – t Correction

Time constant t most important for good energy resolution

Adjust t parameter to get best peak shape and resolutioncourte

sy

of

N. W

arr

t

Page 29: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Timing Properties

Dt

Trigger level

Amplitude

Amplitude walk: Depending on the

energy deposited in the crystal

Risetime walk: Depending on the

interaction point in the crystal

Dt

Trigger level

DT = 52.5 ± 2.1 ns

Time determination in DGF module:

leading edge trigger

Improvement of timing resolution

with a digital constant fraction

algorithm planned [1]

[1] A. Fallu-Labruyere et al.,

Nucl. Instr. Phys. Res. A 579 (2007) 247

Page 30: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Treatment of Random Coincidences

background

area

peak area

Create peak and background matrices

Final matrix: difference of peak and background matrix

Timedifference spectrum between two detectors:

Page 31: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Active Compton Suppression

input 1-4

veto 1-4TFA/

CFD

Four veto channels for

Compton suppression

Reduction factor: 3.358 (10)

Page 32: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Energy Resolution – Analog vs. Digital

Page 33: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

External Trigger Conditions

Late event validation using the GFLT

DGF 1Mult-out signal

Discri-

minator

Gate

Generator

Input 1

DGF 2Mult-out signal

Input 1

Linear

FIFO

V

t

n=2

n=1

trigger level

n ≥ 2

Page 34: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

External Trigger Conditions

DGF 1Mult-out signal

Discri-

minator

Gate

Generator

Input 1

DGF 2Mult-out signal

Input 1

Linear

FIFO

Gate signal to trigger input

Gate signal to trigger input

n ≥ 2

Readout deadtime reduced to 0.9%

Late event validation using the GFLT

Page 35: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The 124Sn(13C,3n)134Ba

Experiment

Page 36: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

-Coincidence Experiment

Beam energy: 46 MeV,

calculation with CASCADE

Use of 13 HPGe detectors

Aim of the test experiment:

Investigation of energy and timing resolution

Production of well studied

nuclei 133Ba [1,2] and 134Ba [3,4]

Reproduction of angular correlations of coincident -rays

Acquisition of coincidences

[1] J. Gizon et al., Nucl. Phys A 252 (1975) 509

[2] S Juutinen et al., Phys. Rev. C 51 (1995) 51

[3] M. Behar et al., Nucl. Phys. A 192 (1972) 218

[4] T. Lönnroth et al., JYFL Ann. Rep. 89-90 (1990) 99

Reaction: 124Sn(13C,xn)137-xBa

ECoulomb

Page 37: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Angular Correlations

Angular distribution of -ray emission from an aligned nucleus:

),,()()()(),,( 21,,21

,

1

,,

21 212

21

21

1 kkkk

kk

k

kkk

k HAAIBW

Sorting of detector pairs in 17 correlation groups that share the same

angles ,1,2

Fit of W(1,2,) to intensities in correlation groups

Page 38: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Test of the Data Acquisition

57 45

68

24

46

285

585

0

2

4

6

8

5

7

0

605

1400

2211

2835

1985

2270624

811

796

605134Ba

Reaction: 124Sn(13C,4n)133Ba

HPGe count rates: 5 -14 kHz

Beam current: 10 pnA

Beam energy: 46 MeV

DEFWHM : 1.9 to 2.4 keV

Page 39: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Angular Correlations in 134Ba

285

585

0

2

4

6

8

5

7

0

605

1400

2211

2835

1985

2270624

811

796

605134Ba

Page 40: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Angular Correlations in 134Ba

285

585

0

2

4

6

8

5

7

0

605

1400

2211

2835

1985

2270624

811

796

605134Ba

Page 41: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

613

627

642

Angular Correlations in 133Ba

338

458

2/11

2/15

2/17

288

969

1859

743890

680133Ba

2/19

1712

2/19

2/21

2/13

2/15

Page 42: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

613

627

642

Angular Correlations in 133Ba

338

458

2/11

2/15

2/17

288

969

1859

743890

680133Ba

2/19

1712

2/19

2/21

2/13

2/15

Page 43: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

12

276

Test of the Digital Data Acquisition System

Reaction: 124Sn(13C,4n)133Ba

HPGe count rates: 5 -14 kHz

Beam current: 10 pnA

Beam energy: 46 MeV

DEFWHM : 1.9 to 2.4 keV

424

229

338

458

hT 9.38,2/11 2/1

2/15

2/17

2/19

288

969

1859

1942

743890

680133Ba

2/19

1712

2/19

2/21

2/232366

120

2/32/1

2/192/21

2/192/23

2/172/19

2/152/17

2/152/19

Page 44: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Correction for Solid Angle Coverage

Neglecting the extension of the source: kkkkkk QAA /exp

Attenuation factors with)2()1( kkkk QQQ )(/)()( 0 iJiJiQ kk

aaaa

dPEiJ kik sin)(cos),()(

2/1

0

J. S. Lawson and H. Frauenfelder,

Phys. Rev. 91 (11953) 649

Page 45: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Correction for Solid Angle Coverage

Effect of solid angle correction with statistical error bars

Minor changes in determined multipole mixing ratios

Page 46: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The 140Ce(p,p‘)

Experiment

Page 47: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Particle- Coincidence Experiment

Particle detector array SONIC

embedded into HORUS

spectrometer

Reaction: 140Ce(p,p’)

'ppx EEE

pE'pE

E

Silicon

detector

HPGe

detector

Beam energy: Ep = 10.4 MeV

Beam current: Ip = 0.5 pnA

Coincident detection of scattered

proton and deexciting ray

Page 48: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Excitation spectrum in 140Ce

12

13

62

)2( 1

12C

)3,0( 12

16O

Page 49: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

Decay of Two-Phonon State in 140Ce

1)32(

2

00

3643

3643 1592

2051

Ex1592

Two-phonon 1- state in 140Ce:

Page 50: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

01

21

Decay of two-phonon state in 140Ce

1)32(

2

00

3643

3643 1592

2051

Ex1592

Two-phonon 1- state in 140Ce:

'ppx EEE

pE'pE

E

Page 51: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

The sorting code SOCO

Page 52: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

SOrting code COlogne (SOCO)[1]

Evaluation software for double coincidence listmode data

Features:

Use of multiprocessing

[1] M. Elvers, PhD thesis, University of Cologne (2011)

Page 53: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals

SOrting code COlogne (SOCO) [1]

Evaluation software for double coincidence listmode data

Features:

Use of multiprocessing

Provides matrices, single spectra and projections,

as well as time-difference spectra

Support of different listmode formats:

- FERA (old cologne data format)

- XIA (data format for the new digital data acquisition)

- GASP (INFN Legnaro, IFIN-HH Bucharest)

[1] M. Elvers, PhD thesis, University of Cologne (2011)

Page 54: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

0

L=5

S2

G=3

S1

S = S2 – S1 = 0

S

t

5

4

3

2

1

0

1

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 55: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

0

L=5 G=3

S2S1

S

t

5

4

3

2

1

0

1

S = S2 – S1 = 0

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 56: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 0

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 57: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 1

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 58: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 2

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 59: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 3

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 60: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 4

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 61: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 5

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 62: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 5

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 63: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 5

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 64: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 5

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm

Page 65: Digital Pulse Processing of Semiconductor Detector Signals · A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals Digital Pulse

A. Hennig, IKP, University of Cologne, AG Zilges Activation Measurement of the Reaction 141Pr(α,n)144Pm

V

t

1

0

S2S1

S

t

5

4

3

2

1

0

S = S2 – S1 = 0

k

Lki

i

GLk

GLki

ikx VVLV112

,

Trapezoidal filter algorithm