dipot.ulb.ac.be · web viewword count for the abstract: 143 word count for the manuscript...

49
Safe Lipid Nanocapsule-based Gel technology to Target Lymph Nodes and Combat Mediastinal Metastases from an Orthotopic Non-Small-Cell Lung Cancer model in SCID- CB17 mice Nathalie WAUTHOZ 1,2 , Guillaume BASTIAT 1,2,* , Elodie MOYSAN 1,2 , Anna CIESLAK 1,2 , Kazuya KONDO 3 , Marc ZANDECKI 4 , Valérie MOAL 5 , Marie- Christine ROUSSELET 6 , José HUREAUX 1,7 and Jean-Pierre BENOIT 1,2 Word count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number of figures: 3 Number of tables: 3 1

Upload: others

Post on 09-Dec-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Safe Lipid Nanocapsule-based Gel technology to Target Lymph Nodes and Combat

Mediastinal Metastases from an Orthotopic Non-Small-Cell Lung Cancer model in

SCID-CB17 mice

Nathalie WAUTHOZ 1,2, Guillaume BASTIAT 1,2,*, Elodie MOYSAN 1,2, Anna CIESLAK 1,2,

Kazuya KONDO 3, Marc ZANDECKI 4, Valérie MOAL 5, Marie-Christine ROUSSELET 6, José

HUREAUX 1,7 and Jean-Pierre BENOIT 1,2

Word count for the abstract: 143

Word count for the manuscript (including body text, and figure and table legends):

5206

Number of references: 42

Number of figures: 3

Number of tables: 3

1

Page 2: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Safe Lipid Nanocapsule-based Gel technology to Target Lymph Nodes and Combat

Mediastinal Metastases from an Orthotopic Non-Small-Cell Lung Cancer model in

SCID-CB17 mice

Nathalie WAUTHOZ 1,2, Guillaume BASTIAT 1,2,*, Elodie MOYSAN 1,2, Anna CIESLAK 1,2,

Kazuya KONDO 3, Marc ZANDECKI 4, Valérie MOAL 5, Marie-Christine ROUSSELET 6, José

HUREAUX 1,7 and Jean-Pierre BENOIT 1,2

1 LUNAM Université – Micro et Nanomédecines Biomimétiques, F-49933 Angers, France

2 INSERM – U1066 IBS-CHU, F-49933 Angers, France; [email protected],

[email protected], [email protected], [email protected]

angers.fr, [email protected]

3 Department of Oncological Medical Services, Institute of Health Biosciences, The University of

Tokushima Graduate School, 18-15 Kuramoto-cho 3 Tokushima, 770-8509, Japan;

[email protected]

4 Hematology Department, Academic Hospital, Angers, F-49933, France; MaZandecki@chu-

angers.fr

5 Biochemistry Department, Academic Hospital, Angers, F-49933, France; VaMoal@chu-

angers.fr

6 Cell and Tissue Pathology Department, Academic Hospital, Angers, F-49933, France;

[email protected]

7 Pneumology Department, Academic Hospital, Angers, F-49933, France; johureaux@chu-

angers.fr2

Page 3: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

* To whom correspondence should be addressed:

Tel: +33 244688531, Fax: +33 244688546, E-mail: [email protected]

The authors declare that there are no conflicts of interest.

Funding sources: this work has been carried out within the research program LYMPHOTARG

financially supported by EuroNanoMed ERA-NET 09 and by the Région Pays de la Loire.

Abstract

The purpose of this study is the assessment of gel technology based on a lauroyl derivative of

gemcitabine encapsulated in lipid nanocapsules delivered subcutaneously or intravenously after

dilution to (i) target lymph nodes, (ii) induce less systemic toxicity and (iii) combat mediastinal

metastases from an orthotopic model of human, squamous, non-small-cell lung cancer Ma44-3

cells implanted in severe combined immunodeficiency mice.

The gel technology mainly targeted lymph nodes as revealed by the biodistribution study.

Moreover, the gel technology induced no significant myelosuppression (platelet count) in

comparison with the control saline group, unlike the conventional intravenous gemcitabine

hydrochloride treated group (p < 0.05). Besides, the gel technology, delivered subcutaneously

twice a week, was able to combat locally mediastinal metastases from the orthotopic lung tumor

and to significantly delay death (p < 0.05) as was the diluted gel technology delivered

intravenously three times a week.

Keywords: lymphatic targeting, nanomedicine, mediastinum, immunomodulation

3

Page 4: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Background

Lung cancer remains the leading cause of cancer-related mortality around the world [1, 2]. Non-

small-cell lung cancers (NSCLC) represent 85% of all cases of lung cancers [3]. Diagnosed

NSCLC are mainly present in regional and advanced extent for 22% and 56% of patients,

respectively [4]. At these stages, cells from a primary tumor (i.e. metastases) have migrated and

have been disseminated by blood and/or lymphatic vessels to distal organs. Via the lymphatic

route, metastases are trapped by lymph nodes (firstly by sentinel nodes followed by secondary

and distal nodes) [5]. The more distal the invasion of lymph nodes is, the higher the malignancy

and the poorer the prognosis is [5]. Indeed, the five-year survival rate of patients with NSCLC

treated by current treatment methods is estimated at 42% for a stage of N0 (without regional

lymph node metastases) to 7% for N3 corresponding to the latest stage of lymph node implication

[6]. Patients with mediastinum lymph node metastases (N2 and N3) are considered in the

advanced stage III and are mainly treated by a combination of radiotherapy and chemotherapy

with poor improvement in long-term survival and at the expense of a large rise in Grade 3

toxicities [7]. Moreover, mediastinal lymph node metastases can induce the “superior vena cava

(SVC) syndrome”, which is an array of clinical signs and symptoms due to the impairment of

blood flow through the SVC [8, 9]. The flow impairment is usually caused by the enlargement of

mediastinal lymph nodes that compress the SVC. The symptoms include dyspnea, coughing, and

swelling of the face, neck, upper trunk, and extremities. Furthermore, headache, confusion, and

possibly coma can result from cerebral edema. The SVC syndrome from lung malignancies is

treated by chemotherapy and/or radiotherapy or by endovascular stenting in emergency cases [8,

9].

4

Page 5: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Conventional chemotherapy is mainly delivered by perfusion but includes major limitations: high

systemic toxicity and poor lymph node exposure and retention [10]. In consequence, an efficient

drug delivery system increasing lymph node exposure and retention while decreasing systemic

toxicity could be useful against lymph-metastatic cancers [5]. With this aim, a nanocarrier

system, lipid nanocapsules (LNCs), loaded with the lipophilic pro-drug gemcitabine (Gem-C12)

has been developed. Gemcitabine is a third generation agent composed of the platinum based

doublet chemotherapy used as first-line treatment for advanced NSCLC patients with good

performance status [3]. However, due to its hydrophilic nature and its low membrane

permeability and also due to its extensive deamination in plasma and tissues by cytidine

deaminase, its plasma elimination half-life (t1/2) after 30 min. perfusion is extremely short (42-94

min.) [11]. Therefore, a high dose regimen is required which mainly leads to dose-limiting

myelosuppression in approximately two-thirds of patients [12]. Moreover, different resistance

mechanisms against gemcitabine have evolved in cancer cells; this fostered the emergence of

chemically-modified gemcitabine [11]. The Gem-C12 (i.e. 4-(N)-lauroyl-gemcitabine) was

synthetized by Tokunaga et al to decrease the deamination in blood responsible for inactive

metabolite formation and to decrease the hydrophilicity responsible for poor drug loading in

lipophilic nanosystems [11].

The LNC loaded with Gem-C12 has previously demonstrated the ability (i) to form a hydrogel

when Gem-C12 is encapsulated in LNC, (ii) to release Gem-C12-based LNC at a rate depending

on the Gem-C12 concentration, (iii) to be in vitro injected through 18 or 21G needle, (iv) to form

a suspension after dilution, and (v) to exert a higher-than-average in vitro anticancer activity

against human NSCLC and prostatic carcinoma cell lines [13]. For this study, a subcutaneous (sc)

administration route and a 50nm LNC with a polyethyleneglycol 660-based surface forming the

5

Page 6: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

hydrogel were chosen because they seemed to be the most appropriate for lymphatic drainage

and lymph node retention [5, 14-19]. Indeed, after sc administration, nanocarriers whose size was

less than 0.1µm have direct access to lymphatic capillaries; absorption by blood capillaries is

restricted to water and small hydrophilic molecules (< 10nm) [5, 17, 19]. Moreover, having no

overall charges (or negative charges) generally helps gain access to the lymphatic system, but

hydrophobic (macrophage phagocytosis) or increased size is required for lymph node retention.

Indeed, mechanical depth filtration in the meshwork of reticular cells and phagocytosis by

macrophages are generally accepted as the major mechanisms of liposome uptake in lymph nodes

[5, 17].

Therefore, the purpose of this study is to evaluate in vivo this LNC-based gel technology in terms

of (i) lymph node targeting, (ii) tolerance, and (iii) antitumor efficacy in a highly aggressive

patient-like lymphogenous metastatic model of human NSCLC. This lymphogenous metastatic

model mimics the spreading of metastases in mediastinum from the primary tumor implanted in

the lung of severe combined immunodeficiency mice with a CB17 genetic background (SCID-

CB17) as observed for NSCLC patients [20].

Methods

Material

Labrafac® WL 1349 (caprylic–capric acid triglycerides) was provided by Gattefossé S.A. (Saint-

Priest, France). Kolliphor® HS15 (mixture of free polyethyleneglycol 660 and polyethyleneglycol

660 hydroxystearate) was supplied by BASF (Ludwigshafen, Germany). Sodium chloride,

acetone and ethanol were purchased from VWR (Fontenay-sous-Bois, France). Span® 80

(sorbitane monooleate), Tween® 80 (polysorbate 80) and 5-aminolevulinic acid (ALA) were

6

Page 7: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

purchased from Sigma (St Quentin Fallavier, France). 1,1'-Dioctadecyl-3,3,3',3'-

tetramethylindodicarbocyanine (DiD) was provided by Life Technologies (Saint-Aubin, France).

Methanol was analytical grade purchased from Fischer Scientific (Loughborough, United

Kingdom). Water was obtained from a MilliQ filtration system (Millipore, Paris, France). 4-(N)-

lauroyl-gemcitabine (Gem-C12) was synthesized and characterized as described elsewhere [13].

Preparation of the formulations

The LNC-based gel technology was prepared following the phase-inversion temperature (PIT)

process [13, 21]. Briefly, Gem-C12 (0.062g) was first solubilized (5%, ratio Gem-C12/Labrafac®

w/w) in a mix of Labrafac® WL 1349 (1.24g), Span® 80 (0.25g) and acetone that was

evaporated before the addition of Kolliphor® HS15 (0.967g), NaCl (0.045g) and water

(1.02g). All were then mixed and heated to 75°C under magnetic stirring at 500rpm followed by

cooling to 45°C (rate of 5°C/min). Three cycles were performed and at the last cooling phase, a

sudden dilution with 2.12g room-temperature water was carried out at 60°C. LNC loaded with

Gem-C12 spontaneously formed a hydrogel with a waxy aspect. The gelation process was

considered to be achieved after 24h at 4°C. LNC loaded with the prodrug (Gem-C12 LNC) and

used in a liquid form were acquired by the 4-fold dilution of the formulation directly after the

process, before the establishment of the hydrogel. Non-loaded LNC was prepared in the same

way as Gem-C12 LNC hydrogel but without Gem-C12 and acetone. Fluorescent LNC was

obtained by adding the fluorescent probe (DiD) with the other reagents at a final concentration of

0.1% of Labrafac (w/w). Free Gem-C12 was dissolved in ethanol, Tween® 80 and water

(87.6/5.5/6.9 v/v/v) as a micellar system for in vivo experiments. The commercial gemcitabine

7

Page 8: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

hydrochloride used was Gemcitabine Hospira 38mg/mL, diluted at the required concentration

with 0.9%. NaCl.

Characterization of LNC-based formulations

The hydrodynamic diameter (Z-average), polydispersity index (PdI) and zeta potential of LNC-

based formulations were determined by dynamic light scattering using a Zetasizer® Nano series

DTS 1060 (Malvern Instruments S.A., Worcestershire, UK). LNC-based formulations were

diluted 1:60 (v/v) in deionised water in order to ensure a convenient scatter intensity on the

detector; each measurement was done in triplicate at 25°C. The drug loading was determined

after dialysis, using an Ultra Performance Liquid Chromatography apparatus with UV

spectroscopy detection as previously described [13]; each measurement was done in triplicate.

Animals

For pharmacokinetic and biodistribution studies, female nude Swiss mice were purchased from

Harlan (Gannat, France) and for in vivo efficacy and tolerance evaluations, male SCID-CB17

mice were purchased from Charles River (L’Arbresle, France). The animals are housed and

maintained at the University animal facility (SCAHU) in disposable plastic cages with hardwood

chips bedding in an air-conditioned room with a 12-hour-light/12-hour-dark cycle. All the animal

experiments were carried out in accordance with EU Directive 2010/63/EU and with the

agreement of the “Comité d’Ethique pour l’Expérimentation Animale des Pays de la Loire”

(authorization CEEA; 2012-37 and 2012-73).

8

Page 9: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Pharmacokinetic and biodistribution of fluorescent LNC-based formulations in healthy

nude mice

Mice (9 weeks old, n = 5 for each group) were anesthetized (isoflurane) and either 110µL of

DiD-Gem-C12 LNC was injected subcutaneously (sc) behind the neck, or 110µL of DiD LNC

was injected intravenously (iv) into the tail vein with the aim of delivering the same amount of

DiD-loaded LNC. After various lengths of time, from 1h to 336h, the mice were sacrificed and

the blood was removed by cardiac puncture in a venous blood collection tube containing Li-

heparin (Tube Micro from SARSTEDT, Marnay, France). The organs were then removed for the

biodistribution study. Plasma from each blood sample was obtained after 10 min. of

centrifugation at 2,000g.

The DiD concentrations in plasma (encapsulated inside LNC) over time were determined using a

microplate reader Fluoroscan Ascent® (Labsystems SA, Cergy-Pontoise, France) at excitation

and emission wavelengths of 646 and 678nm, respectively. The DiD concentrations in plasma

were intrapolated from the linear curve between 0.006 and 12µg/mL (r2 > 0.999). The recovered

DiD concentrations were then normalized in function of the animal’s weight, assuming that blood

represents 7.5% of mouse body weight [22]. Pharmacokinetic data were determined by iv bolus

and extravascular non-compartmental analysis (for iv and sc administration, respectively) of the

recovered systemic DiD concentration over time using Kinetica 4.1.1 software (Thermo Fisher

Scientific, Villebon sur Yvette, France). The trapezoidal calculation method was used to

determine the area under the curve (AUC) during the whole experimental period (from 1 to 336h)

without extrapolation. The t1/2 was calculated from 1 to 8h for t1/2 distribution and from 8 to 336h

for t1/2 elimination.

9

Page 10: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

For the biodistribution study, the organs (i.e., kidneys, liver, spleen, lung, heart, stomach, and

intestine), and lymph nodes (i.e., inguinal, axillary, cervical and brachial lymph nodes) were

removed and analyzed by a fluorescence CRI MaestroTM imaging system (Woburn, USA). Semi-

quantitative data were obtained by setting a time exposure of 10ms between 630 and 800nm,

unmixing the generated cube, extracting the background, and drawing the regions of interest from

fluorescence images (Figure 1-A). The software Maestro 2.10 (Woburn, USA) was used to

calculate the average signal expressed in photon/cm²/s.

Cell culture and inoculum preparation for lung implantation

An Ma44-3 cell line derived from the human squamous NSCLC carcinoma cancer cell line Ma44

by limit dilution method was kindly provided by Prof. Kondo (Department of Oncological and

Regenerative Surgery, School of Medicine, University of Tokushima, Japan) and was cultured in

RPMI 1640 (Lonza, Verviers, Belgium) supplemented with 10% heat-inactivated fetal bovine

serum (Lonza, Verviers, Belgium), 100U/mL of penicillin, 100µg/mL of streptomycin and

0.250μg/mL of amphotericin B from Sigma (St Quentin Fallavier, France) at 37°C in a

humidified incubator with 5% CO2. For lung implantation, the cells were harvested at 70-80%

confluence using trypsin that was inactivated by the culture medium. Then, the cell suspension

was centrifuged at 1,400rpm for 5 min. and the supernatant was removed and replaced by RPMI

1640 containing 0.1% bovine serum albumin fraction V pH 7.0 (PAA GmbH, Pasching, Austria)

which was then mixed with Matrigel® (DB Biosciences, Bedford, MA) to obtain an inoculum of

2.0 × 106 tumor cells/mL with 400µg/mL of Matrigel®. The inoculum was kept on ice for a

maximum of 2h.

10

Page 11: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Orthotopic intrapulmonary implantation procedure

The orthotopic intrapulmonary implantation procedure was performed as previously reported

[20]. Briefly, the 6 week-old SCID-CB17 mice were maintained in the right lateral decubitus and

anesthetized by isoflurane inhalation. A 1cm transverse incision was made on the left lateral skin

just below the inferior border of the scapula of the SCID-CB17 mice. The muscles were

separated from the ribs by sharp dissection, leaving the intercostal muscles visible. 10μL of cell

suspension (2.0 × 104 cells) were inoculated with a 30-gauge needle to a depth of about 3-5mm

into the lung through the intercostal muscles and after, the needle was promptly pulled out. Mice

were maintained in the right lateral decubitus position after injection and the skin incision was

closed with 3-0 silk (Ethicon, St-Stevens-Woluwe, Belgium). The mice were observed until

complete recovery.

In vivo efficacy on the lymphogenous metastatic model

The in vivo efficacy of different treatments on survival was evaluated on a lymphogenous

metastatic model. Seven groups of 10 SCID-CB17 mice implanted with 2.0 × 104 Ma44-3 cells in

the left lung were randomly established. Five groups were treated by iv (145µL at each injection

by the tail vein) on Days 5, 7 and 9 after tumor grafting, either with (i) NaCl 0.9% solution

(saline iv), (ii) non-loaded LNC (non-loaded LNC iv), (iii) commercial gemcitabine

hydrochloride (Gemcitabine iv), (iv) Gem-C12 micelles (Gem-C12 iv) or (v) liquid form of Gem-

C12-loaded LNC (Gem-C12 LNC iv). Two groups were treated by sc route (55µL at each

injection behind the neck) on Days 5 and 9 after tumor grafting either with (i) non-loaded LNC

(non-loaded LNC sc) or (ii) gel form of Gem-C12-loaded LNC (Gem-C12 LNC sc). The total

LNC delivered dose of non-loaded LNC was the same as the Gem-C12-loaded LNC for iv or sc.

11

Page 12: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

In groups treated by gemcitabine hydrochloride or Gem-C12 (in LNC or not), the total dose

delivered to mice was 40mg (molar equivalent gemcitabine hydrochloride) per kilogram of body

weight. The mice were observed every day and body weight measurements were performed daily

during the treatment period and then three times a week. By applying the criteria for euthanasia

of experimental animals, the mice were sacrificed when they lost 20% of body weight and/or

associated with a high degree of respiratory depression. Survival analyses were carried out by

means of Kaplan-Meier curves and the log-rank test.

Visualization of the fluorescent LNC-based formulations in lung and mediastinum in

tumor bearing mice

Visualization of the lung and mediastinal distribution of fluorescent LNC-based formulations

delivered sc or iv after dilution was performed after 4h on tumor-grafted SCID-CB17 mice. On

Day 5 post tumor grafting, a group of 3 mice received an iv injection of DiD LNC and the other

group of 3 mice received an sc injection of DiD-Gem-C12 LNC to deliver the same amount of

DiD LNC. Moreover, both groups received orally 400mg/kg of ALA in PBS (200µL) to detect

tumor mass. Four hours after the respective administrations, the mice were killed and dissected

for imaging the lung and the mediastinum area. Fluorescence imaging was carried out using the

CRI Maestro system between 500 and 635nm (for Pp IX for tumor mass visualization) and 630

and 800nm (for DiD for LNC visualization) using automatic exposure.

In vivo tolerance evaluation of the formulations

Mice (7 weeks old, 5 per group) received 145µL of an iv injection of saline (saline iv),

gemcitabine hydrochloride (Gemcitabine iv), Gem-C12 micelles (Gem-C12 iv), non-loaded LNC

12

Page 13: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

(non-loaded LNC iv) or liquid form of Gem-C12-loaded LNC (Gem-C12 LNC iv) dispersions

three times a week for one week (Monday, Wednesday and Friday). Ten mice (5 per group)

received 55µL of an sc injection of non-loaded LNC (non-loaded LNC sc) or gel form of Gem-

C12-loaded LNC (Gem-C12 LNC sc) twice a week for one week (Monday and Friday). The LNC

delivered dose of non-loaded LNC was the same as Gem-C12-loaded LNC for iv or sc

administrations. In groups treated by gemcitabine hydrochloride or Gem-C12 (in LNC or in

micelles), the dose delivered to mice was 40mg (molar equivalent gemcitabine hydrochloride) per

kilogram of body weight. Hematology and biochemical assays on blood were carried out for each

mouse 8 days after the first injection, to assess the tolerance to treatment. Blood sampling was

performed by cardiac puncture in anaesthetized mice; half of the blood sample was placed in a

venous blood collection ethylene-diamine-tetraacetic acid tube (K2E tube from BD Microtainer,

NJ, USA) for hematology studies and the other half in a venous blood collection tube containing

heparin lithium (Tube Micro from SARSTEDT, Marnay, France) which were then centrifuged at

10,000g for 10 min. to remove the plasma and evaluate the blood biochemical markers. The

hematological parameters were determined in the Hematology Ward of the Academic Hospital of

Angers with an XE-2100 hematology analyzer (Sysmex). Plasma biochemistry analyses were

carried out at the Biochemistry Ward of the Academic Hospital of Angers on an Architect

C16000 (Abbott). Statistical comparisons of data were analyzed by a non-parametric one-way

analysis of variance (Kruskal-Wallis test), followed by Dunn's post-hoc test for pairwise

comparisons.

Results

LNC-based formulations

13

Page 14: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

The physicochemical characteristics of LNC-based formulations are presented in Table 1. With

the addition of Gem-C12 into LNC, a hydrogel was formed that can be injected using a syringe

[13]. Once the gel was diluted 4-fold in water, a liquid LNC suspension was obtained (Gem-C12

LNC iv). LNC formulations performed by the PIT method displayed a Z-average range (i.e.,

hydrodynamic diameter) between 53 and 68nm, depending on the presence of the amphiphilic

Gem-C12 and/or DiD in the LNC surface, and a polydispersity index in all cases less than 0.1,

which means that monomodal and monodispersed distributions were obtained.  In all cases, the

zeta potential was slightly negative, from -5 to -10mV. Similarly to many hydrophobic drugs [23,

24], Gem-C12 was well-encapsulated in the LNC with a high encapsulation efficiency of about

100%.

Biodistribution and pharmacokinetic of LNC-based formulations

LNC loaded with the fluorescent dye DiD were used to evaluate their tissue biodistribution and

pharmacokinetics after iv (suspension of DiD LNC) and sc (hydrogel of DiD-Gem-C12 LNC)

administration in nude Swiss mice. The fluorescent dye DiD was chosen to be encapsulated in the

LNC because (i) it is a near-infrared fluorophore limiting the auto-fluorescence wavelength

emitted by animals [25-27], (ii) it is weakly fluorescent in aqueous media, but highly fluorescent

in a lipophilic vehicle [28], and (iii) there is no dye release (strong fluorescence labeling stability

of the nanocarrier) [29]. The semi-quantitative fluorescence of the organs extracted after 1, 4, 8,

48, 96, and 336h is reported in Figure 1-C to F and Figure S1 in supplementary information. DiD

LNC iv and DiD-Gem-C12 LNC sc was rapidly distributed in the lymph nodes of the nude mice.

An immediate accumulation in the liver and spleen after 4 and 8h was observed with DiD LNC

iv. After 48h, a decrease of the accumulation was observed for these organs to totally disappear

14

Page 15: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

after 336h (Figure 1-C). DiD-Gem-C12 LNC sc accumulated exclusively in the lymph nodes

close to the injection site (i.e., in axillary, cervical and brachial lymph nodes) in similar amounts

to the first hours (i.e., 1, 4 and 8h) as DiD LNC iv but was much higher after a few days (i.e., 48,

96 and 336h) (Figure 1-F). Moreover, DiD-Gem-C12 LNC sc presented a much lower plasmatic

exposition than DiD LNC iv (Figure 1-B) resulting in a lower AUC1-336h of 4µg.h/mL in

comparison with an AUC1-336h of 174µg.h/mL, respectively. Besides, DiD-LNC was more rapidly

cleared from the systemic circulation after iv administration with a t1/2 elimination of 19h in

comparison to 32h found for the sc injection of the hydrogel. Indeed, the latter presented

controlled-release properties [13].

In vivo efficacy of the LNC-based formulations

The patient-like lymphogenous metastatic Ma44-3 preclinical model was used to evaluate the

efficacy of LNC-based gel technology. Five days post-tumor graft in a left lung lobe, when

micrometastatic foci were detected in mediastinum (Figure S2-A), a comparative efficacy study

on randomized groups was performed with different treatments and schedules of administration.

The dose of 40mg (molar equivalent dose of gemcitabine hydrochloride) per kilogram of body

weight delivered twice or three times a week by the sc and the iv routes, respectively, was chosen

because no weight loss nor death was observed in a group of three mice using Gem-C12 LNC

(gel form) for sc route or Gem-C12 LNC (liquid form) for iv route, respectively. Higher doses or

similar doses with fewer injections caused drastic weight loss or the death of mice (data not

shown). The survival times of experimental animals were plotted on the Kaplan Meier curves as

shown in Figure 2-A. Mice of the saline iv and non-loaded LNC iv or sc groups were

characterized by a very short lifespan after tumor implantation without significant difference (p >

15

Page 16: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

0.05, log-rank test) (Table S1 in supplementary material). In the treated groups by gemcitabine

hydrochloride or Gem-C12, all groups except Gemcitabine iv (i.e., Gem-C12 iv, Gem-C12 LNC

iv and Gem-C12 LNC sc) showed significant differences (p < 0.05, log rank test) in comparison

with the saline iv group (Table S1 in supplementary material). However, Gem-C12 LNC sc showed

a significantly prolonged lifespan (p < 0.05, log rank test) in comparison to its control group (i.e.,

non-loaded LNC sc); and Gem-C12 LNC iv showed a significantly prolonged lifespan (p < 0.05,

log rank test) in comparison to the Gemcitabine iv group (Table S1 in supplementary material).

The weight evolution of the different mice groups remained similar during the experiment with a

short stabilization during the treatment period (Figure 2-B).

Visualization of fluorescent LNC-based formulations in lung and mediastinal lymph

nodes

The in vivo behavior of LNC-based formulations was then assessed following the iv injection of

DiD-LNC and the sc injection of DiD-Gem-C12 LNC in tumor-bearing SCID-CB17 mice to

better understand the result of antitumor efficacy. The fluorescence images obtained 4h after

DiD-loaded LNC formulation injections are presented in Figure 3. DiD LNC is visible in the

entire lung of the three mice after iv injection (Figure 3-B) because at this time, the LNC mainly

remained in the blood as confirmed by plasmatic exposition (Figure 1-B) and because the lung is

a highly vascularized organ. However, no accumulation of DiD LNC (after iv administration) was

seen after 4h in mediastinal lymph nodes contrary to the other lymph nodes during the

biodistribution study (Figure 1-E). For DiD-Gem-C12 LNC administered by sc route, only an

intense local accumulation in mediastinal lymph nodes was observed (Figure 3-D) and not in the

entire lung of the three mice. Mediastinal lymph nodes are known to be close to the thymus [30].

16

Page 17: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Indeed, a negligible plasma exposition for DiD-Gem-C12 LNC was previously seen in Figure 1-

B.

Tolerance of the LNC-based gel technology on SCID-CB17 mice

To evaluate if the different treatments used in SCID-CB17 mice induced myelosuppresion, the

complete blood count was performed 8 days after the first injection as in clinic [31] and are

presented in Table 2. A significant decrease of platelet count was only observed with the group

treated by gemcitabine hydrochloride iv in comparison to the saline iv control group (p < 0.05,

Kruskal-Wallis test) and no difference was measured for Gem-C12 non or loaded in LNC and

delivered iv or sc in the respective schedule. SCID-CB17 mice are severe combined

immunodeficiency mice characterized by severe lymphopenia [32], which prevents the analysis

of the compete granulocyte count. Plasma biochemical parameters such as aspartate

aminotransferase (ASAT), alanine aminotransferase (ALAT), alkaline phosphatase (PH ALK)

and serum creatinine were evaluated (Table 3). No significant difference was seen between the

different groups in comparison to the control saline iv group, except for a significant decrease of

PH ALK for Gem-C12 not loaded in LNC, but formulated with ethanol as a co-solvent and in

surfactant micelles (p < 0.05, Kruskal-Wallis test).

Discussion

Drug delivery to the lymphatic system is a good option to combat metastasis spreading from a

primary tumor via the lymphatic system and to modulate immunity. Indeed, the lymphatic system

filters particles (e.g., nanomedicine) or cells (e.g., cancer cells) from interstitial fluid and supports

the activity of the lymphocytes, which furnish immunity, or resistance, to the specific disease-

17

Page 18: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

causing agents [18]. In this study, using the sc administration route, slightly negative-charged

50nm LNCs (polyethene glycol 660-based surface) composing the hydrogel were chosen because

they could be the most appropriate method for lymphatic drainage and lymph node retention [5,

14-19]. The gel form of DiD-Gem-C12 LNC progressively released 50nm LNCs in the interstitial

fluid. Released LNCs passed rapidly into the lymphatic capillary vessels and were drained until

lymph nodes as observed by the specific accumulation in adjacent lymph nodes: axillary,

brachial, cervical (Figure 1-F) and mediastinum lymph nodes (Figure 3-B). When DiD-LNCs

were delivered intravenously, the LNCs were taken up by the mononuclear phagocytic system

that recognized the adsorption of complement proteins on the LNC surface, as observed by their

rapid accumulation in the liver and spleen (Figure 1-C), and as previously reported by Hirsjarvi et

al [25, 33]. DiD-LNC was also partly carried up to lymph nodes, as revealed by their

accumulation in all the studied lymph nodes (Figure 1-E). However, they were not accumulated

in mediastinum lymph nodes, where the interstitial fluid of the lung is drained. Indeed, healthy

blood vessels of the lung have poor permeability due to small pores in postcapillary venules (<

6nm) [34]. As a consequence, nanomedicine such as 50nm-LNC was poorly extravasated in lung

parenchyma and then poorly transported to mediastinum lymph nodes. LNC-based gel

technology, able to target the lymph nodes more specifically by the subcutaneous route and

loaded with a pro-drug of gemcitabine, Gem-C12, was tested on a patient-like lymphogenous

metastatic Ma44-3 preclinical model. There are very few preclinical models of lymphogenous

metastatic NSCLC in the literature. The Ma44-3 preclinical model developed by Ishikura et al

[20] was chosen because i) it is a subpopulation of a human squamous NSCLC grafted in the lung

[20], ii) it spreads in the mediastinum [20, 35], and iii) it causes the death of mice from

mediastinum metastases and not from the primary tumor [36].

18

Page 19: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Despite the presence of the primary lung tumor responsible for cancer cells spreading to the

mediastinum, Gem-C12 LNC only localized in mediastinum lymph nodes were able to exert the

same antitumor efficacy as the systemic administration of Gem-C12 (loaded in LNCs or micelles)

(Figure 2-A), which exerted a systemic anticancer activity (i.e., on primary lung tumor and

therefore on the spreading of mediastinal metastases) and resulting in the increase of the survival

lifespan to the same extent (Figure 2A). Moreover, this similar survival improvement by targeting

only lymph nodes was also accompanied by lower systemic side effects. Indeed, Gem-C12 LNC

delivered by iv or sc routes presented no significant depletion in platelet count, a marker of

myelosuppression, contrary to conventional gemcitabine hydrochloride iv (Table 2), and no

significant depletion in alkaline phosphatase, contrary to Gem-C12 loaded in surfactant-based

micelles (Table 3) when compared to the control saline iv group, respectively. Consequently, the

developed LNC-based gel technology is able to delay death when delivered subcutaneously by

locally targeting the adjacent lymph nodes without leading to myelosuppresion as encountered

with conventional chemotherapy. Nowadays, market-approved nanomedicine offers a better

therapeutic index, mainly by drastically decreasing toxicity. For example, Doxil® (for the US)

and Caelyx® (for Europe), (pegylated liposomal doxorubicin), and Myocet®, a non-pegylated

liposomal doxorubicin, drastically decrease cumulative dose-dependent cardiotoxicity, but do not

improve survival in comparison to conventional doxorubicin [37]. The nab-paclitaxel

(Abraxane®), albumin-bound paclitaxel, overcomes toxicity and complications encountered with

the conventional formulation based on polyethoxylated castor oil (Cremophor® EL) and ethanol,

that allows an increase of the administrable doses to slightly improve survival [38].

Concerning immunomodulation, the preclinical model used in this study, despite the development

of metastases in the mediastinum which is similar to what happens in NSCLC patients, was based

19

Page 20: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

on severe immunodeficiency. Indeed, SCID-CB17 mice present mutations at the kinase protein,

DNA-activated, catalytic polypeptide (Prkdcscid) locus responsible for non-mature T and B cells

[39]; these are necessary to assure successful human tumor cell grafting. Therefore, the

immunologic action of gemcitabine was not taken into account in the in vivo antitumor activity

study. Indeed, gemcitabine was shown to increase the expression of the major histocompatibility

complex (MHC) on malignant cells, enhancing the cross-presentation of tumor antigens to CD8+

T cells, and selectively killing myeloid-derived suppressor cells, both in vitro and in vivo, thus

facilitating T cell-dependent anti-cancer immunity [40]. Good results have been obtained

combining gemcitabine and immunotherapy in murine model of pancreatic carcinoma and in

non-resectable pancreatic patients during Phase II clinical trials [41, 42]. Therefore further

investigations are required to evaluate the impact of this localized treatment in lymph nodes to

enhance immunity against tumors and metastases.

Conclusions

Gel technology based on lipid nanocapsules loaded with a lipophilic pro-drug of gemcitabine

injected subcutaneously was able to target the adjacent lymph nodes, such as the mediastinal

lymph nodes, and to combat locally the metastases by displaying a survival increase to an

equivalent extent to that of a treatment delivered intravenously which stops the primary tumor

from spreading the metastases (i.e., Gem-C12 loaded in LNCs or micelles, both delivered

intravenously). Moreover, LNCs loaded with Gem-C12 and delivered iv or sc did not induce

myelosuppression, unlike the conventional systemic gemcitabine hydrochloride.

20

Page 21: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

References

1. Siegel R, Ma J, Zou Z and Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9-29.2. IARC. 2008 [updated 11/08/2014]; Available from: http://globocan.iarc.fr.3. Molina JR, Yang P, Cassivi SD, Schild SE and Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83: 584-94.4. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W et al. SEER Cancer Statistic Review, 1975-2008, National Cancer Institute. 2010; Available from: http://seer.cancer.gov/archive/csr/1975_2008/.5. Ryan GM, Kaminskas LM and Porter CJ. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 2014; 193: 241-56.6. Detterbeck FC, Boffa DJ and Tanoue LT. The new lung cancer staging system. Chest 2009; 136: 260-71.7. Fung SF, Warren GW and Singh AK. Hope for progress after 40 years of futility? Novel approaches in the treatment of advanced stage III and IV non-small-cell-lung cancer: Stereotactic body radiation therapy, mediastinal lymphadenectomy, and novel systemic therapy. J Carcinog 2012; 11: 20.8. Gompelmann D, Eberhardt R and Herth FJ. Advanced malignant lung disease: what the specialist can offer. Respiration 2011; 82: 111-23.9. Lepper PM, Ott SR, Hoppe H, Schumann C, Stammberger U, Bugalho A et al. Superior vena cava syndrome in thoracic malignancies. Respir Care 2011; 56: 653-66.10. Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ and Porter CJ. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release 2013; 172: 128-36.11. Moysan E, Bastiat G and Benoit JP. Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol Pharm 2013; 10: 430-44.12. Toschi L and Cappuzzo F. Gemcitabine for the treatment of advanced nonsmall cell lung cancer. Onco Targets Ther 2009; 2: 209-17.13. Moysan E, Gonzalez-Fernandez Y, Lautram N, Bejaud J, Bastiat G and Benoit JP. An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure. Soft Matter 2014; 10: 1767-77.14. Trubetskoy VS, Cannillo JA, Milshtein A, Wolf GL and Torchilin VP. Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 1995; 13: 31-7.15. Xie Y, Bagby TR, Cohen MS and Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 2009; 6: 785-92.16. Chen J, Yao Q, Li D, Zhang B, Li L and Wang L. Chemotherapy targeting regional lymphatic tissues to treat rabbits bearing VX2 tumor in the mammary glands. Cancer Biol Ther 2008; 7: 721-5.17. Oussoren C and Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001; 50: 143-56.18. Nishioka Y and Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 2001; 47: 55-64.

21

Page 22: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

19. Kaminskas LM and Porter CJ. Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev 2011; 63: 890-900.20. Ishikura H, Kondo K, Miyoshi T, Kinoshita H, Hirose T and Monden Y. Artificial lymphogenous metastatic model using orthotopic implantation of human lung cancer. Ann Thorac Surg 2000; 69: 1691-5.21. Heurtault B, Saulnier P, Pech B, Proust JE and Benoit JP. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 2002; 19: 875-80.22. Calvo P, Gouritin B, Chacun H, Desmaele D, D'Angelo J, Noel JP et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001; 18: 1157-66.23. Allard E, Passirani C, Garcion E, Pigeon P, Vessieres A, Jaouen G et al. Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release 2008; 130: 146-53.24. Peltier S, Oger JM, Lagarce F, Couet W and Benoit JP. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 2006; 23: 1243-50.25. Hirsjarvi S, Dufort S, Gravier J, Texier I, Yan Q, Bibette J et al. Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine 2013; 9: 375-87.26. Hirsjarvi S, Dufort S, Bastiat G, Saulnier P, Passirani C, Coll JL et al. Surface modification of lipid nanocapsules with polysaccharides: from physicochemical characteristics to in vivo aspects. Acta Biomater 2013; 9: 6686-93.27. David S, Carmoy N, Resnier P, Denis C, Misery L, Pitard B et al. In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int J Pharm 2012; 423: 108-15.28. Texier I, Goutayer M, Da Silva A, Guyon L, Djaker N, Josserand V et al. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. J Biomed Opt 2009; 14: 054005.29. Bastiat G, Pritz CO, Roider C, Fouchet F, Lignieres E, Jesacher A et al. A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging. J Control Release 2013; 170: 334-42.30. Van den Broeck W, Derore A and Simoens P. Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 2006; 312: 12-9.31. Gemcitabine. Gemcitabine FDA-approved label. 2005 [updated 10/02/2014]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020509s033lbl.pdf.32. Custer RP, Bosma GC and Bosma MJ. Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 1985; 120: 464-77.33. Hirsjarvi S, Sancey L, Dufort S, Belloche C, Vanpouille-Box C, Garcion E et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm 2013; 453: 594-600.34. Wang J, Lu Z, Gao Y, Wientjes MG and Au JL. Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomedicine (Lond) 2011; 6: 1605-20.35. Ishikura H, Kondo K, Miyoshi T, Takahashi Y, Fujino H and Monden Y. Green fluorescent protein expression and visualization of mediastinal lymph node metastasis of human lung cancer cell line using orthotopic implantation. Anticancer Res 2004; 24: 719-23.

22

Page 23: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

36. Fujino H, Kondo K, Ishikura H, Maki H, Kinoshita H, Miyoshi T et al. Matrix metalloproteinase inhibitor MMI-166 inhibits lymphogenous metastasis in an orthotopically implanted model of lung cancer. Mol Cancer Ther 2005; 4: 1409-16.37. Leonard RC, Williams S, Tulpule A, Levine AM and Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast 2009; 18: 218-24.38. Hawkins MJ, Soon-Shiong P and Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 2008; 60: 876-85.39. Shultz LD, Ishikawa F and Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118-30.40. Galluzzi L, Senovilla L, Zitvogel L and Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11: 215-33.41. Ghansah T, Vohra N, Kinney K, Weber A, Kodumudi K, Springett G et al. Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma. Cancer Immunol Immunother 2013; 62: 1083-91.42. Yanagimoto H, Shiomi H, Satoi S, Mine T, Toyokawa H, Yamamoto T et al. A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients. Oncol Rep 2010; 24: 795-801.

23

Page 24: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Figure Captions

Figure 1. A: i) Extracted organs 72h after sc injection of DiD-Gem-C12 LNC (hydrogel); ii)

Fluorescence signal in the organs (10ms exposure at 630-800nm); iii) Scheme of extracted

organs; iv) Regions of interest defined for the extracted organs in order to semi-quantify the

amount of photons/cm2/s. B: DiD plasmatic concentration (µg/mL) vs time in healthy nude mice,

after () iv injection of DiD LNC in suspension and () sc injection of DiD-Gem-C12 LNC

hydrogel. C to F: Biodistribution of DiD LNC in healthy nude mice, after iv injection of DiD

LNC in suspension (C and E) and sc injection of DiD-Gem-C12 LNC hydrogel (5%

Gem-C12/Labrafac w/w) (D and F). Semi-quantification of the fluorescence signals of the

removed liver, spleen and inguinal, axillary, cervical and brachial lymph nodes (LN) using

fluorescence images (10ms integration time) at various times post LNC administration (1, 4, 8,

48, 96 and 336h). (n=5, mean SD).

Figure 2. A: Kaplan-Meier survival and B: weight evaluation curves of 10 SCID-CB17 mice

grafted with 2×104 Ma44-3 cells (implanted in the left lobe) and randomized on Day 0. The

negative controls were iv saline treated group (), iv non-loaded LNC treated group () and sc

non-loaded LNC treated group (). The groups were treated by gemcitabine hydrochloride () or

Gem-C12 loaded in micelles () or loaded in LNC (), delivered by iv route; or Gem-C12

loaded in LNC (), delivered by sc route. The dose was 40mg (molar equivalent gemcitabine

hydrochloride) per kilo of body weight beginning on Day 5 post-tumor graft. The treatments were

administered iv (continuous line) via the tail vein three times a week or by sc (dashed line) twice

a week.

24

Page 25: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Figure 3. Visualization of the lungs and mediastina of three SCID-CB17 mice on Day 5 after

tumor implantation, 4 hours after oral administration of 400mg/kg of 5-aminolevulinic acid and

either 4h after iv administration of DiD LNC using A: Pp IX or B: DiD visualization mode; or sc

administration of DiD-Gem-C12 LNC using C: Pp IX or D: DiD visualization mode using a CRI

Maestro system. Pp IX mode revealed the lung (green-brown color), the lung tumor (slight red

color), the mediastinum (green color) and the thymus (red color). The DiD mode revealed LNC

distribution in the lung and the mediastinum. Arrows and circles in the picture indicate the

localization of detectable, mediastinal lymph nodes and tumor mass, respectively.

25

Page 26: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Tables

Table 1. Physicochemical characteristics of non-loaded LNC for iv and sc injection, Gem-C12

LNC for iv and sc injection, DiD LNC for iv injection and DiD-Gem-C12 LNC for sc injection.

(n=3; mean ± SD).

Z-Avea

(nm)PdIb

ξ-Potc

(mV)

Gem-C12

payload

(mg/mL)

Form

Non-loaded LNC (iv) 68 ± 3 0.08 ± 0.02 -8 ± 3 --- Liquid

Non-loaded LNC (sc) 67 ± 2 0.07 ± 0.01 -10 ± 5 --- Liquid

Gem-C12 LNC (sc) 53± 2 0.07 ± 0.01 -7 ± 4 11 ± 0.2 Hydrogel

Gem-C12 LNC (iv) 53 ± 1 0.04 ± 0.01 -7 ± 3 2.75 ± 0.05 Liquid

DiD-Gem-C12 LNC (sc) 56 ± 2 0.04 ± 0.02 -5 ± 2 11 ± 0.2 Hydrogel

DiD LNC (iv) 55 ± 2 0.06 ± 0.02 -7 ± 4 --- Liquid

a Z-Average, b Polydispersity index, c Zeta potential.

26

Page 27: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Table 2. Complete blood counts in different groups (n=5; mean ± SD, *: p < 0.05): WBC:

complete granulocyte count. RBC: red blood cell count. HGB: hemoglobin rate. HCT:

hematocrit. PLT: platelet count.

27

WBC

(giga/L)

RBC

(tera/L)

HGB

(g/dL)

HCT

(%)

PLT

(giga/L)

Saline iv 0.2 ± 0.1 9.8 ± 0.3 15.1 ± 0.3 47 ± 1 469 ± 50

Gemcitabine iv 0.2 ± 0.1 9.2 ± 0.3 14.0 ± 0.4 45 ± 1 245 ± 63 *

Gem-C12 iv 0.3 ± 0.2 9.1 ± 0.6 14 ± 1 45 ± 2 275 ± 63

Non-loaded LNC iv 0.6 ± 0.3 9.8 ± 0.2 15.1 ± 0.3 47.7 ± 0.9 465 ± 44

Gem-C12 LNC iv 0.14 ± 0.03 8.9 ± 0.2 13.7 ± 0.3 43.1 ± 0.9 284 ± 24

Non-loaded LNC sc 0.4 ± 0.1 9.4 ± 0.7 14 ± 1 46 ± 3 453 ± 20

Gem-C12 LNC sc 0.26 ± 0.06 9.4 ± 0.5 14.5 ± 0.8 45 ± 2 281 ± 83

Page 28: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Table 3. Biological analysis in different groups (n=5; mean ± SD, *: p < 0.05): ASAT: aspartate

aminotransferase. ALAT: alanine aminotransferase. PH ALK: alkaline phosphatase.

ASAT

(UI/L)

ALAT

(UI/L)

PH ALK

(UI/L)

Creatinine

(mg/L)

Saline iv 138 ± 115 24 ± 8 146 ± 8 1.8 ± 0.4

Gemcitabine iv 98 ± 27 27 ± 12 129 ± 17 3 ± 3

Gem-C12 iv 152 ± 95 23 ± 8 97 ± 33 * 2 ± 1

Non-loaded LNC iv 77 ± 20 22 ± 4 139 ± 4 1.7 ± 0.5

Gem-C12 LNC iv 82 ± 21 18 ± 7 143 ± 14 3 ± 2

Non-loaded LNC sc 88 ± 52 24 ± 16 109 ± 5 2 ± 1

Gem-C12 LNC sc 157 ± 52 32 ± 10 121 ± 11 4 ± 3

28

Page 29: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Figures

Figure 1.

29

Page 30: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Figure 2.

30

C

Page 31: dipot.ulb.ac.be · Web viewWord count for the abstract: 143 Word count for the manuscript (including body text, and figure and table legends): 5206 Number of references: 42 Number

Figure 3.

31