dirac gaugino as leptophilic dark matter

25
Jong - Chul Park it Dark World to Swampland October 1 6 (2020) with D. Kim, K.C. Fong & G.-H. Lee [arXiv: 2002.07821]

Upload: others

Post on 03-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dirac gaugino as leptophilic dark matter

Jong-Chul Park

it

Dark World to Swampland

October 16 (2020)

with D. Kim, K.C. Fong & G.-H. Lee [arXiv: 2002.07821]

Page 2: Dirac gaugino as leptophilic dark matter
Page 3: Dirac gaugino as leptophilic dark matter

Dark Matter?

Page 4: Dirac gaugino as leptophilic dark matter

DM SM

SMDM

Interaction

Correct thermal relic abundance:

Ξ©β„Ž2~0.1 𝑝𝑏

πœŽπ‘£with πœŽπ‘£ ~

𝛼𝑋2π‘šπœ’

2

𝑀4 (M: dark scale/mediator)

Weak coupling naturally weak scale mass:

~1 GeV – 10 TeV mass range favored

weak scale (new) physics

Of course, axion is another classic solution.

(Luca Visinelli’s talk)

annihilation

Freeze-out

Relic abundance

Page 5: Dirac gaugino as leptophilic dark matter

IceCube

CTA

Fermi-LAT

SK

XENON1T

AMS-02

DAMA

ATLAS

Planck

CMS

COSINE-100

Page 6: Dirac gaugino as leptophilic dark matter

OnlyWIMP? No!

Page 7: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV 100𝑀⨀~1068 eV

Page 8: Dirac gaugino as leptophilic dark matter

MACHO /Primordial

BHsnon-particle Daniele,

Takahiro

10-22 eV keV MeV GeV TeV PeV

Superheavy/ Composite

WIMPzillaQ-ball

Fermi-ballDark-quark

nuggetnon-thermal Jeong-

Pyong

WIMPwell-

motivatedextensively

studiedThermal Javier

Lightparticle

DMcan be

thermal

SuperlightWDM

Sterile Ξ½axino

may be thermal

Ultralight Scalar field

(QCD) AxionHidden photon

Fuzzynon-thermal Luca

100𝑀⨀~1068 eV

Page 9: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

Lightparticle

DM

For heavy mediator, πœŽπ‘£ ~𝛼𝑋2π‘šπœ’

2

𝑀4

For weak scale physics,

sub-GeV DM overproduction

New mediator < π‘€π‘Š for freeze-out

or freeze-in, …

100𝑀⨀~1068 eV

New DM relic determination mechanisms:

Assisted Freeze-Out [arXiv:1112.4491]

Cannibal DM [arXiv:1602.04219, 1607.03108]

Co-Decaying [arXiv:1105.1652, 1607.03110]

Semi-Annihilation [arXiv:0811.0172, 1003.5912]

SIMP [arXiv:1402.5143]

… Various light DM/mediator scenarios:

MeV DM for GC 511 keV line observation [astro-ph/0309686]

Secluded MeV DM [arXiv:0711.3528, 0711.4866]

Sommerfeld enhancement for 𝑒+ excess [arXiv:0810.0713]

(𝑔 βˆ’ 2)𝑒, πœ‡: ~2 βˆ’ 3𝜎 discrepancy [arXiv:1806.10252]

New Ξ½ interactions for the MiniBooNE excess [arXiv:1807.09877]

Solutions of Yukawa coupling hierarchy prob. [arXiv:1905.02692]

…

Page 10: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

Lightparticle

DM

πΈπ‘˜~π‘šπ‘£2< 𝑢(keV) with 𝑣~10βˆ’3:

< πΈπ‘Ÿπ‘‘β„Ž of typical DM direct detectors

for nuclear recoils

πœ‹0 β†’ 𝛾 + 𝐴′, πœ‹βˆ’/+ + 𝑝/𝑛 β†’ πœ‹0 + 𝑛/𝑝

Beam-produced light DM/mediator searches:

Babar, BDX, Belle-II, CCM, COHERENT, DUNE, FASER,

JSNS2, LDMX, MATHSULA, NA64, SeaQuest, SHiP, …

100𝑀⨀~1068 eV

Cosmogenic boostedDM searches: COSINE-100,

DUNE/ProtoDUNE, IceCube, SK/HK/KNO, …

GC, Sun, …

Large Vol. detector

New ideas for low πΈπ‘Ÿπ‘‘β„Ž w/ e-recoil are required!

Ionization by e-recoils (semiconductor)

[arXiv:1108.5383, 1509.01598]

Ejection of e’s (graphene, C-nanotube)

[arXiv:1606.08849, 1706.02487, 1808.01892]

Evaporation of He by nuclear-recoils

[arXiv:1706.00117]

…

Page 11: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

Lightparticle

DM

100𝑀⨀~1068 eV

Heavy mediator: 𝐹𝐷𝑀 = 1 Light mediator: 𝐹𝐷𝑀 ∝ 1/π‘ž2

Dark Matter Limit Plotter v5.16, updated Aug. 17, 2020𝜈 BG for a Xe target (1t-yr)

Page 12: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

SuperlightDM

100𝑀⨀~1068 eV

Various well-motivated super-light DM pheno.:

Sterile neutrinos

[hep-ph/9303287, astro-ph/9810076]

Mirror 𝜈 DM [hep-ph/9505385]

Axino/gravitino [arXiv: 0902.0769, 1407.0017]

Axion-like particles

[arXiv:0912.0015, 1407.0017, 1510.07633]

Super-light dark gauge bosons

[arXiv:1105.2812, 1201.5902]

Decaying DM for 3.5 keV line

[arXiv:1403.1536, 1508.06640]

keV DM for XENON1T, …

[arXiv: 1807.07938]

[arXiv: 1508.06640]

[arXiv: 2006.16252]

10 keV

Page 13: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

SuperlightDM

[arXiv: 1712.06598]

100𝑀⨀~1068 eV

πΈπ‘˜~π‘šπ‘£2< 𝑢(eV)

Very low πΈπ‘Ÿπ‘‘β„Ž required!

New ideas for very low πΈπ‘Ÿπ‘‘β„Ž w/ e-recoil:

Superconductor target w/ TES or MKID

[arXiv:1504.07237, 1512.04533]

Superfluid He w/ TES or MKID

[arXiv:1604.08206, 1611.06228]

3D Dirac materials [arXiv:1708.08929]

Polar materials w/ TES or MKID

[arXiv:1712.06598, 1807.10291]

Superconducting-nanowire single-photon

detector [arXiv:1903.05101]

…

[arXiv: 1903.05101]

[arXiv: 1708.08929]

Page 14: Dirac gaugino as leptophilic dark matter

10-22 eV keV MeV GeV TeV PeV

SuperlightDM

100𝑀⨀~1068 eV

Transition edge sensor (TES): X-ray ~ near-IR, πΈπ‘‘β„Ž~ sub-eV

[Superconducting Devices in Quantum Optics (2016)]

Microwave kinetic inductance device (MKID): X-ray ~ far-IR, πΈπ‘‘β„Ž~𝑂(10 meV)

[Annual Review of Condensed Matter Physics (2012)]

Superconducting-nanowire single-photon detector (SNSPD): UV ~ mid-IR, πΈπ‘‘β„Ž~𝑂(100 meV)

[Techno. (2018)]

Well-developed in the laboratory in their respective E-bands.

But for the sensitivity to 𝑬𝒕𝒉 ≲ meV, further R&D is needed!

Page 15: Dirac gaugino as leptophilic dark matter

We proposed a new super-light DM direct detection strategy

adopting the graphene-based Josephson junction* (GJJ)

microwave single photon detector.

* A β€œstate-of-the-art” technology:

much lower πΈπ‘‘β„Ž~𝑂(0.1 meV)

Page 16: Dirac gaugino as leptophilic dark matter

A GJJ single-photon detector was proposed, covering from near-IR to microwave.

[Phys. Rev. Applied (2017)]

K.C. Fong, G.-H. Lee & their collaborators have demonstrated experimentally

that the GJJ microwave bolometer can have sensitivity to 𝑬~𝟎. 𝟏 meV energy

deposit. [Nature (2020)]

Currently, a GJJ single-photon detector is under testing in the laboratory.

Superconductor-Graphene-Superconductor (SGS)

The device consists of a sheet of mono-layer

graphene two sides of which are joined to

superconductor, forming a superconductor-

normal metal-superconductor Josephson junction.

Page 17: Dirac gaugino as leptophilic dark matter

𝝌 𝝌

Josephson junction

Superconductor

Superconductor

I. DM scatters off (Ο€-bond) free electrons, transferring some fraction of its incoming πΈπ‘˜.

II. The recoiling e heats up & thermalizes with nearby e’s rapidly via e-e interactions.

III. The JJ is triggered: the temperature rise switches the zero-voltage of JJ to resistive state.

πΈπ‘˜~π‘šπ‘£2~1 meV for π‘šπ·π‘€ = 1 keV

The GJJ device can posses the sensitivity to the signal induced even by sub-keV DM.

Page 18: Dirac gaugino as leptophilic dark matter

I. Single graphene strip (a): the assembly of a

graphene strip & a number of superconducting

material strips an array of SC-graphene-SC-

graphene-SC-β‹― (SGSGSβ‹―).

II. Each sequence of SGS represents a single GJJ device.

III. Full detector unit (b): all GJJs are connected in

series so that even a single switched GJJ allows the

series resistance measured between S & D to switch

from 0 to a finite value.

πΈπ‘‘β„Ž is determined by the strip width π‘Šπ½π½: π‘Šπ½π½ = 3 πœ‡m (30 πœ‡m) πΈπ‘‘β„Ž β‰ˆ 0.1 meV (1 meV).

A large-scale detector can be made of a stack of such detector units.

Su

per

con

du

cto

r

Su

per

con

du

cto

r

Su

per

con

du

cto

r

Page 19: Dirac gaugino as leptophilic dark matter

To calculate experimental sensitivities, we should consider

the scattering between DM traveling in 3D & free electrons

living in 3D but confined in 2D graphene layer.

Page 20: Dirac gaugino as leptophilic dark matter

Goal: The event rate of DM scattering off free electrons in a 2-dimensional graphene sheet.

Key point: An electron is still confined in the 2D graphene even after the collision.

No significant momentum change along the surface-normal (𝑧-axis) direction.

We will calculate the number of events/unit detector mass/unit run time:

𝑛eve =𝑁evetotal

𝑀𝑇𝑑run

(𝑁evetotal : total number of events, 𝑀𝑇 : total detector mass, 𝑑run : total time exposure)

Page 21: Dirac gaugino as leptophilic dark matter

𝑛eve =𝑁evetotal

𝑀𝑇𝑑run=

1

𝑀𝑇𝑑runπΈπ‘Ÿ>𝐸th

π‘‘πΈπ‘Ÿπ‘‘π‘eve

π‘‘πΈπ‘Ÿ

=1

𝑀𝑇𝑑runπΈπ‘Ÿ>𝐸th

π‘‘πΈπ‘Ÿ π‘‘π‘£πœ’ 𝑓MB(π‘£πœ’)𝑑

π‘‘πΈπ‘Ÿπ‘π‘’πœŽπ‘’πœ’π‘£rel

πœŒπœ’

π‘šπœ’π‘‘run

= πΈπ‘Ÿ>𝐸thπ‘‘πΈπ‘Ÿπ‘‘π‘£πœ’π‘“MB(π‘£πœ’)

𝑑𝑛𝑒3DπœŽπ‘’πœ’π‘£rel

π‘‘πΈπ‘Ÿ

1

πœŒπ‘‡3D

πœŒπœ’

π‘šπœ’

= πΈπ‘Ÿ>𝐸thπ‘‘πΈπ‘Ÿπ‘‘π‘£πœ’βˆ₯𝑓MB(π‘£πœ’βˆ₯)

𝑑𝑛𝑒2DπœŽπ‘’πœ’π‘£relβˆ₯

π‘‘πΈπ‘Ÿ

1

πœŒπ‘‡2D

πœŒπœ’

π‘šπœ’

𝑛𝑒2𝐷 = 2

𝑑2𝑝𝑒,𝑖π‘₯𝑦

2πœ‹ 2 𝑓𝑒,𝑖 𝐸𝑒,𝑖 = 2𝑑2𝑝𝑒,𝑖

π‘₯𝑦

2πœ‹ 2 𝑑𝑝𝑒,𝑖

𝑧

(2πœ‹)(2πœ‹)𝛿(𝑝𝑒,𝑖

𝑧 βˆ’ 𝑝𝑒,𝑓𝑧 )𝑓𝑒,𝑖 𝐸𝑒,𝑖

= 2𝑑3𝑝𝑒,𝑖

2πœ‹ 3 (2πœ‹)𝛿(𝑝𝑒,𝑖𝑧 βˆ’ 𝑝𝑒,𝑓

𝑧 )𝑓𝑒,𝑖 𝐸𝑒,𝑖

𝑁evetotal = 𝑛eve𝑀𝑇𝑑run

𝑁eve = π‘π‘’πœŽπ‘’πœ’Ξ¦πœ’π‘‘run

Ξ¦πœ’ = π‘›πœ’π‘£rel & π‘›πœ’ = πœŒπœ’/π‘šπœ’

𝑁𝑒

𝑀T=

𝑁𝑒/𝑉

𝑀T/𝑉=

𝑛𝑒3D

πœŒπ‘‡3D

=𝑁𝑒/(π΄βˆ†π‘™)

𝑀T/(π΄βˆ†π‘™)=

𝑛𝑒2D

πœŒπ‘‡2D

𝑓𝑒,𝑖 𝐸𝑒,𝑖 =1/ 1 + exp(𝐸𝑒,π‘–βˆ’πœ‡

𝑇) , (πœ‡~𝐸𝐹)

Fermi-Dirac distribution function

Consistent with the assumption of no significant

momentum change along the surface-normal direction

2D nature of graphene

Page 22: Dirac gaugino as leptophilic dark matter

Graphene-surface-parallel DM velocity profile: 𝑓MB π‘£πœ’βˆ₯ =2(𝑒

βˆ’π‘£πœ’βˆ₯2 /𝑣0

2βˆ’π‘’βˆ’π‘£esc

2 /𝑣02)

πœ‹π‘£0erf(𝑣esc/𝑣0)βˆ’2𝑣escπ‘’βˆ’π‘£esc

2 /𝑣02

We take a plane-projection of a modified Maxwell-Boltzmann distribution.

Event rate on a (sufficiently thin) 2D material: 𝑛𝑒2DπœŽπ‘’πœ’π‘£relβˆ₯ =

𝑑3π‘πœ’,𝑓

2πœ‹ 3

β„³ 2

16πœ‹π‘šπ‘’2π‘šπœ’

2 𝑆2D(πΈπ‘Ÿ , π‘ž)

Structure function for the 2D system: 𝑆2D πΈπ‘Ÿ, π‘ž

= 2𝑑3𝑝𝑒,𝑖

2πœ‹ 3 𝑑3𝑝𝑒,𝑓

2πœ‹ 3 (2πœ‹)𝛿 𝑝𝑒,𝑖𝑧 βˆ’ 𝑝𝑒,𝑓

𝑧 2πœ‹ 4𝛿 4 (π‘πœ’,𝑖 + 𝑝𝑒 𝑖 βˆ’ π‘πœ’,𝑓 βˆ’ 𝑝𝑒,𝑓) 𝑓𝑒,𝑖 𝐸𝑒,𝑖 1 βˆ’ 𝑓𝑒,𝑓 𝐸𝑒,𝑓

= (2πœ‹)𝛿(π‘πœ’,𝑖𝑧 βˆ’ π‘πœ’,𝑓

𝑧 ) βˆ™1

2πœ‹2𝑑3𝑝𝑒,𝑖𝛿(πΈπ‘Ÿ + πΈπœ’,𝑖 βˆ’ πΈπœ’,𝑓)𝑓𝑒,𝑖 𝐸𝑒,𝑖 1 βˆ’ 𝑓𝑒,𝑓 𝐸𝑒,𝑓

= (2πœ‹)𝛿(π‘πœ’,𝑖𝑧 βˆ’ π‘πœ’,𝑓

𝑧 ) βˆ™ 𝑆3D πΈπ‘Ÿ, π‘ž

The Pauli blocking effects(=phase space suppression) are encoded in the structure function.

The analytic expression for 𝑆3D πΈπ‘Ÿ, π‘ž is available in the non-relativistic limit

[astro-ph/9710115, 1512.04533].

Page 23: Dirac gaugino as leptophilic dark matter

𝑛eve = πΈπ‘Ÿ>𝐸thπ‘‘πΈπ‘Ÿπ‘‘π‘£πœ’βˆ₯𝑓MB(π‘£πœ’βˆ₯)

𝑑 𝑛𝑒2DπœŽπ‘’πœ’π‘£relβˆ₯

π‘‘πΈπ‘Ÿ

1

𝜌gr2D

πœŒπœ’

π‘šπœ’

𝑓MB π‘£πœ’βˆ₯ =2(π‘’βˆ’π‘£πœ’βˆ₯

2 /𝑣02βˆ’ π‘’βˆ’π‘£esc

2 /𝑣02)

πœ‹π‘£0erf(𝑣esc/𝑣0) βˆ’ 2𝑣escπ‘’βˆ’π‘£esc

2 /𝑣02

𝑛𝑒2DπœŽπ‘’πœ’π‘£relβˆ₯ =

𝑑3π‘πœ’,𝑓

2πœ‹ 3

β„³ 2

16πœ‹π‘šπ‘’2π‘šπœ’

2 𝑆2D(πΈπ‘Ÿ, π‘ž)

with 𝑆2D πΈπ‘Ÿ, π‘ž = (2πœ‹)𝛿(π‘πœ’,𝑖𝑧 βˆ’ π‘πœ’,𝑓

𝑧 ) βˆ™ 𝑆3D πΈπ‘Ÿ, π‘ž

πœŒπœ’ =0.3 GeV/cm3

𝑣0=220 km/s, 𝑣esc=500 km/s

𝜌gr2D = 7.62 Γ— 10βˆ’8g/cm2

We assume that DM interacts with electrons via an exchange of mediator πœ™ as done in many

of the preceding studies:

πœŽπ‘’πœ’ β‰ˆπ‘”π‘’2π‘”πœ’

2

πœ‹

πœ‡π‘’πœ’2

(π‘šπœ™2+π‘ž2)2

πœŽπ‘’πœ’heavy

β‰ˆπ‘”π‘’2π‘”πœ’

2

πœ‹

πœ‡π‘’πœ’2

π‘šπœ™4 for (π‘šπœ™

2 ≫ π‘ž2) & πœŽπ‘’πœ’light

β‰ˆπ‘”π‘’2π‘”πœ’

2

πœ‹

πœ‡π‘’πœ’2

π‘ž4for (π‘šπœ™

2 β‰ͺ π‘ž2)

The matrix element β„³ 2 is related to the scattering cross section as πœŽπ‘’πœ’ =β„³ 2

16πœ‹ π‘šπ‘’2π‘šπœ’

2 πœ‡π‘’πœ’2 .

From the linear dispersion of graphene: 𝐸𝐹 = 𝑣𝐹 πœ‹π‘›π‘ with 𝑣𝐹~108cm/s & 𝑛𝑐~10

12/cm2.

Page 24: Dirac gaugino as leptophilic dark matter

Heavy mediator: 𝐹𝐷𝑀 = 1 Light mediator: 𝐹𝐷𝑀 ∝ 1/π‘ž2 with π‘žref = π›Όπ‘’π‘šπ‘’

We required 𝑁eve=3.6 under the negligible background assumption.

The proposed GJJ DM detector can improve the minimum detectable DM mass (π‘šDM~0.1 keV)

by more than 3 orders of magnitude over the ongoing/existing experiments.

Even capable of probing sub-keV DM with great expected reaches.

πΈπ‘˜~π‘šπ‘£2< 𝑢(eV) πΈπ‘˜~π‘šπ‘£

2< 𝑢(eV)

SENSEI

Page 25: Dirac gaugino as leptophilic dark matter

We have proposed a class of new DM detectors, adopting the GJJ device which

has been implemented & demonstrated experimentally.

For the scattering between DM moving in 3D space & e’s confined in 2D graphene,

we (for the first time) built an effective model and computed the event rate.

Signal rate depends on the DM flow direction!

The proposed detector is capable of sensing sub-keV (warm) DM scattering off

electrons due to its outstanding 𝐸th~0.1 meV. Improving the minimum

detectable DM mass (π‘šDM~0.1 keV) by more than 3 orders of magnitude.

We are planning to do the First Experiment with the Existing GJJ Device samples.