discovery and development of apaf-1 inhibitors:...

293
DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL DEATH TREATMENTS Thesis Project presented by Laura Mondragón Martínez in order to obtain the European Doctorate in Biochemistry Thesis supervisors Dr. Enrique Pérez Payá and Dr. María J. Vicent Docón

Upload: others

Post on 16-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED

CELL DEATH TREATMENTS

Thesis Project presented by

Laura Mondragón Martínez

in order to obtain the European Doctorate in Biochemistry

Thesis supervisors

Dr. Enrique Pérez Payá and

Dr. María J. Vicent Docón

Page 2: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 3: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Departament de Bioquímica i Biologia Molecular

Departament de Bioquímica i Biologia Molecular

Enrique Pérez Payá, Ph.D. in Chemistry, Consejo Superior de Investigaciones Científicas (C.S.I.C) Research Professor and Dr. María J. Vicent Docón, Ph.D. in Chemistry CERTIFY, that the work “DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL DEATH TREATMENTS” has been developed by Laura Mondragón Martínez under their supervision in the Centro de Investigación Príncipe Felipe in Valencia, as a thesis project in order to obtain a Ph.D. degree in Biochemistry from the University of Valencia, Department of Biochemistry and Molecular Biology. Prof. Enrique Pérez Payá Dr. María J. Vicent Docon

Page 4: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 5: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

To my parents and brother,

A mis padres y a mi hermano,

Page 6: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 7: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

“There is no pillow softer than a clear conscience”

“No hay mejor almohada que una conciencia limpia”

Page 8: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 9: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Acknowledgements:

It is a bit difficult to try to thank all the people that have taken part in this thesis project,

but due to their importance I would like to thank my parents for all their support during

these years.

I would also like to thank Enrique Pérez Payá for allowing me to work in his lab, the

Spanish Ministry of Science and Innovation and the European Social Funds for the

economical support for and the Centro de Investigación Príncipe Felipe for providing

the necessary infrastructure to develop this thesis project. I have really enjoyed the

opportunity to work in the field of apoptosis in Spain and in the laboratories that I have

been able to visit. Thanks a million, Quique!

I would like to say thank you to all the people from the I-12 laboratory Mar, Ana, Anna,

Eliana, Ally, Susana, Mónica, Tatiana, Yadira, Andrés, Laura C., David, Puig, Silvia,

Rebeca, Inma, Guillermo. I have really enjoyed spending these four years with all of

you and the races through the lab trying to find a place in the hood in our cell culture

room. Specially I would like to thank Mar (the third thesis supervisor) for teaching me

almost all the techniques that I have learned in the lab, for listening to me no matter

how busy she was and for that coffee under the rain at the terrace of the hotel at the

ECDO meeting in 2007.

I should also show my gratitude to María Jesús Vicent for being my thesis supervisor

together with Quique and all the people in the I-36 lab. In particular, I would like to

express my gratitude to Lucille for her help with the characterization of polymer-

conjugates and Vanessa for her support and useful talks while we were in Cardiff.

I want to express my gratitude to Pino and the Proteomics team for providing us all the

western-blot tools when we run out of them.

In addition, I would like to thank Àngel Messeguer and his team for their help and for

designing together with Quique the compound QM31 the most useful compound in my

thesis. I also want to thank Glòria, Sandra and Dani for synthesizing all the necessary

Page 10: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

peptoid 1 derivatives employed in the project and Jordi Bujons for his in silico studies

of the interaction among Apaf-1 and QM31.

I cannot forget to say thank you to Laboratorios Salvat S.L. for their economical support

during the last two years and for confiding in the project created by Quique and Àngel.

Thanks a lot for believing in this project.

Although, I did not have the pleasure to meet Antonio Alcaraz and his team I am very

grateful for their help developing the in vivo hot ischemia experiments.

From the six months spent at the Apoptosis laboratory at the Kraefte Bekaempelse I

would like to thank Marja Jäätellä for allowing me to stay in her lab and helping me to

find a nice apartment to live. I would also like to say thank you to the people in her lab

Anna, Anne, Maria, Mads, Mikel, Thomas, Oleg, Piotr, Nicole among others. I am

really happy to have met Griselda Herrero during my stay in Denmark. I am really

grateful for all your help with the experiments and the funny chats at the end of the day.

Finally I would like to thank the Spanish Erasmus group (María, Cristina, Flor, Pedro,

Diego...) for being so helpful and teaching me how to ride a bike again.

I would also like to thank Dr. Guido Kroemer for allowing me to visit his laboratory and

helping me with my second article, I really appreciate it. I would like to specially thank

Laura Senovilla (and her boyfriend Nacho) for all her help during my stay and the good

pieces of advice received. I want to thank Lorenzo and Ilio for teaching me so many

techniques in my stay and the rest of the lab Didier, Nazanine, María, Amina, Eugenia,

“masters” José Miguel and Alfredo, Max, Oliver, Ezgi, Chiara, Sonia, Claire, Emilie,

Gwenola, Jean-Luc, Nick, Nicolas for making my stay in Paris so comfortable. I cannot

forget Santi Rello for his optimistic point of view and for carrying my suitcase while I

chased a bus the day I left Paris. Finally, I cannot forget Rubén and the funny

conversations while having dinner at the Colegio de España.

I want to show my gratitude to the Prof. Douglas R. Green for letting me to visit his lab

at St. Jude Children’s Research Hospital in Memphis. Especially I want to express my

gratitude to Lisa for her help with the confocal microscope and my experiments and to

Fabien for his patience with my doubts. I am also very grateful to the people in the lab

Page 11: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Stephen, Valère, Laura, Tudor, Ruoning, Jerry, Pat, Sandra, Melissa, Andrew, Sam,

Gavin, Chris, Sebo, Diana, Nora for making so easy to work with them. Of course, I

would like to thank to the Spanish colony (Guillermo, Víctor, Amanda, Blas, Adolfo,

Lorraine, Blanca, Gaëlle, Patricia, Diego, baby Sofía ...) that take care all the new

Spanish people that visits Memphis every year. I will always remember Miguel

Sanjuán for making me feel just like family and solving all my problems in the lab. I

would like to thank Alfonso for his “croquetas de jamón” and for taking us to the NBA

matches. I would like to thank Mar for their happiness despite studying 24 hours/day

and for that unforgettable shopping day. I had the time of my life! Finally, I would like

to thank my roommate Yingdi for making possible that we travel in a golf car with her

new mattress at 10 p.m. I really enjoyed that experience.

Finally, I would like to thank all the friends that have supported me while working in

my thesis and I would like to express my gratitude to Fernando for visiting me in Paris

and Copenhagen and the small trips to the labs at weekends.

I hope not forgetting anyone, but just in case… Thanks a million to all of you!

Page 12: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 13: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Agradecimientos:

Resulta un poco difícil conseguir agradecer a todas las personas que han participado en

este proyecto, pero creo que por “orden de aparición e importancia” en primer lugar

quisiera agradecer a mis padres por hacer posible que llegara hasta aquí y por ayudarme

durante todos estos años tuviera el problema que tuviera.

También quisiera agradecer a Quique por concederme esa beca FPI que me ha

permitido hacer esta tesis doctoral, así como al Ministerio de Ciencia e Innovación y a

los Fondos Sociales de la Unión Europea por financiar dichas becas y al Centro de

Investigación Príncipe Felipe por facilitarnos la infraestructura necesaria para llevar a

cabo este proyecto. La verdad es que conseguir esta beca fue una gran alegría y poder

trabajar dentro del campo de la apoptosis mucho más, tanto en España como en los

diferentes laboratorios en los que he podido realizar estancias. ¡Quique, muchísimas

gracias, lo he pasado genial este tiempo!

Deseo agradecer también a todas las personas que han ido pasando por el laboratorio I-

12 Mar, Ana, Anna, Eliana, Ally, Susana, Mónica, Tatiana, Yadira, Andrés, Laura C.,

David, Puig, Silvia, Rebeca, Inma, Guillermo (espero no olvidar a nadie) y que han

hecho que estos cuatro años se pasaran volando entre experimento y experimento y

carreras por el laboratorio para conseguir reservar en la campana de cultivos. En

especial quisiera agradecer a Mar (la tercera codirectora) haberme enseñado

prácticamente todo lo que he aprendido en el I-12, y por atender cualquier duda o crisis

que tuviera con los experimentos y con lo que no fueran experimentos no importa lo

ocupada que estuviera. También quisiera agradecerle aquel café en la terraza del hotel

en el congreso de la ECDO de 2007 (mojarnos nos mojamos, pero mantuvimos el tipo

como nadie). Y aunque resulte raro, mención especial se merecen las células SF9 (mis

chicas) por lo entretenida que me tuvieron los primeros tres meses de doctorado

intentando ver cómo podía hacerlas crecer.

Debo agradecer también a María Jesús Vicent como codirectora de tesis y a toda la

gente del I-36. Asimismo, quisiera agradecer especialmente a Lucille por su ayuda en

los experimentos de degradación y caracterización de polímeros y a Vanessa por sus

charlas y ánimos en el congreso de Cardiff.

Page 14: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Estoy también muy agradecida a Pino y a todo el equipo de Proteómica por prestarnos

todo tipo de cubetas y fuentes para westerns y correr geles, así como a Virginia por

todos los experimentos de fraccionamiento de extractos (¡Espero que el experimento

salga ya de una vez!).

Asimismo, deseo agradecer a Àngel Messeguer y a todo su grupo la ayuda prestada y

por diseñar junto a Quique al inhibidor de Apaf-1 QM31 que tantas alegrías ha dado a

este proyecto. Quisiera dar las gracias a Glòria, Sandra y Dani que se han encargado de

sintetizar todos los derivados del peptoide 1 que hemos utilizado en la realización de

esta tesis. También quisiera agradecer a Jordi Bujons el estupendo estudio in silico de

interacción QM31/Apaf-1 realizado y que se ha incluido en esta tesis.

Dentro de los ensayos de caracterización de la interacción QM31/Apaf-1 Rodrigo

Carbajo también ha jugado un papel importante ayudándonos a realizar los

experimentos de RMN. ¡Muchas gracias, Rodri!

Igualmente, quisiera agradecer a los Laboratorios Salvat S.L. por su inestimable apoyo

económico en estos dos últimos años, por creer en el proyecto iniciado por Quique y

Àngel y por confiar en nuestro trabajo en este tiempo.

Aunque todavía no he tenido oportunidad de conocerlo, estoy muy agradecida a Dr.

Antonio Alcaraz y a su grupo por llevar a cabo los experimentos con los modelos

animales de daño isquémico en rata.

De mi estancia en Copenhague dentro del laboratorio de Apoptosis de la Kraefte

Bekaempelse quisiera agradecer a Marja Jäätellä por acceder a que realizara una

estancia de seis meses y preocuparse de buscarme el alojamiento necesario para llevarla

a cabo. Quisiera agradecer también dentro de su grupo a Anna, Anne, Mads, Maria,

Mikel, Thomas, Oleg, Piotr, Nicole y a otros muchos su ayuda durante mi estancia.

Aunque no salieron los resultados esperados fue mucho lo que aprendí durante este

tiempo en su laboratorio. Especialmente quisiera agradecer a Anna Ritter por su ayuda.

También quisiera mencionar a la mayor alegría que tuve en Copenhague como fue

conocer a Griselda Herrero. Griselda, de no ser por ti hubiera tirado la toalla a las

Page 15: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

primeras de cambio, y aunque algunas tardes nos las pasáramos llorando (es el problema

de las estancias cortas con pocos resultados y lo de ahogarse en un vaso de agua)

también pasamos muy buenos ratos cotilleando en español. Por último quisiera

agradecer a todos los chicos de Erasmus que conocí (María, Cristina, Flor, Pedro,

Diego,...) por estar siempre disponibles para ayudar en cualquier cosa y por enseñarme

los trucos necesarios para conseguir tarjetas de transporte y bicis a buen precio, así

como “obligarme” a reaprender a ir en bici y conseguir frenar con el contrapedal (no me

maté de milagro).

De mi estancia en París quiero agradecer enormemente a Guido Kroemer la cantidad de

medios que poner al alcance de todos los que trabajan en su laboratorio dentro del

Institut Gustave Roussy con el fin de conseguir una buena publicación. En especial

quisiera agradecer a Laura Senovilla (y a su novio Nacho) los buenos momentos

pasados en París, por adoptarme en su casa hasta que me admitieron en el Colegio de

España, por enseñarme a manejarme dentro del laboratorio, así como los cotilleos

mientras trabajábamos en la campana de cultivos (o mientras mirábamos a los bomberos

que venían cada dos por tres a apagar algún fuego al hospital). Asimismo, quisiera

agradecer a Lorenzo y a Ilio todas las técnicas nuevas que me enseñaron, a Didier por su

ayuda con el citómetro y a también a Nazanine, María, Amina, Eugenia, los maestros

José Miguel y Alfredo, Max, Oliver, Ezgi, Chiara, Sonia, Claire, Emilie, Gwenola,

Jean-Luc, Nick, Nicolas y otros muchos por hacer que esta estancia fuera tan agradable.

No se me olvida Santi Rello por su optimismo y su ayuda cargando con mi maleta

mientras yo corría detrás del autobús el día de vuelta para España (espero que ya no te

duela la espalda). Por último quisiera agradecer a Rubén del Colegio de España las

conversaciones todas las noches en la cocina de la residencia.

Quisiera agradecer también al profesor Douglas R. Green por permitirme pasar dos

meses y medio dentro de su laboratorio en el St. Jude Children’s Research Hospital en

Memphis. Quisiera agradecer especialmente a Lisa su ayuda con el microscopio

confocal y orientar mis experimentos y a Fabien su paciencia con todas las cosas que

me pasaban por el laboratorio (Fabs, aunque mis botas aparecieron en casa de Melissa

como tú decías yo sigo pensando que me las dejé en el patio de mi casa y que llegaron

solas allí). También quisiera agradecer a Stephen, Valère, Laura, Tudor, Ruoning,

Jerry, Pat, Sandra, Melissa, Andrew, Sam, Gavin, Chris, Sebo, Diana, Nora por toda su

Page 16: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

ayuda durante este tiempo y por ayudarme a integrarme tan rápidamente dentro del

laboratorio. Por supuesto, también quisiera dar las gracias a toda la colonia de

españoles y casi españoles en Memphis (Guillermo, Víctor, Amanda, Blas, Adolfo,

Lorraine, Blanca, Gaëlle, Patricia, Diego, la pequeña Sofía,...) que adoptan cada año a

todos los nuevos que vamos llegando al St. Jude. En especial quisiera agradecer

enormemente a Miguel Sanjuán por tratarme como si fuera una más de la familia y dejar

que me pegara a su chepa durante toda la estancia en Memphis y aunque le destrozara

su estrategia del “low profile” dentro del laboratorio de Doug. A Alfonso me gustaría

agradecerle todas las croquetas de jamón y pollo que nos cocinó y la paciencia para

cargar con todas las chicas en su coche siempre que se lo pidiéramos para ir a ver un

partido de la NBA. También a Mar por su alegría aunque estuviera agobiadísima por

los 20 exámenes a la semana que tenía. Mar, pasarán más de mil años pero esa tarde de

compras en los “moles” fundiendo la tarjeta de crédito no la olvidaré en la vida, ¡Qué

bien me lo pasé! Por último quisiera agradecer a mi compañera de piso Yingdi hacer

que la estancia fuera diferente. Nunca pensé que acabaría montada en un coche de golf

dando vueltas a las diez de la noche por la urbanización donde vivíamos y cargando con

un colchón viscoelástico (como el de Miguel y Mar, que aunque saltes no se mueve).

Por supuesto, me gustaría agradecer a todos los amigos en Soneja que me han dado

ánimos con la tesis y en especial a Susi y Santa, compañeras de juergas. Y a Santa,

decirle que me encantó su visita con Jimmy a Copenhague, y reírme viendo cómo

fueron las únicas personas que volvieron quemadas por el sol de Dinamarca. A Raquel,

María, Sonia y Dolores por las comidas en el piso de Burjassot. También me gustaría

agradecer a Fernando por sus visitas a París y a Copenhague así como los viajes al

laboratorio algunos fines de semana.

Espero que no se me haya olvidado nadie y que disfrutéis el día de la tesis tanto como

yo, que al final habrá picoteo y se tiene que cumplir el lema del laboratorio... ¡Reventar

antes que sobre!

Page 17: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 18: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 19: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

I N D E X:

Abbreviations

CHAPTER 1 – Introduction ...................................................................... 1

1.1 Apoptosis .............................................................................................................. 1 1.2 Apoptosis activation and apoptotic cell death machinery ............................... 3 1.3 The apoptosome, components and cellular regulation..................................... 8 1.4 Apoptosome implication in disease .................................................................. 13 1.5 Chemical modulation of the apoptosome ........................................................ 14 1.6 Identification of an Apaf-1 inhibitor, peptoid 1, through the screening of an

N-alkylglycine chemical library .......................................................................... 18

CHAPTER 2 – Objetives ..........................................................................21

CHAPTER 3 – Synthesis of peptoid 1 and peptoid 1 derivatives.........23 3.1 Synthesis of peptoid 1 ........................................................................................ 33 3.2 Cell-penetrating peptides and cell-penetrating peptide/peptoid hybrids

synthesis PEN-1 and TAT-1 ................................................................................ 33 3.3 Synthesis and characterization of nanoconjugates......................................... 34

3.3.1 Synthesis and characterization of QM56 (peptoid 1-GG-PGA conjugate).. 34 3.3.2 Synthesis and characterization of QM56-OG (peptoid 1-GG-PGA-oregon

green).................................................................................................................. 41 3.4 Synthesis of conformationally constrained peptoid 1 mimetics .................... 42

3.4.1 Synthesis of QM31........................................................................................ 42 3.4.2 Synthesis of QM31 derivatives ..................................................................... 42 3.4.3 Synthesis of QM57........................................................................................ 43 3.4.4 Synthesis of QM57 analogues ...................................................................... 43

3.5 Synthesis of QM56 analogues and polymeric derivatives of QM31 and QM57 ..................................................................................................................... 45

CHAPTER 4 – Systematic analysis of inhibition of apoptosis by

peptoid 1 derivatives .................................................................................51 4.1 Apoptotic inhibition activity of CPP-peptoid 1 hybrids, PEN-1 and TAT-1 57

4.1.1 PEN-1 and TAT-1 antiapoptotic activity in cell extracts ............................. 57 4.1.2 Evaluation of cell toxicity and biological activity of PEN-1 and TAT-1...... 58 4.1.3 Cellular internalization studies and structural characterization of PEN-1

and TAT-1........................................................................................................... 60 4.2 Apoptosis inhibitory activity of the polymer-peptoid 1 nanoconjugate,

QM56 ..................................................................................................................... 68 4.2.1 Evaluation of cellular internalization of QM56 ........................................... 68 4.2.2 Evaluation of cell toxicity and biological activity of polymer-peptoid 1

conjugates, QM56 and derivatives ..................................................................... 70 4.3 Apoptotic inhibitory activity of conformationally constrained peptoid 1

derivatives ............................................................................................................. 73

Page 20: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

4.3.1 Conformationally constrained peptoid 1 derivatives inhibit apoptosome assembly in an in vitro apoptosome reconstitution assay .................................. 73

4.3.2 Evaluation of cell toxicity and biological activity of conformationally constrained peptoid 1 derivatives, QM31 and QM57 derivatives...................... 75

4.4 Apoptotic inhibition activity of the synthesized QM31 and QM57 polymeric derivatives ............................................................................................................. 84

CHAPTER 5 – Peptoid 1 derivatives as inhibitors of the apoptosome,

molecular mechanism of action................................................................87 5.1 Characterization of peptoid 1 binding site in different in vitro systems....... 87

5.1.1 Fluorescence polarization spectroscopy ...................................................... 88 5.1.2 NMR 15N-rCARDApaf-1 peptoid 1 interaction assays..................................... 89 5.1.3 Yeast two-hybrid system ............................................................................... 91 5.1.4 In silico modelization analysis ..................................................................... 95

5.2 Characterization of peptoid 1 binding site in whole cell systems.................. 98 5.2.1 Cell extracts fractionation studies................................................................ 98 5.2.2 Inhibition of apoptosome-dependent apoptosis induction............................ 99

CHAPTER 6 – Characterization of the cytoprotective effect of peptoid

1 derivative QM31 ...................................................................................101 6.1 Characterization of QM31 cytoprotective effect in cellular models ........... 103

6.1.1 Cytoprotective effects of QM31 and Z-VAD-fmk in A549 cells.................. 104 6.1.2 Cytoprotective effect of QM31 and q-VD-OPH in Heltog cell line............ 108 6.1.3 Comparison of the clonogenic cell survival effect of QM31 and q-VD-OPH

in Heltog cell line ............................................................................................. 111

CHAPTER 7 – Apaf-1 non-apoptotic functions in cell........................113 7.1 Inhibition of the intra-S-phase DNA damage checkpoint by QM31 .......... 113 7.2 Influence of high doses of L-glutamine in cell survival after peptoid 1...... 116

CHAPTER 8 – Primary culture and in vivo hypoxia experiments ....125 8.1 Analysis of apoptosis inhibition in primary culture cells, cardiomyocytes

under hypoxia conditions................................................................................... 126 8.2 Analysis in animal models............................................................................... 129

8.2.1 Safety and toxicology evaluation of peptoid 1 derivatives in mice............. 130 8.2.2 Analysis of apoptosis inhibition in an animal model of kidney hot ischemia

.......................................................................................................................... 131

CHAPTER 9 – General discussion ........................................................139

CHAPTER 10 – Conclusions..................................................................143

Page 21: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

CHAPTER 11 – Materials and methods...............................................145 11.1 Equipment and material ............................................................................... 145

11.1.1 Equipment and material employed in the synthesis of peptoid 1 and peptoid 1 derivatives...................................................................................................... 145

11.1.2 Materials and equipment employed in the biological assays ................... 146 11.2 Peptoid 1 and peptoid 1 derivatives synthesis............................................. 149

11.2.1 Synthesis of peptoid 1 ................................................................................ 149 11.2.2 Cell-penetrating peptides and cell-penetrating peptide/peptoid hybrids

synthesis............................................................................................................ 149 11.2.3 Synthesis of QM56 and QM56-OG........................................................... 150 11.2.4 Synthesis of conformationally constrained peptoid 1 mimetics, QM31 ... 155

11.3 E. coli manipulation....................................................................................... 156 11.3.1 E. coli strains and plasmid constructs...................................................... 156 11.3.2 Culture conditions and manipulation of E. coli ....................................... 156 11.3.3 Obtention of recombinant proteins........................................................... 157

11.4 S. cerevisiae manipulation............................................................................. 160 11.4.1 S. cerevisiae strain.................................................................................... 160 11.4.2 Culture conditions and manipulation of EGY048 strain .......................... 160 11.4.3 Yeast two-hybrid system assay ................................................................. 161

11.5 Insect cell manipulation ................................................................................ 161 11.5.1 Insect cell lines ......................................................................................... 161 11.5.2 Culture conditions and manipulation of insect cells ................................ 161 11.5.3 Baculovirus manipulation and recombinant Apaf-1 production.............. 162

11.6 Mammal cell lines manipulation .................................................................. 164 11.6.1 Mammal cell lines..................................................................................... 164 11.6.2 Culture conditions .................................................................................... 164 11.6.3 HEK 293 cell extracts preparation and cell-free caspase activation assay

(DEVDase activity)........................................................................................... 164 11.6.4 In vivo reconstitution assay of the apoptosome........................................ 165 11.6.5 MTT cell viability assays .......................................................................... 166 11.6.6 Caspase actvation assays in cellular models (DEVDase activity) ........... 167 11.6.7 Cellular internalization studies by flow cytometry and confocal

fluorescence microscopy .................................................................................. 167 11.6.8 Circular Dichroism spectroscopy............................................................. 169 11.6.9 Fluorescence polarization assay .............................................................. 169 11.6.10 NMR 15N-CARD peptoid 1 interaction assays........................................ 169 11.6.11 In silico modelization analysis ............................................................... 169 11.6.12 Gel filtration studies in whole cells ........................................................ 170 11.6.13 Apoptosis induction experiments in A549 cell lines ............................... 170 11.6.14 Apoptosis induction experiments in Heltog cell lines............................. 171 11.6.15 Cell cycle experiments ............................................................................ 173

11.7 Cardiomyocyte primary culture .................................................................. 175 11.7.1 Culture of neonatal rat cardiomyocytes in hypoxic conditions................ 175 11.7.2 Immunohistochemistry studies in cardiomyocytes ................................... 175

11.8 In vivo kidney hot ischemia models ............................................................. 176 11.8.1 Kidney hot ischemia induction ................................................................. 176 11.8.2 Pathological studies ................................................................................. 176 11.8.3 TUNEL analysis........................................................................................ 177 11.8.4 Caspase 3 activity in kidney extracts........................................................ 177

Page 22: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

CHAPTER 12 – Bibliography................................................................179

Appendix: Summary of the thesis project in Spanish

Page 23: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

FIGURE INDEX

CHAPTER 1 Figure 1.1 The apoptotic machinery ....................................................................... 1 Figure 1.2 Structural characteristics of caspases ................................................... 4 Figure 1.3 Structural characteristics of Bcl-2 family of proteins ........................... 5 Figure 1.4 Models for the functional interactions between the different Bcl-2

family members..................................................................................................... 6 Figure 1.5 Apaf-1-XL structure ............................................................................... 8 Figure 1.6 Cryo-EM structure of the apoptosome .................................................. 9 Figure 1.7 Apaf-1 interacting proteins.................................................................. 13 Figure 1.8 Chemical structure of the different Apaf-1 modulators....................... 17 Figure 1.9 Chemical structure of peptoid 1 and its derivatives ............................ 19

CHAPTER 3

Figure 3.1 Chemical structure of the 2nd generation of peptoid 1 derivatives...... 23 Figure 3.2 Cellular internalization pathways of peptoid 1 derivatives................. 24 Figure 3.3 Examples of nanopharmaceutics ......................................................... 27 Figure 3.4 EPR effect and lysosomotrophyc intracellular polymer-conjugates drug

delivery ............................................................................................................... 29 Figure 3.5 Scheme of peptoid 1 chemical synthesis .............................................. 33 Figure 3.6 Chemical structure of PEN-1 and TAT-1 ............................................ 34 Figure 3.7 Synthesis of peptoid 1-GG ................................................................... 35 Figure 3.8 Scheme of conjugation of the peptoid 1-GG to the polymeric carrier 35 Figure 3.9 Polymer-conjugate total drug content quantification by UV

spectroscopy ....................................................................................................... 36 Figure 3.10 Calibration curve for polymer conjugate peptoid 1-GG content by

HPLC.................................................................................................................. 37 Figure 3.11 1D 1H NMR spectrum of NH2-GG-peptoid 1, PGA and QM56........ 39 Figure 3.12 Expansion of 2D TOCSY NMR spectra of PGA vs. QM56................ 39 Figure 3.13 Kinetic study of QM56 degradation in the presence of cathepsin B . 40 Figure 3.14 Scheme of QM56-OG synthesis ......................................................... 41 Figure 3.15 Determination of OG content on the nanoconjugate by fluorimetry. 41 Figure 3.16 QM31 synthesis scheme..................................................................... 42 Figure 3.17 Chemical structure of QM31 and its derivatives............................... 43 Figure 3.18 Influence of polymer-drug linkers on drug release kinetics .............. 48 Figure 3.19 GPC-HPLC-based analysis of released QM57 from QM57-P2 in

serum and blood ................................................................................................. 49 CHAPTER 4

Figure 4.1 Scheme of in vitro and cell-free extract apoptosome reconstitution assay ................................................................................................................... 53

Figure 4.2 Chemical structure of doxorubicin ...................................................... 54 Figure 4.3 Chemical structure of doxycycline....................................................... 54 Figure 4.4 Schematic development of MTT assay................................................. 55 Figure 4.5 Scheme of caspase 3 activity fluorogenic assay .................................. 56 Figure 4.6 Chemical structure of fluorescein and derivatives .............................. 57 Figure 4.7 Concentration dependent inhibition of Apaf-1 mediated activation of

caspases by peptoid 1, PEN-1 and TAT-1 .......................................................... 58 Figure 4.8 Evaluation of cell toxicity in different cell lines by PEN-1 and TAT-1 59

Page 24: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Figure 4.9 Evaluation of cell-viability recovery in different cell lines by PEN-1. 59 Figure 4.10 Evaluation of caspase 3 activity inhibition in different cell lines after

apoptotic insult by PEN-1 .................................................................................. 60 Figure 4.11 Time-dependent uptake of PEN-1 and TAT-1 by U937 cells............. 61 Figure 4.12 Confocal microscopy live cell images of PEN-1 internalization by

Saos-2 cells ......................................................................................................... 62 Figure 4.13 CD spectra of TAT-1 and PEN-1 in the presence of TFE ................. 63 Figure 4.14 CD spectra of PEN-1 and TAT-1 in the presence of SDS.................. 64 Figure 4.15 CD spectra of PEN-1 and TAT-1 in the presence of LPC ................. 65 Figure 4.16 Cellular uptake of QM56-OG in established cell lines ..................... 69 Figure 4.17 Evaluation of cell toxicity in different cell lines by QM56 ................ 70 Figure 4.18 Evaluation of cell-viability recovery in different cell lines by QM56 71 Figure 4.19 Caspase 3 activity inhibition after an apoptotic insult in different cell

lines by QM56...........71 Figure 4.20 Caspase 9 activity inhibition by QM31 and derivatives........................................................................................................... 74

Figure 4.21 Caspase 9 activity inhibition by QM57 and derivatives.................... 74 Figure 4.22 Evaluation of cell toxicity in different cell lines by QM31 ................. 76 Figure 4.23 Evaluation of cell-viability recovery in different cell lines in QM31 76 Figure 4.24 Caspase 3 activity inhibition after an apoptotic insult in different cell

lines by QM31..................................................................................................... 81 CHAPTER 5

Figure 5.1 Fluorescence polarization studies of CF-peptoid 1 and rCARDApaf-1 interaction........................................................................................................... 89

Figure 5.2 PEN-1 bidns to 15N-rCARDApaf-1 domain............................................. 90 Figure 5.3 Yeast two-hybrid system ...................................................................... 92 Figure 5.4 pGilda and pJG4-5 plasmids structure ............................................... 92 Figure 5.5 Two-hybrid yeast system....................................................................... 94 Figure 5.6 Yeast two-hybrid system OD values after QM31 treatment ................ 95 Figure 5.7 In silico model of the complex CARD-NODApaf-1/QM31 ..................... 97 Figure 5.8 Diagram of QM31 and Apaf-1 interaction determined by docking..... 97 Figure 5.9 Gel filtration results for HeLa cells after doxorubicin treatment and

QM56 addition.................................................................................................... 99 Figure 5.10 Chemical structure of compound 2.................................................. 100

CHAPTER 6

Figure 6.1 CDDP chemical structure.................................................................. 104 Figure 6.2 Z-Val-Ala-Asp-fmk chemical structure .............................................. 104 Figure 6.3 Apoptotic cell death inhibition in A549 after CDDP treatment by

QM31................................................................................................................ 106 Figure 6.4 Cytoprotective effect exerted by peptoide 1 derivative QM31 in A549

after CDDP treatment ...................................................................................... 107 Figure 6.5 Chemical structure of STS ................................................................. 108 Figure 6.6 Chemical structure of q-VD-OPH ..................................................... 108 Figure 6.7 Apoptotic cell death inhibition by QM31 and q-VD-OPH in Heltog cell

line after STS treatment .................................................................................... 109 Figure 6.8 Study of cyt c release kinetics in Heltog cell line after an apoptotic

insult in the presence of QM31 and q-VD-OPH............................................... 110 Figure 6.9 Clonogenic survival assay in Heltog cell line after an apoptotic insult

in the presence of QM31 and q-VD-OPH ........................................................ 112

Page 25: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

CHAPTER 7 Figure 7.1 Inhibition of the intra-S-phase cell cycle arrest in A549 after CDDP

treatment in the presence of QM31 .................................................................. 115 Figure 7.2 Inhibition of Chk1 phosphorilation in A549 after DNA-damage

induction in the presence of QM31 .................................................................. 116 Figure 7.3 Influence of GlutaMAX and L-glutamine on QM56 cell toxicity in

different cell lines ............................................................................................. 118 Figure 7.4 Influence of GlutaMAX and L-glutamine on QM31 cell toxicity in

different cell lines ............................................................................................. 119 Figure 7.5 LC-3 GFP translocation to the autolysosomes induction in the

presence of GlutaMAX plus peptoid 1 derivatives ........................................... 122 Figure 7.6 In vitro apoptosome reconstitution inhibition by GFAT2 ................. 124

CHAPTER 8

Figure 8.1 Immunohistochemical caspase 3 detection in neonatal cardiomyocyte primary culture ................................................................................................. 127

Figure 8.2 Cellular uptake of the polymer conjugate QM56-OG in cardiomyocyte primary culture cells......................................................................................... 128

Figure 8.3 Pathological analysis of rat kidney tissue subjected to hot ischemia after peptoid 1 derivatives treatment................................................................ 134

Figure 8.4 TUNEL assay fo the hot ischemia animal model after peptoid 1 derivatives treatment ........................................................................................ 135

Figure 8.5 Analysis of caspase 3 activity in kidney extracts subjected to hot ischemia after peptoid 1 derivatives treatment................................................. 136

Page 26: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 27: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

TABLE INDEX

CHAPTER 1 Table 1.1 Different types of cell death..................................................................... 2

CHAPTER 3

Table 3.1 Polymer-drug conjugates in clinics....................................................... 31 Table 3.2 Chemical structure for the substituents at R1 position in QM31 .......... 44 Table 3.3 Schematic structure of QM56 and heterocyclic polymeric derivatives. 45 Table 3.4 Loading parameters for PGA-conjugates ............................................. 46 Table 3.5 Degradation studies for PGA-based derivatives................................... 47

CHAPTER 4

Table 4.1 Percentage of secondary structure obtained from the CD data interpreted with the program provided by Jasco ............................................... 66

Table 4.2 Percentage of secondary structure obtained from the CD data interpreted with the K2D program of the Dichroweb ........................................ 67

Table 4.4 Percentage of caspase 3 inhibition after an apoptotic insult by QM56 derivatives in Saos-2........................................................................................... 72

Table 4.5 Evaluation of QM31 derivatives cell toxicity in U937 and Saos-2 cell lines..................................................................................................................... 77

Table 4.6 Evaluation of QM57 derivatives cell toxicity in U937 and Saos-2 cell lines..................................................................................................................... 78

Table 4.7 Evaluation of QM31 derivatives cell recovery in U937 and Saos-2 cell lines..................................................................................................................... 79

Table 4.8 Evaluation of QM57 derivatives cell recovery in U937 and Saos-2 cell lines..................................................................................................................... 80

Table 4.9 Caspase 3 activity inhibition in U937 and Saos-2 cell lines by QM31 and derivatives.................................................................................................... 82

Table 4.10 Caspase 3 activity inhibition in U937 and Saos-2 cell lines by QM57 and derivatives.................................................................................................... 83

Table 4.11 Caspase 3 activity inhibition in U937 and Saos-2 cell lines by QM31 and QM57 polymeric derivatives ....................................................................... 85

CHAPTER 5

Table 5.1 Plasmid constructs employed in the yeast two-hybrid system............... 93 Table 5.2 Percentage of caspase 3 activity inhibition in U937 and Saos-2 cell lines

by QM56 and QM31-P2 after compound 2 treatment...................................... 100 CHAPTER 8

Table 8.1 Percentage of cell recovery and caspase 3 inhibition in cardiomyocytes after hypoxia-induced apoptosis in the presence of QM31 and QM56............ 129

Table 8.2 Evaluation of peptoid 1 derivatives toxicity in mice ........................... 130 Table 8.3 Mice blood analysis parameter results after peptoid 1 derivatives

treatment........................................................................................................... 131 Table 8.4 Description of the groups of animals and treatments selected for the in

vivo hot-ischemia model ................................................................................... 130 Table 8.5 Analysis of caspase 3 activity in kidney extracts after peptoid 1

derivatives treatment ........................................................................................ 134

Page 28: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

CHAPTER 11 Table 11.1 Internal control of the yeast two-hybrid assay.................................. 166

Page 29: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

ABBREVIATIONS: A. victoria: Aequorea victoria A1: B-cell leukemia/lymphoma 2 related protein A1a Ac-LEHD-afc: Ac-Leucine-glutamate-histidine-aspartate-afc AD: Transcriptional activation domain ADP: adenosine diphosphate afc: 7-amino-4-trifluoromethyl coumarine AIF: Apoptosis inducing factor AML: Amyotrophic lateral sclerosis Amp: Ampicilin Ann V: Annexin V ANOVA: Analysis of variance ANT: Adenine nucleotide transporter AOBS: Acoustic optical beam splitter Apaf-1: Apoptotic peptidase activating factor 1 ATP: Adenosine triphosphate AUC: Analytical ultracentrifugation AUC: Area under the curve Aven: Protein whose name is derived form the Roman emperor Aventine. It is a caspase activator inhibitor Bad: Bcl-2 associated death promoter Bak: Bcl-2-antagonist/killer 1 Bax: Bcl-2 associated X protein Bcl-2: B-cell lymphoma 2 B-CLL: B-cell chronic lymphocytic leukemia Bcl-XL: B-cell lymphoma extra large Bcr-Abl: Breakpoint cluster region-Abl tyrosine kinase BH1-4: Bcl-2 homology domains from 1 to 4 Bid: BH3 interacting domain death agonist Bik: BCL2-interacting killer (apoptosis-inducing) BimL: BCL2-like 11 (apoptosis facilitator) BIR: Baculovirus IAP repeat Bmf: Bcl-2 modifying factor Bok: Bcl-2 related ovarian killer C. elegans: Caernohabditis elegans CARD: Caspase recruitment domain CAS: Cellular apoptosis susceptibility protein Caspase: Cysteine aspartic serine protease CD: Circular dichroism spectroscopy CDDP: Cis-diamminedichloridoplatinum (II) CED-3,4,9: Cell death abnormalities 3, 4 and 9 CF: Carboxyfluoresceine CF-peptoid 1: Carboxyfluorescein-peptoid 1 conjugate Chk1: Checkpoint kinase 1 Chlo: Chloramphenicol Cladribine: 2-chlorodeoxyadenosine or 2CdA cmc: Critical micellar concentration CML: chronic myelogenous leukemia CPK: Creatin phosphokinase

Page 30: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

CPP: Cell penetrating peptide cyt c: Cytochrome c D. melanogaster: Drosophila melanogaster dADP: deoxyadenosine diphosphate DARK: Drosophila Apaf-1 related killer dATP: Deoxyadenosine triphosphate DB: DNA-binding domain DIC: diisopropylcarbodiimide DIEA: diisopropylethylamine DiOC6(3): 3,3'- Dihexyloxacarbocyanine iodide DIVA/Boo: Death inducer binding to vBcl-2 and Apaf-1/Bcl-2 homologue of ovary DMF: dimethylformamide DMSO: Dimethylsulfoxide DRONC: Drosophila initiator caspase DTT: Dithiotreitol EDTA: Ethylenediaminetetraacetic acid EGF: Epidermal growth factor from murine submaxillary gland EGL-1: Egg laying defective 1 EPR: Enhanced permeability and retention effect ERK: Extra-cellular signal regulated kinase) EtOH: Ethanol FBS: Foetal bovine serum FC: Flow-cytometry FITC: Fluorescein isothiocyanate Fludarabine: 9-b-d-arabinofuranosyl-2-fluoradenine or F-Ara-A FT: Flow-through FU: Fluorescence unit GFAT: Glutamine-fructose-6-phosphate aminotransferase GFP: Green fluorescent protein GlutaMAX: L-alanyl-L-glutamine dipeptide GPC: Gel permeation chromatography GPT: Glutamate pyruvate transaminase HBXIP: Hepatitis B X-interacting protein HIF: Hypoxia-inducible factor HIV-1: Human immunodeficiency virus type 1 HObt: 1-hydroxybenzotriazole HP: Hexosamine pathway HPLC: High-performance liquid chromatography HPMA: N-(2-hydroxypropylmethacrylamide) Hrk: harakiri, BCL2 interacting protein HSP (Hsp): heat-shock protein HSQC: Heteronuclear Single-Quantum Correlation HTS: High throughput screening IAP: Inhibitor of apoptosis protein IPTG: Isopropyl β-D-1-thiogalactopyranoside LB: Luria Bertani LC-3: Microtubule-associated protein 1 light chain 3 alpha LHRH: human luteinizing hormone-releasing hormone LPC: 1-palmitoyl-2-hydroxy-snglycero-3-phosphocoline MALDI-TOF: Matrix Assisted Laser Desorption/Ionization-Time of Flight

Page 31: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

Mcl-1: myeloid cell leukemia sequence 1 (BCL2-related) MeOH: Methanol MOI: Multiplicity of infection MOMP: Mitochondrial outer membrane permeabilization MPTP: Mitochondrial permeability transition pore mTOR: Mammalian target of rapamacyn MTT: 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazoliumbromide bromide Mw,a: Average molecular weight Mw/Mn: Polymer polydispersity Mw: Molecular weight NHBD: Non-heart-beating donors NMR: Nuclear magnetic resonance NOESY: Nuclear Overhauser effect spectroscopy Noxa: also known as Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) NSCLC: Non-small cell lung carcinoma OD: Optical density OG: Oregon Green Omi/Htra2: Serine Protease OMI/High temperature required protein A2 Puma: also known as Bcl-2 binding component 3 (BBC3) PARCS: Pro-apoptotic protein required for cell survival PBS: Phosphate buffered saline PEG: Poly(ethyleneglycol) PEN: Penetratin (3rd helix of D. melanogaster Antennapedia protein) PEN-1: Penetratin-GG-peptoid 1 conjugate PETCM: α-(trichloromethyl)-4-pyridineethanol PGA: Poly-L-glutamic acid PHAPI: Potent heat-stable protein phosphatase 2A inhibitor I1PP2A PI: Propidium iodide PKA: Protein kinase A PKB: Protein kinase B PKCzeta: Protein kinase C zeta PPII-like: Poly(proline) type II-like ProT: Prothymosin-α PS: Phosphatidylserine q-VD-OPH: Quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone RA: Reumatoid arthritis RES: Reticulum endothelial system ROS: Reactive oxygen stress RT: Room temperature S. staruosporeus: Streptomyces staurosporeus S: Sedimentation coefficient s: Standard deviation SC-drop out: Synthetic-Complete drop out medium SD: Standard error deviation SDS: Sodium dodecyl sulphate SE: Standard error SEC: Size exclusion chromatography Smac/DIABLO: Supramolecular adhesion complex / direct inhibitor of apoptosis protein-binding protein with low pI STS: Staurosporine

Page 32: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

TAT: TAT protein (transcription factor of HIV-1) TAT-1: TAT-GG-peptoid 1 conjugate TBS: Tris-HCl buffer solution TBST: Tris-HCl buffer solution plus tween 20 TCA: Trichloroacetic acid TFA: Trifluoroacetic acid TFE: Trifluoroethanol TOCSY: Total correlation spectroscopy tr: Retention time TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling vbar: partial specific volume VDAC: Voltage-dependent anion channel XIAP: X chromosome-linked inhibitor of apoptosis Y2H: Yeast-two hybrid system Z-VAD-fmk: Z-Val-Ala-Asp(OMe)fluoromethylketone ΔΨm: Mitochondrial transmembrane potential

Page 33: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 34: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 35: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

1

CHAPTER 1. INTRODUCTION

1.1 Apoptosis

In the late 19th century, the anatomist Walter Flemming described ovarian follicle cells

that died spontaneously. He termed this process chromatolysis, referring to the break

and disappearance of the nucleus. Such observation was followed by early attempts to

distinguish between spontaneous and other forms of cell death. In 1972 Kerr and

coworkers introduced apoptosis (Greek: ‘dropping of leaves from a tree’) to describe a

common observed morphology to most spontaneous cell deaths and also this study

confirmed the widespread of the process [1].

DNA

Ub

MDM2p53

Proteasome

EGLN2

ROS(Hypoxia/

Reperfusion)

UbHIF-α

DNA damage

Cyt c

TNF receptor

Ligands (FasL, Apo2L/TRAIL…)

DISCFADD

Procaspases 8,10

Caspases 8,10

Caspases 3,7

Procaspases 3,7

Bid tBid

Procaspase 9

Apaf-1

IAPs

Bcl-XLBcl-2

Apoptosome

Smac/DIABLO

Bax/Bak

EndoG

p53

Bcl-XLBcl-2

PumaNoxa

BNIP3

Transcription

Piddosome

?

Caspase 2

HtrA2/Omi

RAIDD

PIDD

Procaspase 2

p53

Bax/BakMOMP

“BH3 only”Proteins

HIF-α

DNA

Ub

MDM2p53

Proteasome

EGLN2

ROS(Hypoxia/

Reperfusion)

UbHIF-α

DNA damage

Cyt c

TNF receptor

Ligands (FasL, Apo2L/TRAIL…)

DISCFADD

Procaspases 8,10

Caspases 8,10

Caspases 3,7

Procaspases 3,7

Bid tBid

Procaspase 9

Apaf-1

IAPs

Bcl-XLBcl-2

Apoptosome

Smac/DIABLO

Bax/Bak

EndoG

p53

Bcl-XLBcl-2

PumaNoxa

BNIP3

Transcription

Piddosome

?

Caspase 2

HtrA2/Omi

RAIDD

PIDD

Procaspase 2

p53

Bax/BakMOMP

“BH3 only”Proteins

HIF-α

DNADNA

Ub

MDM2p53 Ub

MDM2p53

MDM2p53

Proteasome

EGLN2

ROS(Hypoxia/

Reperfusion)

UbHIF-α

EGLN2

ROS(Hypoxia/

Reperfusion)

UbHIF-α

DNA damage

Cyt c

TNF receptor

Ligands (FasL, Apo2L/TRAIL…)

DISCFADD

Procaspases 8,10

Caspases 8,10

Caspases 3,7

Procaspases 3,7

Bid tBid

Procaspase 9

Apaf-1

IAPsIAPs

Bcl-XLBcl-2

Apoptosome

Smac/DIABLO

Bax/Bak

EndoG

p53

Bcl-XLBcl-2

PumaNoxa

BNIP3

Transcription

Piddosome

?

Caspase 2

HtrA2/Omi

RAIDD

PIDD

Procaspase 2

p53

Bax/BakMOMP

“BH3 only”Proteins

HIF-α

Figure 1.1. The apoptotic machinery.

However, the genetic nature of the process remained unknown till Horvitz and Sulston

[2] introduced Caenorhabditis elegans (C. elegans) as a perfect model for the study of

the genetic basis of apoptosis. Later on, successful studies in Drosophila melanogaster

(D. melanogaster) elegantly complemented those discoveries performed in C. elegans

(see review [3] for further information). As a result a core of essential proteins that

Page 36: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

2

control this process was defined and it has been demonstrated that the encoding genes

are highly conserved from nematodes to humans. As an example in C. elegans, the

inactive CED-3 zymogen (Cell death abnormalities 3, homologous to the mammalian

caspases) is activated by CED-4 (homologous to the Apoptosis protease activating

factor 1, Apaf-1) that is retained in an inactive form in the mitochondrial membrane by

CED-9 (homologous to the B-cell lymphoma 2, Bcl-2). Upon cell death induction,

EGL-1 (Egg lying defective 1, a nematode protein containing the Bcl-2 homology

domain 3-only, “BH3-only”) is up-regulated and binds to CED-9 inducing the

translocation of CED-4 to the perinuclear membrane, where it oligomerizes forming an

active apoptosome that activates CED-3. A similar apoptotic pathway is found in

Drosophila (e.g. the CED-3 homolog DRONC is activated by the CED-4 homologue

Apaf-1 related killer (DARK), however, the two CED-9 homologues that have been

found in the fly do not appear to play major roles in the control of apoptosis in this

organism) (Figure 1.1).

Table 1.1. Different types of cell death (modified from [4]). Type of cell death Morphological characteristics Apoptosis Rounding-up of the cell

Retraction of pseudopodes Reduction of cellular and nuclear volume Nuclear fragmentation Plasma membrane blebbing Engulfment by resident phagocytes, in vivo

Autophagy related cell death

Lack of chromatin condensation Massive vacuolization of the cytoplasm Accumulation of (double-membrane) autophagic vesicles Little or no uptake by phagocytic cells, in vivo

Necrosis Cytoplasmic swelling Rupture of plasma membrane Swelling of cytoplasmic organelles Moderate chromatin condensation

Cornification Elimination of cytosolic organelles Modifications of plasma membrane Accumulation of lipids in F and L granules Extrusion of lipids in the extracellular space Desquamation (loss of corneocytes) by protease activation

Nowadays apoptosis is defined as a highly regulated cellular pathway responsible for

the elimination of cells in the organism that are no longer needed or extensively

damaged. In multicellular organisms, apoptosis is not the only type of cell death.

Necrosis, cornification and macroautophagy associated cell death processes occur in the

Page 37: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

3

cell, some of them simultaneously. Several revisions of the main features of these cell

death processes have been now reported and these different types of cell death have

been redefined according to the characteristics depicted in Table 1.1 [4].

1.2 Apoptosis activation and apoptotic cell death machinery

Apoptosis can be initiated by different apoptotic stimuli, including infectious agents,

anticancer agents, toxic agents, irradiation, growth factor withdrawal, heat shock,

ischemia and degenerative processes [5-8]. Depending on the nature of these stimuli

two different apoptotic pathways can be activated: the extrinsic and the intrinsic

pathways; although they are connected in different steps of the process [9].

The extrinsic apoptotic pathway is initiated by apoptotic stimuli from the outside of the

cell. This apoptosis induction signal is transduced into the cell by specific apoptotic cell

death receptors. Once these cell death receptors are activated, they oligomerize and

recruit and activate initiator caspases 8 and 10 via interactions with adaptor proteins.

As a consequence, initiator caspases spread the apoptotic signal by activating effector

caspases 3 and 7. By contrast, the intrinsic apoptotic pathway is activated by internal

cell death signals such as DNA damage or the presence of reactive oxygen stress (ROS),

among others. Different proteins take part in this process, but two main events should

be highlighted: the activation of caspases and the induction of the mitochondrial outer

membrane permeabilization (MOMP) by Bcl-2 family members.

Caspases are a family of cystein aspartyl proteases that constitute the executioner

machinery in apoptotic processes. Caspases are present in the cell as inactive zymogens

(30-50 kDa) essentially containing three domains: N-terminal prodomain, a large

subunit and a small subunit [10] (Figure 1.2). The caspase family of proteins can be

divided in two groups: initiator and effector caspases. Initiator caspases (e.g., caspases

8, 9 and 10) are the first to be activated upon apoptosis induction; and subsequently they

are in charge of the signal transduction that activates effector caspases (e.g., caspases 3

and 7) that are responsible for the disassembly of cellular components. The molecular

mechanism of caspase activation differs from initiator and effector caspases. The

dimerization process of initiator caspases induces their auto activation by the cleavage

of the large-small subunit connecting linker, besides their enzymatic activity depends on

Page 38: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

4

their ability to bind to an allosteric regulator [11-17]. By contrast, effector caspases can

be found as dimers in normal conditions and the subsequent cleavage of the inter-

subunit linker by initiator caspases is the cause of their activation [11, 13]. Once

effector caspases are activated they process their target proteins. The target amino acid

sequence in substrate proteins is defined by an aspartic acid residue in the P1 position

[10], a glutamate residue in P3 and different and certain preference in the P2 position

for threonine, histidine and valine residues [18]. Despite its cell dismantling role recent

data published by Mahrus et al. [19] demonstrate that caspases target a limited group of

pathways (cytoskeleton maintenance and organization, caspase activated DNases,

metabolism maintenance) and have special affinity for protein complexes. This

specificity for substrates would be explained through its dimeric structure, rare in

proteases, that allows them targeting multiple proteins contained in a protein complex at

the same time.

DED

L S

L S

L S

L S

L S

L S

L S

L S

L S

L S

L S

CARD

CARD

CARD

CARD

CARD

DED

DEDDED

Caspase 1

Caspase 2

Caspase 3

Caspase 4

Caspase 5

Caspase 6

Caspase 8

Caspase 9

Caspase 10

Caspase 14

Caspase 7

DED

L S

L S

L S

L S

L S

L S

L S

L S

L S

L S

L S

CARD

CARD

CARD

CARD

CARD

DED

DEDDED

Caspase 1

Caspase 2

Caspase 3

Caspase 4

Caspase 5

Caspase 6

Caspase 8

Caspase 9

Caspase 10

Caspase 14

Caspase 7

Figure 1.2. Structural characteristics of caspases [20]. Procaspases contain in their structure a large (L) and a small (S) subunit and in some cases they can also contain a caspase recruitment domain (CARD) or death effector domains (DEDs).

The mechanisms by which caspases are activated differ from one organism to another,

but in mammals, despite the activation of caspase 8, massive activation of caspases

occurs mainly after the induction of MOMP. This process is regulated by the Bcl-2

family proteins, whose members can play a pro or an antiapoptotic role. All the

Page 39: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

5

members of this family contain in their structure till four Bcl-2 homology (BH) domains

which define their role in apoptosis, being the BH3 the one that seems to determine the

proapoptotic role of the protein and the rest related to the antiapoptotic function. The

Bcl-2 family can be divided in three groups according to the BH domains that compose

their structure: the antiapoptotic members (Bcl-2, Bcl-XL, A1 and Mcl-1) contain the

fourth domains (BH1 to BH4) with the exception of Mcl-1 that contains just three;

proapoptotic BH3-only members, that contain just one of the BH3 domains in their

structure (Bid, Bik, BimL, Bad, Noxa, Puma, Bmf and Hrk) and proapoptotic

multidomain members (Bax, Bak and Bok) that contain BH1, BH2 and BH3 domains

(Figure 1.3). The formation of homo- or heterodimers among the members of this

family through selective BH-BH domain interactions controls the activation or

inactivation of apoptosis.

Proapoptotic

Antiapoptotic

Proapoptotic

Antiapoptotic

Figure 1.3. Structural characteristics of Bcl-2 family of proteins. Schematic representation of members of Bcl-2 family. Example of anti-apoptotic members include Bcl-2, Bcl-xl and A1. Their multiple BH3 domains are highlighted in grey. Examples of pro-apoptotic members of the Bcl-2 family are presented. They include the multiple BH3 domain containing Bax and Bak and the BH3-only Bid, Bim, Bad, Noxa and Puma (modified from [21]).

At present, there is some controversy about the type of interactions among the different

members of the Bcl-2 family that originates MOMP-induction and two models have

been proposed (Figure 1.4). Both models agree that BH3-only members act as initiators

of the apoptotic process by selective activation of the BH multi-domain proapoptotic

Page 40: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

6

members Bak and Bax (Bcl-2-antagonist-killer 1 and Bcl-2 associated X protein,

respectively). Bak/Bax are direct effectors of MOMP-induction [22] (Figure 1.4 A).

However, the activation models differ in the proposed mechanism of protein-protein

interaction that drives the process. In one of the models a direct interaction among the

BH3-only members and Bak/Bax that is inhibited by the antiapoptotic members of the

family is proposed [23-25]. However, the second model suggests that the antiapoptotic

members of the family inhibit Bak/Bax and is the BH3-only proteins-dependent release

of such inhibition which activates MOMP-induction process [26-28] (Figure 1.4 B).

Bcl-2

Bax/Bak

BH3BH3

Bax/Bak

Bcl-2

A B

Bcl-2

Bax/Bak

BH3BH3

Bax/Bak

Bcl-2

BH3

Bax/Bak

Bcl-2

A B

Figure 1.4. Models for the functional interactions between the three subclasses of Bcl-2 family proteins. (A) Bcl-2 inhibitory effect on BH3-only proteins (BH3 in the figure) impedes Bax/Bak activation. (B) BH3 inhibits Bcl-2 in order to stop the blockage exerted by Bcl-2 over Bax/Bak.

Nevertheless, cells lacking Bak/Bax are unable to undergo apoptosis [29]. Bak and Bax

have a different localization in the cell as Bax is considered as a cytosolic protein while

Bak is attached to the mitochondrial membrane [30]. However, it has been reported that

apoptosis-activation induces a conformational change in Bax protein and its subsequent

translocation to the mitochondrial membrane, where it oligomerizes like Bak [31]. The

mechanism of Bak/Bax-mediated release of mitochondrial intermembrane space

proteins is also controversial and three model mechanisms have been proposed. In the

first model it was suggested that the oligomerization of Bax in the mitochondrial

membrane would lead to the formation of a pore able to cause MOMP. This model is

based on the structural similarity among Bax and certain pore-forming bacterial toxins

[31]. The second model proposed relies on the ability of Bcl-2 family proteins to

modulate the mitochondrial permeability transition pore (MPTP) [32]. This pore is

formed by the voltage-dependent anion channel (VDAC) and the adenine nucleotide

transporter (ANT) and it is implicated in the regulation of pH, Ca+2 homeostasis,

mitochondrial volume and it behaves as an anion channel. It has been postulated that

Page 41: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

7

Bax could interact with ANT keeping the pore open which would cause mitochondrial

membrane shrinkage due to a massive entrance of water to the mitochondria [33].

Finally, MOMP induction would be also explained by the ability of Bax to destabilize

and permeabilize the mitochondrial phospholipidic membrane, as it has been shown in

different assays [34, 35].

Nevertheless, what it is important is the post MOMP events. A series of proteins are

released from the mitochondrial intermembrane space to the cytosol such as Omi/Htra2,

apoptosis inductor factor (AIF), supramolecular adhesion complex (Smac)/Direct

inhibitor of apoptosis-binding protein with low pI (DIABLO) and cytochrome c (cyt c).

The mechanism of cyt c release is not fully understood, but it happens in the early

stages of apoptosis and it happens in a quick and unique step [36, 37]. Once in the

cytosol this protein binds to the cytosolic protein Apaf-1 to constitute the protein

complex called apoptosome. Once assembled, this complex will recruit and activate

procaspase 9 [38-41]. The caspase 9 active form will process procaspase 3 that, in the

end, will initiate the process of cell dismantling. Then the apoptosome complex plays a

crucial role connecting MOMP processes and caspase activation that will

sophisticatedly tear down the cell. The discovery of the implication of cyt c, a heme

protein implicated in the mitochondrial respiratory chain, in apoptosis increased the

cellular importance of mitochondria not only as the energy generator organelle but also

as a crucial organelle in the equilibrium life/death of the cell.

However, the role of the Bcl-2 family members in apoptosis does not seem to finish

here. Some amplification loops of the apoptotic signal have been described and one of

them involves the proapoptotic BH-multidomain protein Bid (BH3 interacting domain

death agonist) [42]. This protein is the direct activator of Bax/Bak after an activation

process in which the protein is cleaved into its active form. Different apoptotic stimuli

can induce the processing of the protein, but also after MOMP induction Bid can be

processed by caspase 3. As a consequence, there is an increase in Bax/Bak activation

and an increase in MOMP induction.

Page 42: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

8

1.3 The apoptosome: components and cellular regulation

The apoptosome complex was first described by Xiaodong Wang and coworkers using

a cell-free system based on cytosolic extracts from HeLa cells [39, 40]. Having first

identified a role for mitochondrial cyt c in activating caspases, Wang and colleagues

then purified the factors that assisted cyt c in its deadly mission. Their search led them

to Apaf-1, the first identified mammalian homolog of CED-4, a protein known to

participate in programmed cell death in C. elegans.

Apaf-1 (130 kDa) contains three functional domains: an N-terminal CARD, a central

nucleotide-binding oligomerization domain (NOD) similar to that found in the C.

elegans protein CED-4, and twelve to thirteen WD40 repeats at the carboxy terminal

half that are responsible for both, binding to cyt c and regulating Apaf-1 function [43,

44]. Apaf-1 is cytoplasmic by nature and it is found in most tissues with highest

expression in adult spleen and peripheral blood leukocytes, fetal brain, kidney, and

lung. Apaf-1 is alternatively spliced up to five forms that vary in length but only two of

them are active: Apaf-1-XL (Apaf-1) and Apaf-1-LC (Figure 1.5). These two isoforms

differ in an 11 amino acids sequence between the CARD and NOD domain contained

by the Apaf-1-XL

NODCARD

WD4011ACN NODCARD

WD4011ANODCARD

WD4011ACN

Figure 1.5. Apaf-1-XL structure.

The exact composition, stechiometry and structure of the apoptosome remain unknown.

However, electron cryomicroscopy data suggest that the apoptosome complex is a

wheel-like structure comprising a central hub composed of seven Apaf-1 CARD

domains, connected to seven radial spokes that end with a Y-shaped tail formed by a

bundle of WD-40 repeats (Figure 1.6) [41, 45]. This structure allowed determining one

necessary step for the apoptosome formation that is the activation of Apaf-1 through

dATP/ATP (deoxyadenosine and adenosine triphosphate, respectively) binding. Apaf-1

is present in the cytosol in an inactive or closed conformation in which the WD40

blocks the CARD domain as a negative auto regulation mechanism. Upon MOMP, cyt

Page 43: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

9

c binds to Apaf-1 and induces a conformational change that makes the N-terminal

CARD domain accessible to interact with procaspase 9 CARD domain [41, 45-47]. The

disposition of the procaspase 9 in the apoptosome allows its dimerization and the

subsequent cleavage of the subunit linker. However, the molecular mechanism of

apoptosome-mediated caspase 9 activation is controversial. The two currently accepted

models are the induced proximity model [13, 14] and the allosteric model [48, 49].

Also, how does active caspase 9 activate caspase 3/7? Either Apaf-1 can release the

activated caspase 9 from the complex and caspase 3/7 is activated in the cytosol, or it

could bring procaspase 3/7 into the complex where it gets activated by bound caspase 9

and then is released into the cytosol. Recent results suggest the later as the most

possible option [50, 51] although it was also postulated that caspase 3 cleavage of

caspase 9 is required for full activation of the apoptosome [52, 53].

Cyt c

CARD

WD40

NOD

A B

Cyt c

CARD

WD40

NOD

Cyt c

CARD

WD40

NOD

A B

Figure 1.6. (A) the 12.8 Å cryo-EM structure of the apoptosome. (B) Localization of the different Apaf-1 domains inside the apoptosome (modified from [54]).

The key Apaf-1 conformational change induced by cyt c is only possible in the presence

of dATP/ATP bound to the Apaf-1 NOD domain. Once cyt c is bound, Apaf-1 is able

to oligomerize and apoptosome complexes ranging from 700 to 1400 kDa have been

isolated [55]. These complexes differ in their ability to recruit procaspase 9, being the

complex of 700 kDa the most active to develop this task, while the 1400 kDa seems to

be composed by two 700 kDa brought face to face bound through procaspase 9

dependent interactions.

Page 44: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

10

The importance of the apoptosome has been demonstrated in the experiments developed

employing Apaf-1-deficient mice. Apaf-1 turned out to be crucial in the development

of the central nervous system and these mice present embryonic lethality with severe

craniofacial malformations, brain overgrowth, and other phenotypic features of severe

apoptosis impairment [56, 57]. In fact, Apaf-1 and procaspase 9 are essential as tumor

suppressor genes and for the induction of apoptosis dependent on the tumor suppressor

protein p53 [58]. For these reason, there are several mechanisms of apoptosome control

in the cell in order to rule the apoptosome activity through direct interaction with their

individual components. In case of procaspase 9, the most important form of regulation

relies on the family of the inhibitor of apoptosis proteins (IAPs): XIAP, cIAP1 and

cIAP2, NAIP, survivin, ILP2, BRUCE and LIVIN. This is a group of anti-apoptotic

proteins that were first described as products of baculovirus genes which allow virus

propagation by inhibiting the apoptotic defense mechanism of the host insect cell [59-

61]. All IAP proteins have one or three tandem baculovirus IAP repeat (BIR) domains

of 70–80 amino acids. BIR domains are essential for the anti-apoptotic activity of IAPs

[62]. From this family of proteins XIAP (X-linked inhibitor of apoptosis protein),

cIAP1 and cIAP2 (cellular IAPs 1 and 2) are able to bind to caspase 9 and inhibit their

cleavage and subsequent activation. The presence of IAPs proteins is counteracted by

the release of the mitochondrial protein Smac/DIABLO to the cytosol after MOMP.

Smac binds to XIAP more efficiently than procaspase 9 and inhibits its activity [63-65].

Another way of regulation of procaspase 9 is its phosphorilation through different

proteins such as ERK (extra-cellular signal regulated kinase), PKB (protein kinase B) ,

PKCzeta (protein kinase C zeta) [66-68] or preventing its recruitment by Apaf-1 which

is the case of PKA (protein kinase A) and HBXIP (hepatitis B X-interacting protein)

[52, 69].

The apoptosome is targeted by a large number of proteins that upon interaction will

influence in its regulation. In particular, a series of proteins have been described to bind

to Apaf-1. From these proteins one can identify well defined apoptosis-related proteins,

that will act as an apoptosis self-regulatory system and non-classical apoptosis proteins

that will probably account for relationships between apoptosis and other cell signaling

pathways. It has been reported that the heat-shock proteins family (HSP), whose

expression is induced in response to cellular stress, modulates the activity of the

apoptosome. Hsp27 is able to bind to cyt c preventing its interaction with Apaf-1 [70,

Page 45: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

11

71]. Besides, the overexpression of Hsp70 protected cells from certain death stimulus

through direct binding to Apaf-1 and inhibition of the formation of the apoptosome [72-

75]. By contrast, Hsp70, PHAPI (Potent heat-stable protein phosphatase 2A inhibitor

I1PP2A) (see below) and cellular apoptosis susceptibility protein (CAS) were found to

stimulate apoptosome formation by facilitating Apaf-1 conformational changes related

to nucleotide exchange [76]. Another HSP protein, Hsp90β was shown to have affinity

to bind to Apaf-1 WD40 domain and inhibit cyt c-mediated oligomerization of Apaf-1

[77, 78]. How can this dual role of HSP proteins be explained? Perhaps the different

‘sensing’ conditions of the cell and the relative intracellular protein concentration will

have the answer. This and some other controversies related to the cellular role of Apaf-

1 and Apaf-1-binding proteins present interesting questions to be solved.

Probably influenced by the well documented pathway of cell death in C. elegans, it was

originally proposed that Bcl-XL bound directly to Apaf-1 and inhibited its function [43,

79, 80] (Figure 1.7). However, other studies have suggested that Apaf-1 does not bind

to prosurvival members of Bcl-2 family of proteins [81, 82]. Another Bcl-2 protein,

Diva/Boo (death inducer binding to vBcl-2 and Apaf-1/Bcl-2 homologue of ovary), was

reported as Apaf-1 interacting protein [83-85] and Aven (caspase activator inhibitor)

was identified as a new Bcl-XL interacting protein and was also postulated to bind to

and prevent Apaf-1 oligomerization [86]. Also, apo-cytochrome c is able to bind to

Apaf-1 and compete with the holoform, but it is unable to form an active apoptosome

[87].

In addition, several cell cycle-related proteins have been reported as Apaf-1 interacting

proteins. Nucling, has an increased expression shortly after apoptosis activation and

influences both, the synthesis of apoptosome-related proteins and a putative

translocation of the Apaf-1/procaspase 9 complex to the nucleus [88]. Also the histone

H1.2 has been found to interact with Apaf-1 [89]. PARCS (pro-apoptotic protein

required for cell survival) was found to bind to a GST-Apaf-1 fusion protein containing

the CARD and NOD domains [90]. PARCS induces cell cycle arrest in G1 phase [90-

92] and has been implicated in the role of Apaf-1 in cell cycle [93, 94].

Apoptosis has been connected to both acute and chronic phases of ischemia-related

pathologies as heart failure, stroke and those derived from organ transplantation [95,

Page 46: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

12

96]. Hypoxia-inducible factor (HIF) is the principal transcription factor involved in the

regulation of transcriptional responses to hypoxia [97] and some HIF-regulated proteins

showed putative Apaf-1 binding properties [98, 99]. Moreover, Apaf-1 has also been

described as target for both protein kinases and phosphatases [100-104] and the

phosphorylation state of Apaf-1 could have relevance on apoptosome activity

regulation. The non-essential sulfur-containing amino acid taurine seems to decrease

the amount of caspase 9 associated to Apaf-1, which would explain the cardio protective

role of this molecule. However, to date the interaction between Apaf-1 or caspase 9 and

taurine has not been demonstrated. Nevertheless, the increased PKB activity observed

after taurine treatment has been suggested as the negative regulator of the Apaf-

1/caspase 9 interaction [105-108].

In the search of Apaf-1 protein interactors, new proteins have been described. This is

the case of NAC [109] (nucleotide binding domain and CARD) that stimulates

procaspase 9 recruitment by Apaf-1 and HCA66 [110] and its spliced variant HCA66S

that bind to the NOD domain of Apaf-1 and can activate or inhibit its activity,

respectively.

Finally, additional regulation of the apoptosome has been found by by intracellular level

of ATP [111] and ions such as nitric oxide donors and K+ [112, 113]. In fact, it was

early demonstrated that in the in vitro reconstituted apoptosome, Apaf-1 binds and

hydrolyzes ATP or dATP to ADP or dADP, respectively [38]. However, the high

millimolar concentrations of nucleotides in the cell opened discussions on how such

physiological nucleotide levels affect the apoptosome. A dose-dependent inhibitory

effect of dATP on the cyt c-initiated caspase activation was observed [111]. It was

shown that the nucleotides directly interact with some lysine residues of cyt c

preventing its association with Apaf-1 and therefore the apoptosome formation. These

studies confirmed that the intracellular nucleotide concentration represents an additional

critical prosurvival factor by functioning as a natural inhibitor of apoptosome formation

probably to provide a physiological barrier to unwanted apoptosis.

Page 47: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

13

H1.2NuclingPPI

124898

NOD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspase 9NAC

Cytochrome c

H1.2NuclingPPI

H1.2Nucling

H1.2NuclingPPIPPI

124898

NOD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspase 9NAC

Cytochrome c

124898

NOD WD40CARDCARD4121 124898

NOD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspase 9NAC

Cytochrome c

Figure 1.7. Apaf-1 interacting proteins. Inhibitory proteins are shown in black and Apaf-1 activator proteins in white. Proteins with an unknown function are represented as grey boxes. The different proteins are located according to the Apaf-1 domain of interaction.

1.4 Apoptosome implication in disease

Due to the importance of apoptosis in development, normal cell turnover, and immune

system function, any defect in the apoptotic pathways induces the appearance of a series

of pathologies. Defects in appropriate suppression of apoptosis are observed in cancer

pathogenesis and autoimmune disorders, while anomalous induced apoptotic signaling

that induces unwanted cell death plays an important role in pathological conditions as

tissue infarctation, ischemia-reperfusion damage, degenerative diseases and AIDS [114-

121]. A deeper knowledge of the apoptotic machinery has determined the proteins

implicated in the development of the different diseases associated to apoptosis and the

apoptosome has been one of protein complexes implicated in development of disease

[122-125].

Specifically, it is broadly accepted the implication of Apaf-1 in the development of

certain types of cancer. The inactivation of apaf-1 gene through methylation-induced

transcriptional silencing is directly connected to the appearance of metastatic melanoma

[126]. Downregulation of Apaf-1 expression is associated with the appearance of

Page 48: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

14

bladder cancer [127] or LOH-induced Apaf-1 inactivation causes gliobastomas [128].

Moreover, it has been shown that the apoptotic response driven by chemotherapy can be

significantly improved by the restoration of Apaf-1 expression in cancer cells or by

reintroduction of a splicing variant that enables a correct apoptosome formation [126-

132]. Apaf-1 is also inactive in cervical carcinomas, colorectal cancer and in B-cell

chronic lymphocytic leukemia (B-CLL) [133-136]. In fibrosarcoma cells, both Apaf-1

and caspase 9 are downregulated and in ovarian cancer caspase 9 is unable to bound to

the oligomerized Apaf-1 [129, 130].

However, defects on the components of the apoptosome might not be the direct cause of

a cancer, but on the molecules that modulate this apoptosome. As an example, it has

been related to the appearance of non-small cell lung carcinoma (NSCLC); in this type

of cancer the overexpression of XIAP inhibits apoptosome activation [137]. Or in case

of breast cancer, a resistance to cyt c release induced by chemotherapeutic agents has

been reported [138]. ProT overexpression inhibits apoptosome formation in lung,

breast, hepatocellular and colon cancers [139, 140]. Finally, the phosphorilation of

Apaf-1 by Bcr-Abl kinase (Breakpoint cluster region-Abl tyrosine kinase) causes

chronic myelogenous leukemia (CML) as it inhibits Apaf-1 and procaspase 9 interaction

[101].

In the other side, massive apoptosome activation is the cause of the appearance of

certain neurodegenerative disorders [124]. Studies using D. melanogaster have

demonstrated that the lack of Apaf-1 dramatically decreases the formation of protein

aggregates due to defective Huntington protein [141]. The lack of Apaf-1 gives

resistance to apoptosis in neural precursor cells or in amyotrophic lateral sclerosis

(ALS) [142, 143]. An increase in cyt c levels have been connected with cardiomyocyte

age-degeneration [144, 145]. Finally, massive tubular cell apoptosis is observed after

ischemia renal failure. However, this apoptotic cell death was significative reduced

after the inhibition of apoptosome formation by depleting cells from ATP [146].

1.5 Chemical modulation of the apoptosome

As stated before, apoptosome formation, which depends on oligomerization of Apaf-1 is

a crucial step in the apoptosis signaling and alterations in the function of proteins that

Page 49: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

15

form the apoptosome could be related to diseases [126-132, 137]. For this reason,

chemical modulation of the apoptosome components such as Apaf-1 has proved to be an

interesting approach for treating these diseases and the development of new therapeutic

strategies. For this purpose, the development of in vitro assays for the study of the

apoptosome activity paved the way for the advance in the search of Apaf-1 modulators

[52, 147]. However, it should be also mentioned the reverse approach: chemicals that

were used in the preclinical setting as ‘orphan drugs’ and later identified as modulators

of the apoptosome. The most representative example can be found in the use of

different deoxynucleoside analogs such as cladribine (2-chlorodeoxyadenosine or

2CdA) or fludarabine (9-b-d-arabinofuranosyl-2-fluoradenine or F-Ara-A) in the

treatment of indolent lymphoid malignancies [148, 149]. The proposed mechanism of

action involves the direct binding of the metabolites of these purine nucleoside analogs

(such as dATP, 2CdATP and F-araATP) to Apaf-1 [150] (Figure 1.7).

Apaf-1 has to be considered as a new target for the development of chemical

modulators. However, there are no drug-like precedents, no good initial molecules.

New methods to discovery such modulators were required. To design such methods the

molecular mechanism of apoptosome formation should be taken into account. Then, the

pharmacological target Apaf-1 can be dually seen as a ‘classical’ ATP hydrolase or

alternatively as a protein-protein interaction-based target. To the best of our knowledge

no successful attempts to inhibit the hydrolase activity with small molecules have been

reported. The studies so far described aiming to discovery chemical modulators of

Apaf-1 have addressed the protein-protein interaction-based formation of the

apoptosome. Then two different assays can be envisioned. Direct assays of in vitro

apoptosome reconstitution with recombinant proteins or alternatively it is possible, from

cell extracts, to stimulate apoptosome formation and evaluate the modulating activity of

chemicals. As mention before, Apaf-1 is a new target then the discovery process has to

be initiated with the screening of large collections of compound libraries and a suitable

high throughput screening (HTS) format. Large scale production and purification of the

essential components required for apoptosome reconstitution-based assays (Apaf-1,

procaspase 9 and procaspase 3) is laborious and expensive. Thus, most of the initial

assays searching for apoptosome modulators were developed using cell extracts.

However, cell extracts-based HTS is indirect so it is possible to engage many different

points in the pathway. Thus, follow-up assays, also referred to as ‘secondary screens’

Page 50: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

16

or ‘counter screens’, should be planned that will validate compounds targeting the

intended biological interaction(s) and assist in the elimination of compounds that

generate a positive signal via other mechanisms.

Two simultaneous studies both in time and objectives appeared in 2003 [139, 151] with

the interesting goal of identifying compounds that could induce a chemical activation of

the apoptosis machinery. As mentioned above, cancer cells have developed mechanism

to inhibit cell apoptosis and drug discovery efforts early targeted inhibition of events

upstream of cyt c release (inhibitors of the antiapoptotic members of the Bcl-2 family

[63, 152, 153]. However, studies on small molecule as direct activators of apoptosis are

less abundant. In their study, Nguyen and Wells [151] used a in vitro mimic of the in

vivo activation of the apoptosome obtained when cyt c and dATP were added into a

HeLa cell cytoplasmic extract [154]. The screening of a library of 3,500 compounds

allowed the identification of hit compounds that promoted caspase 3 activity. The most

active named compound 1 was chemically optimized and some derivatives (compounds

2 and 4) were active at low micro molar concentration on cell extracts inducing

apoptosis by enhancing the oligomerization of Apaf-1. Importantly, when tested in a

large number of normal and tumor cell lines, compound 2 induced apoptosis in tumor

cells expressing components of the caspase 9 apoptosis pathway (i.e. Apaf-1 and

caspase 3). The detailed molecular mechanism of action of compound 2 was not totally

described however, it was reported that the compound required for bioactivity a

decreased concentration of cyt c but it was inactive in its absence. Thus, these

compounds seemed to enhance the ability of cyt c to activate the apoptosome.

It was possible that the compounds identified in the Nguyen and Wells’ study share

some characteristics with those compounds identified by Xiadong Wang and co-

workers which were simultaneously reported [139]. Wang’s group screened a library of

184000 compounds for caspase 3 activators with HeLa cell extracts (S-100 fraction) in

the presence of 1 mM exogenous dATP and discovered a small molecule α-

(trichloromethyl)-4-pyridineethanol (PETCM) which does not act directly on Apaf-1

but actively promotes apoptosome formation (Figure 1.7). The molecular mechanism of

PETCM action is based on suppression of the negative regulation of Prothymosin-α

(ProT) over PHAPI that promoted caspase 9 activation after apoptosome formation.

Page 51: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

17

Further studies on this system, suggested that PHAPI, in concert with CAS and Hsp70,

control the rate of the nucleotide exchange on Apaf-1 [76].

The discovery of drug candidates directed to inhibit unwanted apoptosis has also

targeted the apoptosome. Jäättelä and coworkers described the first chemical inhibitor

of Apaf-1. They also use cytosolic extracts from HeLa cervix carcinoma, carefully

obtained in order to avoid mitochondrial damage, where the apoptosome was activated

by further addition of dATP and cyt c and a library of 5,000 non peptide small

molecules was screened to identify apoptosis inhibitors [155]. A diarylurea derivative

compound NS3694 showed the highest inhibitory activity (Figure 1.8). NS3694 alters

the cyt c- and dATP-dependent association between Apaf-1 and procaspase 9 to form

the apoptosome complex. Instead, Apaf-1 was found as a component of an inactive 1.4

MDa complex. However, neither the molecular mechanism of action nor follow up

optimization studies on these interesting compound have been reported.

N

OO

Cl

Compound 2

HN

HN

O

Cl

COOH

F3C

N

CCl3

OH

O

HOHO

N

N

NN

NH2

Cl

O

HOO

N

N

NN

NH2

FP

O

HO

OH

PETCM

Cladribine Fludarabine

APAF-1 ACTIVATORS

NS3694

APAF-1 INHIBITOR

Cl

Figure 1.8. Chemical structure of the different Apaf-1 modulators described till present.

Page 52: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

18

1.6 Identification of an Apaf-1 inhibitor, peptoid 1, through the screening of an N-

alkylglycine chemical library

As stated before, in the absence of detailed structural information, the conventional

methods used to identify modulators of apoptosome have been based on indirect

measurements of the cyt c- and dATP-induced activation of caspase 3-like activity on

defined cytosolic extracts. However, it would be of interest to identify apoptosome

inhibitors using an in vitro reconstituted apoptosome. This was addressed in previous

studies in Pérez-Payá’s laboratory. A medium-throughput assay with purified

recombinant Apaf-1, cyt c, dATP and [35S]-Met procaspase 9 was developed and as a

source of chemical diversity a positional scanning diversity-oriented library of trimeric

alkylglycines (peptoids) was explored [156-158]. The library consisted in 52 controlled

mixtures and a total of 5120 compounds. The mixtures making up each sub library

were screened for their ability to prevent the apoptosome-dependent activation of

procaspase 9 and the compound named peptoid 1 was discovered as inhibitor of the

activity of the apoptosome [158]. Further improvements suggested the incorporation of

two additional N-alkyl amine residues at the N-terminus end to improve water solubility

of peptoid 1, rendering peptoids 1a and 1b (Figure 1.9). Fluorescence polarization

spectroscopy assays showed that a fluorescent derivative of this peptoid binds to rApaf-

1 but no to cyt c [158].

Despite the in vitro activity of peptoid 1, this hit compound exhibited low membrane

permeability and a modest efficiency in cell assays. Then, a chemical biology-based

approach was designed in order to improve the biological activity of peptoid 1 and to

analyze the mechanism of action as well the cellular implications of selective Apaf-1

inhibition. Furthermore, a series of cell models of apoptosis were studied to investigate

the potential as drug candidates of the Apaf-1 inhibitors.

Page 53: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

19

Cl

Cl

HN N

ON

ON

O

Cl

Cl

O

N

O NH2

N

Cl

Cl

N N

ON

ONH2

O

Cl

ClO

N O

NH

N

Cl

Cl

HN N

ON

ONH2

O

Cl

Peptoid 1bPeptoid 1a

Peptoid 1

Cl

Figure 1.9. Chemical structure of peptoid 1 and its derivatives: peptoid 1a and peptoid 1b.Figure 1.9 Chemical structure of peptoid 1 and its derivatives”

Page 54: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

20

Page 55: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

21

CHAPTER 2. OBJECTIVES

In my thesis I want to discuss on the discovery and development of a first-in-class series

of selective inhibitors of the apoptosome through inhibition of Apaf-1. The work here

presented follows previous discoveries in our laboratory on a program on chemical

inhibition of apoptosis. Peptoid 1, an N-alkylglycine trimer, was the hit compound

from the screening of a chemical library employing an in vitro apoptosome

reconstitution assay. However, the low membrane permeability and modest efficiency

arresting apoptosis in cells led to the design of three new drug delivery strategies by

means of adequate carriers or based on structural modifications that could diminish the

conformational mobility of peptoid 1.

The objectives were defined as:

1. To synthesize peptoid 1 derivatives by: a) conjugation of peptoid 1 to cell-

penetrating peptides; b) conjugation of peptoid 1 or derivatives to a water

soluble polymeric carrier such as poly-L-glutamic acid (PGA), obtaining PGA-

peptoid conjugates; c) by means of peptoid 1 backbone cyclization.

2. To carry out a systematic study in different in vitro and cellular models in order

to determine cellular internalization capabilities, toxicity profile and the ability

to inhibit apoptosis of the new peptoid 1 derivatives.

3. Compounds showing no cellular toxicity and significant biological activity

inhibiting apoptosis would be move forward towards structure-activity

relationship studies that will direct the design of improved series.

4. Characterization of the binding site of peptoid 1 derivatives on Apaf-1.

5. Detailed characterization of the molecular mechanism of action of Apaf-1

inhibitors and the in cell consequences of selective Apaf-1 inhibition including

the analysis of non-apoptotic roles for Apaf-1.

Page 56: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

22

6. To develop an in vivo rat model of kidney hot-ischemia and the subsequent

study of the therapeutic effect of the compounds synthesized in the amelioration

of kidney tissue damage caused by oxygen deprivation.

Page 57: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

23

CHAPTER 3. SYNTHESIS OF PEPTOID 1 AND

PEPTOID 1 DERIVATIVES

To accomplish the full therapeutic potential of an identified bioactive agent is required a

specific molecular delivery. It is crucial to localize therapeutics to the diseased tissue or

cell and once there, promote their efficient delivery to the required intracellular

compartment ensuring their availability for the appropriate time. The chemical features

needed for a high affinity binding of the lead molecule to the molecular target many

times differs from those that allow an efficient cellular trafficking; this was the case of

peptoid 1 inhibitor. This N-alkylglycine trimer showed a high effectiveness inhibiting

in vitro Apaf-1 dependent apoptosome formation, but resulted toxic when tested in

cellular models. For this reason, structural modifications of this lead compound were

required to overcome its poor solubility and low membrane permeability and three new

series of peptoid 1 analogues were designed covering different approaches that could

facilitate cellular drug internalization: (a) hybrid cell-penetrating peptide-peptoid 1, (b)

conjugation of peptoid 1 to a polymeric carrier and (c) synthesis of a conformationally

constrained peptoid 1 mimetic. These three system presented different cellular

internalization pathways (Figures 3.1 and 3.2).

Cl

Cl

HN

N

ON

ONH2

O

Cl

Cl

N

N

O

O O

NH

Cl

Cl Cl

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

O

n

+Na-O

HN

O

m

O

HN O

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

RQIKIWFQNRRMKWKKGG

Peptoid 1

Hybrid cell-penetrating peptide-peptoid 1

Conformationally constrained peptoid 1Polymer-peptoid 1 conjugate

PEN-1 QM31QM56 Figure 3.1. Scheme of the three different peptoid 1 derivatives synthesized and structure of peptoid 1 derivatives leading compounds.

Page 58: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

24

ReceptorReceptor

pH 6pH 6.5.5

Endosomes

Enzymatic or pH-dependent liberation of drug which diffuses out of lysosome to access the therapeutic targetpH 5pH 5

Lysosomes

pH 7.4pH 7.4

Passive transportationLow Mw molecule(QM31)

Internalisation by endocytosis(QM56)

Trafficking via the endosomalcompartments to lysosomes

Membrane traslocationor/and endocytosis

(CPP-peptoid)

N

NN

NH2

O

O O

O

Cl

ClCl

Cl

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

RQIKIWFQNRRMKWKKGG

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

O

80

+Na-O

HN

O

20

O

HN O

ReceptorReceptor

pH 6pH 6.5.5

Endosomes

Enzymatic or pH-dependent liberation of drug which diffuses out of lysosome to access the therapeutic targetpH 5pH 5

Lysosomes

pH 7.4pH 7.4

Passive transportationLow Mw molecule(QM31)

Internalisation by endocytosis(QM56)

Trafficking via the endosomalcompartments to lysosomes

Membrane traslocationor/and endocytosis

(CPP-peptoid)

N

NN

NH2

O

O O

O

Cl

ClCl

Cl

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

RQIKIWFQNRRMKWKKGG

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

O

80

+Na-O

HN

O

20

O

HN O

Figure 3.2. Cellular internalization pathways of the different peptoid 1 derivatives synthesized.

a) Cell penetrating peptides (CPPs)

Cell penetrating peptides (CPPs) were first described fifteen years ago after a new class

of proteins able to penetrate cell membrane were discovered [159-161]. Mutation

and/or deletion analysis of these proteins or some of their domains have revealed that, in

fact, small peptide sequences of no more than 30 amino acids within these proteins are

often responsible for cellular uptake [161]. The most outstanding characteristic of these

CPPs is their ability to internalize a wide variety of cargos always covalently attached to

their sequence (low molecular weight (Mw) drugs, nucleic acids, plasmids, whole

proteins or even nanoparticles). So, CPPs have become an excellent strategy for the

improvement of pharmacological properties of different drug candidates whose size or

chemical nature limits its proper cellular internalization [162-165].

These CPPs can be classified as either cationic or amphipathic in nature, being arginine

and lysine residues the most abundant in their sequences [162]. Some of the most used

and best characterized CPPs are polybasic peptides derived from the transduction

Page 59: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

25

domains of certain proteins, such as Tat protein TAT-(47-57) (YGRKKRRQRRR)

encoded by HIV-1, and the third helix of the Drosophila Antennapedia protein,

penetratin (PEN) (43-58) (RQIKIWFQNRRMKWKK) [164, 166, 167]. Both sequences

have proven to be efficient methods for intracellular delivery, among others, of

peptides, proteins, antisense oligonucleotides and adenoviruses [165-169].

Nevertheless, differences between TAT and PEN membrane transport capabilities have

also been observed, mainly due to the influence of the cargo. Fusion to PEN appears to

be favored when using proteins with less than 100 residues, whereas TAT has been

reported to be able to transduce larger molecules, including β-glycosidase (>1000

amino acids) [170]. The carrier efficiency and the influence of small molecule cargo to

CPPs have not been deeply analyzed [167]. The mechanism employed by CPPs to cross

the plasma membrane in cells is an active area of investigation. For many years,

microscopy and flow-cytometry studies developed employing fixed cells, postulated, as

a possible way of internalization of CPPs, a receptor-independent translocation through

the plasma membrane [169, 171-173]. However, recent data shown by Richard et al.

[174] point out the implication of endocytosis in the internalization of these peptides.

According to Richard’s study, the inaccuracies of the techniques employed for

measuring CPPs internalization will explain the assumed mechanism based on

translocation. CPPs bind so heavily to the plasma membrane that even mild cell

fixation leads to the artifactual redistribution of CPP into the nucleus. Furthermore,

flow-cytometry (FC) analysis without a trypsin-digestion process will not provide the

real amount of peptides that are really entering the cell. The amount and the mechanism

of internalization will vary depending on both, the charge of the peptide and the

characteristics of the cargo molecule. For these reasons, protocols currently accepted

are based on fluorescence microscopy studies of live cells or FC analysis on trypsin-

treated cells. In addition, spectroscopy-based techniques as circular dichroism

spectroscopy (CD) are also valuable tools to study the influenza of cargo molecules in

the structure of CPPs.

With the aim to increase the membrane permeability properties of peptoid 1, two hybrid

peptide/peptoid conjugates where design. Peptoid 1 was fused to the well characterized

sequences of penetratin (penetratin-peptoid 1, PEN-1) and Tat protein (TAT-peptoid 1,

TAT-1) by means of a Gly-Gly linker.

Page 60: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

26

b) Conjugation of peptoid 1 to a polymeric carrier: Polymer-peptoid 1 conjugate

A polymer can be defined as a large molecule (macromolecule) composed of repeating

structural units connected by covalent chemical bonds. Looking at applications on the

biomedical field, synthetic and natural polymers have a long established role as

biomedical materials including their use to fabricate prostheses and soft contact lenses

[175]. They are also widely used as the pharmaceutical excipients in drug formulations

[175] and more recently, the use of polymeric drug delivery systems in oncology has

grown exponentially with the advent of biodegradable polymeric implants. As

examples, we can mention here the subcutaneous depot to slowly release the human

luteinizing hormone-releasing hormone (LHRH) analogues for treatment of prostate and

other hormone-dependent cancers (e.g. Zoladex®; Leupron Depot®) [176], or post-

surgery implantations for local delivery of chemotherapeutics for the treatment of brain

cancers (e.g. Gliadel®) [177].

The so-called “Polymer Therapeutics” constitutes a versatile technological platform for

drug delivery with completely different properties if compared with polymeric implants

or depots. Polymer Therapeutics are considered the first nano-sized (5-100 nm)

polymer-based pharmaceuticals. In all cases, the water-soluble polymer can develop a

function as a bioactive agent or can act as an inert part or carrier of the bioactive agent.

The main objective is to improve drug, protein or gene delivery into de organism taking

profit of advanced polymer chemistry. Therefore, the definition involves rationally

designed macromolecular drugs and encompasses five types of systems: (i) polymeric

drugs (polymeric molecules that are biologically active in their own right); (ii) polymer-

drug conjugates; (iii) polymer-protein conjugates; (iv) polymeric micelles to which drug

is covalently bound, and (v) multi-component polyplexes being developed as non-viral

vectors for gene delivery. From the industrial standpoint, these nanosized medicines are

more like new chemical entities than conventional 'drug delivery systems or

formulations' which simply entrap, solubilize or control drug release without resorting

to chemical conjugation (Figure 3.3) [175].

Page 61: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

27

Antibodies and its conjugatesLiposomes

80-100 nm Nanoparticles

Viral vectors

Polyplexes Polymeric Drugs

Polymer-drug conjugates

5-15 nm

Polymeric Micelles

Polymer-protein conjugates

20 nm

Polymer Therapeutics

Antibodies and its conjugatesLiposomes

80-100 nm Nanoparticles

Viral vectors

Polyplexes Polymeric Drugs

Polymer-drug conjugates

5-15 nm

Polymeric Micelles

Polymer-protein conjugates

20 nm

Polymer Therapeutics

Figure 3.3. Examples of nanopharmaceutics.

Polymer-drug and polymer-protein conjugates constitute two of the most developed

Polymer Therapeutics families [178]. In general, these nanoconjugates are mainly

constituted by three parts: (a) a hydrophilic polymer backbone that acts as a carrier; (b)

a linker or spacer to attach the polymer backbone to the protein or drug of interest; and

(c) the bioactive agent (drug, peptide or protein) to be delivered. Despite the

similarities in their structure, the design of polymer-drug and polymer-protein

conjugates is performed using different biological rationales. Polymer-proteins

conjugates have a reduced immunogenicity, an increased plasma half-life and stability

due to both, a decreased elimination by the reticulum endothelial system (RES) and a

decreased exposition to blood proteases [179]. By contrast, in the case of polymer-drug

conjugates the main objective pursued apart from a solubility enhancement, as most

active low Mw drugs are hydrophobic, it is a change in drug pharmacokinetics not only

at systemic but also at cellular level. In fact, it is now well established that polymer-

drug conjugation promotes tumor targeting by the enhanced permeability and retention

effect (EPR) [177, 180, 181] and, at the cellular level, by an endocytic capture that

allows lysosomotropic drug delivery [180]. The EPR effect was firstly defined by

Maeda and col. [182]. This is a passive targeting phenomenon that arises due to two

main factors, the hyper permeability or ‘leakiness’ of angiogenic vasculature in

Page 62: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

28

inflammation or tumor sites and the lack of an effective lymphatic drainage. The

formert allows selective extravasation of the conjugate in the damaged tissue; the later

promotes conjugate retention. EPR-mediated tumor targeting is driven by the plasma

concentration of circulating polymer conjugate (Figure 3.4).

The seminal work of De Duve's on the realization that the endocytic pathway might be

useful for ‘lysosomotropic drug delivery’ [183] and of Ringsdorf's on the vision of an

idealized polymer chemistry for drug conjugation [184] gave birth to the concept of

targetable polymer-drug conjugates. Two key parameters have to be carefully

considered during the rational design of such polymer-drug conjugates: (i) the polymer

to be used as carrier and (ii) the bioresponsive polymer-drug linker(s). It has become

clear that the Mw and physico-chemical properties of the polymer is frequently the most

important driver governing biodistribution, elimination, and metabolism of the

conjugate as a whole, so choice of a suitable polymer is vital. In particular, the polymer

backbone employed can be biodegradable or biostable, but in the last case its Mw

should be lower than 40000 g·mol-1 in order to allow its excretion through the porous

glomerular kidney membrane [180]. In all cases, the water-soluble polymeric carrier

used must be non-toxic, non-immunogenic and suitable for repeated administration.

The biostable Poly(ethyleneglycol) (PEG), N-(2-hydroxypropylmethacrylamide)

(HPMA) copolymers, and the biodegradable poly-L-glutamic acid (PGA) have been the

most widely tested clinically (see reviews [180, 185] for further information). Adequate

drug carrying capacity in relation to the potency of the agent being carried is essential,

and ability to target by an active (receptor-ligand) or a passive (patho-physiological)

mechanism are also important design features. In the case of biodegradable polymers

the polymer-drug linker is always the most important factor. In case of the spacer, after

intravenous administration (i.v.) the ideal linker should be stable in blood stream but

able to release drug at an optimum rate upon arrival to the selected cellular target.

Page 63: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

29

Administration of the conjugate

Renal elimination of conjugated drug

Minimum extravasation into normal tissue

Tumour tissue

Immunostimulation

Extravasation of polymer conjugates into the tumour tissue through the EPR due to the disorganized, leaky tumourvessels

A

Administration of the conjugate

Renal elimination of conjugated drug

Minimum extravasation into normal tissue

Tumour tissue

Immunostimulation

Extravasation of polymer conjugates into the tumour tissue through the EPR due to the disorganized, leaky tumourvessels

Administration of the conjugate

Renal elimination of conjugated drug

Administration of the conjugate

Renal elimination of conjugated drug

Minimum extravasation into normal tissue

Tumour tissue

Immunostimulation

Extravasation of polymer conjugates into the tumour tissue through the EPR due to the disorganized, leaky tumourvessels

A

MDR1; MRP

Drug release trigerred by pH or lysosomalenzymes

Bypasses P-gp and MRP

Pinocytosis Receptor mediated pynocitosis

Endosome

Lysosome

Exocytosisand receptor recycling

Exocytosis of non-degradable polymer

Recycling

B

MDR1; MRP

Drug release trigerred by pH or lysosomalenzymes

Bypasses P-gp and MRP

Pinocytosis Receptor mediated pynocitosis

Endosome

Lysosome

Exocytosisand receptor recycling

Exocytosis of non-degradable polymer

RecyclingMDR1; MRP

Drug release trigerred by pH or lysosomalenzymes

Bypasses P-gp and MRP

Pinocytosis Receptor mediated pynocitosis

Endosome

Lysosome

Exocytosisand receptor recycling

Exocytosis of non-degradable polymer

Recycling

B

Figure 3.4. (A) Tumor targeting EPR effect; (B) Lysosomotrophyc intracellular drug delivery (modified from [175]).

Based on endocytic pathway characteristics, mainly, two types of linkers are used to

achieve an efficient lysosomotropic drug delivery. The first category encompasses acid

labile or pH-dependent linkers that are hydrolyzed in the acidic lysosomal environment

(pH 4.5-5.5 vs. physiological pH 7.4) (e. g. acetal, hidrazone,…) [186, 187]. The

second category includes the peptidyl linkers susceptible to be degraded by lysosomal

enzymes, such as the serine-thiol proteases cathepsins that recognize certain specific

peptidic sequences [175, 178, 187].

Page 64: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

30

In the 80s and early 90s a vast number of preclinical studies were carried out to

optimize the characteristics of the polymeric carriers, of the linker and also to prove the

safety of this novel constructs. These studies were primarily the result of collaborative

work between Ruth Duncan and Jindrich Kopecek and resulted in the clinical evaluation

of HPMA copolymer-doxorubicin (FCE28068, PK1) in 1994. This was the first

synthetic polymer-anticancer drug conjugate to be tested in humans; PK1 represented a

milestone in this field [178, 188]. Since then, there has been an exponential growth in

this area with more than fourteen polymer-drug conjugates already in the clinics (Table

3.1). A PGA-paclitaxel conjugate, Opaxio(R) (CT-2103, named previously as

XyotaxTM) from Cell Therapeutics Inc. [175, 189] is expected to reach the market in a

very near future.

Clinical proof of concept for polymer conjugates has been already achieved mainly as

efficient anticancer therapy, however, many challenges and opportunities still lay ahead

providing scope to develop this platform technology further. Delivery of new

anticancer agents focusing on novel molecular targets and their combination,

development of both new and exciting polymeric materials with defined architectures

and treatment of diseases other than cancer (e.g. rheumatoid arthritis (RA), diabetes or

ischemia) are the most exciting and promising areas [185, 187]. The later is one of the

most interesting advances in the field of polymer-drug conjugates and in particular the

design of macromolecular systems to promote tissue regeneration [190, 191].

Within this context, and in particular tissue regeneration and ischemic diseases our work

with Apaf-1 inhibitors could be enclosed. In fact, as we suggest the use of a PGA-based

conjugates for the delivery of a first-in-class family of apoptosis inhibitors. It was

hypothesized that the conjugation of peptoid 1 to a polymeric carrier could offer a more

specific intracellular trafficking that coupled to an efficient lysosomotropic drug release

on the cytosol would highly enhance the antiapoptotic activity of peptoid 1 as at the

same time would definitively solved peptoid 1 low-solubility problems. So, our PGA-

peptoid conjugates were obtained by attaching peptoid 1 to PGA polymer employing a

peptidic linker and obtaining by this way the first antiapoptotic nanomedicine [192].

Page 65: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

31

Table 3.1. Polymer-drug conjugates in clinics.

Polymer-drug conjugates Name Status

Indication

Polyglutamate (PGA)-paclitaxel

CT-2103 XyotaxTM Paclitaxel

Polyglumex (PPX)

Phase III

Various cancer, particularly non small cell lung

cancer and ovarian cancer

HPMA copolymer-doxorubicin

PK1; FCE28068 Phase II

Various, particularly lung and breast cancer

HPMA copolymer-doxorubicin-

galactosamine

PK2; FCE28069 Phase I/II Hepatocellular

carcinoma

Hyaluronic acid -doxorubicin ONCOFID-D Phase I/II Superficial bladder

cancer Oxidised dextran-

doxorubicin AD-70,

DOX-OXD Phase I

(discontinued) Various cancer

HPMA copolymer- Paclitaxel PNU166945 Phase I

(discontinued) Various cancer

HPMA copolymer- malonato-platinate AP5280 Phase I/II Various cancer

HPMA copolymer-DACH-platinate

AP5346, ProLindacTM Phase II Various cancer

PEG-camptothecin Pegamotecan, ProthecanTM

Phase II (discontinued) Various cancer

HPMA copolymer-camptothecin MAG-CPT Phase I

(discontinued) Various cancer

Polyglutamate-camptothecin CT-2106 Phase I/II Various cancer

Carboxymethyldextran-exatecan DE-310 Phase I Various cancer

β-Cyclodextrin-camptothecin IT-101 Phase I Various cancer

PHF-camptothecin XMT-1001 Phase I Various cancer

PEG-naloxol (oral administration) NKTR-118 Phase I

Opioid-induced bowel dysfunction

(OBD)

c) Conformationally constrained peptoid 1 QM31

Most small peptides or peptidomimetics are highly flexible, conformationally labile

molecules in aqueous and other environments. Its low size allows them to cross cellular

membrane through a passive non-energy consuming process regulated by concentration

gradients. As a result, internalization of a small molecule will depend on their intrinsic

Page 66: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

32

properties such as solubility, lipofilicity and its capacity to interact with the different

components of the cellular membrane [193, 194].

The introduction of the appropriate conformational constraints in a lineal molecule can

reduce the number of conformations in solution to only one due to the high activation

energy or free energy required to change that conformation. One effective way to

reduce the number of conformations has been the introduction of covalent bonds on the

side chain functional groups present on the amino acid residues in peptide or

peptidomimetic molecules [194, 195]. It is considered that, these changes on the

peptidomimetic architecture can be helpful in its internalization process as it will reduce

the number of possible interactions of the peptoid with different molecules present in

the plasma membrane diminishing, therefore, membrane disruption.

However, these are not the only advantages of this approach as the reduction in the

molecule flexibility can also help in the specificity of the interaction with its target.

Moreover, when there is no deep knowledge of the structure of the selected protein or

there is no 3D structure of its active site, the strategies followed in order to improve the

specificity of the molecules for their target are based on different substitutions and

deletion of several functional groups of the molecule. This approach could provide an

important amount of information, although it is difficult to determine with a flexible

peptidomimetic if the differences among biological activities can be due to changes in

the conformational properties of the analogs or to the intended changes in polarity or

bulkiness. Finally, an increase in compound stability on biological environments could

be also gained by constraining its chemical conformation; this will therefore prolong its

biological activity.

Peptoid 1 presents a highly flexible linear structure and as a consequence high number

of conformations can be achieved with a slight change in the environmental conditions.

This fact could explain the cellular toxicity observed when tested in cellular models

since its labile structure could interact with the different molecules that compose the

plasma membrane. For this reason, a cyclic analogue of peptoid 1 was designed in

order to obtain a more rigid structure able to reduce the possible unspecific interactions.

At the same time, a good strategy to improve peptoid 1 biological activity would be the

Page 67: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

33

implementation of several modifications on the different functional groups that

compose peptoid 1 structure.

3.1 Synthesis of peptoid 1

The lead compound, peptoid 1, required to synthesize the different antiapoptotic

derivatives was produced in the department of Chemical and Biomolecular

Nanotechnology, IQAC-CSIC in Barcelona supervised by Dr. Ángel Messeguer. A

scheme of this synthesis is shown in Figure 3.5.

NH2

1. BrCH2COOH, DIPCDI, DMF

NH2

HN

ONH

2. TEA, DMF,

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

NH2

Cl

1. TFA:DCM:H2O (60:40:2)

Cl

ClCl

Cl

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

NH2

HN

ON

Cl

Cl

NHO

Cl

HN

ON

Cl

Cl

NO

NHO

Cl Cl

H2N

ON

Cl

Cl

NO

NHO

Cl Cl

Figure 3.5. Scheme of peptoid 1 chemical synthesis.

3.2 Cell-penetrating peptides and cell-penetrating peptide/peptoid hybrids

synthesis: PEN-1 and TAT-1

a) Synthesis of PEN, TAT, PEN-1 and TAT-1

As stated before, the synthesis of hybrids peptide-peptoid was performed by fusing

peptoid 1 to the peptide carriers penetratin (PEN) and TAT peptides through a two

glycine linker [196]. The hybrids penetratin-GG-peptoid (PEN-1) and TAT-GG-

peptoid (TAT-1) molecules (Figure 3.6) identity and purity were confirmed by high-

performance liquid chromatography (HPLC) and Matrix Assisted Laser

Page 68: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

34

Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry. Stock

solutions of control peptides and peptide/peptoid hybrids were prepared in PBS buffer

and the concentrations were determined by UV spectroscopy and quantitative amino

acid analysis.

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

RQIKIWFQNRRMKWKKGG

A

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

YGRKKRRQRRRGGG

B

Figure 3.6. Chemical structure of PEN-1 (A) and TAT-1 (B).

b) Synthesis of PEN-1-CF and TAT-1-CF

For the synthesis of carboxyfluoresceine (CF) labeled PEN-1 (PEN-1-CF) and TAT-1

(TAT-1-CF) conjugates, CF was attached to peptoid 1 structure and then it was coupled

to PEN and TAT peptides through the two Gly linker. The identity and purity were

confirmed by HPLC and MALDI-TOF mass spectrometry. Stock solutions of control

peptides and peptide/peptoid hybrids were prepared in phosphate buffered saline (PBS)

buffer and the concentrations were determined by fluorescence spectroscopy and

quantitative amino acid analysis.

3.3 Synthesis and characterization of nanoconjugates

3.3.1 Synthesis and characterization of QM56 (peptoid 1-GG-PGA conjugate)

A summary of the synthesis protocol is portrayed in the Figures 3.7 and 3.8. Prior to

peptoid 1 conjugation, our lead compound was derivatized as described in Matherials

and Methods section by introduction of a diglycil spacer to yield peptoid 1-GG. The

identity and purity of peptoid 1-GG (95 %) was confirmed by HPLC and MALDI-TOF.

Page 69: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

35

Figure 3.7. Synthesis of peptoid 1-GG. R1=R2=H.

Poly(L-glutamic acid)-peptoid 1 conjugate (PGA-peptoid, QM56) was then synthesized

using a N,N-diisopropylcarbodiimide (DIC)-mediated coupling through a diglycil

spacer (using as reagent GG-peptoid 1 (Figure 3.8)) to contain peptoid 1 up to a 12

mol% loading (free drug content <1 %wt of total drug) as determined by UV-Vis

spectrophotometry and HPLC analysis (Figure 3.9). QM56 was then characterized.

Cl

Cl

N N

ON

ONH2

O

Cl

ClO

NH

HN

O

O

n

+Na-O

HN

O

m

O

HN O

HN

O

O

n

+Na-O

Cl

Cl

N N

ON

ONH2

O

Cl

ClO

NH2

HN O

HCl 2N

pH 2

HN

O

O

n

HO

(i) DIC/HOBt, DIEA/DMFanhrt, 36h

(ii) NaHCO3, pH 8

GG-peptoid 1

PGA

QM56 Figure 3.8. Scheme of conjugation of the peptoid 1-GG to the polymeric carrier.

Page 70: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

36

a) Determination of total drug content by UV spectroscopy

A stock solution of peptoid 1-GG in MeOH was prepared (1 mg/mL). To obtain a

calibration curve, samples were diluted using MeOH to give a concentration range of

0–1 mg/mL. The total drug loading of the conjugates was determined by measuring the

optical density (OD) at 272 nm and 281 nm in H2O and comparing the absorbance

values to the calibration slopes obtained for the measurements at 272 and 281 nm. PGA

in the same concentration range as the analyzed conjugate (0–5 mg/mL) in H2O was

used as blank. The extinction coefficient found for peptoid 1-GG at 281 nm in MeOH

at RT was ε = 713 L mol-1 cm (Figure 3.9). The total drug content in QM56 was 28 ± 2

wt % (10.2 ± 0.6 mol % drug loading). Results are expressed as mean ± SD (n > 3).

220 270 3200

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1 1,2

[Peptoid-GG-NH2] (mg/mL)

A U

BA

220 270 320220 270 320220 270 3200

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1 1,2

[Peptoid-GG-NH2] (mg/mL)

A U

BA

Wavelength (nm)

Figure 3.9. Total drug content quantification by UV spectroscopy. (A) Calibration curve for peptoid 1-GG at 270 nm (■) and 282 nm (○). (B) UV spectra of PGA, PGA-GG-peptoid 1 and –NH2-GG-peptoid 1. Data are expressed as the mean ± SD (n > 3).

b) Determination of free drug content by HPLC

Even after careful purification of the nanoconjugates by dialysis and/or size exclusion

chromatography (SEC) and due to their intrinsic hydrophilic/hydrophobic behaviour,

free drug molecules could be still entrapped within the macromolecule. To ensure an

adequate biological evaluation the quantification of this free drug is very important, and

it should be controlled to be always lower than 2 wt% of the total drug content

determined for the conjugate synthesized. One aliquot of a QM56 solution was

prepared in order to analyze its free dug content through HPLC at 220 nm (see

Materials and Method section for further information). The results obtained were

Page 71: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

37

compared to a calibration curve obtained for peptoid 1-GG at concentrations ranging

from 0.1-0.6 mg/mL (Figure 3.10). The retention time (tr) obtained for peptoid 1-GG (λ

= 220 nm) was 14.3 min (Figure 3.7) and the percentage of free drug content was 0.2 ±

0.1 wt % of total drug. Results are expressed as mean ± SD (n > 3).

020406080

100120140160180

0 0,1 0,2 0,3 0,4 0,5 0,6

Peptoid 1-GG (mg/mL)

Are

a at

220

nm

/106

Figure 3.10. Calibration curve for peptoid 1-GG content by HPLC. Data are expressed as the mean ± SD (n > 3).

c) Determination of average molecular weight (Mw), polydispersity (Mw/Mn) and

conformational behavior in solution for QM56

The average molecular weight (Mw), polydispersity (Mw/Mn) and the conformational

behavior of both QM56 and control PGA in solution were analyzed by SEC and AUC

(experimental details fully described in Matherials and Methods section). Both

techniques showed QM56 as a more compact conformational structure with a smaller

hydrodynamic volume and a greater sedimentation coefficient (S) than PGA (tr = 12.8

min and S= 3.5 ± 0.4 s vs. tr = 11.6 min and S= 1.9 ± 0.1 s for QM56 and PGA,

respectively). By sedimentation equilibrium, the apparent Mw was determined as

26700 Da for PGA sodium salt and 60300 Da for QM56. However, Mw of 35000 Da

(Mw/Mn = 1.8) and 29000 Da (Mw/Mn= 1.6) were determined for PGA sodium salt

and QM56, respectively, by SEC using PEG standards. This correlates with previous

studies that showed how polymer-drug conjugates exist in solution as unimolecular

micelles, and also how conformation is influenced by both drug loading and drug nature

[197].

Page 72: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

38

d) Nuclear Magnetic Resonance analysis of QM56

Nuclear magnetic resonance spectroscopy (NMR) confirmed the integrity of peptoid 1

and its covalent attachment to PGA. 1D 1H NMR spectrum of QM56 showed extra

resonances arising from the peptoid moiety plus a general broadening of the signals

when compared to that spectrum from PGA (Figure 3.11). The most affected signals

are those corresponding to the NH-amide protons (at 8.5 ppm), changing from sharp J-

coupled resonances in the PGA spectrum (unstructured polymer) to broad signals in the

PGA-peptoid spectrum, as a consequence of both the NH averaging of functionalized

and non-functionalized side chains, and conformational changes. In addition, 2D

Nuclear Overshauser effect spectrum (NOESY) of QM56 showed cross peaks

correlating the aromatic groups from the peptoid moiety (6.7-7.4 ppm) with the

glutamic acid side chain (1.8-2.2 ppm) and Hα (4.0-4.3 ppm) from the polymer.

Furthermore, whereas the 2D total correlation spectrum (TOCSY) of PGA (Figure 3.12)

showed two glutamic acid Hα signals (corresponding to polymer main chain (1) and

termini (2)) that correlate with the glutamic side chain protons, the QM56 TOCSY

spectrum showed an additional Hα connected to a new glutamic side chain arising from

functionalized termini (2''). Therefore, drug-polymer connectivity was confirmed

(Figure 3.12).

e) Degradation study of PGA and QM56 upon incubation with Cathepsin B. Evaluation

of Mw loss and peptoid 1 release profile from QM56

As already stated above, effective biological activity of polymer-drug conjugates relies

on (i) stability in blood circulation and, (ii) lysosomal enzyme cleavage to release active

drug in place after cellular uptake by endocytosis. Conjugate degradation kinetics were

determined by mimicking lysosomal conditions. QM56 was dissolved in a pH 6

solution containing cathepsin B, one of the member of the lysosomal proteases

cathepsins (see experimental details in Matherials and Methods section). In case of

cathepsin B the specificity has not been fully described, but Gly, Arg and hydrophobic

amino acids are present in the position P2 of the cleavage site of cathepsin B. In our

study, a solution of QM56 was incubated at 37 ºC and samples were taken at different

time-points and storage at -80ºC until analysis by HPLC (drug release) and/or gel

Page 73: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

39

permeation chromatography (GPC) (polymer Mw loss).

Peptoid 1-GG

PGA

QM56

Peptoid 1-GG

PGA

QM56

Figure 3.11. 1D 1H NMR spectrum of NH2-GG-peptoid 1, PGA and QM56.

Figure 3.12. Expansion of 2D TOCSY NMR spectra of PGA (a) vs. QM56 (b).

HPLC evaluation of released peptoid 1. Drug release kinetics studies were performed

per triplicate and the % of drug release quantified with time. Peptoid 1 release began

after addition of enzyme reaching a plateau after 24 h. MALTI TOF TOF analysis of

the released compounds showed that Gly-peptoid was the most abundant product

(MALDI - m/z 786 (M) (Figure 3.13 A).

Page 74: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

40

GPC Evaluation of Polymer Mw loss. In case of GPC analysis the Mw was determined

by using PEG standards. Generally degradation profiles for biomedical polymers are

obtained under constant sink conditions and the results correlated with mass loss of the

polymer. Since PGA polymers are water soluble, the relative peak areas used in the

GPC derived Mw calculations, provided a suitable alternative to indicate the relative

amount of the polymer that remained at each time-point. As the polymer degraded there

was a notable loss of conjugate Mw. Therefore, the loss with time of the area under the

curve (AUC) for nanoconjugate and PGA control was considered to evaluate the rate of

backbone degradation (Figure 3.13 B). The lowered rate of QM56 degradation when

compared to PGA (Figure 3.13 C) is in agreement with the more compact conformation

observed by AUC that could limit enzyme accessibility. For QM56, the 50 % Mw loss

was achieved after 26 h of incubation in presence of cathepsin B while the 50 % peptoid

1 release occurs 22 h after enzyme addition.

A B

0102030405060708090

100

0 10 20 30 40 50

Time (h)

Perc

ent o

f tot

al d

rug

rele

ase

(%)

0

20

40

60

80

100

0 10 20 30 40 50 6 70 80time (h)

Mw loss (

% PGA control% QM56

Mw

loss

%

A B

0102030405060708090

100

0 10 20 30 40 50

Time (h)

Perc

ent o

f tot

al d

rug

rele

ase

(%)

0

20

40

60

80

100

0 10 20 30 40 50 6 70 80time (h)

Mw loss (

% PGA control% QM56

Mw

loss

%

0102030405060708090

100

0 10 20 30 40 50

Time (h)

Perc

ent o

f tot

al d

rug

rele

ase

(%)

0

20

40

60

80

100

0 10 20 30 40 50 6 70 80time (h)

Mw loss (

% PGA control% QM56

Mw

loss

%

Figure 3.13. Kinetic study of QM56 degradation in the presence of cathepsin B. (A) HPLC evaluation of released peptoid 1. (B) GPC evaluation of the percentage of Mw loss for QM56 in order to clearly determine the required time for a 50% Mw loss (C) Comparison of %Mw loss of QM56 and PGA, measured by GPC. Data are expressed as the mean ± SD (n > 3).

f) Stability in plasma

QM56 degradation profile was determined by the incubation of the polymer in a

solution containing PBS plus 20 % foetal bovine serum (FBS) at pH 7.4 for 1 h. QM56

showed 100 % stability in these conditions and non-significant drug release from the

polymer or polymer Mw loss was detected. The study was extended to blood, plasma or

serum freshly extracted from Wistar rats. QM56 was stable up to 24 hours.

Page 75: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

41

Summarizing, QM56 was completely stable in plasma and in buffers but was degraded in

the presence of lysosomal enzymes (cathepsin B) releasing the drug in a time-dependent

manner

3.3.2 Synthesis and characterization of QM56-OG (peptoid 1-GG-PGA-oregon green)

The fluorescent QM56 analogue (QM56-OG) was synthesized following the same

protocol described for the conjugation of PGA to the peptoid 1-GG (Figure 3.14). The

total drug content was determined by UV (peptoid 1 content, see above section 3.3.1)

and fluorescence spectroscopy (OG content, λexc = 490 nm and λem = 520 nm) (Figure

3.15).

+ DIC/HOBt

DIEA/DMFanh

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

1

HN

O

20

O

HN O

NH

O

O

79

+Na-O O

NH

O

HN

O

HOF

OF

OHO

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

O

80

+Na-O

HN

O

20

O

HN ONHO

H2N

OHO

F

O

F

OH

O

Figure 3.14. Scheme of QM56-OG synthesis.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Fractions

U A

Figure 3.15. Determination of OG content on the nanoconjugate by fluorimetry after conjugate purification through a PD10 column. In this case, pure QM56-OG appeared from fraction 4 to 7 giving a 70% functionalization yield in this case, therefore, 0.7 mol % OG loading in the conjugate.

Page 76: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

42

3.4 Synthesis of conformationally constrained peptoid 1 mimetics

3.4.1 Synthesis of QM31

The synthesis of this heterocyclic derivative was carried out following a solid-phase

general procedure with microwave activation developed at Messeguer’s laboratory

(unpublished results). A scheme of the synthesis is depicted in Figure 3.16.

NH2

1. BrCH2COOH, DIPCDI, DMF

NH2

HN

ONH

OO

HOO

2. TEA, DMF,

HN

ON

O

HN

HN

ON

OO O

1. TEA, DMF

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

O O

1. PhSiH3, Pd(PPh3)4 DCM 1. PyBOP, HOBt, DIEA,

DMF

2. TFA:DCM:H2O (60:40:2) N

N

O

O

Cl

N

OH2N

O

Cl

Cl

Cl

Cl

Cl

Cl

NH2

Cl

Cl

NH2Cl

Cl

HN

ON

O

N

O O

NHO

Cl

Cl

Cl

Cl

HN

ON

O

N

O OH

NHO

Cl

Cl

Cl

Cl

ClCl

ClQM31

Figure 3.16. QM31 synthesis scheme.

3.4.2 Synthesis of QM31 derivatives

Furthermore, a medicinal chemistry-based structure-activity relationship was proposed

in order to optimize QM31. For this purpose, several structural modifications of QM31

were carried out. Initially attention was focused on the 2-(2’,4’- dichlorophenyl)ethyl

Page 77: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

43

substituent attached to the perhydro-1,4-diazepine-2,5-dione ring ( GROUP I, Scheme

3.17).

R1 NOO

O

NN

O

Cl

Cl

NH2

GROUP I

Figure 3.17. Chemical structure of QM31 and its derivatives.

This substituent turned out to be essential for activity and in our hands, any attempt of

modification resulted in a loss of antiapoptotic activity. Similar results were found in

early attempts of modification of the 3,3-diphenylpropyl moiety [158]. Then attention

was addressed to the R1 moiety. As shown in Table 3.2, a series of eleven derivatives

QM31a-QM31l were initially designed. These derivatives where synthesized

employing the same strategy than for the QM31, but introducing different substituents

at R1.

3.4.3 Synthesis of QM57

Compound QM57 was synthesized employing a chemical strategy similar to than

reported for QM31. Due to patent pending issues, no chemical structure or synthesis

strategy of QM57 or its derivatives will be displayed in this section.

3.4.4 Synthesis of QM57 analogues

The compounds were synthesized following the procedure for QM57 but by coupling

the corresponding N-alkylglycine fragment to the common intermediate. A total of

twelve QM57 derivatives were synthesized (QM57a, QM57b, QM57c, QM57d,

QM57e, QM57f, QM57g, QM57h, QM57i, QM57j, QM57k, QM57l and QM57m).

Page 78: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

44

Table 3.2. Chemical structure for the substituents at R1 position in QM31.

QM31 analogues R1

QM31 Cl

Cl

QM31a F

QM31b

QM31c

QM31d O

QM31e F

QM31f Cl

QM31g and QM31h

(mixture) and O

QM31 i NH

O

QM31j O

QM31k Cl

QM31l

Page 79: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

45

3.5 Synthesis of QM56 analogues and polymeric derivatives of QM31 and QM57

A series of QM56 analogues and QM31 and QM57 polymeric derivatives were

synthesized. The objective was to modulate drug release kinetics by different polymer-

drug linkers, substrates for cathepsin B in order to have access to different drug release

kinetics (see Table 3.3 for further detail).

Table 3.3. Schematic structure of QM56 and heterocyclic polymeric derivatives.

PGA derivatives Schematic structure

QM56 Peptoid 1-GG-PGA

QM56-P1 Peptoid 1-R1R2-PGA

QM56-P2 Peptoid 1-R1R3-PGA

QM31-P1 QM31-R4-PGA

QM31-P2 QM31-R5R3R6R4-PGA

QM31-P3 QM31-R1R3R6R4-PGA

QM31-P4 QM31-R5R5R4-PGA

QM57-P1 QM57-R5R3R6R4-PGA

QM57-P2 QM57-R5R5R4-PGA

Full physico-chemical characterization of the compounds was also carried out with the

new derivatives using the techniques and the strategies described for QM56. The total

drug loading and the free drug content values obtained for the different polymer

conjugates are depicted in Table 3.4.

Page 80: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

46

Table 3.4. Loading parameters for PGA-conjugates.

PGA derivatives Total drug loading (mol %)a

Total drug loading (wt %)a

Free drug loading (wt %)b

QM56 11.8 40.0 ≤ 1.01

QM56-P1 12.0 43.2 ≤ 0.47

QM56-P2 11.4 42.2 ≤ 0.58

QM31-P1 10.2 36.0 ≤ 1.69

QM31-P2 7.6 31.9 ≤ 1.57

QM31-P3 7.5 31.9 ≤ 1.56

QM31-P4 10.2 38.3 ≤ 0.35

QM57-P1 11.6 49.1 ≤ 0.26

QM57-P2 8.5 32.1 ≤ 1.40 a determined by UV spectroscopy after conjugate purification with PD10 column (SEC, sephadex G25) and/or determined by HPLC by indirect quantification of the peptoid, which was not conjugated at the end of reaction; b determined by HPLC after extraction with chloroform. a) Determination of average molecular weight, polydispersity and behavior in solution

of QM56 analogues, QM31 and QM57 polymer derivatives

No data will be shown due to patent pending issues.

b) Nuclear Magnetic Resonance analysis

No data will be shown due to patent pending issues. c) Evaluation of Mw loss and peptoid 1, QM31 an QM57 release profile from the

different PGA nanoconjugates in the presence of cathepsin B

In order to test the different linkers introduced into the polymer peptoid 1 derivative

conjugates, similar polymer degradation kinetics studies to the ones developed with

QM56 were performed. Results are shown in Table 3.5 and Figure 3.18.

Page 81: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

47

Table 3.5. Degradation studies for PGA-based derivatives.

Compound 50 % Mw loss (h)a,b 50 % drug release (h)b,d

QM56-P1 32 ± 2 24 ± 1 QM56-P2 5 ± 1 0.75 ± 0.3 QM31-P1 34 ± 3 > 48 ± 4 QM31-P2 12 ± 2 1 ± 1 QM31-P3 0.5 ± 0.2 0.5 ± 0.3 QM31-P4 15 ± 2 7 ± 2 QM57-P1 20 ± 2 2 ± 1 QM57-P2 3 ± 1 0.5 ± 0.3

a determined by GPC. b determined by HPLC after extraction with chloroform.

As demonstrated in Table 3.5, the use of different peptide linkers between the polymeric

support and the bioactive drug has an influence on drug release kinetics. f) Stability in plasma

PGA-based derivatives stability in plasma was firstly determined by the incubation of

the polymer in a solution containing PBS plus 20 % foetal bovine serum (FBS) at pH

7.4 for 1 and 24 h. All the polymer conjugates showed 100 % stability in these

conditions and non-significant drug release from the polymer or polymer Mw loss was

observed. Further stability studies where carried out in blood and fresh serum extracted

from Wistar rats and similar results were obtained. Data from QM57-P2 is shown as an

example (Figure 3.19).

Page 82: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

48

QM56

QM56-P2QM56-P1

Time (hours)

Dru

g re

leas

e (%

)

A

QM56

QM56-P2QM56-P1QM56

QM56-P2QM56-P1

Time (hours)

Dru

g re

leas

e (%

)

A

QM56

QM56-P2QM56-P1

Time (hours)

Mw

loss

(%)

BQM56

QM56-P2QM56-P1

Time (hours)

Mw

loss

(%)

QM56

QM56-P2QM56-P1QM56

QM56-P2QM56-P1

Time (hours)

Mw

loss

(%)

B

Figure 3.18. Influence of polymer-drug linker on (A) drug release kinetics, measured by HPLC and (B) conjugate molecular weight (Mw) loss, measured by GPC in presence of lysosomal thiol protease cathepsin B (see Materials and Methods for further information). Data are expressed as the mean ± SD (n > 3).

Page 83: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

49

Figure 3.19. GPC-HPLC-based analysis of released QM57 from QM57-P2 upon incubation in the presence of serum (♦) and blood (■). In all cases, SE < 5 %.

Page 84: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

50

Page 85: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

51

CHAPTER 4. SYSTEMATIC ANALYSIS OF INHIBITION

OF APOPTOSIS BY PEPTOID 1 DERIVATIVES

As it was mentioned in chapters 1 and 3, peptoid 1 cell toxicity, probably associated to

a putative lytic effect on the plasma membrane due to the amphipathic nature of the

compound [198, 199] precluded cell biology assays to explore the applicability of

peptoid 1 as inhibitor of cellular apoptosis. Several synthetic strategies were designed

with the aim of obtaining peptoid 1 derivatives with improved cellular internalization

properties. Such strategies were based in:

(i) synthesis of hybrid peptide/peptoid conjugates where the parent peptoid 1 was fused

to well characterized cell penetrating peptides (CPPs) such as PEN and TAT peptides,

yielding compounds PEN-1 and TAT-1 [196], respectively;

(ii) conjugation of peptoid 1 to a water soluble polymeric carrier such as poly-L-

glutamic acid (PGA), obtaining polymer-peptoid conjugates [192, 200];

(iii) synthesis of backbone conformational-restricted derivatives aiming to introduce

chemical modifications in the molecule that could diminish the conformational mobility

of peptoid 1 favoring membrane permeation. The parent compound of this series was

the peptoid 1-derivative QM31 [200].

A further description of the internalization strategies followed and the synthetic

methodologies can be found in Chapter 3 and Materials and Methods section.

Once the compounds were synthesized the first objective was to determine the

efficiency of the new drug delivery systems to be internalized and, at the same time, the

maintenance of the biological properties exhibited by the parent compound, peptoid 1.

This study was performed at three different levels: a) in vitro analysis of peptoid 1

derivatives as inhibitors of the apoptosome formation, b) evaluation as inhibitors of

apoptosis in different cellular models, c) cellular internalization studies of peptoid 1

derivatives in living cells.

Page 86: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

52

a) In vitro reconstitution of the apoptosome and cell-free system assays

The use of cell-free systems has been crucial in the identification of important

components of the cell death machinery (reviewed in Cullen et al. [201]). These

systems reduce the complexity of the particular steps of the biological pathway under

study increasing the reproducibility of these experiments. Besides, they can be easily

modified according to the particular aims of the experiments by adding or removing the

different constituents of the assay. Cell-free systems have played an important role in

the discovery of the cross-talk pathways between mitochondria and apoptosis. Among

others, the identification of Apaf-1 and the different components of the apoptosome

were performed by using HeLa cell-free extracts [39, 40]. Similar strategies were used

by Fearnhead et al. [202] to develop a series of cell-free systems in which Apaf-1 was

separated from other components of the cell-extract through chromatography

fractionation. Then, appropriate fractions can be used in conjunction to interrogate the

selected pathway. With this methodology the fraction containing Apaf-1 can be

analyzed when combined with the fraction containing the caspases and the addition of

the exogenous dATP to induce the formation of an active apoptosome [87, 147, 202].

For the objectives of our research, two different in vitro systems were employed. We

use a recombinant protein-based reconstitution of the apoptosome [203] and a HEK

293-based cell extract depleted from endogenous Apaf-1 [147, 158]. In both cases, we

correlated apoptosome formation with apoptosome activity measuring caspase 9 and/or

3 activation employing the corresponding fluorogenic substrate (Figure 4.2) (see

Materials and Methods section for further detail).

Page 87: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

53

ArApaf-1 + Peptoid 1 derivative

15 min, RT

ATP/Mg + Cyt c

5 min, RT

Procaspase 9

5 min, RT

Ac-LEDH-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

B

rApaf-1 + Peptoid 1 derivative

15 min, 30 ºC

FT HEK 293 + ATP/Mg

30 min, 30 ºC

Ac-DEVD-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

ArApaf-1 + Peptoid 1 derivative

15 min, RT

ATP/Mg + Cyt c

5 min, RT

Procaspase 9

5 min, RT

Ac-LEDH-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

rApaf-1 + Peptoid 1 derivative

15 min, RT

ATP/Mg + Cyt c

5 min, RT

Procaspase 9

5 min, RT

Ac-LEDH-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

15 min, RT

ATP/Mg + Cyt c

5 min, RT

Procaspase 9

5 min, RT

Ac-LEDH-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

B

rApaf-1 + Peptoid 1 derivative

15 min, 30 ºC

FT HEK 293 + ATP/Mg

30 min, 30 ºC

Ac-DEVD-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

rApaf-1 + Peptoid 1 derivative

15 min, 30 ºC

FT HEK 293 + ATP/Mg

30 min, 30 ºC

Ac-DEVD-afc

rApaf-1 + Peptoid 1 derivative

15 min, 30 ºC

FT HEK 293 + ATP/Mg

30 min, 30 ºC

Ac-DEVD-afc

15 min, 30 ºC

FT HEK 293 + ATP/Mg

30 min, 30 ºC

Ac-DEVD-afcΔFU/min (λexc = 400 nm, λem = 505 nm)

Figure 4.1. Scheme of in vitro assays developed (A) In vitro apoptosome reconstitution assay; (B) Cell-free extract apoptosome reconstitution assay. In both cases, rApaf-1 is incubated with peptoid 1 derivatives and after the addition of ATP and the necessary components to reconstitute the apoptosome, caspase 9 and 3 activities are measured employing the corresponding fluorogenic caspase substrates (afc, 7-amino-4-trifluoromethyl coumarine). The kinetics of the afc release will allow us to determine the degree of apoptosome formation achieved in all the samples.

b) Evaluation of peptoid 1 derivatives as inhibitors of apoptosis in different

cellular models.

The biological activity of peptoid 1 derivatives was also determined by employing

different cell lines. This study was divided in two steps: the evaluation of the intrinsic

cell toxicity and the determination of their ability to inhibit apoptosis. The cell lines

employed for this purpose were A549 human lung carcinoma, HeLa human cervix

adenocarcinoma, U937 human histiocytic lymphoma and U2-OS and Saos-2 two human

osteosarcoma cell lines.

Cell seeding settings were established in order to keep cells growing in the exponential

phase during the development of the experiments and the optimal apoptosis-inducing

agent concentration was determined. In general, percentages of cell death from 40-80%

were pursued for the different time-point measurements. Doxorubicin (dox) was the

drug chosen for the induction of cell death in U937, HeLa, A549 and U2-OS. In case of

Page 88: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

54

Saos-2 transfected with the doxycycline (doxy)-dependent TET-ON system, (doxy) was

employed as inducer of cell death as it will be explain below.

Dox is a chemotherapeutic drug and it has been broadly used in the study of apoptosis

[204-206]. Although its mechanism of action is still a matter of concern, it seems to be

able to intercalate into the DNA, inhibiting topoisomerase II and as a consequence DNA

transcription and replication processes [207]. Other effects of dox are the induction of

reactive oxygen species (ROS) and the modification of Ca+2 homeostasis. Then, both

extrinsic and intrinsic apoptotic pathways are activated upon dox treatment [208]

(Figure 4.2).

COCH2OH

OH

O

O

NH2

OH

CH3

OHO

O OHOCH3

Figure 4.2. Chemical structure of dox.

A more close view on the influence of Apaf-1 inhibition on the intrinsic pathway of

apoptosis was obtained using the Bax Tet-On Saos-2 cell line. In this cell-based model,

apoptosis is induced by the conditional expression of the proapoptotic protein Bax

through the doxy-dependent Tet-ON system. Bax is a pro-apoptotic member of the Bcl-

2 family that induces apoptosis by directly targeting mitochondria; thus, the activation

of apoptosis solely relies on the mitochondrial or intrinsic pathway (Figure 4.3).

NH2

O

N

OOH

HOH

OH

HCH3

OOH

Figure 4.3. Chemical structure of doxy.

Cell viability and cell-viability recovery experiments were performed employing an

MTT assay (Figure 4.4) based on the ability of viable cells to reduce 3-(4,5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazoliumbromide (MTT). The quantification of

Page 89: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

55

the reduced compound allows determining the amount of viable cells in the well (see

Materials and Methods for further detail).

Living cellsLiving cells

NADH/NADPH NAD+/NADP+

CNNH

N NS

N

CH3

CH3

N

NN

NS

N

CH3

CH3Br-

+

Dead cellsDead cells

Absorbance

λ = 562 nmLiving cellsLiving cells

NADH/NADPH NAD+/NADP+

CNNH

N NS

N

CH3

CH3

N

NN

NS

N

CH3

CH3Br-

+

Dead cellsDead cells

Absorbance

λ = 562 nm

Figure 4.4. Schematic development of MTT assay. 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazoliumbromide is a yellowish water soluble compound and is converted to water-insoluble MTT formazan by mitochondrial dehydrogenase of viable cells. The addition of dimethylsulfoxide (DMSO) solubilizes the dark blue MTT formazan crystals and the intensity is measured colorimetrically at λ = 562 nm.

MTT presents the disadvantage of only determining the percentage of viable cells, but

this assay does not provide any detail about the type of cell death undergoing in the

sample. The cell extract-based caspase 3 fluorometric protease assay is a more specific

way to determine programmed cell death or apoptosis and, therefore, the Apaf-1

activation and the apoptosome formation, as caspase 9 is one of the initiator caspases

that activates procaspase 3 inactive zymogen (Figure 4.5) (see Materials and Methods

section for further information).

Page 90: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

56

Cell extracts

Ac-DEVD-afc + PBS + 10% glicerol + DTT

Kinetics 37ºC

λexc = 400 nm

λem = 505 nm

Cell extracts

Ac-DEVD-afc + PBS + 10% glicerol + DTT

Kinetics 37ºC

λexc = 400 nm

λem = 505 nm

Figure 4.5. Scheme of caspase 3 activity fluorogenic assay. Procaspase 3 is synthesized as an inactive proenzyme that is processed in cells undergoing apoptosis by cleavage by other upstream proteases (e.g. Caspases 8, 9 and 10) into its two subunits p17 and p19 (see chapter 1 section 1.2 for further information). Once activated, caspase 3 cleaves a variety of cellular proteins that contain the amino acid motif Asp-Glu-Val-Asp (DEVD). To develop the fluorogenic assay the cell extract is supplemented with the fluorogenic caspase 3 substrate peptide Ac-DEVD-afc that upon caspase 3 cleavage will produce the free fluorophore ‘afc’ (see Materials and Methods section for further information). Then the fluorescence signal is proportional to the level of active caspase 3 in the cell lysated.

c) Cellular internalization of the compounds in living cells

One efficient and relatively simple technique to determine the cellular uptake of a

molecule is its covalent conjugation to a fluorophore and the subsequent study of the

fluorescent signal through fluorescence microscopy. Fluorescein is a fluorophore

broadly employed in fluorescence microscopy studies synthesized for Adolf von Baeyer

over one hundred years ago [209]. This molecule presents a high fluorescence (λexc =

494 nm and λem = 521 nm) pattern and perfect chemical characteristic for its

solubilization in aqueous solvents. Several derivatives have been developed by

modifying some functional groups of the molecule but keeping its fluorogenic

properties. This is the case of carboxyfluoresceine (CF) and Oregon green 488 nm

cadaverine (OG), the fluorescein derivatives that were covalently bounded to TAT-1

and PEN-1 (CF-TAT-1 and CF-PEN-1) and QM56 (QM56-OG) (see Materials and

Methods and chapter 3 for further information) to perform different compound

internalization studies.

Page 91: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

57

O O

FCOOH

OH

HOOC

O O

FCOOH

CO NH(CH2)5NH2

OH

O O

FCOOH

OH

Fluorescein

Carboxyfluoresceine Oregon green cadaverine

Figure 4.6. Chemical structure of fluorescein and its chemical derivatives carboxyfluoresceine and Oregon green cadaverine.

4.1 Apoptotic inhibition activity of CPP-peptoid 1 hybrids: PEN-1 and TAT-1

Once peptide/peptoid 1 hybrids PEN-1 and TAT-1 were synthesized, the influence of

the fusion of peptoid 1 to CPPs on the cell membrane permeation capabilities was

analyzed. Their influence on cellular uptake, biological activity of the cargo and the

correlation with the conformational properties of these molecules in the presence of

synthetic lipid membranes and membrane mimetics were studied [196] and results are

depicted in this section.

4.1.1 PEN-1 and TAT-1 antiapoptotic activity in cell extracts

Initially, the influence of the fused PEN and TAT peptides on peptoid 1a ability to act

as an Apaf-1 inhibitor was evaluated employing HEK 293 cell extracts depleted from

endogenous Apaf-1 (Flow-through or FT) (see Materials and Methods for further

information). When recombinant Apaf-1 was pre-incubated with peptoid 1a and added

to this FT fraction, a peptoid 1a concentration-dependent inhibition of caspase 3 activity

was found (Figure 4.7) [158, 196]. Using the same procedure for both, PEN-1 and

TAT-1, a concentration-dependent profile of caspase 3 inhibition was also obtained.

The synthetic control peptides PEN and TAT did not show inhibitory activity. These

results suggest that the presence of the CPPs does not modify the capability of peptoid 1

Page 92: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

58

to bind to Apaf-1 and, in turn, to inhibit the apoptosome-dependent activation of

caspases.

Figure 4.7. Concentration dependent inhibition of Apaf-1 mediated activation of caspases by peptoid 1, PEN-1 and TAT-1. The different peptide-peptoid hybrids and peptide controls (x axis) were analyzed at 1, 5, 10 and 20 μM (black, stripped, grey and white bars, respectively). Data are expressed as the mean ± SE (n > 3).

4.1.2 Evaluation of cell toxicity and biological activity of PEN-1 and TAT-1

a) MTT assays: PEN-1 and TAT-1 cell toxicity and cell-viability recovery assays

TAT-1 was more toxic than PEN-1 when analyzed by MTT in the different cell lines

studied (Figure 4.8). Consequently, TAT-1 showed no cell-viability recovery after

challenging the cells (data not shown). On the other hand, the addition of 1 μM PEN-1

to cells treated with dox increased cell survival significantly in different cell lines, being

U937 a good example of the effect of PEN-1 (Figure 4.9). The unspecific cell toxicity

of PEN-1 could preclude the protective effect of the compound at higher concentrations.

PEN and TAT control peptides were also evaluated as control using the same

experimental setting. Control peptides showed no cell toxicity at the concentrations

tested, and no cell-viability recovery after dox or doxy treatments (data not shown)

[196, 200].

Peptoid 1a PEN-1 PEN TAT-1 TAT

Page 93: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

59

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

A

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

A

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

B

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

B

Figure 4.8. Evaluation of cell toxicity in different cell lines by (A) PEN-1 and (B) TAT-1. Compounds were tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

24H48H

72HSaos-2A549HeLaU-2 OSU937

0

10

20

30

40

50

60

% C

ellr

ecov

ery

(% T

otal

cel

ls)

24H48H

72HSaos-2A549HeLaU-2 OSU937

0

10

20

30

40

50

60

% C

ellr

ecov

ery

(% T

otal

cel

ls)

Figure 4.9. Evaluation of cell-viability recovery in different cell lines by PEN-1. The compound was evaluated at 10, 5, and 1 μM (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean ± SE (n > 3). In all cases, SE < 10%.

Page 94: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

60

b) Caspase 3 activity measurements employing PEN-1 and TAT-1

As a more direct indicator of apoptotic cell death, the caspase 3 activity of cells treated

with dox/doxy or dox/doxy plus PEN-1 and TAT-1 (at a concentration of 5 μM) was

also analyzed using the same cellular models. PEN-1 inhibited caspase 3 activity in the

different cellular models employed. It was also able to inhibit caspase 3 activation in

Saos-2 (Figure 4.10). However, no inhibitory activity was observed with TAT-1 (data

not shown). The synthetic peptides PEN and TAT were also analyzed as controls, and

no inhibition of caspase 3 activity was observed (data not shown) [196, 200].

010

2030

4050

6070

80

Saos-2 HeLa U-2 OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n

Figure 4.10. Evaluation of caspase 3 enzymatic activity inhibition by PEN-1 in different cell lines. PEN-1 was tested at 5 μM in all cell lines with the exception of Saos-2 (2 μM). Measurements were performed after 24, 48, and 72 h of incubation (black, gray, and white bars, respectively). Data are expressed as the mean ± SE (n> 3).

4.1.3 Cellular internalization studies and structural characterization of PEN-1 and

TAT-1

In order to prove that conjugation to CPP enhances the cellular internalization of

peptoid 1, two carboxyfluoresceine (CF) labeled derivatives (CF-PEN-1 and CF-TAT-

1) were synthesized to be used as fluorescence probes in flow cytometry and live-cell

confocal fluorescence microscopy studies.

Page 95: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

61

a) CF-TAT-1 and CF-PEN-1 cellular internalization studies

Both conjugates were rapidly internalized by the cells in a time dependent manner (with

a plateau after 30 min probably due to fluorescence quenching (Figure 4.11), as

observed by flow cytometry studies). It should be noticed that TAT-1 showed an

enhanced membrane binding propensity when compare to PEN-1 (fluorescence output

at t = 0 min) (Figure 4.12). In addition, the internalization mechanism showed to be

different for PEN-1 and TAT-1 as deduced from confocal fluorescence microscopy

observation; whereas PEN-1 showed a vesicular labeling profile at times as short as 15-

min incubation, cells treated with TAT-1 showed a more diffused cytosolic location

(Figure 4.12). Moreover, after 1-h incubation, the cell damage induced by TAT-1 was

much higher than that observed for those cells treated with PEN-1. These data are in

good agreement with TAT-1 observed cytotoxicity.

TAT-1 PEN-1A

B

Cou

nts

Cou

nts

Time (min) Time (min)

Time (min)

PEN-1TAT-1

TAT-1 PEN-1A

B

Cou

nts

Cou

nts

Time (min) Time (min)

Time (min)

PEN-1TAT-1

Figure 4.11. Time-dependent uptake of PEN-1 and TAT-1 by U-937 cells; (A) raw data collected after incubation with PEN-1 or TAT-1 and (B) cell-associated fluorescence after incubation with PEN-1 and TAT-1. Flow cytometry analysis at 37 ºC. The values represent mean ± S.E.M.; n > 3.

Page 96: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

62

PEN-1 TAT-1

t = 0 min

t = 15 min

t = 1 h

PEN-1 TAT-1

t = 0 min

t = 15 min

t = 1 h

Figure 4.12. Confocal microscopy live cell images of Saos-2 cells incubated at 37 ºC with: PEN-1 for (A) 0 min, (B) 15 min, (C) 1 h and TAT-1 for (D) 0 min, (E) 15min, and (F) 1 h. Concentration 1 μM.

Although PEN and TAT could be initially considered as equally efficient cell

transporters for a wide variety of cargoes, the cargo could possibly influence any of the

intrinsic properties of CPPs, having a direct effect on their behavior. Thus, if the cargo

modifies the membrane-induced conformational transition capabilities of CPPs, these

could modify cell permeability. To explore such a possibility, we analyzed the

conformational behavior of both TAT-1 and PEN-1 in membrane-mimetic

environments and their respective control peptides, TAT and PEN. The CD spectra of

PEN, PEN-1, TAT and TAT-1 were initially acquired in PBS buffer at 5 ºC (Figure

4.13).

Page 97: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

63

Figure 4.13. CD spectra in the presence of different TFE–water mixtures (—0% TFE, 20% TFE, Δ 50% TFE,O100% TFE). (A) PEN control. (B) PEN-1. (C) TAT control. (D) TAT-1.

Peptides in aqueous solution tend to be a random coil, which is a dynamic structure that

changes constantly [210]. In agreement with this statement, the spectra of PEN and

TAT are representative of a predominantly random structure (Figure 4.13 A and C,

respectively) while a comparison of the CD spectra obtained for the PEN-1 and the

TAT-1 suggested an influence of the cargo on the general structure of the peptide. In

fact, in the absence of trifluoroethanol (TFE) the CD spectrum obtained for PEN-1 was

representative of a mixed random/β-sheet conformation (Figure 4.13 B) and the

spectrum for the TAT-1 was representative of a poly(proline) type II-like (PPII-like)

conformation with a CD spectrum exhibiting a weak positive band at 223 nm and a

strong negative band at 196 nm [168] (Figure 4.13 D). TFE has been used as a solvent

additive to explore the intrinsic ability of peptides to adopt secondary structure

conformations [211]. TFE titration of PEN and PEN-1 solutions resulted in a

substantial increase of helical content (Figure 4.13 A and B), which is in good

agreement with previously reported data [212]. TFE titration of the TAT peptide also

induced the increase in the α-helix content (Figure 4.13 C). For TAT-1 however, a

TFE-induced conformational transition towards the partial stabilization of a mixed α/β

secondary structure was observed. This is characterized by a CD spectrum with

Page 98: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

64

negative ellipticity bands at 220 and 205 nm and with marked intensity differences

[213] (Figure 4.13 D).

Figure 4.14. CD spectra in the presence of different concentrations of SDS (— 0 mM SDS, 0.5 mM, Δ 1 mM SDS, O 3 mM SDS, ◊ 11 mM SDS). (A) PEN control. (B) PEN-1. (C) TAT control.

The conformational behavior of all four compounds was also analyzed in the presence

of either negatively charged (sodium dodecyl sulfate, SDS) or zwitterionic (1-palmitoyl-

2-hydroxy-snglycero-3-phosphocoline, LPC) membrane-mimetic environments. SDS

titration of PEN induced a conformational transition towards the stabilization of a β-

sheet conformation at submicellar (< 3 mM SDS concentration) and of an α-helix above

the critical micellar concentration (cmc) where SDS forms micellar aggregates (Figure

4.14 A). The PEN-1 showed similar trends; however, an SDS-dependent induction

towards helical conformations had already occurred at submicellar concentrations.

Above the cmc, PEN-1 adopted a mixed α/β conformation with a very intense

minimum at 208 nm (Figure 4.14 B). The TAT peptide was induced into a β-sheet

conformation at submicellar SDS concentrations (Figure 4.14 C). In the presence of

micellar concentrations of SDS, the resulting CD spectrum was more difficult to

analyze due to an increased tendency of the complex to precipitate out from the

Page 99: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

65

solution. Nevertheless, TAT-1 could not be analyzed in the presence of SDS due to a

non-specific precipitation.

The conformational behavior of the peptides and peptide/peptoid hybrids was then

studied using LPC micelles. As shown in Figure 4.15 (A,B), both the PEN peptide and

PEN-1 hybrid were induced into an α-helical conformation. However, both the TAT

peptide and TAT-1 were induced to fold into a PPII-like structure, although the

differences in the absolute intensity of the positive ellipticity band at 220 nm and the

negative ellipticity band at 196 nm suggested differences in the LPC-induced

conformation (Figure 4.15 C and D, respectively). See also Tables 4.1 and 4.2 for more

detailed information.

Figure 4.15. CD spectra in the presence of different concentrations LPC micelles (— 0 mM LPC, 100 mM LPC,Δ 400 mM LPC, O 1000 mM LPC). (A) PEN control. (B) PEN-1. (C) TAT control. (D) TAT-1.

Page 100: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

66

Table 4.1. Percentage of secondary structure obtained from the CD data interpreted with the program provided by Jasco.

Secondary structure (%) Peptide Inductor

Alpha Beta Turn Random 0 0 20.2 32.2 47.6

0.5 16 41.3 32.3 10.4 1 40.6 34.3 25.1 0

PEN

11 45.3 16.4 0 38.4 0 0 64 13 22.9

0.5 9.7 37.2 25.7 27.4 1 14.1 42.1 17.7 26.2

PEN-1

11 7.4 66.5 0 26.1 0 0 16.2 35.3 48.4

0.5 4.2 50.9 18.9 26.1 1 5.6 57.5 16.1 20.9

TAT

3 0 42.6 16.6 40.8 0 0 0 24.4 75.6

0.5 1

TAT-1

SDS (mM)

3 20 0 20.2 32.2 47.6 50 51.1 0 0 48.9 PEN

100 61.4 0 0 38.6 20 2.6 61.5 0 35.9 50 14.6 48.8 0 36.6 PEN-1

100 28.4 48 0 23.6 20 0 8.7 39.3 51.9 50 0 20.4 25.7 53.9 TAT

100 38.8 6.8 0 54.5 20 0 0 24.4 75.6 50 0 0 11.7 88.3 TAT-1

TFE (%)

100 43.7 0 0 56.3 10 0 29.2 19.7 51.1

100 0 21.6 12.9 65.6 PEN 1000 23.2 32.1 0 44.6

10 0 66 10.7 23.4 100 4.7 61.9 7.6 25.7 PEN_15

1000 14.2 55.2 2.9 27.7 10 0 0 35.4 64.6

100 0 5 34.5 60.5 TAT 400 0 18.2 34.5 47.3 10 0 0 24.4 75.6

100 0 0 11.6 88.4 TAT_15

LPC (μM)

1000 0 0 0 100

Page 101: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

67

Table 4.2. Percentage of secondary structure obtained from the CD data interpreted with the K2D program of the Dichroweb (http://www.cryst.bbk.ac.uk/cdweb).

Secondary structure (%) Peptide Inductor Alpha Beta Turn Random

0 0.04 0.29 0.68 0.04 0.5 0.02 0.51 0.47 0.02 1 0.25 0.4 0.35 0.25

PEN

11 0.52 0.1 0.37 0.52 0 0.09 0.48 0.44 0.09

0.5 0.08 0.44 0.48 0.08 1 0.18 0.3 0.52 0.18

PEN-1

11 0.12 0.33 0.54 0.12 0 0.11 0.42 0.48 0.11

0.5 0.09 0.43 0.48 0.09 1 0.04 0.48 0.48 0.04

TAT

3 0.05 0.47 0.48 0.05 0 0.08 0.48 0.44 0.08

0.5 1

TAT-1

SDS (mM)

3 20 0.28 0.31 0.41 0.28 50 1 0 0 1 PEN

100 1 0 0 1 20 0.08 0.4 0.52 0.08 50 0.22 0.23 0.55 0.22 PEN-1

100 0.33 0.16 0.51 0.33 20 0.09 0.47 0.44 0.09 50 0.04 0.48 0.48 0.04 TAT

100 0.03 0.49 0.47 0.03 20 0.08 0.48 0.44 0.08 50 0.08 0.49 0.43 0.08 TAT-1

TFE (%)

100 0.1 0.35 0.55 0.1 10 0.07 0.5 0.43 0.07

100 0.09 0.28 0.63 0.09 PEN 1000 0.28 0.21 0.5 0.28

10 0.09 0.47 0.44 0.09 100 0.1 0.4 0.51 0.1 PEN_15

1000 0.21 0.25 0.54 0.21 10 0.08 0.46 0.47 0.08

100 0.25 0.32 0.43 0.25 TAT 400 0.27 0.33 0.4 0.27 10 0.08 0.48 0.44 0.08

100 0.07 0.5 0.43 0.07 TAT_15

LPC (μM)

1000 0.08 0.48 0.44 0.08

Page 102: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

68

4.2. Apoptosis inhibitory activity of the polymer-peptoid 1 nanoconjugate QM56

The positive results obtained using peptide-based cell internalization strategies for the

cellular delivery of peptoid 1 and derivatives, prompted us to explore other strategies

reported to show improved cellular internalization capabilities. Therefore, the aim of

this part was to design, synthesize and characterize polymer-drug conjugates which by

carrying the bioactive peptoid 1, would effectively rescue cells from inappropriate

apoptosis. PGA [214, 215] was chosen as a polymeric carrier since it is internalized by

cells by endocytosis and in the lysosome it can be degraded by specific enzymes that

would release peptoid 1; it is stable in plasma and it contains functional groups for drug

attachment. In addition, PGA has excellent pharmacological properties, as

demonstrated with Opaxio® [214, 215] that could represent the first polymer-anticancer

drug conjugate to be commercialized as already explained in chapter 3.

4.2.1 Evaluation of cellular internalization of QM56

Due to the intrinsic nature of the compounds, the ability of polymer-drug conjugates to

inhibit apoptosome assembly in the in vitro assays described before could not be

determined. Peptoid 1 is shielded with PGA and the presence of cathepsin B is

necessary to trigger the release the inhibitor (or derivatives) from the polymeric carrier.

Nevertheless, alternative QM56 live-cell internalization studies were performed in order

to determine the ability of this compound to reach its intracellular target.

As mentioned before it was hypothesized that the conjugation of peptoid 1 to a

polymeric carrier could offer a more specific intracellular trafficking. In order to prove

our hypothesis, QM56 was conjugated to the fluorescent dye OG (QM56-OG) and its

cellular uptake analyzed by flow cytometry (at 4ºC (cell binding) and 37ºC (cell

uptake)) and live-cell confocal fluorescence microscopy (exploring endocytic pathway).

The internalization studies were carried out in Saos-2 and U937 cells. As shown in

Figure 4.21, QM56-OG was rapidly internalized by the cells in a time-dependent

manner (reaching a plateau after 30 min) and through an energy-dependent mechanism

as could be observed by the cell-associated fluorescence differences at 4ºC and 37ºC

Page 103: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

69

(Figure 4.21 B). As expected a vesicular labeling and co-localization with lysosomal

markers was observed (Figure 4.21) demonstrating a lysosomotropic drug delivery

mechanism.

Time0 300 60 90 120 150 180

A

B

Time0 300 60 90 120 150 180

Time0 300 60 90 120 150 180

Time0 300 60 90 120 150 180

A

B

Figure 4.16. Cellular uptake of QM56-OG in established cell lines. (A) Live-cell fluorescence confocal images in Saos-2 cells at different incubation times (from a to d, 0, 15, 30 and 120 minutes respectively). Images e and f, correspond to the polymer internalization in the presence of Texas red-Dextran as lysosomal marker. (B) Internalization of QM56-OG in U937 cell line analyzed by flow cytometry at 4 (left panel) or 37 ºC (right panel). Graphical view of the geometric mean of the flow cytometry internalization experiments.

Page 104: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

70

4.2.2 Evaluation of cell toxicity and biological activity of polymer-peptoid 1

conjugates: QM56 and derivatives

Tested the ability of the PGA peptoid 1 conjugate QM56 to be internalized by cells,

compound cell toxicity and biological activity were evaluated by means of analyzing

cell-viability recovery using MTT assays and caspase 3 activity inhibition experiments.

a) MTT assays: QM56 cell toxicity and cell-viability recovery assays

QM56 was shown to be devoid of unspecific toxicity (Figure 4.17) and it proved to be

active inhibiting both dox- and doxy-induced cell death in different cellular models

(Figure 4.18).

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

24H48H

72HU-2 OSHeLaA549U937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

Figure 4.17. Evaluation of cell toxicity in different cell lines by QM56. This compounds was tested at 100, 50, and 20 μM drug-equivalents (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

Page 105: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

71

24H48H

72HHeLaSaos-2A549U-2 OSU937

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

24H48H

72HHeLaSaos-2A549U-2 OSU937

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

Figure 4.18. Evaluation of cell-viability recovery in different cell lines by QM56. The compound was evaluated at 100, 50, and 20 μM drug-equivalent (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean ± SE (n > 3). In all cases, SE < 10%.

c) Caspase 3 activity measurements employing QM56 and its derivatives

Dox induces apoptosis through DNA damage that is transduced to the mitochondria by

disturbing the mitochondrial membrane potential (MMP) and by activating executioner

caspases (caspase 3) through the involvement of apoptosome. Doxy-induced Bax

overexpression also leads ultimately to activation of caspase 3. Then, to further analyze

the antiapoptotic activity of the nanoconjugate QM56, it was evaluated in the cell

extract-based fluorogenic caspase 3 assay (Figure 4.19).

0102030405060708090

100

Saos-2 HeLa U-2 OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n

Figure 4.19. Percentage of caspase 3 inhibition in cell extracts that where subjected to apoptotic insult and treated with QM56 50 μM drug-equivalents. Caspase 3 activity inhibition was measured after 24, 48 and 72 h (black, grey and white bars, respectively). Data are expressed as the mean ± SE (n > 3).

Page 106: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

72

QM56 proved to be highly effective inhibiting caspase 3 activity in different cell lines

even after long-incubation times. As stated in chapter 3, QM56 employs a diglycyl

sequence as a linker between the peptoid 1 moiety and the carrier PGA. In the cellular

environment, the PGA-based compounds are substrates of cathepsin B [192, 216], also

peptidic sequences that preferentially possess peptide bonds that involve hydrophobic

residues at P1 and P2 positions. However, Gly is tolerated and offers higher structural

simplicity. In fact, Gly at P1 has been used all through the present study. Nonetheless,

as already shown in chapter 3, experimental results have shown that for some

applications the drug release rate for compounds comprising a Gly residue at P1 is too

slow to achieve the effective concentrations in the desired time range; therefore, linker

optimization was carried out. By changing Gly at P1 position by a non polar or positive

charged amino acid, it was possible to markedly modulate drug release rate. Thus, a

series of QM56 analogues with different peptide linkers were synthesized (see chapter 3

Section 3.3 for further information) and their ability to inhibit caspase 3 activation in

Saos-2 cell line was tested. The results are depicted in Table 4.4.

Table 4.4. Percentage of inhibition of apoptosis as determined by inhibition of caspase 3 activity by the different QM56 derivatives.

Saos-2 (%) Compound

24 h 48 h

QM56 54±3 (n=20) 93±5 (n=10)

QM56-P1 75±12 (n=3) 93±23 (n=3)

QM56-P2 67±4 (n=3) 34±5 (n=3)

Both QM56 derivatives were able to inhibit caspase 3 activation in a similar degree than

QM56. QM56-P1 seems to show a higher activity at shorter times due to a more rapid

drug release kinetics (see chapter 3, Figure 3.18). However, it could be considered that

in general no significative improvement in the biological activity of QM56 derivatives

was achieved when compared to the lead compound.

Page 107: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

73

4.3 Apoptotic inhibitory activity of conformationally constrained peptoid 1

derivatives

As explained in chapter 3, it is admitted that peptoids could hardly be considered as lead

candidates due to the risks of interaction with undesired targets as consequence of their

great conformational freedom. Fortunately, they are molecules simple enough to design

second generation analogues addressed to restrain the conformational freedom. Among

other possibilities, the generation of heterocyclic derivatives in which the ring could

play the scaffold role where the chemical diversity already present in the peptoid could

be inserted, constitutes an attractive strategy. In addition, it is conceivable that upon

such backbone restriction some physicochemical features related to bioavailability and

cellular permeability of the original peptoids could be maintained or even improved,

thus leading to compounds with a better pharmacological profile.

Peptoid 1 cyclization was performed and a seven member ring peptoid 1 derivative,

QM31, was obtained as leading hit for this series (see chapter 4 for further information).

QM31 derivatives were further synthesized in order to identify the role of the different

functional groups in the development of the biological activity of the compound.

Furthermore the size of the scaffold ring was also evaluated by the synthesis of related

derivatives which leading hit was named QM57. However, due to patent pending issues

no further structural details of QM57 and QM57-derivatives can be released at this time.

4.3.1 Conformationally constrained peptoid 1 derivatives inhibit apoptosome assembly

in an in vitro apoptosome reconstitution assay

As it was detailed in the introduction, the hit peptoid 1 was discovered from the

screening of a chemical library using a partially in vitro reconstituted apoptosome [158].

However, in the present study an improved in vitro reconstituted apoptosome assay with

purified recombinant proteins was developed. Then, rApaf-1 was incubated with dATP

and cyt c in the presence of recombinant procaspase 9 (rproCasp-9) and caspase 9

activity was analyzed by the ability of the enzyme to cleave the fluorogenic substrate

Ac-Leu-Glu-His-Asp-afc (Ac-LEHD-afc). To evaluate the inhibitory activity of QM31

Page 108: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

74

series, rApaf-1 was incubated with the selected compounds before the addition of the

other components of the apoptosome. Results are depicted in Figures 4.20 and 4.21.

02

46

810

1214

1618

20

QM31

QM31a

QM31b

QM31c

QM31d

QM31e

QM31f

QM31g,h

QM31i

QM31j

QM31k

QM31l

% C

aspa

se 9

act

ivity

inhi

bitio

n

Figure 4.20. Caspase 9 activity inhibition by QM31 and derivatives. Compounds were tested at 10 μM in all cases.

0

5

10

15

20

25

30

QM57

QM57a

QM57b

QM57c

QM57d

QM57e

QM57f

QM57g

QM57h

QM57i

QM57j

QM57k

QM57l

QM57m

% C

aspa

se 9

act

ivity

inhi

bitio

n

Figure 4.21. Caspase 9 activity inhibition by QM57 and derivatives. Compounds were tested at 10 μM in all cases.

The results obtained showed certain ability to inhibit apoptosome assembly of some

compounds. Although these results were not very promising, an important issue of

compound solubility was detected. QM31 and derivatives are soluble in DMSO, but in

Page 109: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

75

this system the total amount of DMSO in the reaction mixture is critical for the

assembly of the apoptosome. Methods to adjust the compound solubility to the

requirements of the assay are currently under evaluation in the laboratory.

4.3.2 Evaluation of cell toxicity and biological activity of conformationally constrained

peptoid 1 derivatives: QM31 and QM57 derivatives

a) MTT assays: QM31 and derivatives cell toxicity and cell-viability recovery assays

Initially, QM31 was tested in different preliminary cell toxicity and cell-viability

recovery MTT assays. QM31 showed no cell toxicity (Figure 4.22) in the different cell

lines tested and a significant biological activity (Figure 4.23).

As explained above, the cyclic derivative QM31 was active as inhibitor of apoptosis. In

order to seek for further optimization, several structural modifications of QM31 were

carried out. As mentioned in chapter 3 we focused our attention to the 2’,4’-

dichlorophenylethyl substituent attached to the perhydro-1,4-diazepine-2,5-dione ring.

This substituent turned out to be essential for activity and, any attempt of modification

resulted in a loss of antiapoptotic activity. Similar results were found in early attempts

of modification of the 3,3-diphenylpropyl moiety [158]. Then we addressed our

attention to the R1 moiety. Initially a series of QM31 derivatives (QM31a-QM31l) were

synthesized and their cell toxicity and cell-viability recovery checked (Table 4.5). See

chapter 3 for detailed information.

Page 110: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

76

24H48H

72HA549HeLaU-2 OSU937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

24H48H

72HA549HeLaU-2 OSU937Saos-2

0

20

40

60

80

100

% C

ellv

iabi

lity

(% T

otal

cel

ls)

Figure 4.22. Evaluation of cell toxicity in different cell lines by QM31. This compounds was tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

24H48H

72HA549U-2 OSHeLaSaos-2U937

0

10

20

30

40

50

% C

ellv

iabi

lity

(% T

otal

cel

ls)

24H48H

72HA549U-2 OSHeLaSaos-2U937

0

10

20

30

40

50

% C

ellv

iabi

lity

(% T

otal

cel

ls)

Figure 4.23. Evaluation of cell-viability recovery in different cell lines by QM31. The compound was evaluated at 10, 5, and 1 μM (black, gray, and white bars, respectively) after 24, 48, and 72 h of incubation. Data are expressed as the mean ± SE (n > 3). In all cases, SE < 10%.

Page 111: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

77

Table 4.5. Evaluation of QM31 derivatives cell toxicity in U937 and Saos-2 cell lines. Compounds were tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) and cell viability measured after 24 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

Cell line U937 Saos-2

Compound 10 μM 5 μM 1 μM 10 μM 5 μM 1 μM

QM31 87±2a (n = 3)

90±7a (n = 3)

100±1a (n = 3)

85±2 (n = 5)

100±1 (n = 5)

99±1 (n = 5)

QM31a 90±4 (n = 3)

98±2 (n = 3)

98±2 (n = 3)

91±5 (n = 6)

100±1 (n = 6)

76±1 (n = 6)

QM31b 89±6 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

99±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

QM31c 81±5 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

82±2 (n = 3)

98±2 (n = 3)

100±1 (n = 3)

QM31d 73±9 (n = 3)

100±1 (n = 2)

95±5 (n = 3)

100±1 (n = 3)

97±3 (n = 3)

100±1 (n = 3)

QM31e 82±12 (n = 3)

93±6 (n = 3)

96±4 (n = 3)

82±8 (n = 3)

96±4 (n = 3)

100±1 (n = 3)

QM31f 91±8 (n = 3)

97±3 (n = 3)

97±3 (n = 3) ND ND ND

QM31g,h ND ND ND ND ND ND

QM31i 89±5 (n = 2)

98±3 (n = 2)

79±12b

(n = 3) 100±1 (n = 3)

93±3 (n = 3)

97±3 (n = 3)

QM31j 50±5 (n = 2)

74±1 (n = 2)

87±2 b (n = 3)

98±2 (n = 3)

99±1 (n = 3)

95±5 (n = 3)

QM31k 51±10 (n = 3)

92±4 (n = 3)

99±1 (n = 3)

99±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

QM31l ND ND ND ND ND ND

Seeding density 4000 cells/well a Seeding density 2500 cells/well, b Cell viability at concentration of 3,26 μM

A second generation of QM31 derivatives was also synthesized by modifying a

different functional group in the molecule. The lead compound of this new series is

QM57. Different QM57 derivatives were also synthesized and their cell toxicity was

tested in Saos-2 and U937 cell lines (Table 4.6).

Page 112: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

78

Table 4.6. Evaluation of QM57 derivatives cell toxicity in U937 and Saos-2 cell lines. Compounds were tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) and cell viability measured after 24 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

Cell line U937 Saos-2

Compound 10 μM 5 μM 1 μM 10 μM 5 μM 1 μM

QM57 84±5 (n = 3)

96±2 (n = 3)

93±7 (n = 3)

100±1 (n = 6)

99±1 (n = 6)

100±1 (n = 6)

QM57a 75±8 (n = 3)

97±3 (n = 3)

94±6 (n = 3)

85±2 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

QM57b 97±3 (n = 3)

96±4 (n = 3)

100±1 (n = 3)

84±2 (n = 3)

96±1 (n = 3)

100±1 (n = 3)

QM57c 96±2 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

95±3 (n = 3)

95±2 (n = 3)

98±1 (n = 3)

QM57d 88±6 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

94±4 (n = 3)

93±1 (n = 3)

99±1 (n = 3)

QM57e 100±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

QM57f 94±3 (n = 3)

89±4 (n = 3)

92±8 (n = 2)

100±1 (n = 3)

100±1 (n = 3)

100±1 (n = 3)

None of the QM31 or QM57 derivatives synthesized showed cell toxicity at the

concentrations tested. The following step was to determine its possible biological

activity and a possible improvement of QM31 biological activity by selectively

modifying some of its functional groups. For these experiments, U937 and Saos-2 cell

lines were employed and the results obtained are depicted in Tables 4.7 and 4.8.

Page 113: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

79

Table 4.7. Evaluation of QM31 derivatives cell recovery in U937 and Saos-2 cell lines. Compounds were tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) and cell viability measured after 24 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

Cell line U937 Saos-2

Compound 10 μM 5 μM 1 μM 10 μM 5 μM 1 μM

QM31 27 ± 4 (n = 7)

49 ± 5 (n = 8)

32 ± 4 (n = 7)

30 ± 7 (n = 9)

36 ± 12 (n = 9)

46 ± 12 (n = 9)

QM31a 16 ± 7 (n = 6)

20 ± 5 (n = 6)

20 ± 8 (n = 6)

13 ± 7 (n = 3)

58 ± 20 (n = 3)

0 (n = 3)

QM31b 1 ± 1 (n = 6)

12 ± 4 (n = 6)

14 ± 4 (n = 6)

3 ± 3 (n = 3)

10 ± 10 (n = 3)

41 ± 11 (n = 3)

QM31c 4 ± 3 (n = 6)

5 ± 3 (n = 6)

14 ± 6 (n = 6)

0 (n = 3)

0 (n = 3)

22 ± 17 (n = 3)

QM31d 3 ± 3 (n = 6)

7 ± 2 (n = 6)

16 ± 6 (n = 6)

9 ± 6 (n = 3)

9 ± 5 (n = 3)

34 ± 3 (n = 3)

QM31e 2 ± 1 (n = 6)

5 ± 2 (n = 6)

3 ± 1 (n = 6)

0 (n = 3)

16 ± 12 (n = 3)

36 ± 13 (n = 3)

QM31f 0 (n = 6)

0 (n = 6)

0 (n = 6)

0 (n = 3)

0 (n = 3)

0 (n = 3)

QM31g,h 0 (n = 3)

0 (n = 3)

0 (n = 3)

0 (n = 3)

0 (n = 3)

0 (n = 3)

QM31i ND ND ND 23 ± 12 (n = 3)

12 ± 6 (n = 3)

18 ± 9 (n = 3)

QM31j ND ND ND 9 ± 9 (n = 3)

41 ± 22 (n = 3)

64 ± 17 (n = 3)

QM31k ND ND ND 29 ± 5 (n = 3)

23 ± 12 (n = 3)

57 ±30 (n = 3)

QM31l ND ND ND ND ND ND

Page 114: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

80

Table 4.8. Evaluation of QM57 derivatives cell recovery in U937 and Saos-2 cell lines. Compounds were tested at 10, 5, and 1 μM (black, gray, and white bars, respectively) and cell viability measured after 24 h of incubation. Data are expressed as the mean SE (n > 3). In all cases, SE < 10%.

Cell line U937 Saos-2

Compound 10 μM 5 μM 1 μM 10 μM 5 μM 1 μM

QM57 0 (n = 9)

2 ± 1 (n = 9)

2 ± 2 (n = 9)

28 ± 12 (n = 13)

44 ± 15 (n = 9)

46 ± 13 (n = 9)

QM57a 3 ± 1 (n = 6)

8 ± 1 (n = 6)

22 ± 2 (n = 6)

0 (n = 3)

9 ± 7 (n = 3)

8 ± 4 (n = 3)

QM57b 0 (n = 6)

1 ± 8 (n = 6)

5 ± 10 (n = 6)

14 ± 6 (n = 3)

4 ± 2 (n = 3)

12 ± 4 (n = 3)

QM57c 2 ± 1 (n = 6)

2 ± 1 (n = 6)

4 ± 2 (n = 6)

0 (n = 3)

0 (n = 3)

0 (n = 3)

QM57d 0 (n = 6)

0 (n = 6)

3 ± 2 (n = 6)

0 (n = 3)

0 (n = 3)

0 (n = 3)

QM57e 4 ± 1 (n = 6)

1 ± 1 (n = 6)

3 ± 1 (n = 6)

0 (n = 3)

2 ± 2 (n = 3)

10 ± 6 (n = 3)

QM57f 0 (n = 6)

0 (n = 6)

1 ± 2 (n = 6)

2 ± 2 (n = 3)

2 ± 2 (n = 3)

7 ± 6 (n = 3)

Some of QM31 and QM57 derivatives showed certain biological activity, but in any of

the cases their activity was significantly higher than QM31 or QM57. In order to

further confirm the data obtained in cell recovery experiments, caspase 3 activity

measurements assays were carried out.

b) Caspase 3 activity measurements employing QM31 and its derivatives

Caspase 3 activity inhibition assays were performed as explained before. Cells were

subjected to apoptotic insult and treated with QM31 (or QM31-derivatives) at 5 μM.

Then caspase 3 activity measurements on cell extracts were performed at 24, 48 and 72

h after the addition of the treatments (Figure 4.24).

Page 115: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

81

0

10

20

30

40

50

60

70

Saos-2 HeLa U2-OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n

Figure 4.24. Percentage of caspase 3 inhibition in cell extracts that where subjected to apoptotic insult and treated with QM31 5 μM. Caspase 3 activity inhibition was measured after 24, 48 and 72 h (black, grey and white bars, respectively). Data are expressed as the mean ± SE (n > 3).

QM31 proved to be active inhibiting caspase 3 assay in different cell lines. Then, the

next step was to test the ability of the different QM31 derivatives and QM57 derivatives

to inhibit caspase 3 activity after the induction of apoptosis. U937 and Saos-2 cell lines

were chosen for this purpose as examples of unspecific induction of apoptotic cell death

(U937 plus dox) and mitochondrial specific apoptotic cell death (Saos-2 over expressing

Bax protein). Results are depicted in Tables 4.9 and 4.10.

Page 116: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

82

Table 4.9. Percentage inhibition of caspase 3 activity obtained with QM31 analogues in U937 and Saos-2 cell lines after 24 h treatment.

Cell line U937 Saos-2

Compounds 24 h 48 h 24 h 48 h

QM31 19 ± 6 (n = 8)

19 ± 11 (n = 4)

37 ± 9 (n = 10)

12 ± 4 (n = 3)

QM31a 0

(n = 3) 5 ± 3

(n = 3) 14 ± 9 (n = 5)

4 ± 4 (n = 3)

QM31b 0

(n = 3) 3 ± 3

(n = 3) 10 ± 9 (n = 5)

0 (n = 3)

QM31c 11 ± 9 (n = 3)

0 (n = 3)

17 ± 5 (n = 5)

3 ± 3 (n = 3)

QM31d 0

(n = 3) 12 ± 3 (n = 3)

57 ± 12b (n = 3)

8 ± 5 (n = 3)

QM31e 3 ± 3

(n = 3) 4 ± 4

(n = 3) 51 ± 7 (n = 6) ND

QM31f ND ND ND ND

QM31g,h ND ND ND ND

QM31i ND ND 30 ± 7 (n = 6)

15 ± 1 (n = 3)

QM31j ND ND 0 (n = 3)

25 ± 14 (n = 3)

QM31k ND ND 0 (n = 3)

0 (n = 3)

QM31l ND ND ND ND

Page 117: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

83

Table 4.10. Percentage inhibition of caspase 3 activity obtained with QM57 analogues in U937 and Saos-2 cell lines after 24 h treatment.

Cell line U937 Saos-2

Compounds 24 h 48 h 24 h 48 h

QM57 17±7 (n=6)

38 ± 13 (n = 4)

28 ± 8 (n = 10)

15 ± 11 (n = 6)

QM57a 4±3 (n = 6)

16 ± 8 (n = 6)

11 ± 10 (n = 6)

0 (n = 3)

QM57b 9±6 (n = 3)

29 ± 3 (n = 3)

6 ± 3 (n = 6)

1 ± 1 (n = 3)

QM57c 16±8 (n = 4)

48 ± 7 (n = 4)

23 ± 13 (n = 3)

57 ± 16 (n = 3)

QM57d 4±3 (n = 4)

27 ± 12 (n = 6)

0 (n = 6)

0 (n = 3)

QM57e 9±4 (n = 6)

5 ± 3 (n = 5)

0 (n = 6)

6 ± 4 (n = 3)

QM57f 3±2 (n = 5)

57 ± 4 (n = 3)

0 (n = 6)

0 (n = 3)

QM57g 2 ± 1 (n = 3) ND ND ND

QM57h 33 ± 3 (n = 2) ND ND ND

QM57i 18 ± 5 (n = 2) ND ND ND

QM57j 2 ± 0 (n = 3) ND ND ND

QM57k 27 ± 12 (n = 6) ND ND ND

QM57l 58 ± 5a

(n = 5) ND ND ND

QM57m 69 ± 6a (n = 3) ND ND ND

ND: not determined. n refers to the number of samples used for quantification. Each sample refers to a plate-well containing a defined number of cells. a Compound was tested in this case at 10 μM.

As expected from previous results, replacement of the 2’,4’-dichlorophenylethyl moiety

at R1 by a non-aromatic moiety resulted in a decrease of potency (compounds QM31c,

QM31d, QM31e, QM31i). However, the behavior of compound QM31c was a bit aside

provided that the inhibition of caspase 3 activity was systematically close to 20 % while

the cell recovery ability was insignificant. Also, the activity in the cell recovery

experiment for this compound was slightly higher at 1 μM than at 5 μM. It should be

mentioned that in certain occasions, biological assays developed with cell extracts and

Page 118: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

84

whole cell systems provide results which are more difficult to rationalize when

compared to those obtained from in vitro experiments.

Furthermore, parallel studies addressed to analyze the unspecific toxicity of the

compounds, suggested that only compound QM31d was toxic. Different

electronegative atoms (such as O or F) in several positions (p-, m- or o-) were also used

in order to evaluate the effect of the electronic density changes on this family of

apoptosome inhibitors (namely, QM31a, QM31e, QM31i and QM31j). In general,

although all these analogues exhibited capability to reduce the apoptosis induced in

Saos-2 cell line, none of them showed a significant improvement when compared to

compound QM31. Similar results were obtained in the other models of our cell panel

mentioned above (HeLa, A549, U-2 OS and U-937 cells, data not shown). Taken all

together, it is not easy to make an appropriate SAR as no clear trend was obtained.

However, it would be possible to suggest that the presence of a second 2’,4’-

dichlorophenylethyl substituent is not essential but important for the activity, probably

due to the presence of the two electronegative atoms and, certainly, of the aromatic ring.

4.4 Apoptotic inhibition activity of the QM31 and QM57 polymeric derivatives

As stated in section 4.2, it is possible to modulate drug release rate by modifying the

number and the nature of the amino acids that constitute the linker between the polymer

(PGA) and the bioactive compound (peptoid 1) in presence of the lysosomal enzyme

cathepsin B. Different peptide linkers were assayed in order to obtain nanoconjugates

with different drug release kinetic profiles, thus permitting its application to broader

spectra of future treatments (see detailed information in chapter 3). At the same time,

the strategy of fusion to a polymeric carrier was also applied to the parental cyclic

compounds QM31 and QM57 in order to take advantage of the increased activity of

these compounds when compare to peptoid 1. All these new polymeric derivatives

were tested for caspase 3 activity inhibition after induction of cell death at different

time-points in U937 and Saos-2 cell lines (Table 4.11).

Page 119: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

85

Table 4.11. Inhibition of apoptosis as determined by inhibition of caspase 3 activity by the different heterocycles QM31 and QM57 polymeric derivatives.

U937 Saos-2 Compound

24 h 48 h 24 h 48 h

QM31-P2 74±3 (n=3) 85±1 (n=3) 67±4 (n=3) ND

QM31-P3 ND ND 61±7 (n=9) 84±9 (n=6)

QM31-P4 ND ND 53±3 (n=9) 100±3 (n=6)

QM57-P1 ND ND 58±5 (n=6) 100±10 (n=6)

QM57-P2 ND ND 27±9 (n=6) 95±20 (n=6)

It is important to note that QM31-P1 was not evaluated on this biological setting as drug

release was very low even after 48 h and preliminary cell toxicity experiments showed

its disadvantage in front of the other derivatives. The overall data obtained from the rest

of QM31 polymer derivatives suggest that the strategies chosen in order to better

internalize peptoid 1 have been proved to be effective. Not only did the peptoid 1

derivatives designed result non toxic for the cells, but also exerted significative

biological activity preventing caspase 3 activation in the different assays performed and

in the Saos-2 intrinsic apoptosis induction cell model. The subsequent conjugation of

QM31 and QM57 to PGA also represents an attractive strategy to improve the

biological activity of the compounds taking profit of the lysosomotropic drug release of

polymer conjugates and the higher specificity of conformationally constrained peptoid 1

drug-candidates for their protein target.

Page 120: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

86

Page 121: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

87

CHAPTER 5. PEPTOID 1 DERIVATIVES AS

INHIBITORS OF THE APOPTOSOME: MOLECULAR

MECHANISM OF ACTION

In previous chapters it has been described the chemical optimization of peptoid 1

rendering different families of peptoid 1 derivatives with improved biological activity

and decreased toxicity. In the present chapter the molecular mechanism of action

behind the antiapoptotic properties of peptoid 1 and its derivatives is analyzed. The

main objective was the determination of the binding site of these compounds on Apaf-1

and to analyze the in cell molecular mechanism of action.

5.1 Characterization of peptoid 1 binding site in different in vitro systems

As early mentioned, the apoptosome is assembled when seven Apaf-1:cyt c

heterodimers oligomerize to form a ‘wheel’ structure that has the ability to recruit

procaspase 9 [17, 39, 41, 44]. To initially characterize the binding site of peptoid 1 to

the apoptosome a carboxyfluoresceine-based peptoid 1-analogue (CF-peptoid 1) was

synthesized. CF-peptoid 1 bound to rApaf-1, but not to cyt c and other control proteins

with dissociation constant (Kd) 57 ± 12 nM as determined in a fluorescence polarization

spectroscopy assay [158]. Nevertheless the binding constant value contrasted with the

concentration of peptoid 1 and peptoid 1 derivatives that was needed to inhibit the

apoptosome activity in the in vitro reconstitution assays (Figures 4.20 and 4.21). A

putative explanation to reconcile these data is currently under investigation as a part of

the pharmacological development of this class of compounds. The data suggests that

peptoid 1 derivatives can be absorbed with different affinities onto the 96-well plates

used in the assays (data not shown). Furthermore, it was also shown that cyt c did not

interfered with the inhibitory activity of peptoid 1 on the apoptosome-dependent

procaspase 9 cleavage, suggesting that peptoid 1 directly binds to rApaf-1 in a binding

site different from that of the cyt c recruitment site [158]. In principle, the peptoid may

have prevented any of the steps leading to caspase 9 activation including Apaf-1

oligomerization and caspase recruitment. It was shown that peptoid 1 precluded

recruitment of procaspase 9 by the apoptosome in a rApaf-1-mediated pull-down of

non-cleavable [35S]-Met procaspase 9 [158].

Page 122: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

88

As mentioned before, Apaf-1 binds to and recruits procaspase 9 to the apoptosome

through a CARD(Apaf-1) - CARD(procaspase 9) interaction [39]. Then it was reasoned

that if the Apaf-1 inhibitors inhibit procaspase 9 recruitment, the Apaf-1 CARD domain

could participate in the binding site of peptoid 1 and its derivatives to Apaf-1. In order

to evaluate this hypothesis a series of assays that included fluorescence polarization

spectroscopy [217], NMR [218], yeast two hybrid system (Y2H) [219, 220] and

molecular modeling were used. To this end recombinant Apaf-1 CARD (rCARDApaf-1)

domain was produced both in normal and minimal media to have access to 15N-enriched

Apaf-1 CARD domain (15N-rCARDApaf-1 see materials and method section for further

information).

5.1.1 Fluorescence polarization spectroscopy

There is a time delay (nano seconds) between exciting a molecule and the molecule

emitting fluorescence. Motion of the molecule during this time period can be detected

as a loss in polarization of fluorescence. Binding of a fluorophore to a larger protein

will result in an increase in effective size and so a reduction in motion, detected as an

increase in fluorescence polarization [217]. Fluorescence polarization spectroscopy was

helpful to identify Apaf-1 as the target of peptoid 1 among the proteins that constitute

the apoptosome [7]. As mentioned before, Apaf-1 binds to and recruits procaspase 9 to

the apoptosome through a CARD(Apaf-1) - CARD(procaspase 9) interaction [39].

Then it was reasoned that if peptoid 1 was able to bind to Apaf-1 its inhibitory effect

could be exerted by inhibiting procaspase 9 recruitment, therefore the Apaf-1 CARD

domain could participate in the binding site of peptoid 1 and its derivatives to Apaf-1.

For this purpose, rCARDApaf-1 was obtained from Escherichia coli (E. coli) and the

ability of CF-peptoid 1 to interact with rCARDApaf-1domain was measured by

fluorescence polarization (Figure 5.1). The output of the experiment suggest that

peptoid 1 binds to the CARD domain of Apaf-1 with an affinity similar to that obtained

when the full length Apaf-1 protein was used suggesting that the CARD domain defines

the binding site of peptoid 1 to Apaf-1.

Page 123: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

89

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

A

B

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

A

B

Figure 5.1. CF-peptoid 1 binds to rCARDApaf-1. (A) Chemical structure of CF-peptoid 1 (B) A 60 nM solution CF-peptoid 1 in buffer A was titrated with increasing concentrations of rCARDApaf-1 (■) and fluorescence polarization was measured at 30 ºC. The data (mean ± s.d.; n=3) were recorded in millipolarization units (mP) and adjusted to a two-state binding model.

5.1.2 NMR 15N-rCARDApaf-1 peptoid 1 interaction assays

Nuclear magnetic resonance is defined as a physical resonance phenomenon involving

the observation of specific quantum mechanical magnetic properties of an atomic

nucleus in the presence of an applied, external magnetic field. This phenomenon only

appears in atoms that have an odd number of nucleons, which implies the existence of

an intrinsic magnetic moment and angular momentum, that translates into a spin number

larger than 0 [221]. Initially, the most commonly used nuclei were 1H and 13C in order

to develop 1D NMR spectra. However, the introduction of more complex molecules

aroused overlapping resonances and increased line-widths problems. These facts led to

the development of 2D NMR spectra making use of other isotopes such as 2H, 10B, 11B, 14N, 15N, 17O and 19F. Among the most used 2D NMR experiments, 2D HSQC

(Heteronuclear Single-Quantum Correlation) experiments employing 15N-labelled

proteins are very informative. This spectrum allows the obtention of 2D heteronuclear

chemical shift correlation maps between directly-bonded 1H-15N atoms with a higher

sensitivity when compared with 13C experiments [222]. NMR spectra can be considered

as protein fingerprints, any change in the structure of the protein will be translated in a

change of the NMR spectra pattern. Taking profit of this property and our previous

Page 124: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

90

experience in the study of protein-small molecule interaction [223], the ability of PEN-1

to interact with Apaf-1 CARD domain was studied employing 2D HSQC experiments.

15N- rCARDApaf-1 was recombinantly produced in E. coli in minimum media with 15NH4Cl as only source of nitrogen (see materials and methods for further information)

[48]. The amount of compound needed for the experimental setting and solubility

matters, precluded the use of small molecule derivatives of peptoid 1 then PEN-1

derivative was used to investigate the binding of peptoid 1 derivatives to 15N-

rCARDApaf-1. A 15N-HSQC spectroscopy procedure was implemented. As shown in

Figure 5.2 a progressive disappearance of signals from unbound 15N- rCARDApaf-1 was

observed, along with concomitant appearance of a new set of signals. These new

signals should arise from the stabilization of a 15N-rCARDApaf-1/PEN-1 complex

although the output of the experiment also suggested the appearance of PEN-1-induced

partial denaturation of the protein. As a continuation of this work new strategies are

being explored in the lab in order to have access to perform this experiment with less

interfering peptoid 1 derivatives that in turn will allow a detailed mapping of the

interaction surface.

Figure 5.2 PEN-1 binds to 15N-rCARDApaf-1 domain [48].

Page 125: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

91

5.1.3 Yeast two-hybrid system

Fluorescent polarization and 2D HSQC spectroscopy assays pointed out the existence of

a possible interaction between Apaf-1 CARD domain and peptoid 1. In order to

confirm this fact in a more biological setting a yeast two-hybrid system (Y2H) was

employed.

Y2H was implemented by Stanley Fields and coworkers [219, 224] twenty years ago

and this strategy has completely transformed the study of proteins. This technique takes

profit of the modular nature of many site-specific transcriptional activators, which are

composed of a DNA-binding domain (BD) and a transcriptional activation domain

(AD). The BD targets the AD to the specific genes that will be expressed and once

together the transcriptional machinery can bind to the gene promoter and start

transcription. The basis of the yeast two-hybrid system is the fact that BD and AD do

not need to be covalently bond to activate transcription. However, they can be brought

together if they are fused to two proteins X and Y and these proteins interact. Then, BD

and AD will be in proximity and can interact and activate the corresponding promoter

(Figure 5.3) [225].

In practice, the two plasmids containing BD-X and AD-Y fusions (bait and prey

plasmids, respectively) are introduced in a cell containing one or more reporter genes.

Normally, an auxotrophy marker is used as reporter gene which allows yeast cells to

grow on a selective medium lacking from this specific gene product. The interaction X-

Y makes possible the activation of the expression of the auxotrophy marker and yeast

cell survival as BD and AD can bind together to the promoter (Figure 5.3). If

something (e.g. inhibitor) impedes the interaction among X and Y proteins, cells will

not be able to grow as the auxotrophy marker promoter will not be activated.

There are a large number of Y2H versions involving different BD and AD. In the

experiments performed in this section, pGilda and pJG4-5 plasmids were employed as

bait and prey, respectively (see Figure 5.4 and Table 5.1 for plasmid and constructs

description). Genetically modified yeast strain EGY048 unable to produce tryptophan

and histidine and containing the leucine reporter gene (LEU2, activable by LexA and

Page 126: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

92

B42 binding) [226, 227] was grown in a restrictive medium and transformed according

to Figure 5.5.

promoter reporter gene

X Y

ADBD

Transcriptionmachinery

ON

I

promoter reporter gene

X

Y

AD

BD OFF

XAD

BD

Z

OFF

promoter reporter gene

A

B

C

promoter reporter gene

X Y

ADBD

Transcriptionmachinery

ON

promoter reporter gene

X Y

ADBD

X Y

ADADBD

Transcriptionmachinery

ON

I

promoter reporter gene

X

Y

AD

BD OFF

I

promoter reporter gene

X

Y

AD

Y

ADAD

BD OFF

XAD

BD

Z

OFF

promoter reporter gene

XADAD

BD

Z

OFF

promoter reporter gene

A

B

C

Figure 5.3. Yeast two-hybrid system (A) Binding domain (BD) is fused to protein X. Unless a protein Y is able to interact with X, the activation domain (AD) will not be in close proximity to BD and transcription machinery will not be recruited. If cells are growing in a restrictive medium and the reporter gene is an auxotrophic marker no cell growing will be observed in this condition. (B) Interaction among X and Y proteins results in a functional activator of transcription. Transcription machinery is recruited and the reporter gene is transcripted. Cell growth will be observed. (C) The introduction of molecules that impede interaction among X and Y proteins (I) leads to the inhibition of reporter gene transcription. No cell growth will be obtained.

pGilda6570 nt

pJG4-56449 nt

pGilda6570 nt

pJG4-56449 nt

Figure 5.4. pGilda and pJG4-5 plasmids structure (modified from [228, 229]).

Page 127: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

93

Table 5.1. Plasmid constructs employed in the experiments. Plasmid Selection gene Promoter BD AD Fusion proteins

pGilda His3 GAL1* LexA -

Empty

Apaf-1 (95-530)

Apaf-1 CARD

Procaspase 9 CARD

pGJ4-5 Trp1 GAL1* - B42

Empty

Apaf-1 (95-530)

Apaf-1 CARD

Procaspase 9 CARD *Galactose inducible expression. No expression in presence of glucose.

Transformed cells were selected and the good performance of the system was checked

in different mediums (Figure 5.5). In a restrictive medium lacking from glucose, His,

Trp and Leu and containing galactose, only yeast cells transfected with a bait and prey

plasmids able to interact (constructs 1, 6, 12 and 15 in Figure 5.5) were able to grow.

Proved the selectivity of the system, the ability of QM31 to inhibit Apaf-1 was tested.

The aim of this experiment was to determine if the ability of peptoid 1 and derivatives

to inhibit apoptosome function was caused by inhibiting Apaf-1 oligomerization or

CARD(Apaf-1) - CARD(procaspase 9) interaction. With this objective, cell systems 1,

6, 12 and 15 were treated with different concentrations of the compound and incubated

for 96 h. After this time, no significative differences in the OD values were observed in

the systems 1, 6 and 15. However, the addition of QM31 in cell system 15 inhibited

cell growing when compared with the control (Figure 5.6). These results indicate that

QM31 does not inhibit Apaf-1 oligomerization but it impedes the interaction between

Apaf-1-CARD and procaspase 9-CARD domains as it was demonstrated in yeast cell

system 15.

Page 128: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

94

Figure 5.5. Yeast two-hybrid system. (A) Bait and prey plasmids transformations made in yeast EGY048 strain. (B) Restrictive medium lacking glucose, his and trp was employed to select cells transformed with both bait and prey plasmids. (C) Restrictive medium lacking glucose, his, trp and leu was used to select the existence of two-hybrid interactions among bait and prey plasmids. (D) Restrictive medium lacking galactose, his, trp and leu to demonstrate the dependence of hybrid-protein expression on GAL1 promoter. In the presence of glucose, GAL1 promoter is inhibited and no expression of fusion proteins or his and trp aminoacids is obtained.

Page 129: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

95

00,20,40,60,8

11,21,41,61,8

pGilda/pJG4-5 pGilda Apaf-1CARD/pJG4-5 C9

CARD

pGilda C9CARD/pJG4-5Apaf-1 CARD

pGilda Apaf-1 (95-530)/pJG4-5 Apaf-

1 (95-530)

OD

(600

nm

)1.8

1.41.6

1.21

0.80.60.40.2

000,20,40,60,8

11,21,41,61,8

pGilda/pJG4-5 pGilda Apaf-1CARD/pJG4-5 C9

CARD

pGilda C9CARD/pJG4-5Apaf-1 CARD

pGilda Apaf-1 (95-530)/pJG4-5 Apaf-

1 (95-530)

OD

(600

nm

)1.8

1.41.6

1.21

0.80.60.40.2

0

Figure 5.6 OD values at 600 nm observed 96 h after the treatment. Absorbance values for yeast cells treated with DMSO or QM31 at concentrations of 1.25, 2.5 and 5 μM (black, striped, grey and white bars, respectively) are depicted in the graphic. No significant differences in cell growing were observed at lower time-points (data not shown).

5.1.4 In silico modelization analysis

This study was performed by our collaborators Drs. Jordi Bujons and Ángel Messeguer

(Department of Chemical and Biomolecular Nanotechnology, IQAC, CSIC, Barcelona).

In a preliminary assay Apaf-1 protein surface was explored in order to determine the

QM31 potential binding points, the most probable point of interaction was located in a

cavity located in the interphase between Apaf-1 CARD and NOD domains. This cavity

is close to a probable nucleotide binding point, derived form the localization of an ADP

molecule in the crystal structure of Apaf-1 (CARD-NOD) [48]. In the next step, a

docking study focused on this cavity was done. The docking process consisted of: a)

generation of a great Lumber of QM31 conformers (max 50,000), b) study of the

possible dispositions of this ligand making use of an algorithm based on the alignment

of inertia moments, c) elimination of duplicates and evaluation of each conformer

bound to the protein employing a scoring function (London ΔG), d) selection of the 20

% more favorable conformers and optimization through a minimization of their energy,

e) elimination of duplicates and re-evaluation of the scoring function [230].

Page 130: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

96

By this way, 1748 different dispositions were obtained representing the possible

conformations of the QM31 bound to the cavity aforementioned. From these

dispositions, Figure 5.7 represents the best result obtained for QM31 (the one with less

binding energy). The cavity is composed of the aminoacidic residues Tyr24, Asp27,

His28, Ser31, Asp32, Val69, Ser70, Asn73, Ala74, His77, Ser98, Lys100, Asp101,

Ser104, Ile106, Arg111, Val124, Val125, Arg122, Phe126, Val127, Thr128, Glu293,

Leu297, Gln416 and Asn420. As depicted in Figure 5.7, the complex is stabilized

through interactions cation−π, among the Lys100 and Arg 111 residues and two of the

aromatic substituents of QM31; hydrogen bridge interactions, among the residues His28

and Ser31 and two of the apolar residues from the carbonylic groups of the compound

and hydrophobic interactions with the apolar residues Ile106, Val124, Val125, Phe126,

Val127 and Leu297 (Figure 5.8).

The localization of QM31 in this cavity allows us to propose a possible mechanism that

explains the Apaf-1 proapoptotic activity inhibitory effect of QM31. First, this cavity is

connected through a channel with the ADP binding site, as a consequence it is possible

that QM31 blocks the access of ATP/dATP, necessary for Apaf-1 activation, to this

place. Secondly, Riedl et al. [48] propose that the CARD-CARD interaction between

Apaf-1 and procaspase 9 needs a previous conformational change of Apaf-1 in order to

show some residues less accessible in the “closed” structure of Apaf-1 (CARD-NOD).

The interaction with QM31 could stabilize the Apaf-1 “closed” structure avoiding the

interaction with the procaspase 9 CARD and inhibiting, thus, the formation of the

apoptosome. Finally, it cannot be forgotten that QM31 could be also able to bind to the

CARD-CARD complex, if this is assembled, perturbing its function.

Page 131: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

97

Figure 5.7. Model of the complex CARD-NODApaf-1/QM31 obtained for docking. (A) The model represents the energetically most favorable disposition obtained for QM31 (yellow), while in green and blue the CARD and NOD Apaf-1 domains are represented, respectively [48]. (B) Representation of the most energetically favorable disposition of QM31 and the surface of the protein colored according to electrostatic potential (negative in red and positive in blue).

Figure 5.8. Diagram of QM31 and Apaf-1 interaction determined by docking.

Page 132: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

98

5.2 Characterization of peptoid 1 binding site in whole cell systems

Previous results using cell extract-based experiments [158] (see chapter 4) together with

those showed in the present chapter suggest that the molecular mechanism of action of

peptoid 1, and their derivatives, will imply binding to the CARD domain of Apaf-1

inducing a conformational change that will preclude the interaction with the CARD

domain of procaspase 9. Then, the formation of the apoptosome is inhibited and the

mitochondria-dependent apoptosis signaling is interrupted. In order to further

demonstrate the proposed mechanism of action, a series of chemical biology

experiments were designed to address this question in the whole cell environment.

5.2.1 Cell extracts fractionation studies

HeLa extract cells were treated with control vehicle PBS, dox or dox in the presence of

QM56 (see Materials and Methods for further detail). Then, the different samples

where subjected to gel filtration and aliquots blotted against Apaf-1 and procaspase 9

[55]. In the control extracts, without apoptosis induction (Figure 5.9 A), there is no

evidence for the presence of procaspase 9 in those fractions that correspond to the Mw

of the apoptosome (approximately 750 kDa – circled in orange). When apoptosis is

induced after treating cells with dox (Figure 5.9 B), procaspase 9 is found at the high

Mw fractions that correspond to the apoptosome (with the antibody used for Apaf-1 we

could not detect Apaf-1 in these fractions and only the monomeric Apaf-1 in

equilibrium is detected). However, in cells treated with dox in the presence of QM56

the recruitment of procaspase 9 by the apoptosome is inhibited (Figure 5.9 C). In case

of Apaf-1 blot, it was not possible to find the protein in the blot conditions employed in

fractions higher than those expected for the monomer (MW= 135 kDa – circled in

green), so further experiments should be developed in order to improve Apaf-1

detection.

Page 133: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

99

Figure 5.9. Gel filtration results for HeLa cells. Cells were treated with PBS A), dox 1.25 μM B) or dox in the presence of QM56 50 μM, drug-equivalents C), for 24 hours. Cells extracts were obtained and a gel filtration chromatography was developed. 750 μL fractions were collected and a Western-Blot against Apaf-1 (circled green) and procaspase 9 (circled orange) was performed.

5.2.2 Inhibition of apoptosome-dependent apoptosis induction

As previously shown in chapter 4, an “only intrinsic” apoptosis system was employed in

order to determine the specificity of peptoid 1 derivatives for its target, Apaf-1. This

system was based on the doxy-dependent overexpression of the MOMP inducing

protein Bax. In the attempt to better characterize peptoid 1 target and discard any

possible off-target effect of our compounds related to mitochondrial proteins, apoptosis

was induced in an apoptosome exclusive-dependent manner by the addition of the

apoptosome assembly activator described by Nguyen et al. [151], compound 2 (Figure

5.10 - see Introduction)

Page 134: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

100

N

O O

Cl Cl

Figure 5.10. Chemical structure of compound 2.

For our purposes, U937 cell lines were plated and treated with 20 μM compound 2

alone of in combination with the polymeric conjugates QM56 and QM31-P4 at 50 μM

drug-equivalents (see materials and methods for further information) [200] and

incubated for 24 and 48 h. Caspase 3 activity was analyzed at different times and a

markedly caspase 3 activity inhibition was observed in the presence of both QM56 and

QM31-P4, which would indicate a specificity of action of peptoid 1 and QM31 for the

apoptosome (Table 5.1).

Table 5.2. Percentage of caspase 3 activity inhibition after apoptotic induction with compound 2. Data are expressed as the mean ± SE (n = 3).

Cell line U937 Saos-2

Compounds 24 h 48 h 24 h 48 h

QM56 82 ± 1 64 ± 1 ND ND

QM31-P2 27 ± 6 95 ± 2 22 ± 2 41 ± 14

The main objective in this chapter was to map the binding site of peptoid 1 and its

derivatives on Apaf-1 and to analyze the in cell molecular mechanism of action. The

combined results from the different experimental settings that included in vitro, in silico

or ex vivo approaches converge to a selective mechanism of action. Peptoid 1 binds to

Apaf-1 CARD domain and precludes procaspase 9 recruitment as demonstrated from

fluorescence spectroscopy and NMR experiments. Such a molecular mechanism of

action occurs in vitro and in vivo as demonstrated from the Y2H and cell extracts

fractioning experiments. The binding site of peptoid 1 on Apaf-1 is probably located at

the CARD-NOD interface (docking experiments) however the ability of Apaf-1 to

oligomerize is not interfered by peptoid 1 derivatives (from Y2H experiments). Finally,

a specific apoptosome assembly activator was employed and peptoid 1 derivatives were

able to inhibit the apoptosis induction, proving again the specificity of the compounds

for its target and their efficiency inhibiting apoptosis.

Page 135: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

101

CHAPTER 6. CHARACTERIZATION OF THE

CYTOPROTECTIVE EFFECT OF QM31

As mentioned in the introduction a critical feature of apoptosis is MOMP that leads to

the egress of proteins that activate the proteases responsible for cell death. We were

interested in the study of the mitochondria events that precede apoptosome formation

under conditions of apoptosome inhibition. The experiments shown in this section were

in part performed in the laboratories of Prof. Guido Kroemer (Cancer, Apoptosis and

Immunology laboratory at the Institut Gustave Roussy in Paris, France) and Prof.

Douglas R. Green (Department of Immunology of St. Jude’s Children Research

Hospital in Memphis, USA).

The study was mainly based on flow cytometry (FC) analysis of: i) Caspase 3 cleavage;

ii) Annexin V/Propidium iodide (Ann V/PI) staining; iii) 3,3'- Dihexyloxacarbocyanine

iodide /PI (DiOC6(3)/PI) staining; iv) Cyt c release measurements. Also a cell

clonogenic assay was implemented.

i) As it was commented in chapter 1, caspases are present in the cells as inactive

zymogens that are proteolytically activated upon apoptosis induction. The caspase 3

zymogen is hydrolyzed into the two subunits p17 and p19 that will form the active

dimer. Specific antibodies have been developed against both subunits. In the present

study we used a fluorescent labeled anti-p17 to monitorize caspase 3 cleavage. [231].

ii) The Ann V labeling was first described by Fadok et al. [232, 233]. Ann V is a

protein belonging to the family of annexin proteins. Although there is no clear function

attributed to Ann V, this family of proteins acts as membrane scaffolds and they are

implicated in the inflammatory response and apoptosis among other functions. The Ann

V labeling or affinity assay is based on the ability of this protein to bind to

phosphatidylserine (PS) membrane containing surfaces. PS exposure on the surface of

cellular membranes is a universal phenomenon of all the cells initiating the process of

apoptosis [233] and Ann V is quickly bound to this phospholipid. The conjugation of

Page 136: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

102

Ann V to a fluorescent marker, such as the fluorescein derivative FITC (fluorescein

isothiocyanate), and its subsequent addition to cells allows detecting by fluorescence

measurements specifically cells that have initiated apoptotic process (AnnV+) [234].

However, one of the “drawbacks” of this technique is the low binding of Ann V to cells

undergoing necrosis, so in order to determine “completely dead” cells, a different

staining has to be done [233, 235]. In order to determine the amount of dead cells

propidium iodide (PI) staining is employed. PI is a fluorescent molecule able to

intercalate in the DNA only in those cells in which the plasmatic membrane is broken or

seriously damaged (PI+) [236]. For this reason, it is has been broadly used as a

complementary staining of Ann V in order to differentiate between apoptotic

(AnnV+/PI-) and necrotic cells (AnnV+/PI+).

iii) 3,3’-Dihexyloxacarbocyanine iodide (DiOC6(3)) is a green fluorescent dye

employed for the staining of vesicles, mitochondria and reticulum in the cells. In the

study of apoptosis, this dye has been employed as a marker of mitochondria membrane

potential (ΔΨm) that is related to the degree of mitochondrial integrity [236, 237]. Only

cells with an intact mitochondrial membrane are able to be stained with DiOC6(3) and

as a consequence dead cells or cells undergoing apoptosis present low DiOC6(3)

staining profile. Like Ann V, DiOC6(3) only indicates cells that undergo apoptosis but

cannot distinguish between apoptotic and dead cells. For this reason, this dye is usually

employed in combination with PI.

iv) Furthermore, the analysis of cyt c release was also performed by FC. The assay is

based on the two different localizations that cyt c can have in the cell: mitochondrial

(healthy cells) and cytosolic (apoptotic cells after MOMP). A restrictive fixation and

permeabilization of cells allows the elimination of cytosolic components without

affecting organelles. As a consequence, cytoplasmic released cyt c is washed away.

The subsequent staining with a specific anti-cyt c antibody and revelation with a

fluorescent secondary antibody (e.g. FITC conjugated) allows selective staining of cell

containing mitochondrial cyt c [238]. In order to complement the FC study of cyt c

release, cyt c based immunofluorescence studies were also performed. Here we

followed the characteristic mitochondrial network provided when cyt c is inside the

mitochondria in healthy cells that turns out to a diffuse fluorescent signal in cells

Page 137: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

103

undergoing MOMP with cyt c released into the cytosol [239, 240]. Cyt c release studies

were complemented with an kinetic analysis. To this end a HeLa cell line stably

transfected with pBabe cyt c-GFP (Heltog) was chosen as cellular model [36, 37].

Green fluorescent protein (GFP) has broadly used as fluorogenic marker of the fused

protein under study [241]. The GFP is composed of 238 amino acids (26.9 kDa) and it

was originally isolated from the jellyfish Aequorea victoria that fluoresces green when

exposed to blue light. When compared to normal HeLa, Heltog cell lines presented a

higher division rate and were more resistant to apoptotic insults. At the same time,

when fluorescent studies were performed a green cytoplasm background was observed.

Whether or not this background was consequence of a basal leakage of cyt c was not

determined, however a selection of lowered fluorescent background cells was

performed to diminish interferences with the actual apoptosis-dependent cyt c release.

The clonogenic assay is considered as an appropriate test to determine whether or not

cells can recover after apoptotic insults. This assay is based on the ability of a cell to

proliferate indefinitely, thereby retaining its reproductive ability to form a large colony

or a clone [242, 243]. Then, cells are seeded at extremely low density (see Materials

and Methods for further information) and treated with the apoptosis-inducing agent

alone or in combination with apoptosis inhibitors. After 2-3 weeks, the amount of

colonies formed (those containing more than 50 cells) is quantified.

6.1 Characterization of QM31 cytoprotective effect in different cellular models: 6.1

Characterization of QM31 cytoprotective effect in different cellular models”

As shown in Section 4.3, QM31 was able to inhibit apoptosis in the different

transformed human cell lines tested. Moreover, QM31 efficiently inhibited cell death

induced by doxy-inducible Bax over expression in human osteosarcoma cells [200].

These functional assays, performed on intact cells, suggested that QM31 may constitute

the first representative of a new class of cytoprotective agents that inhibit the

apoptosome yet have no direct effect on the proteolytic activity of caspases.

The objective here was a comparative evaluation in terms of efficiency and final

outcome of two different antiapoptotic strategies, caspase inhibition versus apoptosome

Page 138: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

104

inhibition. The pan-caspase peptide-based inhibitor Z-Val-Ala-Asp-fluoromethylketone

modified with an ester group Z-Val-Ala-Asp(OMe)fluoromethylketone (Z-VAD-fmk)

(Figure 6.2) to increase its cellular permeabilization was used.

6.1.1 Cytoprotective effects of QM31 and Z-VAD-fmk in A549 cells

Non small cell lung cancer (NSCLC) A549 cells are sensitive to the chemotherapeutic

drug cisplatin (cis-diamminedichloridoplatinum (II) - CDDP - Figure 6.1) and apoptosis

cell death is activated with this treatment. CDDP is a platinum-based drug employed in

the treatment of different types of cancer including NSCLC. It acts by forming

platinum complexes inside the cells. These complexes bind to DNA causing

crosslinkings that in the last term trigger apoptosis. The mechanism of apoptosis

induction is p53-dependent.

Pt

Cl NH3

Cl NH3

Figure 6.1. CDDP chemical structure.

Z-VAD-fmk is a cell-permeant pan caspase inhibitor that irreversibly binds to the

catalytic site of caspases and can inhibit induction of apoptosis. Its effect as caspase

inhibitor was first described over a decade ago [244-247], nowadays it is broadly used

as apoptosis inhibitor control. However, Z-VAD-fmk also inhibits other proteolytic

enzymes like cathepsin B and calpain I [248].

O

O

HN

O

NH

O

HN

O

O

O

F

Figure 6.2. Z-Val-Ala-Asp-fmk chemical structure.

To proceed with the comparative study, cells were pretreated with Z-VAD-fmk before

the addition of CDDP. In the case of QM31, the apoptotic insult was added before the

Page 139: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

105

addition of QM31. Cells were then incubated for 48 h till the different stainings and

flow cytometry analysis were performed.

The proteolytic maturation of caspase 3 was monitored 48 after the addition of the

treatments. The results obtained are depicted in Figure 6.3 A,B. As expected, both Z-

VAD-fmk and QM31 relevantly reduced the percentage of cells displaying caspase 3

activation upon CDDP treatment (Figure 6.3 B). These data are in agreement with

previous data showed in chapter 5 in which caspase 3 enzymatic activity was measured

in cell extracts. When the fate of cells was monitored by the combined staining with the

vital dye PI and Ann V (Figure 6.3 C,D), we found that Z-VAD-fmk and QM31 were

equally efficient in reducing the frequency of dead (PI+) and dying cells (PI

-/AnnV

+)

(Figure 6.3 D). The fact that QM31 is slightly less potent than Z-VAD-fmk in

inhibiting caspase activation (Figure 6.3 B), yet displays an analogous efficacy in

preventing cell death (Figure 6.3 D), suggests that the cytoprotective effects of QM31

may not be exclusively mediated by caspase inhibition.

Intrigued by the cellular events underlying the aforementioned discrepancy, the effect of

QM31 and Z-VAD-fmk on mitochondrial alterations that precede cell death and in

particular on MOMP and ΔΨm dissipation was compared. MOMP was monitored by

assessing the mitochondrial release of cyt c, either by in situ immunofluorescence

microscopy, or by cytofluorometry (Figure 6.4 C,D). Using either of these two

methods, it was found that CDDP-induced MOMP was only partially inhibited by Z-

VAD-fmk, yet strongly reduced by QM31 (Figure 6.4 B,D). The loss of ΔΨm and

subsequent cell death were also determined by simultaneous staining with the ΔΨm-

sensitive cationic DiOC6(3) and PI (Figure 6.4 E,F). In accord with published

observations, Z-VAD-fmk was able to stabilize the ΔΨm even in cells that had

undergone MOMP. Z-VAD-fmk and QM31 were equally potent in maintaining high

ΔΨm levels (Figure 6.4 F). This Apaf-1-dependent inhibition of cyt c release is in

agreement with previous studies in which a MOMP amplification loop was described

involving apoptosome formation and subsequent caspases 9 and 3 activation [249]. In

this model, caspase 3 would be able to process Bid into its truncated form tBid that

subsequently would activate Bax/Bak MOMP induction. The inhibition of Apaf-1 or

caspase 9 markedly reduced the amount of cyt c released into the cytosol [42, 250].

Page 140: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

106

However, there is still certain controversy about the existence of this loop and further

experiments should be developed in order to ensure the observations made.

Figure 6.3. A549 cells were left untreated or incubated with 50 μM Z-VAD-fmk for 1h, followed or not by the administration of 50 μM cisplatin (CDDP). When required, 1 h later, QM31 was added at the final concentration of 5 μM and cells were maintained in culture for additional 48 h prior to the cytofluorometric assessment of apoptosis-related parameters. Panels A and C depict representative caspase 3 activation profiles and AnnV/ PI dot plots, respectively. Quantitative data are reported in panels B and D (mean ± SEM, n = 4). In panel B, columns indicate the percentage of cells which stained positive for active caspase 3 (Casp-3a+ cells). In panel D, black and white columns illustrate the percentage of dead (PI+) and dying (PI-/AnnV+) cells, respectively. Asterisks indicate statistically significant data (Student’s t test, p < 0.05), as compared to CDDP-treated cells. FITC, fluorescein isothiocyanate.

Page 141: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

107

Figure 6.4. Non-small cell lung cancer (NSCLC) A549 cells treated as in figure 7.7 were fixed, permeabilized and stained for the immunofluorescence microscopy-assisted detection of cyt c (Cyt c) release (A,B), or subjected to the cytofluorometric determination of parameters that reflect the mitochondrial status during cell death (C-F). In panel (A), representative immunofluorescence microscopy pictures are shown to exemplify mitochondrial (Cyt c mito) vs. released (Cyt c rel) Cyt c (green signal). Nuclei appear in blue due to Hoechst 33342 chromatin counterstaining. White bars indicate picture scale. Columns in panel B report the percentage of cells (mean ± SEM, n = 4) which exhibited diffuse Cyt c staining (Cyt c rel cells). Panels C and E illustrate representative Cyt c release profiles and DiOC6(3)/propidium iodide (DiOC6(3)/ PI) dot plots, respectively. Quantitative data are reported in panels D and F (mean ± SEM, n = 4). In panel D, columns indicate the percentage of cells (mean ± SEM, n = 4) exhibiting Cyt c release (Cyt c rel cells). In panel F, white and black columns report the percentage of cells characterized by mitochondrial transmembrane dissipation alone (DiOC6(3)low/PI-) or in combination with plasma membrane breakdown (PI+). Asterisks mark statistically significant results (Student’s t test, p < 0.05), as compared to cells treated with cisplatin (CDDP) alone. FITC, fluorescein isothiocyanate.

Page 142: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

108

6.1.2 Cytoprotective effect of QM31 and q-VD-OPH in Heltog cell line

With the objective to better understand the effect of a chemically inhibited Apaf-1 in

apoptosis-induced mitochondrial cyt c release and the possible implication of Apaf-1 in

this phenotype, a more specific cellular model for the study of mitochondrial proteins

was employed. In these experiments, staurosporine (STS) was used as apoptosis

inducer. Due to the HeLa p53 low protein levels, cells were resistant to CDDP

treatment. STS is a natural high affinity but low specificity ATP-competitive kinase

inhibitor isolated from Streptomyces staurosporeus (S. staurosporeus) [251]. STS is

broadly used as an apoptosis inductor although the molecular mechanism is poorly

understood [252] (Figure 6.5).

Figure 6.5. Chemical structure of STS.

As a caspase inhibitor control (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-

methyl ketone (q-VD-OPH) was employed [248, 253, 254]. This compound is a pan

caspase inhibitor less effective in vitro than Z-VAD-fmk but having better cell

internalization properties (Figure 6.6) [254].

NNH

HN

O O

O

O

O

O

F

F

Figure 6.6. Chemical structure of q-VD-OPH.

In this study cells were treated with STS alone or in combination with q-VD-OPH or

QM31 according to the protocol described in the Materials and Methods section. Then,

two different assays were performed: Ann V labeling and cyt c release kinetic studies.

Page 143: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

109

The former was employed as a control of the appropriate activity of the inhibitors in the

cellular model. Treatments were added and 24 h later the cytoprotective effect of both

compounds was evaluated through FC employing the Ann V (Figure 6.7). None of the

compounds were toxic at the concentrations tested. However, STS-induced apoptosis

could not be inhibited by QM31 in this particular model cell line. The results obtained

differ from the ones observed in A549 cell line in which CDDP plus QM31 treated cells

showed a markedly decrease in cyt c release when compare to the CDDP control. A

possible explanation of this unexpected inability of QM31 to inhibit apoptotic cell death

could be related to the extended kinase inhibition state of the cell or could be related to

the use of Heltog cell line. As stated before, a green background was observed in the

cytoplasm of the cell, but we could not determine it this background was caused by a

basal cyt c-GFP release in the cytosol or by a GFP unexpected overexpression. Also,

cyt c-GFP can force apoptosome rearrangements and difficult QM31 binding to Apaf-1.

0102030405060708090

100

Control - QM31 - QM31

STS 0.25uM STS 0.25uM + qVD 20 uM

% A

nnex

in V

+ ce

lls (%

Tot

al c

ells

)

Figure 6.7. Heltog cell lines were left untreated or incubated with 0.25 μM STS for 6 h, when required QM31, q-VD-OPH or both were added at the final concentration of 5 μM and 20 μM, respectively. Then, medium was changed and fresh medium with the required compounds was added. Cells were maintained in culture for additional 24 and 48 h (black and grey bars, respectively) prior to the cytofluorometric assessment of Ann V staining.

Despite the lack of apoptotic inhibitory effect of QM31, some experimental evidences

suggested differences on cyt c release on q-VD-OPH- or QM31-treated cells. Then, cyt

c release kinetics were performed according to the protocol described in Materials and

Methods section. Briefly, a confocal microscope was employed and FITC and dsRed

fluorescence corresponding to cyt c-GFP and PI dye were measured by taking pictures

Page 144: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

110

of the different samples in study for a period of 37 h. The counting of the time-point in

which individual cells released cyt c and stained for PI was done and then a comparison

among the different samples was carried out. Results obtained are depicted in Figure

6.8. According to previous data, QM31 was not able to inhibit cell death when

compared to STS control. However, a markedly delay in the cyt c release was observed

in the samples treated with q-VD-OPH plus QM31 when compared to the q-VD-OPH

treated cells. Then, QM31 exerted a mitoprotective effect that included the delay of cyt

c mitochondrial release.

0

5

10

15

20

25

30

35

DMSO QM31 q-VD-OPH q-VD-OPH +QM31

STS

Tim

e (h

)

B

0

5

10

15

20

25

30

35

DMSO QM31 q-VD-OPH q-VD-OPH +QM31

STS

Tim

e (h

)

B

Figure 6.8. Heltog cell line treated with STS 0.25 μM for 6 h alone or in combination with QM31 5 μM and/or q-VD-OPH 20 μM. After 6 h, STS was removed and freshly medium was with QM31 and/or q-VD-OPH. Pictures from the different samples were taken employing a confocal microscope (FITC and dsRed filters) for an interval of 37 h every 15 min added. (A) A representative example of the pictures taken is shown. (B) Quantification of the cyt c release and PI+ kinetics.

A more detailed experiment was then set up. The kinetic experiments started with

apoptosis induction on Heltog cells (see Material and Methods for further information)

Page 145: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

111

and were followed by continuous fluorescence microscopy (pictures of the cells were

taken at different time points for a period of 37 h). As a result, samples treated with

QM31 and q-VD-OPH presented a delay in cyt c release in comparison with those

solely treated with q-VD-OPH. A short delay was also observed in cell death when

QM31 plus q-VD-OPH treatment was compared (Figure 6.8).

6.2 Clonogenic cell survival effect of QM31 and q-VD-OPH in Heltog cell line

Intrigued by the results obtained when studying cyt c release kinetics, a clonogenic cell

survival assay was performed. Our objective was to determine if the treatment with the

Apaf-1 inhibitor QM31 could have a long-time effect. In A549 cell lines we observed a

clear QM31-induced inhibition of cyt c release and in Heltog cell line a delayed release.

The question was how these and previous observations can influence cell fate? Can

QM31 rescued apoptotic cell and modify cell fate? In order to find answer to these

questions a clonogenic assay was performed. Cells were seeded and appropriately

treated (see Materials and Methods section) and 2-3 weeks later the number of colonies

formed was quantified. It was demonstrated that cells treated with QM31 in the

presence of q-VD-OPH presented a significative increase in the number of colonies

when compared to the control samples. Although, further experiments should be done,

these results could suggest the existence of an Apaf-1-dependent amplification loop in

MOMP induction. The reduction of this amplification loop due to an inhibited Apaf-1

may offer a recovery-window to cells and have time to design a cell strategy directed to

restore vital functions (Figure 6.9).

Page 146: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

112

DMSO QM31QM31 +q-VD-OPHq-VD-OPH

CONTROL

STS

DMSO QM31QM31 +q-VD-OPHq-VD-OPH

CONTROL

STS

Figure 6.9. Clonogenic assays in Heltog. 2500 cells/well were seeded in a 12-well plate and after 48 hours cells were treated with DMSO, QM31 5 μM, q-VD-OPH 20 μM or QM31 5 μM plus q-VD-OPH 20 μM alone or in combination with STS 2 μM for six hours. Then, STS was removed and fresh medium containing the compounds was added. 24 h later, medium plus the different compounds was added and cells were let grow for 10-15 days. After that time, medium was removed and colonies were stained with methylene blue (0.5% in MeOH:H2O 1:1).

Page 147: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

113

CHAPTER 7. APAF-1 NON-APOPTOTIC FUNCTIONS IN

CELL

Multiprotein complexes have become interesting points of chemical intervention for

therapeutic gain due to their key role in the regulation for cellular signalling pathways

[255-258]. This also applies to apoptosis-related proteins and protein complexes [259-

261]. On the other hand, it is now well recognized that protein and/or protein

complexes originally described as members of the ‘death machinery’ are implicated in

non-apoptotic functions [262-266]. Interestingly, Apaf-1, the central component of the

apoptosome, has been also described to contribute to a specific intra-S-phase DNA

damage checkpoint [94]. However, the molecular mechanism by which Apaf-1 exerts

its role in cell cycle it is not fully understood.

In previous chapters, the ability of peptoid 1 derivatives to inhibit apoptosis by

inhibiting Apaf-1 has been demonstrated. Now, the question that arises is whether or

not chemical inhibition of Apaf-1 applies exclusively to the apoptotic role of Apaf-1 or

is also extensive to the postulated role of Apaf-1 in the control of the cell cycle.

Furthermore, unexpected Apaf-1-related cell-signalling events were also evaluated from

experimental observations derived from the mechanism of action of peptoid 1

derivatives in the presence of the amino acid glutamine.

7.1 Inhibition of the intra-S-phase DNA damage checkpoint by QM31

Knockdown of Apaf-1 in human cells as well as knockout of apaf-1 in mice implicated

Apaf-1 in DNA damage-induced cell cycle arrest (reviewed in [262]). Thus Apaf-1 loss

compromises the DNA damage checkpoints elicited by ionizing irradiation or

chemotherapy. Apaf-1 depletion also reduces the activating phosphorylation of the

checkpoint kinase 1 (Chk1) provoked by DNA damage[94] and knockdown of Chk1

abrogates Apaf-1-mediated cell cycle arrest.[93]

The ability of our compounds to inhibit the apoptotic role of Apaf-1 was demonstrated

in chapter 5, but now the question to answer is the potential of these compounds to also

inhibit the Apaf-1 capability to induce cell cycle arrest after a sub-lethal damage to the

Page 148: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

114

cell. With this objective, the NSCLC A549 cell line was chosen as cellular model and

CDDP at low-doses as sub-apoptotic damage inductor. As stated in chapter 5, CDDP

induces DNA damage and apoptosis at high-doses (50-100 μM, 24-48 h treatment) in a

p53 dependent way. However, when CDDP is added to non-synchronized cells at sub-

apoptotic dosis (10-30 μM approximately, 24 h treatment) a markedly increased in the

percentage of cells in S-phase is found, which is characterized by a gradual increase

from a 2N DNA content (at the G1-S transition) to 4N one (in cells that are entering

mitosis), but no apoptotic induction is observed during the first 24 h [94].

A549 cells were treated with QM31 5 μM one hour prior the addition of CDDP at low

dosis (20 μM, 24 h). As assessed by cytofluorometric analysis of cell cycle distribution,

this manifestation of the intra-S-phase DNA damage checkpoint was gradually

subverted by increasing concentrations of QM31 (Figure 7.1 A,B). An Apaf-1-specific

siRNA (Figure 7.1 C) also reduced the number of cells retained in the S phase of the

cell cycle following CDDP sub-apoptotic stimulation (Figure 7.1 B). The degree of this

reduction (~10-15%) could have been negatively influenced by the incomplete siRNA-

mediated downregulation of Apaf-1 (Figure 7.1 C), yet was in line with previously

published results [93, 94]. In this setting, siRNA-mediated partial depletion of Apaf-1

and QM31 administration failed to exhibit additive or synergistic effects (Figure 7.1 C),

suggesting that the Apaf-1-specific siRNA and QM31 affect the same molecular

pathway of CDDP-induced cell cycle blockade.

One of the principal mediators of the Apaf-1-dependent intra-S-phase DNA damage

checkpoint is the checkpoint kinase Chk1 [94]. Chk1 activation in S phase cells delays

DNA replication, stabilizes stalled replication forks and blocks mitotic entry [267]. As

detectable by both immunoblotting (Figure 7.2 A) and immunofluorescence staining

(Figure 7.2 B), QM31 partially reduced the activating phosphorylation of Chk1

following CDDP-triggered DNA damage (Figure 7.2 C). Together this data indicate

that chemical inhibition of Apaf-1 seem to exert and inhibitory effect of the apoptotic

role of Apaf-1 but also of its cell-cycle arrest function in a similar way than siRNA for

Apaf-1.

Page 149: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

115

Figure 7.1. Non-small cell lung cancer (NSCLC) A549 cells were left untreated or transfected with a control (siUNR) or an Apaf-1-specific (siApaf-1) siRNA for 48h, and then incubated with the indicated concentration of QM31 for 1h. Thereafter, cells were cultured in the absence or in the presence of 20 μM cisplatin (CDDP) for additional 24 h, followed by cytofluorometric analysis of the cell cycle (A,B) or immunoblotting to check for Apaf-1 downregulation (C). Panel A reports representative cell cycle profiles, as obtained in a single experiment upon propidium iodide (PI) staining. 2n and 4n indicate the peaks corresponding to the G0/G1 and G2/M phases, respectively. In panel B, black, white, and grey columns illustrate the percentage of cells in the G0/G1, S and G2/M phases of the cell cycle, respectively (mean ± SEM, n = 3). Please note how the percentage of S phase cells recorded upon CDDP administration is gradually reduced by increasing concentrations of QM31, down to a minimum that matches the value of siApaf-1-transfected cells. Panel C illustrates the partial downregulation of Apaf-1 observed after the transfection of A549 cells with siApaf-1 as compared to siUNR. An antibody recognizing β-actin was employed to control equal loading.

Page 150: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

116

Figure 7.2. Non-small cell lung cancer (NSCLC) A549 cells were transfected for 48 h with a control (siUNR) or an Apaf-1-specific (siApaf-1) siRNA, and then left untreated or incubated with 5 μM QM31 for 1 h. Finally, cells were treated or not with 20 μM cisplatin (CDDP) for 24 h, prior to immunoblotting (A) or immunofluorescence microscopy (B,C) for the assessment of the phosphorylation status of Chk1. Panel A illustrates the protein levels of phosphorylated (pChk1) and total (tChk1) Chk1, as well as those of Apaf-1 and β-actin (which was monitored to check equal loading). Panel B reports representative immunofluorescence microphotographs of untreated and CDDP-treated cells, which exhibit negative (pChk-) and positive (pChk+, nuclear bright dots) staining for phosphorylated Chk1, respectively. White bars indicate scale. In panel C, columns depict the percentage (mean ± SEM, n = 3) of pChk+ cells recorded upon the administration of CDDP to siUNR- and siApaf-1-transfected cells in the absence or presence of QM31. Asterisks indicate values that are significantly different (Student’s t test, p < 0.05) from those observed in siUNR-transfected, CDDP-treated cells.

7.2 Influence of high doses of L-glutamine in cell survival after peptoid 1

derivatives treatment

The implication of Apaf-1 in cell cycle could not be the only “extra role” exerted by the

protein. An unexpected cytotoxicity of the Apaf-1 inhibitors was observed when cells

Page 151: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

117

were grown in a medium containing permanent high concentrations of L-glutamine (2

mM). This L-glutamine high concentration environment was achieved by adding

GlutaMAX 2 mM (L-alanyl-L-glutamine dipeptide employed to elongate L-glutamine

lifetime in the medium) to the cell culture medium. In line with these observations,

recent studies have suggested a possible cytotoxic effect of L-glutamine in tumour cells

[268, 269].

In chapter 5, the lack of toxicity of peptoid 1 derivatives was demonstrated in a wide

variety of tumour cell lines. However, when such compounds were tested in

combination with high concentrations of L-glutamine (GlutaMAX addition) in the

absence of any apoptotic insult a markedly reduction in cell survival was observed.

Saos-2 and HeLa cells cultured with DMEM containing L-glutamine or GlutaMAX in

equivalent concentration were seeded in a 96-well plate and QM56 and QM31 were

added at concentrations of 100, 50 and 20 μM drug-equivalents and 10, 5 and 1 μM,

respectively. Then, MTT cell viability assays were developed following the protocol

described in Materials and Methods (Figure 7.3). A dose-dependent decrease in cell

viability was observed in both cell lines in the presence of GlutaMAX, more

pronounced in HeLa cells. Consequently, no cell recovery was observed when cells

challenged with dox or doxy were treated with QM56 or QM31 in the presence of

GlutaMAX in the cell culture media (Figures 7.3 A,B and 7.4 A,B).

In order to exclude any unspecific problem in the cells growing with high doses of L-

glutamine, GlutaMAX was removed from the culture medium of these cells and

substituted by L-glutamine. Cells were purged for 7 days and the MTT assays were

developed. Then, the cytotoxicity of both QM56 and QM31 went back to normal levels

and both compounds were able to inhibit caspase 3 activity (Figures 7.3 C and 7.4 C).

However, cell recovery assays suggested that treated cells continue dying despite the

Apaf-1-mediated QM56- and/or QM31-induced caspase 3 activity inhibition (Figures

7.3 B and 7.4 B). One month after the removal of GlutaMAX, QM56 toxic effect was

lost and the compound was able to induce cell viability recovery and caspase 3

inhibition after dox/doxy-induced apoptosis both in HeLa and Saos-2 cell lines (data not

shown).

Page 152: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

118

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell v

iabi

lity

(% T

otal

cel

ls)

0

10

20

30

40

50

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell r

ecov

ery

(% T

otal

cel

ls)

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

aspa

se 3

act

ivity

inhi

bitio

n

C

B

A

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell v

iabi

lity

(% T

otal

cel

ls)

0

10

20

30

40

50

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell r

ecov

ery

(% T

otal

cel

ls)

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

aspa

se 3

act

ivity

inhi

bitio

n

C

B

A

Figure 7.3. Influence of GlutaMAX and L-glutamine on QM56 cell toxicity in HeLa and Saos-2 cell lines. In panels A and B, cells were treated with QM56 100, 50 and 20 μM drug-equivalent (black, grey and white bars, respectively) plus 2 mM GlutaMAX, 2 mM L-glutamine after growing cells in 2 mM GlutaMAX or 2 mM L-glutamine. (A) MTT cell viability studies were developed. (B) Cell-viability recovery studies were done after adding 1 μM dox (HeLa) or doxy 2 μg/μL (Saos-2 ) to the QM56 treated cells. (C) Caspase 3 activity inhibition studies after treating cells with QM56 50 μM drug-equivalents in the presence of 2 mM GlutaMAX, 2 mM L-glutamine after growing cells in 2 mM GlutaMAX or 2 mM L-glutamine. Data depicted are mean ± SE (n > 3).

Page 153: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

119

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

aspa

se 3

act

ivity

inhi

bitio

n

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell v

iabi

lity

(% T

otal

cel

ls)

A

0

10

20

30

40

50

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell r

ecov

ery

(% T

otal

cel

ls)

C

B

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

aspa

se 3

act

ivity

inhi

bitio

n

0102030405060708090

100

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell v

iabi

lity

(% T

otal

cel

ls)

A

0

10

20

30

40

50

GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine GlutaMAX 7 daysGlutaMAXsubstitution

L-glutamine

HeLa Saos-2

% C

ell r

ecov

ery

(% T

otal

cel

ls)

C

B

Figure 7.4. Influence of GlutaMAX and L-glutamine on QM31 cell toxicity in HeLa and Saos-2 cell lines. In panels A and B, cells were treated with QM31 10, 5 and 1 μM drug-equivalent (black, grey and white bars, respectively) plus 2 mM GlutaMAX, 2 mM L-glutamince after growing cells in 2 mM GlutaMAX or 2 mM L-glutamine. (A) MTT cell viability studies were developed. (B) Cell-viability recovery studies were done after adding 1 μM dox (HeLa) or doxy 2 μg/μL (Saos-2 ) to the QM31 treated cells. (C) Caspase 3 activity inhibition studies after treating cells with QM31 5 μM drug-equivalents in the presence of 2 mM GlutaMAX, 2 mM L-glutamince after growing cells in 2 mM GlutaMAX or 2 mM L-glutamine. Data depicted are mean ± SE (n > 3).

Page 154: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

120

The initial conclusion from these experimental observations is that in the presence of

high glutamine concentration the chemical inhibition of Apaf-1 is deleterious to the cell.

Which can be the molecular mechanism of action? At this point and in the absence of

more detailed studies, I can only speculate. In order to address the problem studies of

autophagy induction were performed. Autophagy, a catabolic process in which cell

degrades part of the components of the cell in order to maintain homeostasis between

synthesis and degradation processes and to reallocate nutrients from unnecessary

processes to more-essential ones. Under certain cell death stimuli a massive autophagy

induction (macroautophagy) has been observed. This macroautophagy (that it will be

referred from this point as autophagy) has made consider autophagy as a type of cell

death although there are no conclusive evidences of this fact [270]. Nowadays, there is

still controversy in this point, but new evidences seem to indicate that autophagy is

more a side effect of the induction of cell death than a cell death process per se [4, 271-

273].

The molecular basis of autophagy was first described in yeast and homolog proteins

developing similar functions have been found in mammals [264, 274]. The key protein

in the initiation of autophagy is a serine threonine protein kinase, the mammalian target

of rapamicin (mTOR) that acts as an inhibitor of the process. In the absence of

nutrients, energy or with high redox levels, mTOR is inhibited and the autophagy is

initiated. The inhibition of mTOR allows activation of the proteins implicated in the

vesicle nucleation. Then, the double membrane vesicle is elongated surrounding the

cytoplasm portion to be degradated. Finally, the formed vesicle, autophagosome, fuses

to a lysosome to constitute autolysosome and the different organelles and protein

contained inside the vesicle will be degradated (see reviews [274, 275] for further

information). The techniques available to study autophagy are diverse and they are well

revised in Klionsky et al. [276]. One common way to study autophagy is the study of

the microtubule-associated protein 1 light chain 3 alpha (LC-3) distribution in the cell

[277]. This protein has a cytosolic distribution, but when autophagy is induced the LC-

3 cytoplasmic form (LC-3-I) is processed and recruited to the autophagosomes where

LC-3-II is generated by site specific proteolysis and C-terminal lipidation. The fussion

of a fluorescent marker to LC-3 makes possible to follow the fate of this protein. The

fussion of GFP to LC-3 protein allows the identification of its cytoplasmic diffused

localization (green diffused fluorescence all over the cell). When autophagy is induced,

Page 155: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

121

LC-3 is processed and it translocates to the autophagosomes. As a consequence of

autophagy-induction, LC-3 protein relocalizes to the autophagosomes and fluorescent

signal concentrates in small dots corresponding to the autophagosomes organelles

(Figure 7.5 A).

MCF-7 cells transfected with pEGFP vector containing LC-3 protein (MCF-7-eGFP-

LC3) [278] were used in an attempt to further analyze the effects of high-glutamine in

Apaf-1-inhibited cells. MCF-7-eGFP-LC3 cells were grown in DMEM containing

GlutaMAX and treated with QM31 and QM56 (see Materials and Methods section).

The eGFP-LC3 translocation to the autophagosomes was quantified 24 h after the

addition of the treatments. As a result, over 60 % of cells treated with QM31 5 μM

presented green fluorescent dots indicating the formation of autophagosomes (Figure

7.5 B). However, the counting for QM56 treated samples could not be made as a

significative percentage of the treated cells died and were detached from the cover slip.

To determine the origins of QM56-induced cell death in the current experimental

conditions, an MTT assay was performed seeding cells in a 96-well plate and treating

them with QM56 50, 25 and 10 μM drug-equivalents. The possible effect of the

polymeric carrier PGA on the cell toxicity was also studied (Figure 7.5 C). As a result,

no cell toxicity associated to the PGA carrier was found, but higher cell growing was

observed due to introduction of L-glutamic acid moieties that can be used as a source of

�"�rgy.

Page 156: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

122

0

0,5

1

1,5

2

2,5

3

Control PGA QM56 PGA QM56 PGA QM56

50 25 10

OD

(570

nm

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

50 μM50 μM 25 μM25 μM 10 μM10 μM

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

0

0,5

1

1,5

2

2,5

3

Control PGA QM56 PGA QM56 PGA QM56

50 25 10

OD

(570

nm

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

50 μM50 μM50 μM50 μM 25 μM25 μM25 μM25 μM 10 μM10 μM10 μM10 μM

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

Figure 7.5. MCF-7-eGFP-LC3 cells were culture in the presence of 2 mM GlutaMAX plus QM31 5, 1 μM or QM56 or PGA 50, 25 and 10 μM drug-equivalents and LC-3 translocation to the autophagosomes was studied. In panel A, representative immunofluorescence microscopy pictures are shown to exemplify cytosolic (eGFP-LC3 diffused) vs. autophagosome LC-3 localization (eGFP-LC3 dots) (green signal). Panel B shows LC-3 translocation to autophagosomes after QM31 24 h treatment. Data are expressed as mean ± SE (n =3). Finally, panel C depicts an MTT cell viability assay after the addition of QM56. Measurements were done after incubating cells for 24, 72, 96 and 120 h (black, dark grey, light grey and white bars, respectively).

The results suggest that autophagy could be implicated in a high-L-glutamine Apaf-1-

inhibited cell death. Then we would like to riskily postulated as working hypothesis the

existence of a possible connection among Apaf-1, L-glutamine metabolism and ATP

production. To the best of our knowledge only a reference on that hypothesis was

reported by Pascal Meier’s group in a D. melanogaster-based study [279]. In such a

report, glutamine-fructose-6-phosphate aminotransferase 2 (GFAT2) was described as

an Apaf-1 interacting protein. This protein discovered in 1999 [280] is an isoform of

Page 157: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

123

GFAT1, the first rate-limiting enzyme of the hexosamine pathway that it is implicated

in the synthesis of glycoproteins. GFAT1 and 2 control the flux of glucose into the

hexosamine pathway (HP) and catalyzes the formation of glucosamine-6-phosphate.

Activation of the hexosamine pathway due to high concentrations of glucose in the

medium has been implicated in the progress of different pathologies associated to

hyperglycaemia [281-284] and alterations of AMP-activated protein kinases (AMPK)

and Ca+2 levels [281], that in turn could be correlated with both, autophagy and a state

of metabolic pseudo-hypoxia due to decreased ATP levels [285]. Interestingly,

overexpression of GFAT or treatment with glucosamine (GFAT substrate) reproduce

some of the cellular phenotypes described [283].

With these precedents we wanted to explore in an in vitro reconstituted apoptosome

assay a possible interaction between GFAT2 and Apaf-1. Recombinant GFAT2

(rGFAT2) was incubated with rApaf-1 previous to the addition of other components of

the apoptosome (see Materials and Methods for further information). As shown in

Figure 7.6, the activity of the apoptosome (measured as caspase 9 activity) was sensitive

to the presence rGFAT2. As control of the output of the assay we used recombinant

Bcl-xL (rBcl-xL) as an early described Apaf-1-interacting protein [286] that also

induced a decrease in the activity of the apoptosome and recombinant cyclin dependent

kinase-2 (rCDK-2) as unrelated protein that had no effect on the output of the assay.

Page 158: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

124

0

10

20

30

40

50

1:1 2:1 3:1 1:1 2:1 3:1 1:1 2:1 3:1

GFAT2/Apaf-1 Bcl-XL/Apaf-1 CDK2/Apaf-1

% C

aspa

se 9

act

ivity

inhi

bitio

n

Figure 7.6. In vitro apoptosome reconstitution assay. 40 μM rApaf-1 was incubated with GFAT2, Bcl-XL and CDK2 proteins at a ration concentration 1:1, 1:2 and 1:3 for 30 min at 30ºC. The rest of the components of the apoptosome were added according to the protocol described in Materials and Methods section. Finally, caspase 9 activity was measured and results were expressed as caspase 9 activity inhibition.

According to the data obtained in our laboratory, GFAT2 and Apaf-1 could directly

interact in normal conditions in the cell, although we are also exploring the contribution

of other proteins in a putative multiprotein comples. Further experiments should be

carried out in order to better determine the effects of this interaction in the activity of

the selected proteins. According to the preliminary data obtained, a possible

explanation for our results could be the existence of GFAT2 and Apaf-1 mutual

regulation of their activities in normal conditions. This complex (or a more populated

protein complex) would be sensitive to the inhibition of one of their main components,

Apaf-1. In the presence of high concentrations of L-glutamine, this would also lead to

the activation of hexosamine pathway by GFAT2 and the appearance of the cytotoxic

phenotypes observed, consequence of the HP activation.

Page 159: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

125

CHAPTER 8. PRIMARY CULTURE AND IN VIVO

HYPOXIA EXPERIMENTS

Different studies carried out in animals and humans have demonstrated that apoptosis is

implicated in both acute and chronic phases of ischemia related pathologies as heart

failure, stroke and those derived from organ transplantation [95, 96]. Specifically,

evidence suggests that prolonged ischemia is associated with an increased rate of

necrosis, but that reperfusion leads to an enhancement in apoptosis. Hypoxia-inducible

factor (HIF) is the principal transcription factor involved in the regulation of

transcriptional responses to hypoxia. HIF-alpha increments and induces expression of

genes involved in glycolysis, glucose metabolism, mitochondrial function, cell survival,

apoptosis, and resistance to oxidative stress. There are some proteins which expression

could be regulated by HIF and reported to bind to Apaf-1 [98, 99], so the inhibition of

Apaf-1 could have direct effect in the inhibition of hypoxia-induced apoptotic damage.

Preliminary experiments employing primary cultured cardiomyocytes were developed

and QM31 and QM56 evaluated as hypoxia-induced apoptosis inhibitors. Furthermore,

the beneficial, in vitro and ex vivo properties of the compounds as inhibitors of

apoptosis through Apaf-1 interaction make them good candidates for validation in

preclinical assays. In particular, an animal-based model for a possible application of

Apaf-1 inhibitors in organ transplantation has been also evaluated. In collaboration

with the research group of Dr. Antonio Alcaraz (Hospital Clinic, Barcelona) hot

ischemia experiments were set up in a rat model. It is known that one of the main

problems associated to both, hot and cold ischemia is the induction of apoptosis. The

time of hot and cold ischemia is determinant in the kidney viability. Hot ischemia time

is defined as the time elapsed since the heart stops beating till the start of the renal

perfusion with the preservation fluid.

The results presented in this section should be considered as preliminary in that only a

moderate number of replica have been processed due to an incomplete pharmacological

development (currently in progress, including appropriate drug-vehiculization).

Page 160: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

126

8.1 Analysis of apoptosis inhibition in primary culture cells: cardiomyocytes

under hypoxia conditions

Myocardial damage induced by ischemia-reperfusion has been shown to be directly

associated to apoptosis. Furthermore, after myocardial infarction, the presence of

apoptotic cells has been demonstrated both in the infarct area and in the border zone of

the infarction [287]. Although the signal transduction pathways are not completely

defined, it is known that mitochondrial dysfunction is one of the most critical events

associated with myocardial ischemia-reperfusion injury [288]. In this sense, previous

studies showed that very low levels of cardiac myocyte apoptosis are sufficient to

produce heart failure [289]. In addition, reduction of myocyte apoptosis by the potent

polycaspase inhibitor IDN-1965, improved left ventricular function and survival of mice

with an induced peripartum cardiomyopathy [290].

In collaboration with Drs. J. A. Montero and Pilar Sepúlveda (Cardioregeneration Unit,

CIPF), the ability of QM31 and QM56 as potential inhibitors of hypoxia-induced

apoptosis was analyzed in cardiomyocytes as an ex vivo model of myocardial infarction.

Then, primary cultures of neonatal rat cardiomyocytes were established and subjected to

hypoxic conditions. A double immunohistochemistry-based procedure clearly showed

the presence of apoptotic cells and active caspase 3 demonstrating the active role of

apoptosis in hypoxia-induced cardiomyocytes cell death (Figure 8.1) [200]. The

presence of Apaf-1 protein in neonatal cardiomyocytes was also determined by western

blot (data not shown).

Page 161: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

127

Nx HxNx Hx

Figure 8.1. Double immunohistochemistry of cardiomyocytes with anti-Caspase 3 (green) and anti-α-Actinine (red) antibodies analyzed by confocal microscopy. (40x magnification). Nucleous are stained with DAPI (blue). Nx: normoxia; Hx: hypoxia.

These results provide a validation of the cellular model selected for our ex vivo studies.

In order to complete the validation study, live-cell confocal QM56-OG internalization

studies were done incubating cardiomyocites primary culture cells in the presence of

QM56-OG at 4 ºC and 37 ºC (Figure 8.2). The quantification of the polymer cellular

internalization showed a higher internalization of QM56-OG at 37 ºC. This fact is in

agreement with the internalization mechanism proposed for polymers: endocytosis.

This mechanism requires energy consumption from the cell and the decrease of the

temperature inhibits or partially reduces the cellular uptake of the compound.

Once confirmed the cellular model for the study of apoptosis inhibition by our Apaf-1

inhibitors, neonatal cardiomyocites were subjected to hypoxia conditions (see Materials

and Methods for further information). Importantly, when the neonatal cardiomyocytes

were subjected to the hypoxia conditions in the presence of QM31 or QM56, the

percentage of cell death was clearly diminished when compared to the control cell

population (Table 8.1). Furthermore, to determine whether or not the compounds could

decrease caspase 3 activity in this cell system, cells from a 2-days old established

culture were subjected to the hypoxia conditions in the presence of different

concentrations of QM31 or QM56 and caspase 3 activity was assessed (Table 8.1).

Page 162: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

128

0 min 15 min 60 min

120 min 240 min

A

0

10

20

30

40

50

60

0 30 60 90 120 150 180

Time (min)

Cel

l-ass

ocia

ted

Fluo

resc

ence

(FU

)

37 ºC4 ºCB

0 min 15 min 60 min0 min 15 min 60 min

120 min 240 min120 min 240 min

A

0

10

20

30

40

50

60

0 30 60 90 120 150 180

Time (min)

Cel

l-ass

ocia

ted

Fluo

resc

ence

(FU

)

37 ºC4 ºCB

Figure 8.2. Cellular uptake of QM56-OG in cardiomyocite primary culture cells. (A) Live-cell fluorescence confocal images at different incubation times. Images correspond to the polymer internalization (green) in the presence of Texas red-dextran (red) as lysosomal marker. (B) Graphical view of the quantification of QM56-OG internalization analyzed by flow cytometry at 4 ºC (○) and 37 ºC (♦). Data are expressed as the mean ± SD (n > 3).

Page 163: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

129

Table 8.1. Percentage of cell recovery and inhibiton of caspase 3 activity obtained with QM31 and QM56 in hypoxia-induced apoptosis in cardiomyocytes.

QM31 QM56

% Cell-viability recovery

% Caspase 3 activity inhibition

% Cell-viability recovery

% Caspase 3 activity inhibition

Concentration (μM) Concentration (μM, drug-equivalents)

5 100 50 100 50

84 ± 2 51 ± 20 91 ± 4 49 ± 5 94 ± 3 91 ± 7

Data expressed as mean ± SE (n > 3)

Then, we have obtained initial evidences for an application of QM31 and QM56 as

inhibitors of hypoxia-induced cell death in cardiomyocytes. If the compounds here

analyzed further demonstrate to be able to reduce hypoxia-induced cardiomyocyte

apoptosis in vivo, it would result in a prevention of ventricular remodelling and

improvement of damaged cardiac function. That, in turn, would open new strategies to

improve the therapeutic resources for the treatment of this, unfortunately, very common

pathology.

8.2 Analysis in animal models

Although the results shown in the previous section are derived from ex vivo studies, we

moved ahead to the next level of complexity that represents an appropriate in vivo

model. As stated before, attention was centered to a different and very interesting

application of apoptosis inhibitors as compounds that will increase the time window of

organs from donors for transplants. However, previous to the initiation of these

experiments a safety and toxicology evaluation of a selected group of peptoid 1

derivatives in mice was performed.

Page 164: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

130

8.2.1 Safety and toxicology evaluation of peptoid 1 derivatives in mice

The compounds selected for this detailed toxicology analysis were those that presented

improved biological activity in previous in vitro experiments and were judged to have

an appropriate therapeutic window: QM31, QM57, QM56 and QM31-P2.

CD1 mice were divided into groups of at least 3 animals, and each group was

intravenously inoculated with different dose of the compound under analysis. Mortality

was scored over a period of 7 days. Then, three animals of each group were further

subjected to blood analysis in order to evaluate from a biochemical point of view any

alteration in critical organs such as kidney (creatinin and urea), liver (creatin

phophokinase, CPK), heart (creatinine), muscle (glutamate pyruvate transaminase,

GPT). Results are depicted in Tables 8.1 and 8.2.

Table 8.2. Evaluation of toxicity in mice. It was not possible to determine the exact LD50 values due to solubility limitations.

Compound LD50

QM57

> 275 μM (DMSO, 15 mg/Kg single injection)

> 550 μM (DMSO, 30 mg/Kg double injection)

QM56 > 1840 μM (PBS, 114 mg/Kg)

QM31-P2 > 298 μM (PBS, 24 mg/Kg)

When compared to the corresponding control samples, QM57, QM56 and QM31-P2 did

not alter urea or creatinine blood levels indicating a lack of alteration in kidneys or heart

due to the presence of the compound. No alteration was observed in case of CPK levels

of the animals so no hepatotoxicity was caused. Finally, the study of GPT showed no

alteration of muscle biochemical parameters. Notwithstanding, an increase in GPT

levels were observed when PBS was employed in the drug-vehiculization. Due to the

low number of animals employed for the blood analysis (three animals per group), in

order to discard any possible damage in muscle tissues caused by PBS further

experiments employing a higher number of animals should be done.

Page 165: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

131

Table 8.3. Blood analysis parameter results.3 Mice blood analysis parameter results after peptoid 1 derivatives treatment”

Samples Sm-UREA

(8 – 33) mg/dl

Sm-CREATININE (0.2 – 0.9) mg/dl

Sm-CPK (350 – 1800)

U/L

Sm-GPT (17 – 77) U/L

Control 1 52 0.03 6194 68 Control 2 50 0.06 11850 93 Control 3 47 0.07 9932 70

Control Average 50 ± 3 0.05 ± 0.02 9325± 2876 77 ± 14

DMSO 1 38 0.18 4291 13 DMSO 2 49 0.10 - 144 DMSO 3 31 0.53 2437 -

DMSO Average 39 ± 9 0.27 ± 0.23 3364±1311 79 ± 65 QM 57 1 47 - 2570 62 QM57 2 43 0.01 2368 35 QM57 3 31 0.53 2437 -

QM57 Average 40 ± 8 0.27 ± 0.26 2458 ± 103 49 ± 13

PBS 1 40 0.02 - 64 PBS 2 48 0.08 23807 180 PBS 3 57 - 28326 -

PBS Average 48 ± 9 0.05 ± 0.04 26067 ± 3195 122 ± 58 QM56 1 25 0.05 5965 82 QM56 2 27 0.08 12940 140 QM56 3 26 0.06 9120 93

QM56 Average 26 ± 1 0.06 ± 0.02 9342 ± 3493 105 ± 31 QM31-P2 1 32 - 10239 105 QM31-P2 2 53 0.17 - 78 QM31-P2 3 35 0.15 10260 -

QM31-P2 Average 40 ± 11 0.16 ± 0.01 10250 ± 10 92 ± 14

8.2.2 Analysis of apoptosis inhibition in an animal model of kidney hot ischemia

The shortage of donor kidneys is a critical limiting factor for renal transplantation in

treatment of end-stage renal diseases. Organs from non-heart-beating donors (NHBD)

seem to be an option to alleviate this problem effectively. However, the main obstacle

to the use of kidneys from NHBD is hot ischemia-induced kidney damage. Moreover,

in kidney transplantation, the allograft sustains inevitable cold ischemia in addition to

re-warming injury during liver reperfusion.

Page 166: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

132

Therefore, hot ischemia-reperfusion injury of kidney grafts has become a hot topic with

theoretical and clinical significance. In particular, an application in organ

transplantation of Apaf-1 inhibitors was pursued due to the beneficial aspects that

inhibition of apoptosis can offer in order to increase the allowed time window for

functional organs from donors in organ transplantation procedures. In this study, an

observation of the effect of Apaf-1 inhibitors in Wistar rats under a different hot

ischemia time by pathological analysis, terminal deoxynucleotidyl transferase dUTP

nick end labeling (TUNEL) analysis and evaluation of caspase 3 activity was

performed. With this purpose, seven working groups were designed with 8

animals/group (Table 8.4). At the time of the experimental design and taking into

account data from previous experiments using cultured cells, compounds QM57 and

QM31-P2 at two different concentrations were selected. In addition, QM56 was also

evaluated. Animal were intravenously injected with the compounds in the appropriate

vehicle 6 hours before application of the hot ischemia protocol. Then, a 90 min post-

mortem ischemia was applied to the kidneys that were extracted and analyze (Figure

8.2)

Table 8.4. Description of the groups of animals and pre-treatment applied at each group.

Group Pre-treatment

I (1-8) PBS control (vehicle for PGA-based derivatives)

II (9-16) DMSO control

QM57 solubilized in PBS containing a 30% DMSO (v/v) (vehicle for QM57)

III (17-24) QM57 (5 mg/Kg)

IV (25-32) QM57 (10 mg/Kg)

V (33-40) QM56 (70 mg/Kg)

VI (41-48) QM31-P2 (100 mg/Kg)

VII (49-56) QM31-P2 (45 mg/Kg)

Pathological analysis. The pathological analysis of the different kidney tissues was

based on the observation of three main parameters: nuclear loss, tubular simplification

and the existence of mitosis. It has been observed that the increase of these parameters

can be considered as an indication of tissue damage [291]. In the experiments here

Page 167: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

133

performed a score from 0-4 was stablished. For our purposes, 90 min hypoxia tissue

damage was scored as 4 and 0 was considered as healthy tissue.

TUNEL analysis. As stated above, the TUNEL assay is a method employed in the

detection of DNA fragmentation due to the existence of apoptosis by labeling the

terminal end of nucleic acids. The assay is based on the ability of the terminal

deoxynucleotidyl transferase to detect the presence of nicks in the DNA and,

subsequently, catalyze the addition of dUTPs in the 3’ ends of DNA that are secondarily

labeled with a marker [292]. The subsequent identification of the markers by

microscopy allows to quantify the apoptosis induction in the different samples studies.

Caspase 3 assay. The assay employed was the same that the one described in chapter 4.

From the compounds selected, the heterocyclic compound QM57 in a dose-dependent

manner was the more effective on decreasing the score associated to the overall kidney

damage in pathological analysis (Figure 8.3). Differences in pharmacokinetic profile of

the macromolecular QM31-P2 and QM56 could be the reason of the differences

observed with QM57. Different kidney preparations from the animal groups above

mentioned subjected to 90 min hot ischemia, were stained for TUNEL and the results

analyzed. The analysis of variance (ANOVA) test revealed statistical differences

among the groups (p = 0.07). Interestingly, kidney preparations from animals pre-

treated with QM57, QM56 and QM31-P2 showed a reduced number of apoptotic cells

(Figure 8.4)

Page 168: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

134

A

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

AA

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

-ns0.234Kruskal Wallis

-ns0.241Anova

Pairing results

Summaryp

valueStatistical test

-ns0.234Kruskal Wallis

-ns0.241Anova

Pairing results

Summaryp

valueStatistical test

-ns0.096Kruskal Wallis

DMSO vs QM57 10 mg/Kg *0.044Anova

Pairing results

Summaryp

valueStatistical test

-ns0.096Kruskal Wallis

DMSO vs QM57 10 mg/Kg *0.044Anova

Pairing results

Summaryp

valueStatistical test

Figure 8.3. Pathological analysis of histological preparations of mice subjected to hot ischemia. (A) Score used ranged from 0 to 4; 0 is healthy kidney while 5 refers to seriously damaged kidneys. (B,C) Animals were treated with the compound subjected to analysis 6 h before the procedure of hot ischemia (90 min). Results were evaluated by Anova and the Kruskal-Wallis test. PBS and DMSO are vehicle controls. DMSO means that the compounds were administered solubilised in PBS containing a 30% DMSO (v/v).

Page 169: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

135

A B

C D

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

AA

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

E F

A B

C D

A B

C D

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

AA

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

E FB

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

A

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

B

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

AA

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Pairing results

Summary

p valueStatistical test

E F

Figure 8.4. TUNEL assay applied to selected preparations of the hot ischemia animal model. Panels A-D. Non-normalized fields of TUNEL analysis. Bright spots label for fragmented DNA indicative of apoptotic cells. Preparations from: A. Mice 9 group DMSO control. B. Mice 18 treated with QM57 at 5 mg/kg. C. Mice 1 group PBS control. D. Mice 47 treated with QM31-GFRK(ε)-PGA at 100 mg/kg. Results were evaluated by the Kruskal-Wallis test. PBS and DMSO are vehicle controls (DMSO, refers to PBS with a 30 % DMSO content).

Finally, cellular extracts prepared from kidneys of treated and control animals were

evaluated for caspase 3 activity. As shown in Table 4 and Figure 8.5 the levels of

Page 170: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

136

caspase 3 activity in QM56 and QM31-P2 pre-treated animals were lower that those

from control animals achieving more than 70% caspase 3 activity inhibition.

Table 8.5. Analysis of caspase 3 activity in kidney extracts. Data depicted are mean ± (SE < 10%).

Compound % Caspase 3 activity inhibiton

PBS (control) 0

DMSO (control) 0

QM57** 5 mg/Kg 0

QM57** 10 mg/Kg 0

QM56 70 mg/Kg 79

QM31-P2 45 mg/Kg 75

QM31-P2 100 mg/Kg 60 ** Visual inspection of the frozen samples suggested a possible interference of the DMSO vehicle in these samples

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

DE

VD

ase

activ

ity(Δ

F/m

in)

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

DE

VD

ase

activ

ity(Δ

F/m

in)

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

DE

VD

ase

activ

ity(Δ

F/m

in)

-**0.0025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b***0.0002Anova

Pairing resultsSummaryp valueStatistical test

-**0.0025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b***0.0002Anova

Pairing resultsSummaryp valueStatistical test

Figure 8.5. Analysis of caspase 3 activity in kidney extracts.

Collectively, the data from this section suggest that inhibition of apoptosis by Apaf-1

inhibitiors might be effective in acute indications such as renal hot-ischemia. The

present section needs from more experiments before the selection of a unique drug-

candidate. Thus, while the heterocyclic compound QM57 could be the choice

combining results from previous sections, pathological analysis and from TUNEL

Page 171: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

137

results, QM56 and/or QM31-P2 offered better results in caspase 3 inhibition in treated

kidney extracts. The differences observed could be due on one side to the use of 30% of

DMSO as vehicle for QM57 due to its low solulity in buffered solution, and in the case

of the nanoconjugates the different pharmacokinetics could yield to a non-improvement

macroscopically. These facts could affect the output of the experiment. Almost

certainly, there is still a wide range of improvement for these first-in-class apoptosis

inhibitors by improving vehiculization for QM57 and timing schedule for the

nanoconjugates that will be probably done in a near future.

Page 172: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

138

Page 173: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

139

CHAPTER 9. GENERAL DISCUSSION

The main objective of the present work was the development of a second and improved

generation of chemical (pharmacological) Apaf-1 inhibitors, the characterization of the

molecular mechanism of action and the analysis of their convenience as drug

candidates. The proposal for the development of Apaf-1 inhibitors came from the

urgent need of efficient apoptotic inhibitors that could be advanced to drugs for the

treatment of the unwanted cell death associated to some diseases. Initial strategies to

inhibit apoptosis were focused on the development of caspase inhibitors although

twenty years later, the caspase-inhibitors proposed, failed to change cell’s fate due to

the existence of cell death compensatory mechanisms and other problems associated to

the required chemical properties for efficient in vitro inhibition [293]. The strategic

situation of Apaf-1, a key protein of the apoptosome, upstream of caspase 3 and

downstream of mitochondria makes this protein an interesting target in the development

of new chemical modulators. Previous to our work, only a family of urea-based

derivatives was proposed as efficient Apaf-1 inhibitors however they were identified

from a cell extract-based screening and a direct prove of Apaf-1 binding was not shown

[155]. Furthermore, neither the molecular mechanism of action nor follow up

optimization studies on these compounds have been reported. It was then proposed in

our lab that the more convenient way to find inhibitors of a protein-based

macromolecular complex should rely in the in vitro reconstitution of such a complex

using recombinant (or highly purified) proteins. We developed a medium-throughput

assay with purified recombinant Apaf-1, cytochrome c, dATP and [35S]-Met

procaspase-9. Such an assay was useful for the identification of the initial peptoid-

based hit compounds that inhibited the activity of the apoptosome.

Drug discovery is a long and tedious process involving huge amount of scientific

labour. It involves several phases from target or hit identification to preclinical

development. The process of transforming a hit into high-content lead series (hit-to-

lead) includes the following steps: hit confirmation and lead generation and

optimization phases. The hit confirmation step includes a crucial sub-step; the

compound has to exhibit cell membrane permeability. The initial peptoid 1 hit,

however, did not accomplish such a requirement and different strategies were designed

to overcome such shortage mainly defining two lead series: conformationally restricted-

Page 174: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

140

and polymer conjugate-derivatives of the initial hit peptoid 1. The accuracy of our

proposal was early confirmed when these series, more suitable for ex vivo assays, were

tested in different cellular models and demonstrated their ability to reduce cell death.

The cell death inhibition not only was achieved when inductors of the intrinsic

apoptosis pathway were used (dox, CDDP, STS - [196, 200, 240]) but also with more

specific inductors of mitochondrial MOMP (doxy-dependent Bax overexpression -

[196, 200]) or apoptosome-formation inducers (Wells’ compound 2 - [151, 200]). .

Subsequently, we demonstrated the specificity of peptoid 1 and derivatives for targeting

Apaf-1 in different peptoid 1/Apaf-1 binding site determination assays. These assays

revealed the molecular mechanism by which peptoid 1 exerts its Apaf-1 inhibitory

effect. The Apaf-1 inhibitors bind to the interface of the CARD-NOD domains of Apaf-

1 in a way that precludes procaspase 9 recruitment without affecting Apaf-1

oligomerization.

A crucial question still to be solved in apoptosis is whether or not a cell that has

initiated the death pathway can recovery and several points of no return have been

postulated [4]. In my work I have tried to approach the problem. The results here

presented point to a positive answer: the chemical (pharmacological) inhibition of Apaf-

1 after apoptotic cell death induction not only markedly reduced apoptotic phenotype,

but also diminished the amount of cyt c release facilitating cell recovery. Encouraged

with such results and recent reports on the existence of a caspase 9-, caspase 3- and Bid-

depending MOMP amplification loop different clonogenic cell survival assays were

performed [42, 249, 250]. It was demonstrated that cells treated with QM31 showed a

significative increase in the number of colonies when compared to the control samples.

For a long time it has been assumed that caspases (as proteases responsible of the

execution of cell death), proapoptotic proteins from the Bcl-2 family as well as Apaf-1

would play a part only in cell death signaling pathways. However, a shift in thought is

now occurring and an increasing number of reports on how proteins involved in the

induction and execution of apoptosis also exhibit cell death-unrelated functions [93, 94,

294, 295]. In fact, the chemical (pharmacological) inhibition of Apaf-1 was useful to

confirm the participation of Apaf-1 in cell cycle-related events [240]. Furthermore, I

would like to hypothesize here a new role, outside from apoptosis, for Apaf-1. Cells

with Apaf-1 inhibited are extremely sensitive to high dosage of L-glutamine. A protein-

Page 175: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

141

protein interaction between Apaf-1 and GFAT2 [280] was early reported [279] and we

have found evidences of a partial inhibitory effect of GFAT2 on the apoptosome

activity. My hypothesis, that needs now further experimentation, proposes that GFAT-2

and Apaf-1 could be mutually regulated, then having a role on the regulation of the

GFAT2 dependent hexosamine pathway activation. If confirmed, the assigned Apaf-1

cellular role move ahead as we will be in front of a key protein in the determining

cellular fate when apoptosis is induced and the metabolic machinery has to be adapted

to the new cell conditions.

Once demonstrated the efficiency of inhibiting Apaf-1 as a strategy to recover cell

viability after apoptosis induction, we moved a step forward in order to find an

appropriate therapeutic application. A kidney hot ischemia animal model was

developed and upon the treatment with peptoid 1 derivatives we obtained a markedly

reduction in kidney tissue damage. A reduction in apoptotic phenotype was obtained

but also pathology studies demonstrated the improvement in the conditions of the cell.

This fact opens the door of a possible application of Apaf-1 selective inhibitors in the

treatment of ischemia damage or in organ transplantation in order to extend the time-

lapse in which an organ can be transplanted. Besides, this is not the only possible

application. The crucial role of Apaf-1 in neuronal cell death together with the

evidences that implicate Apaf-1 in neurodegenerative diseases such as Huntington

disease make us to further explore exciting new pharmacological applications [141].

Page 176: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

142

Page 177: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

143

CHAPTER 10. CONCLUSIONS

1. A second generation of peptoid 1 derivatives has been synthesized (PEN-1, TAT-1,

QM31 and derivatives and QM56 and derivatives) and compounds have been proved to

be active inhibiting apoptosis in different cellular models

2. The molecular mechanism of peptoid 1 derivatives Apaf-1 inhibitory activity has

been elucidated employing different in vitro and in silico assays and different cellular

models

3. Inhibition of Apaf-1 in different cellular models in the presence of the

conformationally constrained peptoid 1 derivative, QM31, alone or in combination with

q-VD-OPH results in an inhibition/delay of cyt c release and clonogenic cell survival

after an apoptotic insult

4. The ability of QM31 to inhibit other Apaf-1 roles in the cell such as S-phase cell

cycle arrest has been demonstrated and the possible implication of Apaf-1 in the control

of metabolism has been proposed

5. A validation of Apaf-1 inhibition as a therapeutic strategy in the treatment of

ischemia damage and organ transplantation has been done through the development of

an ex vivo hypoxia cardiomyocyte primary culture and an in vivo model of kidney hot

ischemia

Page 178: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

144

Page 179: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

145

CHAPTER 11. MATERIALS AND METHODS

11.1 Equipment and material

11.1.1 Equipment and material employed in the synthesis of peptoid 1 and peptoid 1

derivatives

a) Equipment

Penetratin, TAT, PEN-GG-peptoid and TAT-GG-peptoid sequences were synthesized

employing an automatic peptide synthesizer 433A from Applied Biosystems.

Purifications and analysis of PEN-1, TAT-1, PEN-1-CF, TAT-1-CF and low Mw

peptoid 1 derivatives (i. e. peptoid 1-GlyGly) by preparative HPLC were carried out by

means of a Merck Hitachi L-2130 HPLC pump and a sample carrier L-2200 with a

Lichrospher® 100 C18 (250 x 10 mm) column. The eluent was monitored at 220 nm

employing a Merck Hitachi UV Detector L-2400 spectrophotometer. NMR spectra

were recorded on a Bruker Ultrashield plus 600 MHz NMR. GPC analysis was

performed using a Merck Hitachi L-2130 HPLC pump and L-2200 autosampler, with

two TSK-gel columns in series (G3000 PWXL and G2500 PWXL) and a guard column

(PWXL Guardcol). The eluent was monitored by an UV-visible spectrophotometer at

220 nm (Merck Hitachi UV Detector L-2400). A flow rate of 1 mL/min, and a mobile

phase 0.1 M PBS buffer was used. EzChrom Elite Instrument software was employed

for data analysis. Analytical RP-HPLC was performed using the same system as the

one described for GPC but with a Lichrospher® 100 C18 (150 x 3.9 mm) column, and

as mobile phase different acetonitrile gradients in aqueous 0.1 % TFA. The UV spectra

were recorded on a Jasco V-530 UV/Vis spectrophotometer. Analytical

ulracentrifugation (AUC) experiments were conducted using a Beckman Optima XL-A

equipped with a UV detection system and fitted with an An-Ti50 rotor and 6-channel,

12 mm thick charcoal-epon centrepieces. Characterization of QM56-OG was done in a

Jasco 810 Spectrofluorimeter.

Page 180: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

146

b) Materials

PGA salt (17000-40000 Mw), DIC, 1-hydroxybenzotriazol (HOBt), di-

isopropylethylamine (DIEA), anhydrous methylformamide (DMF), HPLC grade

aminoacids and bovine cathepsin B were purchased from Sigma-Aldrich Química S. A.

(Madrid, Spain) and used without further purification. All solvents including HPLC

grade were obtained from Merck (Barcelona, Spain). All other reagents were of general

laboratory grade and were purchased from Merck unless otherwise stated. OG was

purchased from Molecular probes-Invitrogen (Barcelona, Spain). A PD-10 desalting

column from GE Healthcare España (Barcelona, Spain) was employed for QM56-OG

purification.

11.1.2 Materials and equipment employed in the biological assays

a) Equipment

Bacteria and yeast were grown separately in Binder stoves with or without the help of a

shaker IKA KS 130 Basic. Sterility was achieved by means of a Bunsen burner. Optical

density (OD) determinations and subsequent protein quantification assays were

performed in UV-Vis spectrophotometer Thermo Spectronic. Insect cells were grown

in a Raypa stove with the help of a shaker and mammal cells in a Steri-cycle CO2

incubator from Termo Electron Corporation. The manipulation of insect and mammal

cells was done in a culture hood Telstar Bio-II-A and cells were counted employing an

Olympus CKX-41 microscope, employing a Neubauer counting chamber (0.1 mm deep

and 0.0025 mm2). Centrifugations were done in an Eppendorf Centrifuge 5810R

Olympus CKX-41 microscope and ultracentrifugations in a Beckman Coulter Optima

MAX Ultracentrifuge. Protein purifications and cell extract fractionations were

performed in a FPLC® System with a LKB-UV-M-II detector from Amersham

Pharmacia Systems. Fluorescence polarization, MTT and caspase 3 activity

measurements were done in a Wallac Victor2V 1420 Multilabel HTS. FC studies were

performed employing a Cytomics FC 500 (Beckman Coulter Inc.) equipped with an

argon laser (488 nm) and emission filter for 530 nm (Vector Lab. Inc., Burlingame), a

FACSCalibur equipped with Cell Quest Pro software (Becton Dickinson) equipped with

an argon laser (488 nm) and a Violet laser (405 nm) and emission filters for 455 and

Page 181: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

147

530 nm, respectively. PEN-1, TAT-1 and QM56-OG cellular internalization studies

were performed with a Leica microscope equipped with a λ-blue 63X oil immersion

objective and handled with a TCS SP2 system, equipped with an acoustic optical beam

splitter (AOBS). Excitation was done with an argon laser (548, 476, 488, 496 and 514

nm) and blue diode (405 nm). In case of immunofluorescence studies with A549 cell

line a LSM 510 confocal fluorescence microscope (Carl Zeiss AG, Oberkochen,

Germany) was employed and the quantitative immunofluorescence assessments were

carried out on a DMIR2 inverted fluorescence microscope equipped with a DC300F

camera (Leica Microsystems GmbH, Wetzlar, Germany). NMR spectra were measured

employing a Bruker Avance Ultrashield Plus 600 MHz.

b) Materials

The necessary reagents for the preparation of bacteria and yeast medium and the

different buffers employed for the assays described were purchased from Sigma-Aldrich

Química S. A. (Madrid, Spain) unless otherwise stated. Protease inhibitors aprotinin,

leupeptine and pepstatin and Complete or Complete Mini EDTA-free Protease Inhibitor

Cocktail Tablets were purchased from Roche-Applied Science España (Barcelona,

Spain). For the isolation of plasmids the kit QIAprep Spin MIDIprep kit from Quiagen

Iberia S. L. (Madrid, Spain) was employed. Protein content was determined by means

of the Bicinchoninic Acid Protein Assay from Pierce Technology Corporation (New

Jersey, USA). His Trap HP 5 mL and Hi-Trap Q 5 mL columns from GE Healthcare

España (Barcelona, Spain) were employed for the purification of histidine tagged

proteins and anion exchange chromatography, respectively and BD TALON resin was

also employed BD Pharmingen (San Diego, USA). Resin Ni-NTA Agarose from

Qiagen Iberia S. L. (Madrid, Spain) was employed in the purification of rApaf-1 and Y-

M10 columns Millipore Ibérica (Madrid, Spain) were employed for the subsequent

concentration of the protein. A superpose 6 10/300 column GE Healthcare España

(Barcelona, Spain) was used for molecular exclusion chromatography. Media and the

different reagents necessary to grow insect, mammal and primary culture

cardiomyocytes cells were purchased from Gibco-Invitrogen (Barcelona, Spain) unless

a different supplier is indicated. Tissue culture grade DMSO, MTT, trypan blue

solution (0.4%) (cell culture grade), Epidermal Growth Factor from murine

submaxillary gland (EGF), dox, doxy, CDDP, STS, horse cyt c, dATP and

Page 182: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

148

paraformaldehyde were from Sigma-Aldrich Química S. A. (Madrid, Spain). Caspase 3

and caspase 9 fluorogenic substrates Ac-DEVD-afc and Ac-LEDH-afc, respectively,

were purchased from Biomol International (Grupo Taper, Madrid, Spain). Pan-caspase

inhibitors Z-VAD-fmk and q-VD-OPH were purchased from Promega Biotech Ibérica

S. L. (Madrid, Spain) and Biovision , Inc. (Mountain View, USA), respectively. The

antibody for Apaf-1 (mouse monoclonal, #Mab868) was purchased from R&D Systems

(Minneapolis, USA) and for procaspase 9 (rabbit polyclonal, sc-81663) was provided

for Santa Cruz Biotechnology, Inc. (California, USA). Cyt c antibody (mouse

monoclonal, #556432) was purchased from BD Pharmingen (San Diego, USA). In case

of anti-R-actinine (sarcomeric), cleaved caspase 3 (rabbit polyclonal, #9661), phospho-

Chk1 (Ser317, rabbit polyclonal, #2344) and Chk1 (rabbit polyclonal, #2345) Cell

Signaling Technology (Beverly, USA) was the supplier. β-actin antibody (mouse

monoclonal, #MAB1501) was purchase from Chemicon International (Temecula,

USA). Secondary antibodies for western-blot revelations were purchased from GE

Healthcare España (Barcelona, España). Alexa Fluor® 488 (emitting in green)

fluorochrome from Molecular Probes-Invitrogen (Barcelona, Spain) was used for

immunofluorescence revelation assays and Hoechst 33342 for nuclei staining from

Molecular Probes-Invitrogen (Barcelona, Spain). For cytometry assays BD

Pharmingen™ FITC Active Caspase 3 Apoptosis Kit from BD Pharmingen (San Diego,

USA) was employed. DiOC6(3) was obtained from Molecular Probes-Invitrogen

(Barcelona, Spain) and the PI was purchased from Sigma-Aldrich Química S. A.

(Madrid, Spain). The Annexin V-FITC and Pacific blue kits were provided by Miltenyi

Biotec GmbH (Bergisch Galdbach, Germany) and GE Healthcare, Inc. (California,

USA), respectively. Cyt c release cytofluorometry marcage was done employing the

InnocyteTM Flow Cytometric Cytochrome c Release kit Calbiochem (San Diego,

USA). The different siRNA employed were acquired from Sigma-Aldrich (Paris,

France) and the Oligofectamine® was procured by Invitrogen (Barcelona, Spain). For

TUNEL analysis the FragEL™ DNA Fragmentation Detection Kit, Fluorescent - TdT

Enzyme was employed Calbiochem (Madrid, Spain).

Page 183: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

149

11.2 Peptoid 1 and peptoid 1 derivatives synthesis

11.2.1 Synthesis of peptoid 1

Peptoid 1 was synthesized in the department of Chemical and Biomolecular

Nanotechnology, IQAC-CSIC in Barcelona supervised by Ángel Messeguer. For the

synthesis of the different peptoid 1 derivatives a peptoidyl resin (a polystyrene resin

functionalized with peptoid 1 (f = 0.75 mmol/g)) was used and Fmoc-solid phase

synthesis was employed to incorporate the different aminoacidic sequences and linkers.

11.2.2 Cell-penetrating peptides and cell-penetrating peptide/peptoid hybrids synthesis

a) Synthesis of PEN, TAT, PEN-1 and TAT-1

For the synthesis of hybrids peptide-peptoid, peptoid 1 was fused to the peptide carriers

PEN (RQIKIWFQNRRMKWKK-NH2) and TAT (YGRKKRRQRRRG-NH2) peptides.

PEN and TAT control peptides were synthesized by Fmoc-based solid phase synthesis

[196]. The hybrids PEN-1 and TAT-1 molecules were also synthesized using the same

procedure but loading the synthesizer with the pre-assembled peptoidyl 1-resin.

Peptides and conjugates were cleaved from the resin by treatment with trifluoroacetic

acid (TFA, 70%) and purified by preparative RP-HPLC using different acetonitrile

gradients in aqueous 0.1% TFA. The identity and purity was confirmed by HPLC and

MALDI-TOF mass spectrometry (Figure 4.2). Stock solutions of control peptides and

peptide/peptoid hybrids were prepared in PBS buffer (137 mM NaCl, 2.7 mM KCl, 4.3

mM Na2HPO4, 1.4 mM KH2PO4 pH 7.3) and the concentrations were determined by

UV spectroscopy and quantitative amino acid analysis.

b) Synthesis of CF-PEN-1 and CF-TAT-1

Synthesis of PEN-1-CF and TAT-1-CF was similar to PEN-1 and TAT-1, but

employing a petoidyl resin containing CF attached to the peptoid 1.

Page 184: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

150

11.2.3 Synthesis of QM56 and QM56-OG

11.2.3.1 Synthesis of QM56

QM56 was synthesized using a DIC-mediated coupling through a diglycyl spacer (using

the peptoid 1-GG as a reagent) to contain peptoid 1 up to a 12 mol % loading (free drug

content <1 %wt of total drug), as determined by UV-Vis spectrophotometry and HPLC

analysis [158, 192]. The synthesis can be divided in two parts: the coupling of the

linker to peptoid 1 molecule, and the conjugation of the GG-peptoid 1 to the polymeric

carrier.

The two Gly residues that act as a linker were incorporated to the pre-assembled

peptoidyl 1-resin through Fmoc-solid phase chemistry. Peptoid-GG derivative was

cleaved from the resin by treatment with TFA and purified by a preparative HPLC. The

identity and purity (95 %) was confirmed by HPLC and matrix -assisted laser

desorption ionization-time-of-flight mass spectrometry.

For the second part of the synthesis, to a solution of PGA sodium salt (0.1 g, 0.5 mmol)

with a Mw range 17000-43000 Da in water, 0.2 M HCl was added until the pH of the

solution was adjusted to 2.0. The precipitate was collected, dialyzed against water, and

lyophilized. PGA in its protonic form was dissolved in dry DMF (7.5 mL) and DIC (3

eq) and HOBt (3 eq) were added and left stirring for 15 min. Then peptoid 1-GGNH2

(0.052 mmol (12 mol %) 1 eq) was added and the pH adjusted to 8 with DIEA (1.5 mL).

The reaction was allowed to proceed at room temperature for 36 h. Thin layer

chromatography (TLC, silica) showed complete conversion of peptoid 1 (Rf = 0.5) to

polymer conjugate (Rf=0; 85:10:5/MeOH:H2O:AcOH). To stop the reaction, the

mixture was poured into CHCl3. The resulting precipitate was collected and dried in

vacuum. The sodium salt of PGA-peptoid conjugate was obtained by dissolving the

product in 1.0 M NaHCO3. This aqueous solution was dialyzed against distilled water

(MWCO 6,000-8000 Da). Lyophilization of the dialyzate yielded the product as a white

powder. A second purification step was performed by SEC using a G-25 sephadex

column (PD-10 column) in order to remove any remaining unreacted free peptoid 1.

The total peptoid content in the polymer as determined by UV (λ= 282 nm) was in the

Page 185: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

151

range of 25-30 % (w/w) (10-12 mol % functionalization), free drug content < 1wt %

total drug.

a) Determination of total drug content by UV spectroscopy

A stock solution of peptoid 1-GG-PGA in MeOH was prepared (1 mg/mL). To obtain a

calibration curve, samples were diluted using MeOH to give a concentration range of

0 –1 mg/mL. The total drug loading of the conjugates was determined by measuring the

OD at 272 nm and 281 nm in H2O. PGA in the same concentration range as the

analyzed conjugate (0–5 mg/mL) in H2O was used as blank. The extinction coefficient

found for peptoid 1-GG-PGA at 281 nm in MeOH at RT was ε = 713 L mol-1 cm.

b) Determination of free drug content by HPLC

Aqueous solutions of QM56 (1 mg/mL) were prepared, and an aliquot (100 μL) was

added to a polypropylene tube and made up to 1 mL with water. The pH of the samples

was adjusted to 8 with ammonium formiate buffer (100 μL, 1 M, pH 8.5), and then

CHCl3 (5 mL) was added. Samples were then thoroughly extracted by vortexing (3 x 10

sec). The upper aqueous layer was carefully removed and the solvent was evaporated

under N2. The dry residue was dissolved in 200 μL of HPLC grade acetonitrile. In

parallel the same procedure was carried out for the parent compound (using 200 μL of a

1 mg/mL stock aqueous solution). Addition of 1 mL of acetonitrile to redissolve the

product gave a 200 μg/mL stock from which a range of concentrations was prepared (2

to 100 μg/mL). The free amount of drug in the conjugates was determined by HPLC

and a flow rate 1 mL/min using an acetonitrile gradient in aqueous 0.1 % TFA (from 20

to 100 % of acetonitrile in 20 min). The retention time was tr = 14.3 min for peptoid 1-

GG (λ = 220 nm).

c) Determination of average molecular weight, polydispersity and behaviour in solution

of QM56

The average molecular weight (Mw), polydispersity (Mw/Mn) and the behavior of both

QM56 and control PGA in solution were analyzed by SEC, AUC and sedimentation

equilibrium.

Page 186: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

152

Analytical Ultracentrifugation. The knowledge of the partial specific volume (vbar)

(mL/gr) of PGA and PGA-peptoid was required for the evaluation of the AUC data. In

principle vbar for a protein can be calculated from its amino acid sequence, so vbar =

0.6580 or 0.6215 for PGA and PGA-peptoid, respectively. The density of the buffer

solution (Phosphate Buffer Saline (PBS)) was determined as 1.0048 g/L.

Sedimentation equilibrium studies. The six-channel charcoal-filled epon centrepieces

were filled with 85 μl of PGA or PGA-peptoid at two loading concentrations, 0.3 and 1

mg/mL. Sedimentation equilibrium was attained at a rotor temperature of 20°C at rotor

speeds of 12.5, 14 and 16 krpm, respectively, and absorbance profiles were acquired at

230 nm. Once the sedimentation equilibrium was reached at each of the defined

velocities, the apparent average molecular weight (Mw,a) was determined. The Mw,a

can be determined in a sedimentation equilibrium experiment independently of the

compound shape. It is calculated by adjusting the experimental data to the equation that

describes the radial distribution of the gradient of concentration in equilibrium, using

EQASSOC program (Beckman software packages) for a macromolecular solute.

Sedimentation velocity experiments. The sedimentation coefficient S of PGA and PGA-

peptoid was measured at 20 °C by AUC sedimentation velocity experiment using the

apparatus as described above. S (in Svedberg unit [10-13 s]) represents the speed at

which solute molecules are sedimenting to the bottom of the centrifuge cell under the

influence of a strong force field during the experiment. Epon double-sector

centerpieces were filled with 400 μLf sample solution and PBS, respectively, and

centrifuged at a rotor speed of 50 krpm at rotor temperatures of 20°C. Absorbance data

were acquired at 230 nm, and in time intervals of 2 min, with the radial increment set to

0.002 cm and taking two averages per scan; interference scans were taken in time

intervals of 1 min. The differential sedimentation coefficient distributions, c(s), were

calculated by modelling of the sedimentation velocity data using the least-squares

method. The program SEDFIT was used for this analysis.

Page 187: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

153

d) Nuclear Magnetic Resonance analysis of QM56

QM56 was dissolved in H2O+D2O at a concentration of 1mM drug-equiv. NMR

spectra were recorded on a Bruker Avance Ultrashield Plus 600 spectrometer equipped

with a 5-mm single-axis gradient TCI cryoprobe. NMR data were processed using the

program Topspin (Bruker GmbH, Karlsruhe, Germany). Homonuclear experiments

included 2D 1H, 1H NOESY and TOCSY with spectral widths of 8 kHz in both

dimensions, using a WATERGATE scheme to suppress the water signal for the H2O.

Mixing times were 400 and 80 ms for NOESY and TOCSY experiments respectively.

e) Degradation study of PGA and QM56 on incubation with Cathepsin B. Evaluation of

Mw loss and peptoid 1 release profile from QM56

Cathepsin B (5 U) was added last to a solution of 3 mg PGA or QM56 in 1 mL of a pH

6 buffer composed by 20 mM sodium acetate, 2 mM ethylenediaminetetraacetic acid

(EDTA) and 5 mM DTT. Incubation was carried out at 37°C. Aliquots (150 μL) were

taken at times up to 72 h, immediately frozen in liquid nitrogen, and stored frozen in the

dark until assayed by HPLC (analysis of 100 μL aliquots after extraction procedure)

and/or GPC (direct analysis of 50 μL aliquots). In control experiments polymers were

incubated in buffer alone (without addition of cathepsin B) to assess non-enzymatic

hydrolytic cleavage. In addition, free drug (0.75 mg/mL) was also incubated under

same conditions and later used as the reference control.

Then, released peptoid 1 was evaluated through HPLC employing the extraction method

described in section b). Mass analysis of the released compounds was carried out by

MALDI TOF TOF, being G-peptoid the major metabolite (Mw = 786 Da).

GPC Evaluation of Polymer Mw loss. The 50μL aliquots was diluted up to 200μL with

buffer (PBS) and the Mw determined by GPC using PEG standards.

Page 188: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

154

f) Stability in plasma studies

To assess degradation in plasma, the same procedure above described was followed

using as buffer PBS at pH 7.4 with a 10% of FBS.

11.2.3.2 QM56-OG (peptoid 1-GG-PGA-oregon green)

For the synthesis of QM56-OG, 30 mg of PGA (1 eq) in its protonic form were

dissolved in dry DMF (7.5 mL) and DIC (3 eq) and HOBt (3 eq) were added and left

stirring for 15 min. Then 1 mg of OG was added (1 mg, 0.01 eq, 1 % mol) was added

and the pH adjusted to 8 with DIEA (2 mL). The reaction was allowed to proceed at

room temperature for 36 h protected from light. Thin layer chromatography (TLC,

silica) showed the appearance of a fluorogenic stain in the point of application of the

sample (Rf = 0; 100% MeOH). DMF was evaporated to dryness using a high vacuum

purp. The residue was rediossolved in the minimum volume of a 1 M NaHCO3 solution

in order to obtain the insoluble salt. Then, this solution was purificed by SEC and at the

same time to determine conjugation efficiency. PGA-OG was eluted with water and 1

mL samples were collected. Fluorescence (λexc = 488 nm and λem = 530 nm) was

measured in the different fractions in order to determine the fluorescence associated to

PGA-OG samples containing the PGA-OG (first fractions) and the OG alone (final

fractions). For this purpose 5 μL of the different fractions were solved in MeOH.

Finally, fractions containing the PGA-OG were mixed and lyophilized.

Once the PGA-OG was obtained, the fluorescent QM56 analogue (QM56-OG) was

synthesized following the same protocol described for the conjugation of PGA to the

peptoid 1-GG in Section 11.2.3.1. The total drug content was determined by SEC

(PD10 columns) and fluorescence spectroscopy (yield 70-80%, OG loading 0.7-0.8 mol

%).

Page 189: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

155

11.2.4 Synthesis of conformationally constrained peptoid 1 mimetics: 1-(3’,3’-

diphenylpropyl)-4-[2’-(2’’,4’’-dichlorophenyl)ethyl]-7-[N-aminocarbonylmethyl-N-[2’-

(2’’,4’’-dichlorophenyl)ethyl]aminocarbonyl]perhydro-1,4-diazepine-2,5-dione

(QM31)

11.2.4.1 Synthesis of QM31

The synthesis of this heterocyclic derivative was carried out following a solid-phase

general procedure with microwave activation developed in at Messeguer’s lab.

(unpublished results).

11.2.4.2 Synthesis of QM31 derivatives

a) R1 moiety derivatives

Optimization of QM31 chemical structure was done by modifying R1 moiety. A series

of eleven derivatives QM31a-QM31m were initially designed. These derivatives where

synthesized employing the same strategy than for the QM31, but introducing different

substituents at R1.

b) Synthesis of QM57

Compound QM57 was synthesized employing a chemical strategy similar to than

reported for QM31. Due to patent pending issues, no chemical structure or synthesis

strategy of QM57 or its derivatives will be displayed in this section.

c) Synthesis of QM57 and analogues

The compounds were synthesized following the procedure for QM57 but by coupling

the corresponding N-alkylglycine fragment to the common intermediate. A total of

twelve QM57 derivatives were synthesized (QM57a, QM57b, QM57c, QM57d,

QM57e, QM57f, QM57g, QM57h, QM57i, QM57j, QM57k, QM57l and QM57m).

Page 190: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

156

11.2.5 Synthesis of QM56 and heterocycles QM31 and QM57 polymeric derivatives

A series of QM56 analogues and QM31 and QM57 polymeric derivatives, all of them

with different peptide linkers were synthesized. Similar synthetic protocols were

followed in order to obtain this family of nanoconjugates. However, due to patent

pending issues no structural characteristics or synthetic procedures will be shown in

detail.

11.3 E. coli manipulation

11.3.1 E. coli strains and plasmid constructs

Max Efficiency DH5α, BL21(DE3) and BL21(DE3)pLysS Codon + competent bacteria

cells (Invitrogen, Barcelona, Spain) were employed for the assays. Plasmid pET15b

was purchased from Merck Chemicals Ltd. (Nottingham, UK) and CARDApaf-1 cDNA

was subcloned into the plasmid (pET15b-CARDApaf-1, NdeI and XhoI restriction sites).

The plasmid pET23b constaining human procaspase 9 cDNA (pET23b-pc9) was kindly

donated by James A. Wells (Sunesis Pharmaceuticals, San Francisco, USA). The strain

DH5α was employed for the isolation and manipulation of pET15b-CARDApaf-1 and

pET23b-pc9 and its subsequent storage in glycerol 15 % at – 80 ºC. For the

manipulation of pET15-pc9 and pET15b-CARDApaf-1 BL21(DE3) and

BL21(DE3)pLysS Codon + competent cells were employed, respectively.

11. 3. 2 Culture conditions and manipulation of E. coli

a) Transformation and storage of the plasmids in DH5α

The strain DH5α was grown in LB (Luria Bertani) liquid (1 % (w/v) bacteriological

triptone, 0.5 % (w/v) yeast extract, 1 % (w/v) NaCl) or solid (1.5 % (w/v)

bacteriological grade agar is added to the previous recipe) medium. When transformed

with the different plasmids, LB medium was supplemented with 100 μg/ml of sterile

ampicilin (Amp).

Page 191: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

157

Transformed bacteria where then grown in 100 mL of LB containing 100 μg/ml of

sterile ampicilin (Amp) at 37 ºC overnight and the following day plasmidic DNA

extraction was done (Qiagen kit). The plasmidic DNA was sequenced and possible

mutations discarded.

b) Transformation of BL21(DE3)pLysS Codon +

BL21(DE3)pLysS Codon + were transformed with pET23b-pc9 and transformed

colonies were selected by growing bacteria in 2XTY medium (1 % (w/v) bacteriological

triptone, 1.6 % (w/v) yeast extract, 0.5 % (w/v) NaCl and pH = 7 adjusted with NaOH)

containing 100 μg/ml of sterile Amp.

BL21 plysS DE3 codon + were transformed with pET15b-CARDApaf-1. Selection of

transformed bacteria was made by adding Amp 100 μg/mL and chloramphenicol (Chlo)

25 μg/mL to the bacteria culture medium LB.

11.3.3 Obtention of recombinant proteins

a) Human procaspase 9 expression and purification

BL21(DE3)pLysS Codon + transformed with pET23b-pc9 were grown in a 1.5 mL pre-

culture at 37 ºC overnight at 255 rpm in 2XTY medium containing 100 μg/ml of sterile

Amp. The following day, the pre-culture was added to 50 mL of 2XTY containing 50

μg/mL Amp and grown for 1.5 h at 37 ºC and 200 rpm. Then, 25 mL of this culture

was added to 500 mL of the same medium and was grown at 37 ºC and 200 rpm till an

ODλ=600nm around 0.6-0.7. Then, the culture was cold till 30 ºC and expression of

induced by the addition of 0.2 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) for

3 h at 30 ºC and shaking rate of 170 rpm. Finally, culture was cold in ice and

centrifuged at 3000 g, 4 ºC for 15 min. Supernatant was discarded and pellet frozen at -

80 ºC.

The following day, pellets were thaw and resuspended in 50 mL of buffer A (100 mM

Tris-HCl pH = 8, 0.1 M NaCl) with the help of a pipette. Then, sample was sonicated

Page 192: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

158

on ice for 3 min with pauses every min to avoid sample heating and an amplitude (A) of

35 %. Once sonicated, sample was centrifuged at 17000 g at 4 ºC for 45 min and

supernatant was recovered and 0.45 μM filtered.

Then, protein was purified employing a Fast Protein Liquid Chromatography (FPLC)

apparatus and a His Trap HP 5 mL column. Column was equilibrated in buffer A and

sample was added at 4 mL/min rate and then washed with 15 mL of buffer A at 3.5

mL/min. In the next step, 225 mL of 90 % buffer A and 10 % buffer B (100 mM Tris-

HCl pH = 8, 0.5 M NaCl, 200 mM imidazole) were added. Finally, protein was eluted

with 100 mL and a gradient from 10 % of buffer B in buffer A till 100 % of buffer B.

Elution rate was 5 mL/min. The procaspase 9 subunits p35 and p10 are eluted, but

although the protein is processed there is no activation of this protein.

The eluent was purified again employing a His Trap Q HP 5 mL column. For this

purpose, column was equilibrated in buffer Ai (20 mM Tris-HCl pH = 8, 5 % (v/v)

glycerol, 1 mM dithiotreitol (DTT)). Sample was loaded at 3.5 mL and column washed

with 225 mL of buffer Ai. Then Protein was eluted with 100 mL of a gradient from

buffer Ai 100 % to buffer B 100 % (20 mM Tris-HCl pH = 8, 5 % (v/v) glycerol , 1 M

NaCl, 1 mM DTT) and a rate of 3.5 mL/min. Eluation peak was frozen at -80 ºC and

quantified employing Bradford assay and taking into account the presence of DTT in

the sample.

b) Apaf-1 XL CARD domain expression and purification

Bl21 plysS DE3 codon + transformed with pET15b-CARDApaf-1 were grown in 5 mL of

LB containing Amp and Chlo at 37 ºC, 255 rpm overnight. This preculture was

inoculated in 500 mL of LB medium supplemented with Amp 100 μg/mL and Chlo 25

μg/mL. Bacteria culture was grown at 37 ºC, 300 rpm till an ODλ = 600 nm of 0.6. Then

protein expression induction was done by adding 0.5 mM of IPTG and letting the cells

grow overnight at 20 ºC, 300 rpm.

Bacteria culture was centrifuged at 3500 rpm, 4 ºC for 20 min. Pellet was resuspended

in 25 mL of lysis buffer (5mM Tris-HCl pH 8, 300 mM NaCl and 10% glycerol)

containing 25 mg of lysozime and Complete EDTA-free Protease Inhibitor Cocktail and

Page 193: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

159

it was incubated on ice for 30 minutes. Then, pellet was sonicated (35 % amplitud for 1

min three times).

Once the bacteria were lysated, sample was centrifuged at 12000 rpm for 20 min at 4

ºC. Supernatant was taken and centrifuged again at 12000 rpm for 1 h at 4 ºC. Finally,

supernatant was purified employing 2 mL BD TALON resin at room temperature in a

econopack 10mL from BIORAD. Column was equilibrated in 20 mL of lysis buffer

and sample was loaded by gravity. Then, the resin was washed with 20 mL of washing

buffer (25mM Tris-HCl pH 8, 300mM NaCl, 10% glycerol and 3mM imidazole).

Protein was eluted with 10 mL of elution buffer (25mM Tris-HCl pH 8, 300mM NaCl

and 250 mM imidazole) in 1 mL fraction that were kept in individual eppendorf for

subsequent characterization of the protein content. During this time, column was at

room temperature but samples were kept on ice. Finally, protein content was quantified

employing Bradford assay and the most concentrated fractions of protein were dialyzed

in a 6000-8000 MW dialysis membrane in 1 liter of dialysis buffer (20mM NaH2PO4

pH = 6) for 16 h at 4 ºC. Then, protein was kept at 4 ºC or for long storage terms at -80

ºC.

c) Apaf-1 15N-CARD domain production

Bl21 plysS DE3 codon + transformed with pET15b-CARDApaf-1 were grown in 5 mL of

LB containing Amp and Chlo at 37 ºC overnight. This preculture was inoculated in 500

mL of M9 minimal medium (12.8 g/L Na2HPO4·7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1

g/L MgSO4·7H2O, 20 mg/L CaCl2·2H2O, 10 mg/L FeCl3. 6H2O, 1mg/L ZnCl2, 0.5mg/L

Na2MoO4. 2H2O, 0.2 mg/L MnCl2. 4H2O, 0.2 mg/L CoCl2. 6H2O, 0.1 mg/L CuCl2.

2H2O, 2 mg/L thiamine·HCl, 2 g/L glucose, 1 g/L 15NH4Cl and final pH 7.4)

supplemented with Amp 100 μg/mL and Chlo 25 μg/mL. Bacteria culture was grown at

37 ºC, 300 rpm till an ODλ = 600 nm of 0.6. Then protein expression induction was done

by adding 0.5 mM of IPTG and letting the cells grow overnight at 20 ºC, 300 rpm.

Page 194: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

160

The purification protocol followed was the same than the one described above for the

CARD domain production with no marcage. Protein was stored at 4 ºC.

11.4 S. cerevisiae manipulation

11.4.1 S. cerevisiae strain

Genetically modified EGY048 yeast strain (MATα trp1, ura3, his3 leu2::p6LexAop-

LEU2) was employed for the development of the different yeast two-hybrid

experiments and was kindly donated by Patrick Fitzgerald (St. Jude Children’s Research

Hospital, Memphis, USA).

11.4.2 Culture conditions and manipulation of EGY048 strain

EGY048 yeast cells were grown at 30 ºC, 250 rpm in liquid Synthetic-Complete drop

out medium (SC-drop out). This medium is composed of 2 % β-galactose, 0.67 %

bacto-yeast nitrogen-base w/o amino acids and 0.2 % of drop out mix (2 g of the

different amino acids except for leucine (10 g), 0.5 g adenine, 2 g uracil, 2 g inositol and

2 g p-amino benzoic acid with a total weight of 54 g).

Yeast cells were cotransformed with the different pGilda and pJG4-5 construct plasmids

kindly provided by Patrick Fitzgerald (St. Jude Children’s Research Hospital, Memphis,

USA) (Figure 6.5). Selection was made by growing cells in SC-drop out lacking

histidine and tryptophan (SC-His-Trp/galactose). The selected cells were grown in

different media in order to test the proper working of the system chosen (Figure 6.5). In

all cases, medium employed was SC-drop out with different variations in their

composition: taking away His and Trp (SC–His-Trp/galactose); removing His, Trp and

Leu from the final mixture (SC-His-Trp-Leu/galactose) and finally eliminating His, Trp

and Leu and substituting galactose for glucose (SC-His-Trp-Leu/glucose). The

objective was to select the cells transformed with both plasmids (SC-His-Trp/galactose),

to select the cells in which there was a two-hybrid protein interaction and to test the

dependence on β-galactose of the promoters of the pGilda and pJG4-5 plasmids

introduced in the cells (SC-His-Trp-Leu/glucose).

Page 195: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

161

11.4.3 Yeast two-hybrid system assay

Colonies transformed with the systems 1, 6, 12 and 15 (see Figure 6.5 for further

information) were inoculated in 4 10 mL polypropylene tubes with 1 mL of SC-His-

Trp-Leu/galactose. Then, the 4 tubes of the different systems were treated with 5 μL

DMSO:SC-His-Trp-Leu/galactose (1:2) alone or containing 5, 2.5 and 1.25 μM of

QM31. Cells were then incubated at 30 ºC and shaked at 300 rpm up to 96 h.

Measurements of OD 600 nm were carried out daily till significant differences in cell

growing were observed.

11.5 Insect cell manipulation

11.5.1 Insect cell lines

SF9 and SF21 insect cell lines derived from pupal ovarian tissue of the fall armyworm

(Spodoptera frugiperda) were purchased from the German Collection of

Microorganisms and Cell Cultures (Braunschweig, Germany) and Invitrogen (Paisley,

UK), respectively.

11.5.2 Culture conditions and manipulation of insect cells

Insect cells were grown at 27 ºC in the absence of humity in a Raypa stove. Grace’s

medium complemented with 10% FBS, yeastsolate 4 g/L, gentamycin 50 ug/mL,

amphotericin B 0.25 ug/mL was employed and Pluronic F-68 0.1% was added for insect

cells growing in suspension.

Insect cells were grown in glass bottles with screw top for allowing the oxygenation of

the culture at 27 ºC in the absence of humidity. Bottles were filled one third from its

total capability and shaked at 130 rpm in an orbital shaking platform. Cell density and

culture viability was followed daily. Culture density oscillated between 0.3·106 to 2·106

cells/mL. Cells presented 98-100% cell viability and 2·106 cells/mL in the moment of

the virus infection.

Page 196: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

162

11.5.3 Baculovirus manipulation and recombinant Apaf-1 production

a) Baculovirus obtention

Recombinant Apaf-1-XL (rApaf-1) was obtained as previously reported [38]. Briefly,

Apaf-1 cDNA (kindly provided by G. Núñez, Michigan University) was subcloned into

pFastBac I vector with a C-terminal 9-His-tag. The expression plasmid was

transformed into DH10Bac Escherichia coli bacteria. The recombinant bacmids were

purified as recommended by the manufacturer (Invitrogen) and used to transfect SF9

insect cells.

b) Amplification and titration of viral stock

SF9 insect cells were infected in order to amplify the viral stock. For this purpose SF9

cells growing at 2·106 cells/mL were inoculated with an average of 0.1 particles of virus

per cell (multiplicity of infection, MOI). The the following formula to calculate how

much viral stock to add to obtain a specific MOI:

(pfu/ml)stock viralof Titelcells ofnumber Total x (pfu/cell) MOI(mL) required Inoculum = ,

pfu is the number of plaque forming colonies.

Cells were grown till infection phenotype appeared approximately 72-108 h after the

virus inoculation. Then, the culture was centrifuged at 800g for 5 minand supernatant

containing viruses was stored at 4 ºC protected from light.

Virus stocks were titrated employing the BacPAK Baculovirus Rapid Titer Kit

(Clontech) according to manufacturer’s instructions. Briefly, SF21 cells were seeded in

a 96 well-plate and infected with serial dilutions of the virus sample. One hour later,

virus was eliminated and methyl cellulose was added as a protective cover. The plate

was incubated for 45 h at 27 ºC. Then, methyl cellulose layer was eliminated by adding

freshly prepared ice-cold formyl buffered acetone and an immunoassay employing gf64

protein antibody, a virus envelope protein, was done and revealed employing a

Page 197: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

163

secondary antibody conjugated to peroxidase. Chromogenic peroxidase showed the

blue nucleus corresponding to the infection foci. The number of foci was quantified

employing and the viral titter was estimated following formula:

40factor x dilution x foci/well ofnumber (pfu/mL) titer Virus = ,

being 40 an empiric correction factor inherent in this assay [296].

c) Apaf-1 protein production

For the obtaining of recombinant Apaf-1, 300 mL of SF9 cells growing at 2·106

cells/mL were infected with 3 MOI, approximately 4-9 mL from virus stock with a

2·108 pfu/mL titer. The infected cells were harvested after 40 h, washed in cold

phosphate buffered saline (PBS), and resuspended in 5 volumes of lysis buffer (20 mM

Hepes-KOH pH 8.0, 10 mM KCl, 1.5 mM MgCl2, 1 mM NaEDTA, 1 mM EGTA

(glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid), 1 mM DTT (dithiothreitol))

supplemented with Complete Protease Inhibitor Cocktail. Cells were lysated in a

dounce homogeniser with 10-14 strokes with a loose pestle. The cell lysated was

centrifuged at 10000 g for 1 h and the supernatant was injected into a Ni-NTA (Ni2þ-

nitrilotriacetate)-agarose column and it was washed with 40 mL of washing buffer

(20mM Hepes–KOH pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM NaEDTA, 1 mM

EGTA, 1 M NaCl, 25 mM imidazol, 1mM DTT). The protein was eluted in 600 ul of

elution buffer (20mM Hepes–KOH pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM

NaEDTA, 1 mM EGTA, 250 mM imidazol, 1mM DTT). Protein was concentrated

employing Y-M10 (Millipore) and buffer A to eliminate imidazol or was desalted with a

PD-10 column and then eluted with buffer A and concentrated with a Y-M10 column.

Finally, the purified protein was stored at –80 ºC in aliquots in buffer A (20 mM Hepes–

KOH pH 7. 5, 10 mM KCl, 1.5 mM MgCl2, 1 mM NaEDTA, 1 mM EGTA, 0.1 mM

PMSF, 1 mM DTT) plus 20% glycerol after being snap frozen in liquid nitrogen. The

quantification of the protein was done employing the bicinchoninic acid kit and its

ability to activate caspases was tested by mixing the protein with FT, a fraction from

HEK 293 cell extracts that lacks Apaf-1 but contains caspase 9, 3 and cyt c [87, 202]

(see section 11.4.3 for further information).

Page 198: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

164

11.6 Mammal cell lines manipulation

11.6.1 Mammal cell lines

U937 human histiocytic lymphoma and the U-2 OS human osteosarcoma cell lines were

obtained from the American Type Culture Collection (Rockville, MD). Human

embrional kidney 293 (HEK 293), A549 human lung carcinoma and HeLa human

cervix adenocarcinoma were purchased from the German Collection of Microorganisms

and Cell Cultures (Braunschweig, Germany). The Saos-2 human osteosarcoma cell line

was kindly provided by Karin Vousden (Cancer Research U. K., Glasgow). HeLa

expressing cyt c-GFP (Heltog) generated by retroviral transduction employing pBABE

mouse cyt c-GFP virus [36, 37] were kindly provided by Prof. Douglas Green (St. Jude

Children’s Research Hospital, Memphis, USA). MCF-7 peGFP-LC3 transformed cells

were kindly provided by Dr. Marja Jäättellä (Kraefte Bekaempelse, Copenhagen,

Denmark).

11.6.2 Culture conditions

U937 and MCF-7 peGFP-LC3 cells were grown in suspension in RPMI 1640 medium

supplemented with 10% FBS and 2 mM L-glutamine. The HEK 293, U-2 OS, Saos-2

and HeLa, cells were grown in Dulbecco’s modified Eagle’s medium supplemented

with 15% FBS, 2 mM L-glutamine was also added except for Saos-2. A549 were

routinely maintained in F-12 medium supplemented with 10% fetal bovine serum

(FBS), 10 mM Hepes buffer, 100 units/mL penicillin G sodium, and 100 μg/mL

streptomycin sulfate. Cells were maintained at 37 ºC in an atmosphere of 5% carbon

dioxide and 95% air and underwent passage twice weekly.

11.6.3 HEK 293 cell extracts preparation and cell-free caspase activation assays

(DEVDase activity)

Cells were seeded in 15 cm diameter plates at 1–2·106 cells per plate and harvested

when confluent (approximately 107 cells per plate). S-100 extracts from HEK 293 cells

were prepared from 2·108 cells and fractionated essentially as described by Fearnhead et

al. [147, 202]. Briefly, fractionation of extracts was carried out by ion exchange

Page 199: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

165

chromatography. An S-100 extract was separated into three fractions (F1, F2 and FT)

and its composition was confirmed by immunoblot. F1 (5 mg of protein/mL) contained

Apaf-1 and FT (30 mg of protein/mL) contained caspases-3 and -9, and cyt c. None of

these fractions had caspase activity but a combination of active recombinant Apaf-1 and

FT reconstituted caspase activation.

In order to perform the cell-free caspase activation assay, rApaf-1 (5–10 ng) was added

to FT fraction (5 μL) and incubated with 1 mM ATP or dATP at 37 ºC, for 30 min.

Then, a 3 μL aliquot was mixed with 200 μL of caspase assay buffer (PBS, 10%

glycerol, 0.1 mM EDTA, 2 mM DTT) containing 20 μM Ac-DEVD-afc. This assay is

based on the caspase 3 cleavage sequence of PARP (poli(ADP-ribose)polimerase)

protein. Caspase activity was continuously monitored following the release of

fluorescent afc (λexc = 400 nm; λem = 508 nm) in a multimarcage Wallac Victor2V 1420

Multilabel HTS. DEVDase activity was expressed as either as increase of relative

fluorescence units per min (ΔFU/min) or as percentage of the initial fluorescence signal

value obtained in the absence of inhibitor when the inhibitory activity of compounds

was evaluated [158, 200].

11.6.4 In vitro reconstitution assay of the apoptosome

For the in vitro apoptosome reconstitution assay, 5 μL of 600 μM compounds were

tested at 10 μM in 100% DMSO and 181.7 μL of master mix containing 136.7 μL

water, 40 μL 5X assay buffer (100 mM Hepes-KOH pH = 7.5, 500 mM KCl and 5 mM

DTT) and 5 μL for a final concentration of 40 nM. rApaf-1 and the compounds were

incubated for 15 min at room temperature before adding 5 μL ATP/Mg from a stock 80

mM in water and 2 uL of cyt c at concentration of 10 μM After 10 min, 5 μL of

procaspase 9 from 16 μM stock was added. The mixture was incubated at room

temperature for 5 more minutes and 5 μL of 4 mM caspase 9 fluorogenic substrate stock

was added, Ac-LEDH-afc. Caspase activity was continuously monitored following the

release of fluorescent afc at 37 ºC using a Wallac 1420 Workstation (λexc = 400 nm; λem

= 535 nm). DEVDase activity was expressed as the increase of relative fluorescence

units per minute (ΔFU/min). All the assays were validated employing different internal

controls (Table 3. 1).

Page 200: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

166

Table 11.1. Internal controls of the yeast two-hybrid assay. SAMPLE rApaf-1 Procaspase 9 Z-VAD-fmk QM31

Procaspase 9 control + - - - Apaf-1 control - + - -

Inhibition control + + + - QM31 control + + - +

GFAT2/Apaf-1 interaction studies. For study of Apaf-1/GFAT2 possible interaction,

recombinant GFAT2-GST (OriGene, USA), Bcl-xL-GST [223] and CDK2-GST [297]

proteins were employed. 40 μM rApaf-1 was incubated with GFAT2, Bcl-xL and

CDK2 proteins at a ratio concentration 1:1, 1:2 and 1:3 for 30 min at 30 ºC. Then, the

remaining components of the apoptosome were added as previously described and

caspase 9 activity was measured and results were expressed as caspase 9 activity

inhibition.

11.6.5 MTT cell viability assays

Cells were cultured in sterile 96-well microtiter plates at a seeding density of 104, 3·103,

2.5·103, and 2·103 cells/well for Saos-2, U-2 OS, HeLa, and A549, respectively, and

2.5·103 and 4·103 cells/well in the case of U937, and they were allowed to set for 24 h

[200]. Doxy (2 μg/mL in PBS) for Saos-2 cells and dox in the cases of A549, HeLa, U-

2 OS, and U937 at concentrations of 1, 1.5, 2, and 0.25 μg/mL in PBS, respectively,

were then added. After 30 min cells were treated with compounds (0.2 μm filter

sterilized) at final concentrations of 1, 5, and 10 μM in the cases of PEN-1, TAT-1, and

QM31 and its derivatives, while polymer conjugates (QM56, QM31-P and QM57-P)

were tested at concentrations of 20, 50, and 100 μM drug-equivalents. Compounds

were incubated for 19, 43 or 67 h, and then MTT (20 μL of a 5 mg/mL solution) was

added to each well. Cells were further incubated for 5 h (a total of 24 h of incubation

with the inhibitors was therefore studied). In the next step, medium was removed, the

precipitated formazan crystals were dissolved in optical grade DMSO (100 μL), and

plates were read at 570 nm.

Page 201: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

167

11.6.6 Caspase activation assays in cellular models (DEVDase activity)

Cell extracts were prepared from cells seeded in 3.5 cm diameter plates at seeding

densities of 2·105 cells per plate in the case of Saos-2, 3·105 and 3.5·105 cells per plate

for HeLa and U-2 OS, and 4·105 and 4. 5·105 cells per plate for U937, and they were

allowed to set for 24 h. Then cells were treated with doxy (2 μg/mL in PBS) for Saos-2

cells and dox in the cases of HeLa, U-2 OS, and U937 at concentrations of 2, 2.5, and

0.25 μg/mL in PBS, respectively.

After 30 min, PEN-1 and compound QM31 derivatives at 5 μM and polymer conjugates

(QM56, QM31-P and QM57-P) at 50 and 100 μM drug-equivalents were added. Cells

were harvested after 24, 48, and 72 h of incubation and pellets resuspended in 30 μL of

extraction buffer (50 mM PIPES, 50 mM KCl, 5 mM EDTA, 2 mM MgCl2, 2 mM DTT

supplemented with protease inhibitor cocktail from Sigma) and kept on ice for 5 min.

Once pellets were frozen and thawed three times, cell lysates were centrifuged at 14,000

rpm for 5 min and supernatants were collected. Quantification of total protein

concentration from these cell extracts was performed using the bicinchoninic acid

method.

Aliquots were prepared at the same concentration, and afterwards mixed with 200 μL of

caspases assay buffer (PBS, 10% glycerol, 0.1 mM EDTA, 2 mM DTT) containing 20

μM Ac-DEVD-afc. Caspase activity was continuously monitored following the release

of fluorescent afc at 37 ºC using a Wallac 1420 Workstation (λexc = 400 nm; λem = 535

nm). DEVDase activity was expressed as the increase of relative fluorescence units per

minute (ΔFU/min).

11.6.7 Cellular internalization studies by flow cytometry and confocal fluorescence

microscopy

a) Uptake of PEN-1 and TAT-1 by U937 human histiocytic lymphoma cells

U937 cells were seeded in 6-well plates at a density of 106 cells/mL and allowed to

settle for 24 h. CF labelled conjugates (CF-PEN-1 and CF-TAT-1, both 1 mM) were

added and the cells incubated for 0–60 min at 37 ºC. At each sample time, cells were

Page 202: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

168

placed on ice, the cell suspension removed and then centrifuged at 4 ºC (600 g for 10

min). Pellet was resuspended in ice-chilled PBS (5 mL), this washing procedure was

repeated three times and finally pellet was resuspended in ice-chilled PBS (200 μL) and

collected in tubes. Cell-associated fluorescence was then analysed. Data collection

involved 25,000 counts per sample and the data were analyzed with Beckman Coulter

CXP software. Data are expressed by plotting the shift in geometric mean of the entire

population. Cells incubated without the compounds were used to account for the

background fluorescence [196].

b) Cellular internalization of CF-PEN-1, CF-TAT-1 and QM56-OG by Saos-2

osteosarcoma cells

For confocal microscopy internalisation studies, 105 Saos-2 cells were seeded in glass

bottom culture dishes and left to adhere to the cover slips for 24 h. Cells were

incubated for either 0, 15, 30 min or 1 h at 37 ºC with the CF-peptides (1 μM). After

this time cells were maintained on ice, washed twice with chilled PBS and fixed with

paraformaldehyde (PFA) for 30 min at 37 ºC. Then cells were washed three times with

PBS and the samples prepared using mounting medium for fluorescence with DAPI.

Images were captured with a confocal microscope. Excitation was done with an argon

laser (548, 476, 488, 496 and 514 nm) and blue diode (405 nm).

For live-cell imaging, Saos-2 cells were seeded in glass bottom culture dishes and left to

adhere to the coverslips for 24 h. To assess the subcellular localization of the hybrids

peptide/peptoid 1, cells were incubated for either 15, 30 min or 1 h at 37 ºC in complete

medium containing CF-PEN-1, CF-TAT-1 (1 μM) or QM56-OG (0. 125 mg/mL).

Before visualization, medium containing the conjugates was removed from the cells by

aspiration, and the cells were washed three times with fresh medium (37 ºC). Finally,

clear complete media was added and cells were subsequently viewed for a maximum of

30 min. Images were captured with a confocal Leica microscope equipped with a l-blue

20X objective and handled with the same system described above [196].

Page 203: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

169

11.6.8 Circular Dichroism spectroscopy measurements

CD spectra were acquired at 5 ºC on a Jasco-810 spectropolarimeter equipped with a

Peltier temperature control in quartz cells of 0.1 cm path length. Peptides and hybrids

were analyzed at 15 μM in all cases. CD spectra were the average of 20 scans made at

1 nm intervals, and always the same buffer without peptides, used as baseline, was

subtracted. In the model membrane interaction studies, stock solutions of sodium

dodecyl sulfate (SDS) and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocoline (LPC)

were prepared in PBS buffer. Results are expressed as mean molar residue ellipticities

[u]MR (deg cm2/dmol) [196].

11.6.9 Fluorescence polarization assay

Apaf-1 CARD domain protein was solved in 20mM NaH2PO4 pH = 6 buffer at

increasing concentrations (0-120 nM). Then, CF-peptoid 1 was solved in the same

phosphate buffer and added at a final concentration of 240 nM. Then, sample was

incubated for 15 min and fluorescence polarization measurements were carried out at 30

ºC at wavelengths λexc = 485 and λem = 535 nm. Data were recorded in

millipolarization units (mP) versus Apaf-1 CARD protein concentration and adjusted to

a two-state binding model.

11.6.10 NMR 15N-CARD peptoid 1 interaction assays

15N enriched CARD domain from Apaf-1 (15N-CARD) 15N-HSQC spectra was

measured. For this purpose, CARD protein was diluted in 20mM NaH2PO4 pH 6 buffer

at concentration of 75 μM. Then, to this sample PEN-1 solved in the same buffer was

added at a final concentration of 100 μM and 15N-HSQC spectra was measured again.

All the spectra were carried out in a Bruker Avance Ultrashield Plus 600 MHz.

11.6.11 In silico modelization analysis

Docking Studies were done employing the module Dock included in the program MOE

(Chemical Computing Group, Montreal, Canada), in which protein is considered as a

Page 204: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

170

rigid structure and the ligands as flexible molecules. For the energy calculations, the

strength fieldMMFF94x (modification of the MMFF94s strength field, [298, 299]) was

employed and conditions of continuous solvent (GB/VI, [230]) were chosen.

11.6.12 Gel filtration studies in whole cells

7·106 HeLa cells were seeded in 15 cm diameter plates. 24 h later, cells were treated

with dox 1 μM or dox plus QM56 at 50 μM drug-equivalents. After 24 h, cells were

harvested and centrifuged at 800 g for 5 min. Then, buffer A was added and cells were

incubated on ice for 30 min. Then, cells were centrifuged at 100000 g for 45 min.

Pellet was removed and S-100 fraction protein content quantified employing the

bicinchoninic acid kit.

Equal amounts of protein content from the different S-100 fractions were fractionated in

a molecular fractionation column previously equilibrated with gel fractionation buffer

(Hepes-NaOH pH 7 20 mM, NaCl 50 mM, Chaps 0.5 % (w/v) and sucrose 5 % (w/v)).

750 μL fractions were collected and protein content precipitated by adding TFA (1

g/mL) at a final concentration of 20 % (v/v). Then samples are incubated on ice for 30

min. Once the proteins precipitated, samples were centrifuged at 12000 rpm for 20 min

and supernatant carefully removed. Pellet was washed with cold acetone and

centrifuged again at 12000 for 15 min. Finally, acetone was removed and pellet air-

dried. 25 μL of loading buffer 1X were added to each sample and after boiling samples

for 5 min an acrylamide 10 % gel was run and samples blotted against Apaf-1 and

procaspase 9 according to manufacturer’s instructions.

11.6.13 Apoptosis induction experiments in A549 cell line

For apoptosis induction experiments, cells were either left untreated or incubated with

50 μM Z-VAD-fmk for 1 h, followed or not by the administration of 50 μM CDDP.

When required, 5 μM QM31 was administered 1h after CDDP addition, and cells were

maintained in culture for 48 h.

Page 205: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

171

a) Cytofluorometry assays in A549

Caspase 3 activation was monitored by staining the cells with a FITC-conjugated

monoclonal antibody specific for active caspase 3. To quantify apoptosis-associated

parameters, live cells were co-stained with 40 nM DiOC6(3) which measures

mitochondrial transmembrane potential (ΔΨm), and 1 μg/mL PI, which identifies cells

with ruptured plasma membrane [300]. To assess phosphatidylserine exposure and to

quantify the release of cyt c from mitochondria, the Annexin V-FITC kit and the

InnocyteTM Flow Cytometric Cytochrome c Release kit were employed, respectively,

according to the manufacturer’s recommendations. For cell cycle analysis, cells were

fixed in 80% ice-cold ethanol and labelled with propidium iodide (PI, 50 μg/mL) in the

presence of 500 μg/mL RNAse. Finally, cytofluorometric determinations were

performed.

b) Immunofluorescence microscopy in A549

Immunofluorescence assessments were carried out as previously reported [94, 301].

Briefly, cells were fixed in 4% PFA, permeabilized with 0. 1% sodium dodecylsulfate

and labelled with primary antibodies specific for cyt c according to the manufacturers’

instructions. Then, goat anti-mouse antibody coupled to Alexa Fluor® 488 (emitting in

green) fluorochrome was used for revelation. Nuclei were counterstained with 10 μM

Hoechst 33342 and slides were observed on a LSM 510 confocal fluorescence

microscope. Quantitative immunofluorescence assessments were carried out on a

DMIR2 inverted fluorescence microscope equipped with a DC300F camera.

11.6.14 Apoptosis induction experiments in Heltog cell line

HeLa expressing cyt c-GFP (Heltog) were generated by retroviral transduction

employing pBabe mouse cyt c-GFP virus [36, 37]. In this cellular model, STS was used

in order to induce cell death. CDDP could not be employed due to the low levels of p53

protein in HeLa cell line that make impossible the induction of cell death by CDDP.

Page 206: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

172

a) Heltog cell line cytometry assays

50·103 cell/well were seeded in a 12-well plate. After 24 h, cells were treated with STS

at 0.25 uM alone or in combination with QM31 5 μM, q-VD-OPH 20 μM or QM31 5

μM plus q-VD-OPH 20 μM for 6 h. Then medium was removed and fresh medium

containing QM31 5 μM, q-VD-OPH 20 μM or QM31 5 μM plus q-VD-OPH 20 μM

was added. 24 and 48 h after the treatment, phosphatidylserine exposure was quantified

by Annexin V-Pacific blue staining according to manufacturer’s recommendations.

Then cells were analyzed.

b) Clonogenic assays with Heltog cell line

2. 5·103 cells per well were seeded in a 12-well plate. After 48 h, cells were treated

DMSO, QM31 5 μM, q-VD-OPH 20 μM or QM31 5 μM plus q-VD-OPH 20 μM were

added to these cells for cytotoxicity studies. In case of clonogenic survival assays cells

were also treated with STS at different concentrations 0. 5, 1, 2 and 4 μM for 6 h. Then

medium was removed and freshly medium with DMSO, QM31 5 μM, q-VD-OPH 20

μM or QM31 5 μM plus q-VD-OPH 20 μM were added. 24 h later, medium was

changed and q-VD-OPH and QM31 compounds were added to the corresponding

samples. Cell growing was observed during the following days and after 10-15 days till

colonies were visible at sight. Then, medium was removed and wells were washed with

PBS before adding 100-200 μL of methylene blue 0.5% in methanol/water 1:1. Cells

were washed twice with PBS and plates were scanned.

c) Cytochrome c release studies in Heltog cell line

In a 12-glass bottom well plate a solution of epithelial growth factor 0. 1 mg/mL was

added for 5 min at room temperature. Then the solution was removed and after washing

the wells with PBS 50·104 cells/well Heltog cells were seeded. 24 h later, cells were

treated with STS 0.1 μM for 6 h. During this incubation time DMSO, QM31 5 μM, q-

VD-OPH 20 μM or QM31 5 μM plus q-VD-OPH 20 μM were also added to the

corresponding samples. Afterwards, medium was removed and freshly medium with

Page 207: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

173

the compounds but no STS was added. 24 h later cyt c release was quantified in the

microscope. For this purpose, 100-200 cells were counted per triplicate per well.

d) Microscopy studies with STS and QM31 and q-VD-OPH

In order to study the kinetics of cyt c release, 12. 5·104 cells were seeded in each of an 8

well-glass chamber. This chamber has been previously covered with epithelial growth

factor in order to help cells to adhere to the glass surface of the chamber. 24 h after

seeding cells, they were treated with DMSO, QM31 5 μM, q-VD-OPH 20 μM or QM31

5 μM plus q-VD-OPH 20 μM with or without STS 0.25 μM for 6 h. Then, medium was

changed and freshly medium containing Hepes 20 mM, 55 μM 2-mercaptoethanol and

PI 1:200 (1 mg/mL solution in water) and the different compounds were added to the

corresponding samples. Cyt c release kinetic was followed by taking pictures with a

confocal microscope of the cFITC and cRFP channels from 4-8 different points in the

same well of the chamber every 15 minutes for a period of 37 h.

11.6.15 Cell cycle experiments

a) siRNA transfections

A549 cells were transfected with an Apaf-1-specific siRNA (siApaf-1, sense 5’-

GAGCAGCUAUGCUGAUUAAdTdT-3’) or with an irrelevant control siRNA (siUNR,

sense 5’- GCCGUAUGCCGGUUAAGUdTdT-3’), by means of oligofectamineTM

transfection reagent, according to the manufacturer’s recommendations. Briefly, 2.

5·105 cells/well were seeded in a six-well plate and after 24 h, medium was removed

and replaced with 800 μL of F-12 medium without antibiotics or FBS. 2 μL of siRNA

100 μM were mixed with 178 μL of serum-free F-12 medium, while 4 μL of tempered

oligofectamine were added to 16 μL of serum-free F-12 medium. After five min,

oligofectamine solution was mixed with the siRNA and incubated at room temperature

for 25 min. Then, 200 μL of the mixture was added drop by drop to each well and the

plate was put back to the incubator. 4 h later, 500 μL of F-12 with 30% FBS was added

to each well. The following day, cells were reseeded and after 24 h the correspondent

treatments were added.

Page 208: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

174

b) Cell cycle arrest experiments

For cell cycle arrest assays, cells that had previously been transfected with the indicated

siRNAs (or left untreated) for 48 h were incubated with 2.5, 5 or 7.5 μM QM31 for 1 h,

followed or not by the administration of 20 μM CDDP for a total time of 24 h. For

chromosomal instability determinations, cells were pre-treated or not with 5 μM QM31

for 1h and then subjected to 5 J/m2 UVC irradiation (upon removal of the culture

medium), followed by culture in normal conditions for 24 h. During the irradiation

period, control cultures were left untreated in the absence of the culture medium.

c) Immunofluorescence cell cycle arrest experiments

Immunofluorescence assessment was carried out as described in 3. 4. 13 b section.

Briefly, cells were fixed in 4% PFA, permeabilized with 0. 1% sodium dodecylsulfate

and labelled with the primary antibody phospho-Chk1, according to the manufacturers’

instructions. Then, goat anti-rabbit antibodys coupled to Alexa Fluor® 488 (emitting in

green) fluorochrome was used for revelation. Nuclei were counterstained with 10 μM

Hoechst 33342 and slides were observed on a confocal fluorescence microscope.

Quantitative immunofluorescence assessments were carried out on an inverted

fluorescence microscope.

d) Immunoblotting cell cycle arrest experiments

For immunoblotting determinations, cells were lysed on ice in a buffer containing 1%

NP40, 20 mM Hepes pH 7.9, 10 mM KCl, 1 mM EDTA, 10% glycerol, 1 mM

orthovanadate, 1 mM PMSF, 1 mM DTT, and 10 μg/mL aprotinin, leupeptin, pepstatin

followed by centrifugation (20 min, 14,000 rpm) and collection of supernatants. Total

protein extracts were then separated on precast 4-12% polyacrylamide gradient gels and

analyzed following standard immunoblotting procedures [29, 30], by using primary

antibodies specific for Apaf-1, Chk1, phospho-Chk1 or β-actin, which was employed to

ensure equal loading of lanes.

Page 209: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

175

11.7 Cardiomyocyte primary culture

11.7.1 Culture of neonatal rat cardiomyocytes in hypoxic conditions

Rat neonatal cardiomyocytes were prepared from ventricles of 1–2 days Wistar rats by a

previously described method [290, 302] with some modifications. Briefly, hearts were

isolated, auricles were discarded, and ventricles were minced and digested with 2

mg/mL of collagenase type II for 1 h and, subsequently, with 1.2 U/mL dispase for 30

min with gently shaking. After two washes primary cultures were pre-plated for 90 min

to eliminate contaminating fibroblasts. Hypoxia was induced by incubating the

cardiomyocytes cultures in an atmosphere of 1% O2. Experiment was performed three

times with different breedings. Each procedure was repeated twice for two identically

treated culture flasks.

11.7.2 Immunohistochemistry studies in cardiomyocytes

Cardiomyocytes were fixed in 2% PFA. Immunohistochemistry was performed with

antibodies against caspase 3 (1:100) and anti-R-actinine (sarcomeric) (1:800) followed

by detection with secondary antibodies coupled to either cyanine or FITC.

11.7.3 Cellular internalization of QM56-OG in cardiomyocites

For confocal microscopy internalization studies, cardiomyocites were seeded in glass

bottom culture dishes and left to adhere to the cover slips. Cells were incubated for

either 0, 15, 60, 120 and 240 min at 4 ºC and 37 ºC with complete medium containing

the QM56-OG (50 μM drug-equivalents). Before visualization, medium containing the

conjugates was removed from the cells by aspiration, and the cells were washed three

times with fresh medium (37 ºC and 4 ºC). Finally, clear complete media with Texas

Red dye was added (20 μg/mL)was added and cells were subsequently viewed for a

maximum of 240 min.

Page 210: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

176

11.8 In vivo kidney hot ischemia models

11.8.1 Kidney hot ischemia induction

For the development of this in vivo model, Wistar rats were chosen and 7 working

groups with 8 animals/group were designed (Table 11.2) according to the number of

compounds selected for the in vivo experiments and the corresponding vehicles used as

controls.

Hot ischemia was induced on Wistar rats at different times and kidney samples analysed

by pathological studies, TUNEL and caspase 3 activity quantification. Compounds

were previously dissolved according to Table 8.4. Then, the compounds were

intravenously injected through the tail vein 6 hours before induction of the hot ischemia

protocol. After 90 min post-mortem kidneys were extracted and divided in 3 parts and

treated accordingly to the analysis experiment to carry out: pathological studies,

TUNEL analysis or caspase 3 activity measurements.

After this time, kidneys were removed from the animal and kidneys were divided in

three parts in order to develop pathological studies, TUNEL analysis and caspase 3

activity measurements.

11.8.2 Pathological studies

Kidney tissue were fixed in 10% buffered formaldehyde, and then washed in 0.1 M

phosphate buffer pH = 6. Then, samples were embedded in paraffin and sectioned (5

μm) [303]. These sections were stained with Masson Trichrome, and/or hematoxylin

and eosin, and viewed by light microscopy. A pathologist then performed morphologic

evaluation in blinded, randomized sections of the kidney and liver tissue. Ischemia

damaged was scored semiquantitatively from normal tissue (0) till severely damaged

tissue (5). The parameters taken into consideration were: tubular simplification,

existence of mitosis and nuclear loss.

Page 211: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

177

11. 8. 3 TUNEL analysis

Kidney tissues were stored in formol plus 20 % sucrose overnight. The following day,

samples were washed in 0. 1 M phosphate buffer pH = 6, embedded in paraffin and

sectioned (5 μM) and stored at – 20 ºC. In order to perform the TUNEL assay paraffin

was eliminated by immersin the samples in xylene for 5 min twice and ethanol solutions

(100 %, 90 %, 80 % and 70 %) for 3 min each at room termperature. Then, slides were

briefly washed in Tris Buffer Solution (TBS) (20 mM Tris pH 7.6, 140 mM NaCl) and

carefully dry the glass slide around the sample.

Sample were permeabilized by diluting 2 mg/ml proteinase K 1:100 in 10 mM Tris pH

8, covering them completely with this solution and incubating them at room temperature

for 20 min. Then, samples were washed with TBS. Before the staining samples were

equilibrated in the antibody buffer terminal deoxynucleotidyl transferase (TdT) for 30

min. Equilibrating solution was removed and the TdT Labeling Reaction Mixture

(LRM) composed of the TdT enzyme, labelled-deoxynucleotidyl triphosphate (dNTP)

and unlabelled-dNTP according to manufacturer’s indications was added to the sample.

The slides were incubated for 30 min at room temperature and LRM was removed and

samples washed in TBS before mounting the slides employing mounting medium.

11.8.4 Caspase 3 activity in kidney extracts

Liquid nitrogen frozen kidneys were smashed while keeping them completely frozen. A

kidney powder was obtained and 500 μL extraction buffer (50 mM Hepes-KOH pH = 7,

10% sucrose, 0.1% CHAPS, 5 mM DTT, 5 mM GSSG) was added to all the samples.

Then, suspension was sonicated to break kidney cells for intervals of 15 s a total time of

60 s. After the sonication, samples were kept on ice for 15 min, centrifuged at 12000

rpm, 15 min and protein content determined employing the bicinchoninic acid assay.

Once samples were quantified, 100 μL of 800 μg protein aliquots were prepared and

mixed with 100 μL of caspase assay buffer (PBS, 10% glycerol, 0.1 mM EDTA, 2 mM

DTT) containing 20 μM Ac-DEVD-afc. Caspase activity was continuously monitored

following the release of fluorescent afc at 37 ºC using a plate reader (λexc = 400 nm; λem

= 535 nm). DEVDase activity was expressed as the increase of relative fluorescence

units per minute (ΔFU/min).

Page 212: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

178

Page 213: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

179

CHAPTER 12. BIBLIOGRAPHY

1. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer., 1972. 26(4): p. 239-57.

2. Sulston, J.E. and H.R. Horvitz, Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol., 1977. 56(1): p. 110-56.

3. Hay, B.A., J.R. Huh, and M. Guo, The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat Rev Genet., 2004. 5(12): p. 911-22.

4. Kroemer, G., et al., Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009. 16(1): p. 3-11. Epub 2008 Oct 10.

5. Strasser, A., L. O'Connor, and V.M. Dixit, Apoptosis signaling. Annu Rev Biochem., 2000. 69: p. 217-45.

6. Honda, H.M., P. Korge, and J.N. Weiss, Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci., 2005. 1047: p. 248-58.

7. Galluzzi, L., et al., Viral control of mitochondrial apoptosis. PLoS Pathog., 2008. 4(5): p. e1000018.

8. Kroemer, G., L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiol Rev., 2007. 87(1): p. 99-163.

9. Ashkenazi, A. and R.S. Herbst, To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest., 2008. 118(6): p. 1979-90.

10. Thornberry, N.A., The caspase family of cysteine proteases. Br Med Bull., 1997. 53(3): p. 478-90.

11. Boatright, K.M. and G.S. Salvesen, Mechanisms of caspase activation. Curr Opin Cell Biol., 2003. 15(6): p. 725-31.

12. Murphy, B.M., E.M. Creagh, and S.J. Martin, Interchain proteolysis, in the absence of a dimerization stimulus, can initiate apoptosis-associated caspase-8 activation. J Biol Chem., 2004. 279(35): p. 36916-22. Epub 2004 Jun 21.

13. Boatright, K.M., et al., A unified model for apical caspase activation. Mol Cell., 2003. 11(2): p. 529-41.

14. Pop, C., et al., The apoptosome activates caspase-9 by dimerization. Mol Cell., 2006. 22(2): p. 269-75.

15. Sohn, D., K. Schulze-Osthoff, and R.U. Janicke, Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J Biol Chem., 2005. 280(7): p. 5267-73. Epub 2004 Dec 15.

16. Chang, D.W., et al., Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem., 2003. 278(19): p. 16466-9. Epub 2003 Mar 13.

17. Rodriguez, J. and Y. Lazebnik, Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev., 1999. 13(24): p. 3179-84.

18. Casciola-Rosen, L., et al., Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J Biol Chem., 2007. 282(7): p. 4545-52. Epub 2006 Dec 19.

19. Cohen, G.M., Caspases: the executioners of apoptosis. Biochem J., 1997. 326(Pt 1): p. 1-16.

20. Hill, M.M., C. Adrain, and S.J. Martin, Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol Interv., 2003. 3(1): p. 19-26.

Page 214: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

180

21. Orzaez, M., et al., Peptides and peptide mimics as modulators of apoptotic pathways. ChemMedChem., 2009. 4(2): p. 146-60.

22. Chen, L., et al., Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell., 2005. 17(3): p. 393-403.

23. Chipuk, J.E., L. Bouchier-Hayes, and D.R. Green, Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ., 2006. 13(8): p. 1396-402. Epub 2006 May 19.

24. Chipuk, J.E. and D.R. Green, How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol., 2008. 18(4): p. 157-64. Epub 2008 Mar 7.

25. Kim, H., et al., Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol., 2006. 8(12): p. 1348-58. Epub 2006 Nov 19.

26. Hardwick, J.M. and B.M. Polster, Bax, along with lipid conspirators, allows cytochrome c to escape mitochondria. Mol Cell., 2002. 10(5): p. 963-5.

27. Adams, J.M. and S. Cory, Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol., 2007. 19(5): p. 488-96. Epub 2007 Jul 12.

28. Willis, S.N., et al., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science., 2007. 315(5813): p. 856-9.

29. Wei, M.C., et al., Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science., 2001. 292(5517): p. 727-30.

30. Sharpe, J.C., D. Arnoult, and R.J. Youle, Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta., 2004. 1644(2-3): p. 107-13.

31. Muchmore, S.W., et al., X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature., 1996. 381(6580): p. 335-41.

32. Tsujimoto, Y. and S. Shimizu, Role of the mitochondrial membrane permeability transition in cell death. Apoptosis., 2007. 12(5): p. 835-40.

33. Shimizu, S., M. Narita, and Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature., 1999. 399(6735): p. 483-7.

34. Etxebarria, A., et al., Endophilin B1/Bif-1 stimulates BAX activation independently from its capacity to produce large scale membrane morphological rearrangements. J Biol Chem., 2009. 284(7): p. 4200-12. Epub 2008 Dec 11.

35. Terrones, O., et al., Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J Biol Chem., 2004. 279(29): p. 30081-91. Epub 2004 May 11.

36. Munoz-Pinedo, C., et al., Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci U S A., 2006. 103(31): p. 11573-8. Epub 2006 Jul 24.

37. Goldstein, J.C., et al., Cytochrome c is released in a single step during apoptosis. Cell Death Differ., 2005. 12(5): p. 453-62.

38. Zou, H., et al., An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem., 1999. 274(17): p. 11549-56.

39. Li, P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell., 1997. 91(4): p. 479-89.

Page 215: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

181

40. Zou, H., et al., Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell., 1997. 90(3): p. 405-13.

41. Acehan, D., et al., Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell., 2002. 9(2): p. 423-32.

42. Shelton, S.N., M.E. Shawgo, and J.D. Robertson, Cleavage of bid by executioner caspases mediates feed forward amplification of mitochondrial outer membrane permeabilization during genotoxic stress-induced apoptosis in Jurkat cells. J Biol Chem., 2009. 284(17): p. 11247-55. Epub 2009 Feb 19.

43. Hu, Y., et al., Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci U S A., 1998. 95(8): p. 4386-91.

44. Srinivasula, S.M., et al., Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell., 1998. 1(7): p. 949-57.

45. Yu, X., et al., A structure of the human apoptosome at 12.8 A resolution provides insights into this cell death platform. Structure., 2005. 13(11): p. 1725-35.

46. Saleh, A., et al., Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem., 1999. 274(25): p. 17941-5.

47. Hu, Y., et al., Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. Embo J., 1999. 18(13): p. 3586-95.

48. Riedl, S.J., et al., Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature., 2005. 434(7035): p. 926-33.

49. Shi, Y., Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci., 2004. 13(8): p. 1979-87.

50. Bratton, S.B., et al., Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. Embo J., 2001. 20(5): p. 998-1009.

51. Yin, Q., et al., Caspase-9 holoenzyme is a specific and optimal procaspase-3 processing machine. Mol Cell., 2006. 22(2): p. 259-68.

52. Marusawa, H., et al., HBXIP functions as a cofactor of survivin in apoptosis suppression. Embo J., 2003. 22(11): p. 2729-40.

53. Malladi, S., et al., The Apaf-1*procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. Embo J., 2009. 28(13): p. 1916-25. Epub 2009 Jun 4.

54. Shi, Y., Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol., 2006. 18(6): p. 677-84. Epub 2006 Oct 12.

55. Cain, K., et al., Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J Biol Chem., 2000. 275(9): p. 6067-70.

56. Cecconi, F., et al., Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell., 1998. 94(6): p. 727-37.

57. Yoshida, H., et al., Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell., 1998. 94(6): p. 739-50.

58. Soengas, M.S., et al., Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science., 1999. 284(5411): p. 156-9.

Page 216: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

182

59. Birnbaum, M.J., R.J. Clem, and L.K. Miller, An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol., 1994. 68(4): p. 2521-8.

60. Clem, R.J., J.M. Hardwick, and L.K. Miller, Anti-apoptotic genes of baculoviruses. Cell Death Differ., 1996. 3(1): p. 9-16.

61. Crook, N.E., R.J. Clem, and L.K. Miller, An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol., 1993. 67(4): p. 2168-74.

62. Hunter, A.M., E.C. LaCasse, and R.G. Korneluk, The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis., 2007. 12(9): p. 1543-68.

63. Chai, J., et al., Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature., 2000. 406(6798): p. 855-62.

64. Srinivasula, S.M. and J.D. Ashwell, IAPs: what's in a name? Mol Cell., 2008. 30(2): p. 123-35.

65. Twiddy, D., et al., Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol Chem., 2004. 279(19): p. 19665-82. Epub 2004 Mar 1.

66. Allan, L.A., et al., Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol., 2003. 5(7): p. 647-54.

67. Brady, S.C., L.A. Allan, and P.R. Clarke, Regulation of caspase 9 through phosphorylation by protein kinase C zeta in response to hyperosmotic stress. Mol Cell Biol., 2005. 25(23): p. 10543-55.

68. Cardone, M.H., et al., Regulation of cell death protease caspase-9 by phosphorylation. Science., 1998. 282(5392): p. 1318-21.

69. Martin, M.C., et al., Protein kinase A regulates caspase-9 activation by Apaf-1 downstream of cytochrome c. J Biol Chem., 2005. 280(15): p. 15449-55. Epub 2005 Feb 9.

70. Pandey, P., et al., Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene., 2000. 19(16): p. 1975-81.

71. Bruey, J.M., et al., Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol., 2000. 2(9): p. 645-52.

72. Jaattela, M. and D. Wissing, Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med., 1993. 177(1): p. 231-6.

73. Jaattela, M. and D. Wissing, Emerging role of heat shock proteins in biology and medicine. Ann Med., 1992. 24(4): p. 249-58.

74. Beere, H.M., et al., Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol., 2000. 2(8): p. 469-75.

75. Saleh, A., et al., Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol., 2000. 2(8): p. 476-83.

76. Kim, H.E., et al., PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell., 2008. 30(2): p. 239-47.

77. Pandey, P., et al., Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. Embo J., 2000. 19(16): p. 4310-22.

78. Kurokawa, M., et al., Inhibition of apoptosome formation by suppression of Hsp90beta phosphorylation in tyrosine kinase-induced leukemias. Mol Cell Biol., 2008. 28(17): p. 5494-506. Epub 2008 Jun 30.

Page 217: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

183

79. Newmeyer, D.D., et al., Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ., 2000. 7(4): p. 402-7.

80. Yajima, H. and F. Suzuki, Identification of a Bcl-XL binding region within the ATPase domain of Apaf-1. Biochem Biophys Res Commun., 2003. 309(3): p. 520-7.

81. Conus, S., T. Rosse, and C. Borner, Failure of Bcl-2 family members to interact with Apaf-1 in normal and apoptotic cells. Cell Death Differ., 2000. 7(10): p. 947-54.

82. Moriishi, K., et al., Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc Natl Acad Sci U S A., 1999. 96(17): p. 9683-8.

83. Inohara, N., et al., Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem., 1998. 273(49): p. 32479-86.

84. Song, Q., et al., Boo, a novel negative regulator of cell death, interacts with Apaf-1. Embo J., 1999. 18(1): p. 167-78.

85. Naumann, U., et al., Diva/Boo is a negative regulator of cell death in human glioma cells. FEBS Lett., 2001. 505(1): p. 23-6.

86. Chau, B.N., et al., Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell., 2000. 6(1): p. 31-40.

87. Martin, A.G., et al., Apo cytochrome c inhibits caspases by preventing apoptosome formation. Biochem Biophys Res Commun., 2004. 319(3): p. 944-50.

88. Sakai, T., et al., Nucling recruits Apaf-1/pro-caspase-9 complex for the induction of stress-induced apoptosis. J Biol Chem., 2004. 279(39): p. 41131-40. Epub 2004 Jul 22.

89. Ruiz-Vela, A. and S.J. Korsmeyer, Proapoptotic histone H1.2 induces CASP-3 and -7 activation by forming a protein complex with CYT c, APAF-1 and CASP-9. FEBS Lett., 2007. 581(18): p. 3422-8. Epub 2007 Jun 28.

90. Sanchez-Olea, R., et al., Parcs is a dual regulator of cell proliferation and apaf-1 function. J Biol Chem., 2008. 283(36): p. 24400-5. Epub 2008 Jun 18.

91. Giaever, G., et al., Functional profiling of the Saccharomyces cerevisiae genome. Nature., 2002. 418(6896): p. 387-91.

92. Sonnichsen, B., et al., Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature., 2005. 434(7032): p. 462-9.

93. Mouhamad, S., et al., Apaf-1 Deficiency Causes Chromosomal Instability. Cell Cycle., 2007. 6(24): p. 3103-3107. Epub 2007 Sep 14.

94. Zermati, Y., et al., Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell., 2007. 28(4): p. 624-37.

95. Halestrap, A.P., Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans., 2006. 34(Pt 2): p. 232-7.

96. Bae, D., et al., Metabolic stress induces the lysosomal degradation of neuropilin-1 but not neuropilin-2. J Biol Chem., 2008. 283(42): p. 28074-80. Epub 2008 Aug 14.

97. Loor, G. and P.T. Schumacker, Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ., 2008. 15(4): p. 686-90. Epub 2008 Feb 8.

98. Cho, D.H., et al., Induced inhibition of ischemic/hypoxic injury by APIP, a novel Apaf-1-interacting protein. J Biol Chem., 2004. 279(38): p. 39942-50. Epub 2004 Jul 15.

Page 218: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

184

99. Cao, G., et al., Cloning of a novel Apaf-1-interacting protein: a potent suppressor of apoptosis and ischemic neuronal cell death. J Neurosci., 2004. 24(27): p. 6189-201.

100. Flores-Delgado, G., et al., A limited screen for protein interactions reveals new roles for protein phosphatase 1 in cell cycle control and apoptosis. J Proteome Res., 2007. 6(3): p. 1165-75. Epub 2007 Feb 3.

101. Deming, P.B., et al., Bcr-Abl-mediated protection from apoptosis downstream of mitochondrial cytochrome c release. Mol Cell Biol., 2004. 24(23): p. 10289-99.

102. Leppa, S. and D. Bohmann, Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene., 1999. 18(45): p. 6158-62.

103. Tournier, C., et al., Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science., 2000. 288(5467): p. 870-4.

104. Tran, T.H., et al., Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem., 2007. 282(28): p. 20340-50. Epub 2007 May 4.

105. Albrecht, J. and A. Schousboe, Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res., 2005. 30(12): p. 1615-21.

106. Oja, S.S. and P. Saransaari, Pharmacology of taurine. Proc West Pharmacol Soc., 2007. 50: p. 8-15.

107. Takatani, T., et al., Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun., 2004. 316(2): p. 484-9.

108. Takatani, T., et al., Taurine inhibits apoptosis by preventing formation of the Apaf-1/caspase-9 apoptosome. Am J Physiol Cell Physiol., 2004. 287(4): p. C949-53. Epub 2004 Jul 14.

109. Chu, Z.L., et al., A novel enhancer of the Apaf1 apoptosome involved in cytochrome c-dependent caspase activation and apoptosis. J Biol Chem., 2001. 276(12): p. 9239-45. Epub 2000 Dec 11.

110. Piddubnyak, V., et al., Positive regulation of apoptosis by HCA66, a new Apaf-1 interacting protein, and its putative role in the physiopathology of NF1 microdeletion syndrome patients. Cell Death Differ., 2007. 14(6): p. 1222-33. Epub 2007 Mar 23.

111. Chandra, D., et al., Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell., 2006. 125(7): p. 1333-46.

112. Zech, B., et al., Nitric oxide donors inhibit formation of the Apaf-1/caspase-9 apoptosome and activation of caspases. Biochem J., 2003. 371(Pt 3): p. 1055-64.

113. Cain, K., et al., Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem., 2001. 276(45): p. 41985-90. Epub 2001 Sep 11.

114. Fesik, S.W., Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer., 2005. 5(11): p. 876-85.

115. Fischer, U. and K. Schulze-Osthoff, New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev., 2005. 57(2): p. 187-215.

116. Green, D.R., Apoptotic pathways: ten minutes to dead. Cell., 2005. 121(5): p. 671-4.

117. Green, D.R. and G. Kroemer, The pathophysiology of mitochondrial cell death. Science., 2004. 305(5684): p. 626-9.

Page 219: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

185

118. Mattson, M.P. and G. Kroemer, Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med., 2003. 9(5): p. 196-205.

119. Takemura, G. and H. Fujiwara, Morphological aspects of apoptosis in heart diseases. J Cell Mol Med., 2006. 10(1): p. 56-75.

120. Nencioni, A., et al., The proteasome and its inhibitors in immune regulation and immune disorders. Crit Rev Immunol., 2006. 26(6): p. 487-98.

121. Reed, J.C., Apoptosis-based therapies. Nat Rev Drug Discov., 2002. 1(2): p. 111-21.

122. Fadeel, B., A. Ottosson, and S. Pervaiz, Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell Death Differ., 2008. 15(3): p. 443-52. Epub 2007 Nov 2.

123. Fadeel, B. and S. Orrenius, Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med., 2005. 258(6): p. 479-517.

124. Schafer, Z.T. and S. Kornbluth, The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell., 2006. 10(5): p. 549-61.

125. Hajra, K.M. and J.R. Liu, Apoptosome dysfunction in human cancer. Apoptosis., 2004. 9(6): p. 691-704.

126. Soengas, M.S., et al., Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature., 2001. 409(6817): p. 207-11.

127. Jia, L., et al., Apaf-1 protein deficiency confers resistance to cytochrome c-dependent apoptosis in human leukemic cells. Blood., 2001. 98(2): p. 414-21.

128. Watanabe, T., et al., Frequent LOH at chromosome 12q22-23 and Apaf-1 inactivation in glioblastoma. Brain Pathol., 2003. 13(4): p. 431-9.

129. Liu, J.R., et al., Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res., 2002. 62(3): p. 924-31.

130. Wolf, B.B., et al., Defective cytochrome c-dependent caspase activation in ovarian cancer cell lines due to diminished or absent apoptotic protease activating factor-1 activity. J Biol Chem., 2001. 276(36): p. 34244-51. Epub 2001 Jun 27.

131. Kamarajan, P., et al., Apaf-1 overexpression partially overcomes apoptotic resistance in a cisplatin-selected HeLa cell line. FEBS Lett., 2001. 505(2): p. 206-12.

132. Ogawa, T., et al., APAF-1-ALT, a novel alternative splicing form of APAF-1, potentially causes impeded ability of undergoing DNA damage-induced apoptosis in the LNCaP human prostate cancer cell line. Biochem Biophys Res Commun., 2003. 306(2): p. 537-43.

133. Leo, C., et al., Lack of apoptotic protease activating factor-1 expression and resistance to hypoxia-induced apoptosis in cervical cancer. Clin Cancer Res., 2007. 13(4): p. 1149-53.

134. Zlobec, I., et al., Role of APAF-1, E-cadherin and peritumoral lymphocytic infiltration in tumour budding in colorectal cancer. J Pathol., 2007. 212(3): p. 260-8.

135. Sturm, I., et al., Silencing of APAF-1 in B-CLL results in poor prognosis in the case of concomitant p53 mutation. Int J Cancer., 2006. 118(9): p. 2329-36.

136. Furukawa, Y., et al., Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res., 2005. 3(6): p. 325-34.

137. Yang, L., et al., Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of

Page 220: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

186

a novel polyarginine-conjugated Smac peptide. Cancer Res., 2003. 63(4): p. 831-7.

138. Schafer, Z.T., et al., Enhanced sensitivity to cytochrome c-induced apoptosis mediated by PHAPI in breast cancer cells. Cancer Res., 2006. 66(4): p. 2210-8.

139. Jiang, X., et al., Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science., 2003. 299(5604): p. 223-6.

140. Magdalena, C., et al., Tumour prothymosin alpha content, a potential prognostic marker for primary breast cancer. Br J Cancer., 2000. 82(3): p. 584-90.

141. Sang, T.K., et al., Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. Hum Mol Genet., 2005. 14(3): p. 357-72. Epub 2004 Dec 8.

142. Cozzolino, M., et al., Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ., 2004. 11(11): p. 1179-91.

143. Cozzolino, M., et al., Apaf1 mediates apoptosis and mitochondrial damage induced by mutant human SOD1s typical of familial amyotrophic lateral sclerosis. Neurobiol Dis., 2006. 21(1): p. 69-79. Epub 2005 Jul 19.

144. Phaneuf, S. and C. Leeuwenburgh, Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol., 2002. 282(2): p. R423-30.

145. Pollack, M., et al., The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann N Y Acad Sci., 2002. 959: p. 93-107.

146. Brooks, C., et al., Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol., 2005. 289(2): p. F410-9. Epub 2005 Mar 8.

147. Fearnhead, H.O., Cell-free systems to study apoptosis. Methods Cell Biol., 2001. 66: p. 167-85.

148. Beutler, E., Cladribine (2-chlorodeoxyadenosine). Lancet., 1992. 340(8825): p. 952-6.

149. Carrera, C.J., A. Saven, and L.D. Piro, Purine metabolism of lymphocytes. Targets for chemotherapy drug development. Hematol Oncol Clin North Am., 1994. 8(2): p. 357-81.

150. Leoni, L.M., et al., Induction of an apoptotic program in cell-free extracts by 2-chloro-2'-deoxyadenosine 5'-triphosphate and cytochrome c. Proc Natl Acad Sci U S A., 1998. 95(16): p. 9567-71.

151. Nguyen, J.T. and J.A. Wells, Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc Natl Acad Sci U S A., 2003. 100(13): p. 7533-8. Epub 2003 Jun 13.

152. Holinger, E.P., T. Chittenden, and R.J. Lutz, Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem., 1999. 274(19): p. 13298-304.

153. Oltersdorf, T., et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature., 2005. 435(7042): p. 677-81. Epub 2005 May 15.

154. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell., 1996. 86(1): p. 147-57.

155. Lademann, U., et al., Diarylurea compounds inhibit caspase activation by preventing the formation of the active 700-kilodalton apoptosome complex. Mol Cell Biol., 2003. 23(21): p. 7829-37.

156. Masip, I., et al., Design and synthesis of an optimized positional scanning library of peptoids: identification of novel multidrug resistance reversal agents. Bioorg Med Chem., 2005. 13(6): p. 1923-9.

Page 221: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

187

157. Masip, I., E. Perez-Paya, and A. Messeguer, Peptoids as source of compounds eliciting antibacterial activity. Comb Chem High Throughput Screen., 2005. 8(3): p. 235-9.

158. Malet, G., et al., Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death Differ., 2006. 13(9): p. 1523-32. Epub 2005 Dec 9.

159. Joliot, A., et al., Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A., 1991. 88(5): p. 1864-8.

160. Frankel, A.D. and C.O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus. Cell., 1988. 55(6): p. 1189-93.

161. Green, M. and P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell., 1988. 55(6): p. 1179-88.

162. Joliot, A. and A. Prochiantz, Transduction peptides: from technology to physiology. Nat Cell Biol., 2004. 6(3): p. 189-96.

163. Pujals, S., et al., Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta., 2006. 1758(3): p. 264-79. Epub 2006 Jan 30.

164. Futaki, S., Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Biopolymers., 2006. 84(3): p. 241-9.

165. Murriel, C.L. and S.F. Dowdy, Influence of protein transduction domains on intracellular delivery of macromolecules. Expert Opin Drug Deliv., 2006. 3(6): p. 739-46.

166. Brooks, H., B. Lebleu, and E. Vives, Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev., 2005. 57(4): p. 559-77. Epub 2005 Jan 6.

167. Zorko, M. and U. Langel, Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev., 2005. 57(4): p. 529-45. Epub 2005 Jan 22.

168. Fillon, Y.A., J.P. Anderson, and J. Chmielewski, Cell penetrating agents based on a polyproline helix scaffold. J Am Chem Soc., 2005. 127(33): p. 11798-803.

169. Snyder, E.L., Dowdy, S.F., Cell penetrating peptides in Drug Delivery. Pharmaceutical Research, 2004. 21(3): p. 389-393.

170. Schwarze, S.R., K.A. Hruska, and S.F. Dowdy, Protein transduction: unrestricted delivery into all cells? Trends Cell Biol., 2000. 10(7): p. 290-5.

171. Vives, E., P. Brodin, and B. Lebleu, A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem., 1997. 272(25): p. 16010-7.

172. Derossi, D., et al., The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem., 1994. 269(14): p. 10444-50.

173. Derossi, D., et al., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem., 1996. 271(30): p. 18188-93.

174. Richard, J.P., et al., Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem., 2003. 278(1): p. 585-90. Epub 2002 Oct 30.

175. Vicent, M.J. and R. Duncan, Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol., 2006. 24(1): p. 39-47. Epub 2005 Nov 22.

176. Pritchard, K.I., et al., Ovarian suppression/ablation in premenopausal ER-positive breast cancer patients. Issues and recommendations

Recent perspectives of endocrine therapy for breast cancer. Oncology (Williston Park). 2009. 23(1): p. 27-33.

Page 222: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

188

177. Jain, J.P., D. Chitkara, and N. Kumar, Polyanhydrides as localized drug delivery carrier: an update. Expert Opin Drug Deliv., 2008. 5(8): p. 889-907.

178. Duncan, R., Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer., 2006. 6(9): p. 688-701. Epub 2006 Aug 10.

179. Pasut, G., M. Sergi, and F.M. Veronese, Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Deliv Rev., 2008. 60(1): p. 69-78. Epub 2007 Aug 11.

180. Duncan, R., The dawning era of polymer therapeutics. Nat Rev Drug Discov., 2003. 2(5): p. 347-60.

181. Duncan, R., et al., Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer., 2005. 12(Suppl 1): p. S189-99.

182. Maeda, H., et al., Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol., 2003. 3(3): p. 319-28.

183. de Duve, C., Lysosomes revisited. Eur J Biochem., 1983. 137(3): p. 391-7. 184. Ringsdorf, H., Structure and properties of pharmacologically active polymers.

Journal of Polymers Science Polymers Symposia, 1975. 51: p. 35-53. 185. Greco, F. and M.J. Vicent, Polymer-drug conjugates: current status and future

trends. Front Biosci., 2008. 13: p. 2744-56. 186. Brocchini, S., Combinatorial chemistry and biomedical polymer development.

Adv Drug Deliv Rev., 2001. 53(1): p. 123-30. 187. Vicent, M.J., et al., Polymer conjugates as therapeutics: future trends,

challenges and opportunities. Expert Opin Drug Deliv., 2008. 5(5): p. 593-614. 188. Vasey, P.A., et al., Phase I clinical and pharmacokinetic study of PK1 [N-(2-

hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res., 1999. 5(1): p. 83-94.

189. Li, C. and S. Wallace, Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev., 2008. 60(8): p. 886-98. Epub 2008 Feb 8.

190. Hardwicke, J., et al., Dextrin-rhEGF conjugates as bioresponsive nanomedicines for wound repair. J Control Release., 2008. 130(3): p. 275-83. Epub 2008 Jul 22.

191. Shaunak, S., et al., Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol., 2006. 2(6): p. 312-3. Epub 2006 Apr 23.

192. Vicent, M.J. and E. Perez-Paya, Poly-L-glutamic acid (PGA) aided inhibitors of apoptotic protease activating factor 1 (Apaf-1): an antiapoptotic polymeric nanomedicine. J Med Chem., 2006. 49(13): p. 3763-5.

193. Hruby, V.J. and H.I. Mosberg, Conformational and dynamic considerations in peptide structure-function studies. Peptides., 1982. 3(3): p. 329-36.

194. Hruby, V.J., Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sci., 1982. 31(3): p. 189-99.

195. Hruby, V.J., J.M. Ahn, and S. Liao, Synthesis of oligopeptide and peptidomimetic libraries. Curr Opin Chem Biol., 1997. 1(1): p. 114-9.

196. Orzaez, M., et al., Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: effective methods to improve inhibition of mitochondria-mediated apoptosis. Peptides., 2007. 28(5): p. 958-68. Epub 2007 Mar 3.

Page 223: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

189

197. Novak, L., et al., Direct amidation of poly(gamma-glutamic acid) with benzylamine in dimethyl sulfoxide. Biomacromolecules., 2007. 8(5): p. 1624-32. Epub 2007 Apr 20.

198. Bravo, A., S.S. Gill, and M. Soberon, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon., 2007. 49(4): p. 423-35. Epub 2006 Nov 30.

199. Mahalka, A.K. and P.K. Kinnunen, Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim Biophys Acta, 2009. 23: p. 23.

200. Mondragon, L., et al., Modulation of cellular apoptosis with apoptotic protease-activating factor 1 (Apaf-1) inhibitors. J Med Chem., 2008. 51(3): p. 521-9. Epub 2008 Jan 16.

201. Cullen, S.P., A.U. Luthi, and S.J. Martin, Analysis of apoptosis in cell-free systems. Methods., 2008. 44(3): p. 273-9.

202. Fearnhead, H.O., et al., Oncogene-dependent apoptosis is mediated by caspase-9. Proc Natl Acad Sci U S A., 1998. 95(23): p. 13664-9.

203. Denault, J.B. and G.S. Salvesen, Apoptotic caspase activation and activity. Methods Mol Biol., 2008. 414: p. 191-220.

204. Rebbaa, A., et al., Doxorubicin-induced apoptosis in caspase-8-deficient neuroblastoma cells is mediated through direct action on mitochondria. Cancer Chemother Pharmacol., 2001. 48(6): p. 423-8.

205. Wu, S., et al., Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell Cardiol., 2002. 34(12): p. 1595-607.

206. Liou, J.S., J.S. Chen, and D.V. Faller, Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines. J Cell Physiol., 2004. 198(2): p. 277-94.

207. Fornari, F.A., et al., Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol., 1994. 45(4): p. 649-56.

208. Kalivendi, S.V., et al., Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J., 2005. 389(Pt 2): p. 527-39.

209. Mullins, J.M., Overview of fluorophores. Methods Mol Biol., 1994. 34: p. 107-16.

210. Gregoire, C.J. and E.P. Loret, Conformational heterogeneity in two regions of TAT results in structural variations of this protein as a function of HIV-1 isolates. J Biol Chem., 1996. 271(37): p. 22641-6.

211. Jayaraman, G., et al., 2,2,2-Trifluoroethanol induces helical conformation in an all beta-sheet protein. Biochem Biophys Res Commun., 1996. 222(1): p. 33-7.

212. Berlose, J.P., et al., Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. Eur J Biochem., 1996. 242(2): p. 372-86.

213. Pastor, M.T., et al., Combinatorial approaches: a new tool to search for highly structured beta-hairpin peptides. Proc Natl Acad Sci U S A., 2002. 99(2): p. 614-9. Epub 2002 Jan 8.

214. Singer, J.W., et al., Paclitaxel poliglumex (XYOTAX; CT-2103): an intracellularly targeted taxane. Anticancer Drugs., 2005. 16(3): p. 243-54.

215. Singer, J.W., Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. J Control Release., 2005. 109(1-3): p. 120-6. Epub 2005 Nov 16.

Page 224: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

190

216. Shaffer, S.A., et al., In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemother Pharmacol., 2007. 59(4): p. 537-48. Epub 2006 Aug 19.

217. Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 1983: Plenum Press. New York and London.

218. Günther, H., NMR Spectroscopy. 1995: John Wiley and Sons, Inc. New York. 219. Chien, C.T., et al., The two-hybrid system: a method to identify and clone genes

for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A., 1991. 88(21): p. 9578-82.

220. Osman, A., Yeast two-hybrid assay for studying protein-protein interactions. Methods Mol Biol., 2004. 270: p. 403-22.

221. Hornak, J.P., http://www.cis.rit.edu/htbooks/nmr/inside.htm. 222. Parella, T., http://rmn.iqfr.csic.es/guide/manualw.html, in NMRGuide3.5, Bruker

Biospin. 223. Orzaez, M., et al., Deciphering the antitumoral activity of quinacrine: Binding

to and inhibition of Bcl-xL. Bioorg Med Chem Lett., 2009. 19(6): p. 1592-5. Epub 2009 Feb 8.

224. Fields, S. and O. Song, A novel genetic system to detect protein-protein interactions. Nature., 1989. 340(6230): p. 245-6.

225. Phizicky, E.M. and S. Fields, Protein-protein interactions: methods for detection and analysis. Microbiol Rev., 1995. 59(1): p. 94-123.

226. Zervos, A.S., J. Gyuris, and R. Brent, Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell., 1993. 72(2): p. 223-32.

227. Vojtek, A.B., S.M. Hollenberg, and J.A. Cooper, Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell., 1993. 74(1): p. 205-14.

228. Golemis, E. http://www.fccc.edu/research/labs/golemis/plasmids/pGilda.html. [cited.

229. Golemis, E. www.fccc.edu/.../golemis/plasmids/pJG4_5.html. [cited. 230. Labute, P., The generalized Born/volume integral implicit solvent model:

Estimation of the free energy of hydration using London dispersion instead of atomic surface area Journal of Computational Chemistry, 2008. 29(10): p. 1693-1698.

231. Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science., 1998. 281(5381): p. 1312-6.

232. Fadok, V.A., et al., Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol., 1992. 148(7): p. 2207-16.

233. Bratton, D.L., et al., Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem., 1997. 272(42): p. 26159-65.

234. Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods., 1995. 184(1): p. 39-51.

235. van Heerde, W.L., et al., Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc Res., 2000. 45(3): p. 549-59.

236. Bedner, E., et al., Analysis of apoptosis by laser scanning cytometry. Cytometry., 1999. 35(3): p. 181-95.

237. Lacombe, F. and F. Belloc, Flow cytometry study of cell cycle, apoptosis and drug resistance in acute leukemia. Hematol Cell Ther., 1996. 38(6): p. 495-504.

Page 225: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

191

238. Gyrd-Hansen, M., et al., Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol., 2006. 26(21): p. 7880-91. Epub 2006 Sep 11.

239. Arnoult, D., et al., Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem., 2005. 280(42): p. 35742-50. Epub 2005 Aug 22.

240. Mondragon, L., et al., A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis., 2009. 14(2): p. 182-90.

241. Shimomura, O., The discovery of aequorin and green fluorescent protein. J Microsc., 2005. 217(Pt 1): p. 1-15.

242. Munshi, A., M. Hobbs, and R.E. Meyn, Clonogenic cell survival assay. Methods Mol Med., 2005. 110: p. 21-8.

243. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc., 2006. 1(5): p. 2315-9.

244. Zhu, H., H.O. Fearnhead, and G.M. Cohen, An ICE-like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells. FEBS Lett., 1995. 374(2): p. 303-8.

245. Yaoita, H., et al., Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation., 1998. 97(3): p. 276-81.

246. Cursio, R., et al., Caspase inhibition protects from liver injury following ischemia and reperfusion in rats. Transpl Int., 2000. 13(Suppl 1): p. S568-72.

247. Vandenabeele, P., T. Vanden Berghe, and N. Festjens, Caspase inhibitors promote alternative cell death pathways. Sci STKE., 2006. 2006(358): p. pe44.

248. Caserta, T.M., et al., Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis., 2003. 8(4): p. 345-52.

249. Perkins, C., et al., Overexpression of Apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated HL-60 cells. Cancer Res., 1998. 58(20): p. 4561-6.

250. Shawgo, M.E., S.N. Shelton, and J.D. Robertson, Caspase-mediated Bak activation and cytochrome c release during intrinsic apoptotic cell death in Jurkat cells. J Biol Chem., 2008. 283(51): p. 35532-8. Epub 2008 Oct 15.

251. Karaman, M.W., et al., A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol., 2008. 26(1): p. 127-32.

252. Chae, H.J., et al., Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res., 2000. 42(4): p. 373-81.

253. Brown, T.L., Q-VD-OPh, next generation caspase inhibitor. Adv Exp Med Biol., 2004. 559: p. 293-300.

254. Yang, W., et al., MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br J Pharmacol., 2003. 140(2): p. 402-12. Epub 2003 Aug 26.

255. Cravatt, B.F., G.M. Simon, and J.R. Yates, 3rd, The biological impact of mass-spectrometry-based proteomics. Nature., 2007. 450(7172): p. 991-1000.

256. Kyriakis, J.M., The integration of signaling by multiprotein complexes containing Raf kinases. Biochim Biophys Acta., 2007. 1773(8): p. 1238-47. Epub 2006 Nov 7.

257. Ray, P.S., A. Arif, and P.L. Fox, Macromolecular complexes as depots for releasable regulatory proteins. Trends Biochem Sci., 2007. 32(4): p. 158-64. Epub 2007 Feb 23.

Page 226: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

192

258. Wei, D., et al., Discovery of multitarget inhibitors by combining molecular docking with common pharmacophore matching. J Med Chem., 2008. 51(24): p. 7882-8.

259. Colell, A., et al., GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell., 2007. 129(5): p. 983-97.

260. Danial, N.N., et al., BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature., 2003. 424(6951): p. 952-6.

261. Wang, X. and Y. Lin, Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin., 2008. 29(11): p. 1275-88.

262. Galluzzi, L., et al., No death without life: vital functions of apoptotic effectors. Cell Death Differ., 2008. 15(7): p. 1113-23. Epub 2008 Feb 29.

263. Launay, S., et al., Vital functions for lethal caspases. Oncogene., 2005. 24(33): p. 5137-48.

264. Levine, B., S. Sinha, and G. Kroemer, Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy., 2008. 4(5): p. 600-6. Epub 2008 May 12.

265. Murray, T.V., et al., A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci., 2008. 121(Pt 22): p. 3786-93. Epub 2008 Oct 28.

266. Fernando, R., et al., Breast cancer cell proliferation is inhibited by BAD: regulation of cyclin D1. J Biol Chem., 2007. 282(39): p. 28864-73. Epub 2007 Aug 1.

267. Enders, G.H., Expanded roles for Chk1 in genome maintenance. J Biol Chem., 2008. 283(26): p. 17749-52. Epub 2008 Apr 18.

268. Wise, D.R., et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A., 2008. 105(48): p. 18782-7. Epub 2008 Nov 24.

269. Yuneva, M., et al., Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol., 2007. 178(1): p. 93-105.

270. Tsujimoto, Y. and S. Shimizu, Another way to die: autophagic programmed cell death. Cell Death Differ., 2005. 12(Suppl 2): p. 1528-34.

271. Galluzzi, L., et al., To die or not to die: that is the autophagic question. Curr Mol Med., 2008. 8(2): p. 78-91.

272. Levine, B. and J. Yuan, Autophagy in cell death: an innocent convict? J Clin Invest., 2005. 115(10): p. 2679-88.

273. Cecconi, F. and B. Levine, The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell., 2008. 15(3): p. 344-57.

274. Maiuri, M.C., et al., Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol., 2007. 8(9): p. 741-52.

275. Xie, Z. and D.J. Klionsky, Autophagosome formation: core machinery and adaptations. Nat Cell Biol., 2007. 9(10): p. 1102-9.

276. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy., 2008. 4(2): p. 151-75. Epub 2007 Nov 21.

277. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J., 2000. 19(21): p. 5720-8.

278. Hoyer-Hansen, M., et al., Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell., 2007. 25(2): p. 193-205.

279. Orme, M., Tenev, T., Gstaiger, M., Meier, P. Regulation of the apoptosome assembly. in 6th European Workshop in Cell Death. 2008. Hauenstein, Germany.

Page 227: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

193

280. Oki, T., et al., cDNA cloning and mapping of a novel subtype of glutamine:fructose-6-phosphate amidotransferase (GFAT2) in human and mouse. Genomics., 1999. 57(2): p. 227-34.

281. Fulop, N., R.B. Marchase, and J.C. Chatham, Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res., 2007. 73(2): p. 288-97. Epub 2006 Jul 29.

282. Love, D.C. and J.A. Hanover, The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE., 2005. 2005(312): p. re13.

283. Buse, M.G., E.D. Schleicher, and C. Weigert, Hexosamines, insulin resistance, and the complications of diabetes: current status

Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Am J Physiol Endocrinol Metab., 2006. 290(1): p. E1-E8.

284. Kaneto, H., et al., Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med., 2007. 7(7): p. 674-86.

285. Thornalley, P.J., The potential role of thiamine (vitamin B1) in diabetic complications. Curr Diabetes Rev., 2005. 1(3): p. 287-98.

286. Pan, G., K. O'Rourke, and V.M. Dixit, Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem., 1998. 273(10): p. 5841-5.

287. Schwarz, K., et al., Apoptosis at a distance: remote activation of caspase-3 occurs early after myocardial infarction. Mol Cell Biochem., 2006. 281(1-2): p. 45-54.

288. Lucas, D.T. and L.I. Szweda, Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc Natl Acad Sci U S A., 1999. 96(12): p. 6689-93.

289. Wencker, D., et al., A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest., 2003. 111(10): p. 1497-504.

290. Hayakawa, Y., et al., Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation., 2003. 108(24): p. 3036-41. Epub 2003 Nov 24.

291. Lee, H.T., et al., Acute kidney injury after hepatic ischemia and reperfusion injury in mice. Lab Invest., 2009. 89(2): p. 196-208. Epub 2008 Dec 15.

292. Labat-Moleur, F., et al., TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem., 1998. 46(3): p. 327-34.

293. O'Brien, T. and D. Lee, Prospects for caspase inhibitors. Mini Rev Med Chem., 2004. 4(2): p. 153-65.

294. Di Pietro, R. and G. Zauli, Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol., 2004. 201(3): p. 331-40.

295. Maelfait, J. and R. Beyaert, Non-apoptotic functions of caspase-8. Biochem Pharmacol., 2008. 76(11): p. 1365-73. Epub 2008 Aug 6.

296. Kitts, P.A. and G. Green, An immunological assay for determination of baculovirus titers in 48 hours. Anal Biochem., 1999. 268(2): p. 173-8.

297. Canela, N., et al., Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A. J Biol Chem., 2006. 281(47): p. 35942-53. Epub 2006 Sep 25.

298. Halgren, T.A., MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry, 1999. 20(17): p. 720-729.

Page 228: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

194

299. Halgren, T.A., MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries Journal of Computational Chemistry, 1999. 20(7): p. 730-748.

300. Galluzzi, L., et al., Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis., 2007. 12(5): p. 803-13.

301. Criollo, A., et al., Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis., 2007. 12(1): p. 3-18.

302. Kijima, K., et al., Mechanical stretch induces enhanced expression of angiotensin II receptor subtypes in neonatal rat cardiac myocytes. Circ Res., 1996. 79(4): p. 887-97.

303. Ortiz, M.C., et al., Vitamin E prevents renal dysfunction induced by experimental chronic bile duct ligation. Kidney Int., 2003. 64(3): p. 950-61.

304. Mondragon, L., Orzáez, M., Gortat, A., Sancho, M., Messeguer, A., Vicent, M.J., Pérez-Payá, E., Molecules that bind a central protein component of the apoptosome, apaf-1, and modulate its activity Apoptosis., 2009 (in press).

305. Muppidi, J., M. Porter, and R.M. Siegel, Measurement of apoptosis and other forms of cell death. Curr Protoc Immunol., 2004. Chapter(3): p. Unit 3.17.

Page 229: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED

CELL DEATH TREATMENTS

Resumen en castellano del proyecto de tesis presentado por

Laura Mondragón Martínez

con el fin de obtener el Doctorado Europeo en Bioquímica

Directores de tesis

Dr. Enrique Pérez Payá y

Dra. María J. Vicent Docón

Page 230: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL
Page 231: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

1

CAPÍTULO 1: INTRODUCCIÓN

1. Introducción

La muerte celular programada (programmed cell death, PCD) es un proceso de vital

importancia en el desarrollo, mantenimiento de la homeostasis de los tejidos y la

eliminación de las células dañadas [4]. Recientes estudios han dividido a la PCD en tres

categorías apoptosis, autofagia, necrosis y cornificación basándose en criterios

morfológicos, señales iniciadoras de muerte o la implicación de diferentes familias de

proteínas (Tabla 1. 1). Pese a ser clasificados de forma independiente estos procesos se

encuentran interconectados siendo en ocasiones difícil distinguir qué proceso es

iniciador de la cascada de muerte celular.

Tabla 1. 1. Diferentes tipos de muerte (modificado de [4]) Tipo de muerte celular Características morfológicas Apoptosis Células redondeadas

Retracción de los pseudópodos Reducción del volumen nuclear y citoplasmático Fragmentación nuclear Fragmentación del citoplasma en vesículas Fagocitación de los fragmentos de la célula por fagotitos presentes, in vivo

Muerte relacionada con autofagia

Ausencia de cromatina condensada Masiva formación de vesículas en el citoplasma Acumulación de vesículas de autofagia (doble membrana) Pequeña fagocitación de dichas células por fagotitos presentes, in vivo

Necrosis Rotura de la membrana celular Aumento de tamaño del citoplasma Aumento de tamaño de los orgánulos citoplasmáticos Pequeño porcentaje de cromatina condensada

Cornificación Eliminación de orgánulos citosólicos Modificaciones de la membrana plasmáticas Acumulación de lípidos en gránulos F y L Extrusión de lípidos en el espacio extracelular Descamación (pérdida de corneocitos) por activación de proteasas

Page 232: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

2

1. 1. Apoptosis La apoptosis se define como un proceso de desmantelamiento celular inducido por la

propia célula de una forma activa y programada que lleva a su autodestrucción de una

forma silenciosa (Figura 1. 2). En mamíferos, existen dos rutas generales de activación

de la apoptosis denominadas vía extrínseca (ruta receptores de muerte) y vía intrínseca

(ruta mitocondrial). La vía extrínseca es activada por estímulos que comprenden

señales externas como la unión de ligandos de muerte a los receptores de la superficie

celular. En otros casos, la apoptosis es iniciada por señales internas que incluyen daño

en el DNA inducido por radiación o factores químicos, deprivación de factores de

crecimiento o estrés oxidativo. Estos estímulos internos suelen iniciar por lo general la

apoptosis vía mitocondrial [276].

La vía extrínseca es mediada por receptores de muerte de superficie tales como es el

caso de Fas, el receptor del factor de necrosis tumoral, o los receptores TRAIL. La

estimulación de estos receptores por parte de los ligandos de muerte da lugar a su

oligomerización y al reclutamiento de una proteína adaptadora, FADD (Fas-associated

death domain) junto con la caspasa 3 (proteasa perteneciente a la familia de proteínas

caspasas que constituyen la maquinaría ejecutora de la apoptosis), formando el

complejo de inducción de muerte DISC (death-inducing signalling complex). La

autoactivación de la caspasa 3 en el DISC induce la activación de caspasas efectoras

como la caspasas 3, 6 y 7, que llevan a cabo el programa de muerte celular.

Por su parte, la vía intrínseca es activada por diversos estímulos apoptóticos que

convergen en la mitocondria. La liberación de citocromo c (cit c) de la mitocondria al

citoplasma constituye el inicio de la cascada de activación de las caspasas. El

citocromo-c citosólico se une a Apaf-1 (protease activating factor 1) y procaspasa 9,

generando un complejo intracelular semejante al DISC conocido como apoptosoma. En

el apoptosoma, la caspasa 9 es activada, la cual encargándose de la activación de la

caspasa 3 y como consecuencia del resto de proteasas y nucleasas que conducen a los

eventos finales de la muerte celular programada. (Figura 1. 2)

Page 233: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

3

Pese a sus diferencias, ambas rutas se encuentran interconectadas en diferentes pasos de

este proceso, siendo la permeabilización de la membrana mitocondrial externa y la

activación de las caspasas los procesos que marcan el destino final de la célula.

Figura 1. 2. Modelo simplificado de las principales proteínas implicadas en el proceso de apoptosis

1. 2. Caspasas

Las caspasas son las proteínas ejecutoras dentro del proceso de apoptosis. Son

sintetizadas como zimógenos inactivos (procaspasas, 30-50 kDa) y se componen de tres

dominios: un prodominio N-terminal, una subunidad grande y otra pequeña, al tiempo

que pueden incluir dominios de reclutamiento de caspasas (caspase-recruitment

domains, CARDs) y dominios efectores de muerte (death effector domains, DEDs)

(Figure 1. 3) [19]. La familia de las caspasas puede dividirse en dos grupos: las

caspasas iniciadoras (p. ej. , caspasas 8, 9 y 10) y las caspasas efectoras (p. ej. ,

caspasas 3 y 7). Las caspasas iniciadoras son las primeras en ser activadas tras la

activación de la apoptosis y, a continuación, se encargan de activar a las caspasas

efectoras. Dichas caspasas efectoras serán las que finalmente ejecutarán el proceso de

muerte mediante el procesamiento de un selecto número de proteínas dianas implicadas

Page 234: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

4

en procesos esenciales para la células como son el mantenimiento del citoesqueleto,

cese del metabolismo, destrucción del ADN,. . . [19]

Subunidad grande Subunidad pequeñaCARD

DED

Caspasa 1

Caspasa 2

Caspasa 3

Caspasa 4

Caspasa 5

Caspasa 6

Caspasa 8

Caspasa 9

Caspasa 10

Caspasa 14

Caspasa 7

Subunidad grande Subunidad pequeñaCARD

DED

Subunidad grande Subunidad pequeñaCARD

DED

Caspasa 1

Caspasa 2

Caspasa 3

Caspasa 4

Caspasa 5

Caspasa 6

Caspasa 8

Caspasa 9

Caspasa 10

Caspasa 14

Caspasa 7

152 316

29 175

270

311

23 179

23 198

374

316

219 415

331 316

175

270

311

194 179

385

198

374

316

219 415

290

331

242

Figura 1. 3. Estructura de las diferentes caspasas (modificado de [20])

1. 3. Familia de proteínas Bcl-2

La mitocondria es el elemento clave de la vía intrínseca. La familia de proteínas de Bcl-

2 la que regula la permeabilización de la membrana mitocondrial por las acciones

opuestas de sus miembros proapoptóticos y antiapoptóticos en un proceso intrincado y

no del todo conocido [24]. Las proteínas Bcl-2 pueden contener de uno a cuatro

dominios de homología a Bcl-2 (BH, Bcl-2 homology). Entre ellos, el dominio BH3 es

esencial y suficiente para llevar a cabo la actividad proapoptótica y supresora tumoral.

Las interacciones opuestas entre miembros de la familia Bcl-2 establecen un equilibrio

entre los estímulos de señalización proapoptóticos y antiapoptóticos. Esta familia de

proteínas se subdivide en tres grupos según los dominios BH que las integran (figura 1.

5): antiapoptóticas y oncogénicas, las que comparten homología de secuencia en los

dominios BH1, BH2, BH3 y BH4, como son Bcl-2, Bcl-XL, Mcl-1, A1; proapoptóticas,

que comparten la homología de los dominios BH1, BH2 y BH3, como son Bax y Bak; y

proapoptóticas, las que comparten la secuencia de homología sólo en el dominio BH3,

como son Bid, Bik, Noxa, Puma, Bad, Bim [74, 153]

Page 235: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

5

Tras un estímulo apoptótico, el balance de proteínas proapoptóticas aumenta y como

consecuencia se produce la permeabilización mitocondrial a través de Bax y Bak, con lo

que se produce un descenso en el potencial de membrana (ΔΨm) y la salida de factores

apoptóticos entre los que se incluyen cit c, Smac, OmiHtra2 y AIFs entre otros [117].

AIF es una proteína que estimula la apoptosis a nivel nuclear independientemente de las

caspasas [71]. La función de la proteína Smac/DIABLO es bloquear la acción de las

proteínas inhibidoras de la apoptosis (IAP, Inhibitor of Apoptosis Protein).

1. 4. El apoptosoma

En el citoplasma, cit c ejerce su papel proapoptótico, estimulando la activación de

caspasas a través de la formación de un complejo proteico con la proteína Apaf-1

(Apoptotic Protease-activating factor-1) y una caspasa iniciadora, procaspasa 9 dando

lugar a la formación de una estructura macromolecular denominada apoptosoma. La

formación de esta estructura induce la activación de la caspasa 9 que activará a la

caspasa efectora caspasa 3 desencadenándose así el proceso apoptótico.

Apaf-1 es una proteína citoplasmática de unos 130 kDa que se compone de tres

dominios funcionales: el dominio de reclutamiento de caspasas N-terminal (CARD), el

dominio de unión a nucleótidos y oligomerización (nucleotide-binding and

oligomerization domain, NOD) y un dominio C-terminal que contiene de 12 a 13

motivos WD40 y a través del que se une al cit c [38].

La importancia del apoptosoma ha sido demostrada en experimentos desarrollados con

ratones deficientes de Apaf-1. Estos ratones mostraron letalidad embrionaria con

marcados daños en el sistema nervioso y deformaciones craneofaciales [56, 57]. Por

estas razones, hay diversos mecanismos en la célula dedicados a la regulación del buen

funcionamiento de este complejo proteico. En el caso de Apaf-1, la proteína que va a

ocupar la temática principal de la presente tesis, los diversos moduladores encontrados

se muestran en la Figura 1. 4. Se trata de proteínas pertenecientes a la familia de Bcl-2,

diversas fosfoquinasas, proteínas chaperonas, proteínas implicadas en el ciclo celular,. .

.[304]

Page 236: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

6

H1.2NuclingPPI

124898

NBD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspasa 9NAC

Cytochromo c

H1.2NuclingPPI

H1.2Nucling

H1.2NuclingPPIPPI

124898

NBD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspasa 9NAC

Cytochromo c

124898

NBD WD40CARDCARD4121 124898

NBD WD40CARDCARD4121

Apo cyt cDiva/BooHsp 70Hsp 90

Hsp70/CAS/PHAPIJNK

ATP/dATPHCA66PARCS

ADPBcl-XL

Diva/BooHCA66S

APIPAIP Aven

Bcr-Abl

Procaspasa 9NAC

Cytochromo c

Figure 1. 4. Diferentes proteínas que interaccionan con Apaf-1 y que regulan su función. En negro se muestran las proteínas inhibidoras de la función, mientras que en blanco se muestran las proteínas activadoras En gris se muestran las proteínas cuya función sobre Apaf-1 todavía no ha sido descrita.

1. 5. Implicación del apoptosoma y la apoptosis en el desarrollo de enfermedades

Las alteraciones en la formación del apoptosoma también se han asociado con

patologías humanas. Estudios acerca de la expresión de Apaf-1 en tumores, y estudios

mecanísticos en modelos celulares indican que la vía intrínseca y el apoptosoma son

importantes para el desarrollo y la progresión del cáncer. Se ha demostrado una

expresión de Apaf-1 deficiente por mutaciones en su locus génico en melanomas

malignos, sobre todo en melanomas metastáticos; cáncer gastrointestinal,

adenocarcinoma pancreático ductal y en glioblastoma. Asimismo las alteraciones en la

regulación transcripcional y post-transcripcional de Apaf-1 se han asociado con otros

tipos de cáncer. En células de cáncer de ovario se ha correlacionado la

quimiorresistencia de los tumores con una actividad deficiente del apoptosoma.

Estudios dirigidos a restaurar los niveles de Apaf-1 en diversas líneas tumorales se han

correlacionado con una pérdida en la quimiorresistencia característica de estas líneas.

Del mismo modo, se han relacionado con procesos tumorales las alteraciones en la

expresión de proteínas que regulan la formación y actividad del apoptosoma, como las

Hsp, ProT, XIAP, ML-IAP y PKB.

Page 237: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

7

La inhibición de la apoptosis cobra especial importancia en el caso de las enfermedades

neurodegenerativas ya que, aunque no la única, es una de las formas principales de

muerte neuronal. La apoptosis es una característica tanto de las enfermedades

neurológicas agudas como crónicas. La necesidad de inhibir la muerte neuronal y sus

causas se agrava por la escasa o nula capacidad regenerativa que tiene el sistema

nervioso central. En un proceso agudo, como una lesión traumática, tras la isquemia, la

necrosis y la apoptosis coexisten. La necrosis se encuentra en el centro de la lesión,

donde la hipoxia es más severa, pero en las zonas de penumbra aparece flujo sanguíneo

lateral y se crea un gradiente de tejido perfundido donde se establece un umbral de

muerte por apoptosis.

En las enfermedades neurodegenerativas crónicas la apoptosis es la forma principal de

muerte neuronal. Hay evidencias de que las caspasas tienen un papel importante en la

esclerosis lateral amiotrófica (ELA), Parkinson, Huntington, Alzheimer y demencia

asociada a la infección por HIV. En fases tempranas se crea una activación de caspasas

subletal que provoca la disfunción celular. Aunque la causa que origina estas

enfermedades no se conoce con exactitud, se ha encontrado activación de caspasas. Por

otro lado, en un tejido donde las células mueren por apoptosis, existe un fenómeno de

“contagio” en el que una célula que sufre apoptosis, produce moléculas de señalización

de muerte celular que difunden y que inducen apoptosis en células vecinas, creando un

efecto dominó de expansión de muerte celular. Este fenómeno de apoptosis contagiosa

ocurre tanto en procesos agudos como crónicos y es importante desde el punto de vista

terapéutico antiapoptótico, porque un inhibidor de apoptosis no solo retrasará la muerte

de una neurona particular sino que también puede inhibir los factores difusibles tóxicos

de apoptosis en neuronas vecinas.

Según estudios preclínicos en modelos animales, la inhibición de caspasas resulta una

terapia prometedora en ELA, enfermedad de Parkinson, lesiones cerebrales traumáticas

y epilepsia, meningitis bacteriana, sepsis y en modelos de lesión de isquemia-

reperfusión. Muchas compañías farmacéuticas están desarrollando nuevas generaciones

de inhibidores de caspasas suficientemente potentes y capaces de atravesar la membrana

de las células. Las aplicaciones clínicas de compuestos inhibidores de Apaf-1 estarían

sujetas a las mismas consideraciones que los inhibidores de caspasas con la ventaja de

encontrarnos un paso por encima de las caspasas efectoras.

Page 238: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

8

La comprensión de los mecanismos moleculares de las asociaciones entre apoptosis y

enfermedad descritas ha permitido el desarrollo de terapias de las que enfermedades

neurodegenerativas, cáncer y procesos autoinmunes ya se están beneficiando, pero

todavía existen grandes posibilidades de mejora en el tratamiento de estas

enfermedades.

Investigaciones recientes han identificado tres clases de moléculas que directa o

indirectamente modulan la actividad del apoptosoma y que podrían tener una

proyección terapéutica. Los tres tienen en común el haberse identificado mediante la

utilización de colecciones de compuestos y ensayos en extractos celulares. El

compuesto PETCM se identificó a partir del cribado de quimiotecas de compuestos

orgánicos como activador de caspasa 3 [139]. PETCM estimula la activación del

apoptosoma inhibiendo la proteína ProT (protimosina), una oncoproteína que actúa

como regulador negativo de la formación del apoptosoma. Otros compuestos también

identificados mediante el cribado de quimiotecas utilizando ensayos en extractos

celulares, activan la formación del apoptosoma, aparentemente disminuyendo los

umbrales de cit c requeridos para la formación del apoptosoma [151]. Estos

compuestos han demostrado ser efectivos en la inducción química de la apoptosis en un

amplio espectro de líneas celulares. Finalmente, también se han encontrado moléculas

que actúan como inhibidores de la formación del apoptosoma. Una familia de

diarilureas han demostrado ser inhibidores efectivos de la activación de caspasas en

extractos celulares y aunque su mecanismo de acción no se conoce, provocan la

inhibición de la formación del apoptosoma [155].

1. 7. Identificación de un inhibidor de Apaf-1, el peptoide 1, a través del

cribado de una quimioteca de N-alquilglicinas

Uno de los principales proyectos en desarrollo en nuestro laboratorio está basado

en la búsqueda de moduladores del apoptosoma. En ausencia de una información

estructural detallada, en la actualidad no existe información en la literatura que

describan la identificación de moduladores artificiales del apoptosoma que

interaccionen físicamente con el complejo e interfieran con alguno de los pasos

necesarios para su formación y actividad. Por esta razón, la reconstitución in vitro del

apoptosoma a través de sus constituyentes proteicos recombinantes se planteó como una

Page 239: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

9

interesante estrategia a seguir en el desarrollo de moduladores apoptóticos basados en

las interacciones proteína-proteína [158]. La reconstitución del apoptosoma se efectuó a

partir de Apaf-1 recombinante obtenido mediante el sistema de baculovirus Bac-to-Bac

en células de insecto, cit c, dATP y procaspasa 9 transcrita y traducida in vitro. El

procesamiento de procaspasa 9 se monitoriza mediante marcaje radiactivo de

procaspasa 9 con [35S]Met, resolución de las muestras en SDS-PAGE y autorradiografía

(Figura 1. 5).

Figura 1. 5. Estructura del apoptosoma y seguimiento del procesamiento de la [35S]Met procaspasa 9 en SDS-PAGE y autorradiografía [158]

La quimioteca elegida para este cribado fue una quimioteca de trímeros de N-

alquilglicinas en formato de rastreo posicional e incorporando una amplia variedad de

grupos químicos. La quimioteca se ensayó con el objetivo de encontrar moléculas que

inhibiesen el procesamiento de procaspasa 9 in vitro utilizando el ensayo de

reconstitución de apoptosoma y se cuantificó el porcentaje de activación de la

procaspasa 9. El cribado de esta quimioteca llevó a la identificación de una serie de

pseudopéptidos de entre los cuales el peptoide 1 (figura 1. 6) mostraba la mayor

actividad inhibitoria [158].

Page 240: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

10

Cl

Cl

HN

N

ON

ON

O

Cl

Cl

O

N

ONH2

N

Cl

Cl

NN

ON

ONH2

O

Cl

ClO

N O

NH

N

Cl

Cl

HN

N

ON

ONH2

O

Cl

Cl

Peptoide 1bPeptoide 1a

Peptoide 1

Figura 1. 6. Estructura química del peptoide 1 y de sus derivados peptoide 1a y peptoide 1b

Sin embargo, esta molécula presentaba problemas de reproducibilidad en los

ensayos in vitro debido a su baja solubilidad y tendencia a la agregación. Por esta

razón, resultó necesario mejorar sus propiedades. Experiencia previa de nuestro

laboratorio en el diseño de péptidos bioactivos [157] indicaba que la presencia de

cadenas laterales con carga positiva con una glicina espaciadora en el extremo N-

terminal o C-terminal podía incrementar la solubilidad general del compuesto sin

afectar a la conformación estructural o las propiedades biológicas. Con estos

antecedentes se sintetizaron los peptoides 1a y 1b (figura 1. 9), los cuales

presentaban dos residuos adicionales de N-alquilglicina situados en el extremo C-

terminal o N-terminal del trímero original respectivamente. Ambos compuestos

mejoraron la reproducibilidad en ensayos in vitro sin afectar a la actividad. No

obstante, cuando estos compuestos se testaron en ensayos ex vivo resultaron

tóxicos por lo que nuevas estrategias con el fin de mejorar dicha internalización

fueron seguidas y se mostrarán a lo largo de esta tesis.

Page 241: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

11

CAPÍTULO 2: OBJETIVOS

Mi tesis se basa en el descubrimiento y desarrollo de una serie de inhibidores del

apoptosoma a través de la proteína Apaf-1. El trabajo aquí presentado es una

continuación de la línea investigadora seguida en nuestro laboratorio con el fin de

mejorar las propiedades químicas del peptoide 1, un trímero de N-alquilglicinas

descubierto a través del cribado de una librería química empleando un ensayo de

reconstitución in Vitro del apoptosoma. Sin embargo, debido a su baja capacidad para

atravesar la membrana celular nuevos derivados fueron sintetizados a través del uso de

diferentes portadores o modificaciones en su estructura que disminuyeran la flexibilidad

de la molécula.

Los objetivos que se han definido son:

1. Síntesis de derivados del peptoide 1

2. Estudio sistemático de las propiedades biológicas de estos derivados así como su

toxicidad en células

3. Mejora de la estructura química de los derivados con mayor actividad biológica

encontrados

4. Caracterización del sitio de unión de los derivados del peptoide 1 a Apaf-1

5. Caracterización del mecanismo molecular de acción del peptoide 1 y sus

derivados en célula (consecuencias para la célula incluyendo análisis del papel

no apoptótico de Apaf-1)

6. Desarrollo de un modelo in vivo de rata de isquemia en caliente en riñón y,

posteriores estudios del efecto terapéutico de los compuestos sintetizados en

dicho modelo en la mejora del daño tisular causado por la deprivación de

oxígeno.

Page 242: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

12

Page 243: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

13

CAPÍTULO 3: SÍNTESIS DEL PEPTOIDE 1 Y SUS DERIVADOS

Con el fin de mejorar la capacidad de internalización del peptoide 1 se llevaron a cabo

modificaciones estructurales de este compuesto con el fin de mejorar su baja solubilidad

y baja capacidad de atravesar la membrana celular. Las estrategias seguidas fueron:

a) Fusión a péptidos con capacidad de permear

b) Conjugación a un portador polimérico

c) Síntesis de un derivado de conformación restringida

a) Péptidos con capacidad de permear

Durante la pasada década, fueron descubiertas diversas proteínas con capacidad de

atravesar la membrana celular. Estas proteínas eran capaces de llegar incluso al núcleo

y retener su actividad biológica. Los responsables de la internalización celular de estas

proteínas son determinados dominios proteicos de pequeño tamaño capaces por sí solos

de atravesar las membranas biológicas de manera eficiente e independiente de proteínas

transportadoras o receptores específicos. Estos dominios proteicos o péptidos con

capacidad de permear (cell-penetrating peptides, CPPs) pueden internalizar también

distintas moléculas unidas covalentemente al interior de las células [162]. Un amplio

abanico de biomoléculas como péptidos antigénicos, híbridos péptido-ácidos nucleico,

oligonucleótidos antisentido, proteínas completas o incluso nanopartículas y liposomas

han sido transportados de este modo convirtiéndose en una excelente estrategia para la

mejora de las propiedades farmacológicas.

Entre los dominios más utilizados y mejor caracterizados en el transporte de péptidos a

través de la membrana plasmática se encuentran la proteína TAT (YGRKKRRQRRR)

del virus de inmunodeficiencia humana VIH-1, la tercera hélice α del homeodominio de

Antennapedia de Drosophila o sus derivados como la penetratina

(RQIKIWFQNRRMKWKK), y la proteína V22 del virus herpes simple. Además de

péptidos naturales, se han diseñado una amplia variedad de secuencias transportadoras

artificiales basadas en los residuos de lisina y arginina de la secuencia del péptido TAT.

En concreto, se ha encontrado homología estructural entre el dominio TAT y

homopolímeros de aminoácidos básicos como poliarginina o polilisina, entre otros, que

Page 244: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

14

han resultado ser muy útiles en el transporte de moléculas a través e la membrana

plasmática.

El mecanismo de internalización de los CPPS y sus moléculas cargo no se ha definido y

existe cierta controversia en torno al mismo. En un principio, se postuló se trataba de

un transporte directo a través de la bicapa lipídica de las membranas e independiente de

endocitosis o receptores de membrana [173]. Sin embargo, estudios recientes han

demostrado que la endocitosis sí podría jugar un papel importante en la internalización

de los compuestos[174].

Con el fin de aumentar las propiedades de permeabilidad de membrana del peptoide 1,

se sintetizaron análogos del peptoide 1 fusionados a secuencias de transducción al

interior celular, penetratina (PEN-1) y TAT (TAT-1). Ambas secuencias polibásicas

fueron seleccionadas por ser las mejor descritas y empleadas con mayor éxito en la

internalización de moléculas de diferente naturaleza.

b) Conjugación del peptoide 1 a un transportador polimérico

La expresión polímero terapéutico es el término empleado para describir una

familia que incluye fármacos poliméricos, conjugados polímero-fármaco, conjugados

polímero-proteína, micelas poliméricas en las que el fármaco está unido de forma

covalente, y poliplejos multicomponentes que son usados en el desarrollo de vectores no

virales. Todas estas subclases emplean polímeros solubles en agua, bioactivos por ellos

mismos o como una parte funcional inerte de una macromolécula cuyo propósito es el

de mejorar la liberación del fármaco, proteína o gen. [180]

Los polímeros terapéuticos pueden considerarse como las primeras

nanomedicinas poliméricas. Estas nuevas entidades químicas son nanoconstrucciones

híbridos que unen covalentemente una agente bioactivo con un polímero con el fin de

asegurar no solo una eficiente liberación del fármaco en un determinado compartimento

celular, sino que aseguran su disponibilidad en un periodo de tiempo específico. Las

excelentes cualidades de estos compuestos se han puesto de manifiesto a través del

XYOTAX®, un conjugado polímero-fármaco (ácido poli-(L-glutámico)-paclitaxel,

PGA-paclitaxel), que en el próximo año se convertirá en el primer fármaco polimérico

Page 245: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

15

anticancerígeno en salir al mercado dados los espectaculares resultados obtenidos en

ensayos clínicos en fase III. Este éxito no ha sido fruto de la casualidad, en la pasada

década, más de 10 conjugados polímero-fármaco entraron en fases clínicas I/II como

agentes anticancerígenos. Esta lista incluye seis conjugados basados en copolímeros de

N-(2-hidroxipropil)metacrilamida (HPMA) y, más recientemente, series de conjugados

de polietilenglicol (PEG) y PGA [180].

Debido a esto, en el presente trabajo, se hipotetizó que la conjugación del

peptoide 1 a un transportador polimérico podría ofrecer una internalización celular más

específica. Se escogió como polímero transportador al PGA, por ser un polímero

biodegradable por catepsina B (una enzima lisosomal), estable en plasma lo que permite

su inoculación a través de la vía sistémica, y disponer de una gran cantidad de grupos

funcionales a los que unir el fármaco. Además, estudios en fase clínica ya han sido

llevados a cabo con este polímero a través del OPAXIO®, por lo que su farmacología

está ampliamente descrita.

En los conjugados poliméricos, el fármaco permanece en el interior del polímero

de modo que el fármaco es fácilmente solubilizado. Debido a su elevado tamaño, estos

conjugados poliméricos tienen restringida su entrada en la célula por la vía endocítica.

Una vez internalizado el conjugado pasa por el endosoma hasta llegar al lisosoma. Una

vez en el lisosoma debido a la disminución del pH y la presencia de enzimas tales como

las catepsinas, el conjugado es degradado liberando de este modo el agente bioactivo

que pasa al citosol por difusión, consiguiendo alcanzar así la diana molecular

seleccionada [180, 192]

c) Análogos de conformación restringida

Otro de los mecanismos de internalización celular es la difusión pasiva. Se trata de un

proceso sin consumo de energía dado con moléculas de pequeño tamaño no cargadas,

las cuales pueden atravesar la membrana libremente en función del gradiente. Se

postula que este mecanismo sería por el cual fármacos de bajo peso molecular como el

peptoide 1 serían internalizados por la célula. Por tanto, dependerá fuertemente de las

propiedades intrínsecas del fármaco tales como solubilidad, lipofilicidad y capacidad de

interacción con los componentes de la membrana.

Page 246: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

16

Dado que las membranas controlan los procesos de distribución de los fármacos, en el

diseño y mejora de fármacos evitar cualquier posible interacción del fármaco con la

membrana celular que pudiera afectar a las propiedades de la misma constituye un

objetivo prioritario. En el caso de moléculas con estructuras flexibles resulta

especialmente difícil la no interacción con el entorno, dada su capacidad de adoptar gran

variedad de conformaciones. Por esta razón, una de las estrategias en la optimización

de fármacos cabeza de serie se basa en la restricción conformacional de su estructura

En este sentido y con el objetivo de evitar posibles interacciones del peptoide 1 con la

membrana plasmática y mejorar sus propiedades de solubilidad, se efectuó el diseño y

síntesis de un derivado de conformación restringida, el ciclopeptoide QM31 y una

colección de moléculas derivadas de este. La rigidez de su estructura debería facilitar

su internalización celular al reducir la posibilidad de interacción del compuesto con los

componentes de la membrana plasmática.

3. 1. Síntesis del peptoide 1

Para llevar a cabo la síntesis de los derivados peptídicos, el peptoide 1 necesario fue

producido en el laboratorio del Dr. Ángel Messeguer del grupo de Química Orgánica

Biológica del IIQAB (CSIC) de Barcelona. El esquema de dicha síntesis se muestra en

la Figura 3. 1.

NH2

1. BrCH2COOH, DIPCDI, DMF

NH2

HN

ONH

2. TEA, DMF,

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

NH2

Cl

1. TFA:DCM:H2O (60:40:2)

Cl

ClCl

Cl

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

NH2

HN

ON

Cl

Cl

NHO

Cl

HN

ON

Cl

Cl

NO

NHO

Cl Cl

H2N

ON

Cl

Cl

NO

NHO

Cl Cl

Figura 3. 1. Esquema de la síntesis química del peptoide 1

Page 247: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

17

3. 2. Péptidos con capacidad de permear: híbridos péptido-peptoide Para la síntesis de los híbridos péptido-peptoide el peptoide 1 se fusionó a secuencias

ampliamente utilizadas en el transporte de moléculas al interior celular, como son

penetratina y TAT. La síntesis se efectuó utilizando química F-moc en fase sólida,

posterior purificación por HPLC y caracterización por espectroscopia de masas

MALDI-TOF (Figura 3. 2) [196].

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

RQIKIWFQNRRMKWKKGG

A

Cl

Cl

N

NO

NO

NH2O

Cl

Cl

YGRKKRRQRRRGGG

B

Figura 3. 2. Estructura del PEN-1 (A) y del TAT-1 (B)

3. 2. 1. CF-TAT-1 y CF-PEN-1

Asimismo, se llevó a cabo la síntesis de una serie de conjugados PEN-1 y TAT-1

empleando carboxifluoresceína (CF) como marcador fluorescente. Para ello se

empleó el mismo tipo de síntesis pero una resina conteniendo al peptoide 1 ya

marcada con la CF.

3. 3. Conjugación a un transportador polimérico: PGA-peptoide

La conjugación del peptoide 1 a un transportador polimérico se efectuó en dos pasos.

En primer lugar, mediante química F-moc en fase sólida se incorporaron dos glicinas al

peptoide 1. Y, a continuación, el peptoide 1-GG se fusionó al poli-(L-ácido glutámico)

transformado en su forma protonada (Figura 3. 3). El contenido total de peptoide en

este conjugado polimérico fue determinado por UV (λ = 270 y 282 nm) se situó entre el

25-30 % (m/m) (10-12 mol % funcionalización) (Figura 3. 4) [192].

Page 248: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

18

Figura 3. 3. Esquema de la síntesis química del PGA-peptoide

Longitud de onda (nm)Longitud de onda (nm) Figura 3. 4. Espectro UV del PGA, del PGA-peptoide y del GG-peptoide 1 en la determinación del grado de funcionalización del PGA-peptoide

3. 3. 2 QM56-OG (peptoide 1-GG-PGA-oregon green)

El análogo fluorescente del QM56 se sintetizó siguiendo el mismo protocolo

anteriormente descrito seguido de la conjugación del PGA al peptoide 1-GG (Figure 3.

5). El contenido total de fármaco se determine por UV (peptoide 1) y espectroscopia de

fluorescencia (contenido de Oregon Green, OG).

Page 249: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

19

+ DIC/HOBt

DIEA/DMFanh

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

1

HN

O

20

O

HN O

NH

O

O

79

+Na-O O

NH

O

HN

O

HOF

OF

OHO

Cl

Cl

NN

ON

ONH2

O

Cl

Cl

O

NH

HN

O

O

80

+Na-O

HN

O

20

O

HN ONHO

H2N

OHO

F

O

F

OH

O

Figura 3. 5. Esquema de la síntesis del QM56-OG

3. 4. Derivado peptídico de conformación restringida: ciclopeptoide

Tanto la síntesis del ciclopeptoide como la de los diferentes derivados cíclicos se

efectuó en el laboratorio del Dr. Ángel Messeguer. En la figura 3. 6 se muestra el

esquema de síntesis del ciclopeptoide.

NH2

1. BrCH2COOH, DIPCDI, DMF

NH2

HN

ONH

OO

HOO

2. TEA, DMF,

HN

ON

O

HN

HN

ON

OO O

1. TEA, DMF

1. BrCH2COOH, DIPCDI, DMF

2. TEA, DMF,

O O

1. PhSiH3, Pd(PPh3)4 DCM 1. PyBOP, HOBt, DIEA,

DMF

2. TFA:DCM:H2O (60:40:2) N

N

O

O

Cl

N

OH2N

O

Cl

Cl

Cl

Cl

Cl

Cl

NH2

Cl

Cl

NH2Cl

Cl

HN

ON

O

N

O O

NHO

Cl

Cl

Cl

Cl

HN

ON

O

N

O OH

NHO

Cl

Cl

Cl

Cl

ClCl

Cl 2 Figura 3. 6. Esquema de la síntesis química del ciclopeptoide

Diversos derivados del QM31 fueron sintetizados con el fin de llevar a cabo un estudio

comparativo actividad-estructura. Para ello, se modificó el grupo funcional R1 (Figure

3. 7). Los diversos QM31 derivados se muestran en la tabla 3. 1.

Page 250: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

20

R1 NOO

O

NN

O

Cl

Cl

NH2

GROUP I

Figura 3. 7. Estructura química del QM31 y sus derivados

Tabla 3. 1. Estructura química de los sustituyentes del grupo R1 utilizados

Análogos QM31 R1

QM31 Cl

Cl

QM31a F

QM31b

QM31c

QM31d O

QM31e F

QM31f Cl

QM31g y QM31h

(mezcla) y O

QM31 i NH

O

QM31j O

QM31k Cl

QM31l

Page 251: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

21

3. 4. 1. Síntesis del QM57 y derivados

Asimismo, otra estrategia seguida fue la modificación del anillo central de la molécula.

De este modo fueron sintetizados el QM57 y una serie de derivados de dicha molécula.

Sin embargo, debido a procesos de patentabilidad ninguna de sus estructuras o métodos

de síntesis será mostrada.

3. 5. Síntesis del QM56 y derivados poliméricos de los heterociclos QM31 y QM57

Una serie de análogos del QM56 y del QM31 y QM57 fueron sintetizados. El objetivo

fue el de conjugar los diferentes compuestos al transportador polimérico con un número

diferente de aminoácidos de distinta naturaleza y así conseguir diferentes velocidades de

liberación del fármaco gracias a la diferente afinidad presentada por la catepsina B

(encargada de romper el enlace peptídico que une polímero-fármaco) por dichos

aminoácidos. Debido a procesos de patente ninguna estructura o síntesis de dichos

compuestos será mostrada (Tabla 3. 2).

Tabla 3. 2. Estructura esquemática del QM56 y polímeros derivados del QM31 y el QM57

PGA derivados Estructura esquemática

QM56 Peptoide 1-GG-PGA

QM56-P1 Peptoide 1-R1R2-PGA

QM56-P2 Peptoide 1-R1R3-PGA

QM31-P1 QM31-R4-PGA

QM31-P2 QM31-R5R3R6R4-PGA

QM31-P3 QM31-R1R3R6R4-PGA

QM31-P4 QM31-R5R5R4-PGA

QM57-P1 QM57-R5R3R6R4-PGA

QM57-P2 QM57-R5R5R4-PGA

Page 252: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

22

Page 253: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

23

CAPÍTULO 4: ANÁLISIS SISTEMÁTICO DE LA INHIBICIÓN DE

APOPTOSIS EJERCIDA POR LOS DERIVADOS DEL PEPTOIDE 1

Sintetizados los compuestos, nuestro siguiente objetivo fue el de determinar la validez

de nuestras estrategias para conseguir la internalización de dichos fármacos. Para ello,

se llevaron a cabo tres tipos de estudios: a) estudio de la actividad biológica de los

compuestos in vitro; b) estudios de viabilidad celular a través de ensayos de MTT y

estudios de actividad biológica tras inducción de apoptosis a través de ensayos de MTT

y de medida de activación de la caspasas 3; c) ensayos de internalización celular en

célula viva. Los detalles de cada una de las estrategias seguidas se describen en el

capítulo 9 de Materiales y Métodos.

4. 1. Capacidad de inhibición de los híbridos péptido-peptoide: PEN-1 y TAT-1

4. 1. 1 Actividad antiapoptótica del PEN-1 y el TAT-1 en extractos de células

La capacidad inhibitoria del PEN-peptoide y el TAT-peptoide se evaluó mediante el

ensayo anteriormente descrito de reconstitución del apoptosoma en extractos celulares

(Capítulo 9) (Figura 4. 1).

Figura 4. 1. Cuantificación del porcentaje de inhibición de formación del apoptosoma. Los híbridos péptido-peptoide y sus respectivos controles fueron analizados a concentraciones de 1 μM, 5 μM, 10 μM y 20 μM (barras negras, rayadas, grises y blancas, respectivamente)

Tanto el PEN-peptoide como el TAT-peptoide mostraron capacidad inhibitoria

dependiente de la concentración.

0

2

4

6

8

10

Control positivo

Peptoide 1a PEN-1 PEN TAT-1 TAT

% A

ctiv

idad

Cas

pasa

3

Page 254: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

24

4. 1. 2 Evaluación de la toxicidad celular y actividad biológica del PEN-1 y del TAT-1

a) Ensayos de MTT: ensayos de toxicidad y de recuperación de la viabilidad

celular

Las gráficas muestran en los ensayos de viabilidad como el TAT-1 induce una elevada

toxicidad a concentraciones de 10 y 5 μM desde las 24 horas de incubación del

compuesto (Figura 4. 2). Por el contrario, en el caso del PEN-1, molécula de igual

naturaleza no se observaba ningún efecto citotóxico. Este hecho justifica la ausencia de

recuperación de la viabilidad celular en el caso del TAT-1 tras la inducción de muerte

en las células (Figura 4. 3).

24H48H

72HU 2 - OS

HeLaA 54 9

U 9 3 7Saos- 2

0

20

40

60

80

100B

24H48H

72HA 54 9

HeLaU 2 - OS

U 9 3 7Saos- 2

0

20

40

60

80

100

A

24H48H

72HU 2 - OS

HeLaA 54 9

U 9 3 7Saos- 2

0

20

40

60

80

100B

24H48H

72HA 54 9

HeLaU 2 - OS

U 9 3 7Saos- 2

0

20

40

60

80

100

A

Figura 4. 2. Porcentaje de viabilidad de los derivados del peptoide 1: TAT-1 (A), PEN-1 (B), Los derivados del peptoide 1 se probaron a concentraciones de 10, 5 y 1 μM (barras negras, grises y blancas, respectivamente).

Page 255: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

25

24H48H

72HSaos-2A549HeLaU-2 OSU937

0

10

20

30

40

50

60

% R

ecup

erac

ión

celu

lar

(% C

élul

asto

tale

s)

Figura 4. 3. Porcentaje de recuperación de la viabilidad celular del PEN-1 en diferentes líneas celulares. El PEN-1 se testó a concentraciones de concentraciones de 10, 5 y 1 μM (barras negras, grises y blancas, respectivamente).

b) Ensayos de medida de la actividad caspasa 3

La medida de caspase 3 se empleó como un método de medida indirecto de la

formación del apoptosoma y más específico que el MTT, que no nos permite distinguir

entre el tipo de muerte existente. PEN-1 inhibió la actividad caspase 3 en diferentes

modelos celulares, no fue así en el caso del TAT-1 que no mostró capacidad inhibidora

(datos no mostrados). Los péptidos control fueron también analizados no mostrando

actividad inhibidora de la apoptosis (datos no mostrados) [196, 200] (Figure 4. 4).

010

2030

4050

6070

80

Saos-2 HeLa U-2 OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n%

Inhi

bici

ónac

tivid

adca

spas

a3

Figure 4. 4. Medida de la actividad caspasa 3 en diversas líneas celulares. PEN-1 se testó a 5 μM en todas las líneas excepto en Saos-2 (2 μM). Las medidas se llevaron a cabo tras 24, 48, y 72 h de incubación (barras negras, grises y blancas, respectivamente). Los datos se expresan como media ± ES (n> 3).

Page 256: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

26

4. 1. 3 Internalización celular y caracterización estructural del PEN-1 y el TAT-1

Con el fin de determinar el aumento de internalización celular del peptoide 1 tras su

conjugación al PEN y al TAT. PEN-1 y TAT-1 fueron marcados con CF. Los estudios

mediante citometría indicaron una rápida internalización de los compuestos tras su

adición a las células (menos de 1 hora). Sin embargo, cuando se efectuaron estudios de

internalización en célula viva se observó cómo el CF-TAT-1 dañaba la membrana de la

célula, lo que causaría su toxicidad. Estudios posteriores empleando técnicas de

dicroísmo circular indicaron que el peptoide 1 influía en la estructura del TAT de modo

significativo. Este hecho podría causar variaciones en su mecanismo de internalización

que explicaría la no eficacia de dicho híbrido para atravesar la membrana celular . En

caso del PEN-1 este era internalizado correctamente y la estructura del PEN no se veía

significativamente afectada por la adición del peptoide 1 [196].

4. 2. Capacidad de inhibición del conjugado polimérico: QM56

Debido a su naturaleza química la evaluación en ensayos in Vitro de la actividad

biológica del QM56 no pudo efectuarse, ya que sería necesaria la presencia de catepsina

B y un entorno ligeramente ácido para poder conseguir la liberación del fármaco al

medio. No obstante se efectuaron estudios de internalización celular del QM56

marcado con Oregon Green (OG) con el fin de comprobar la correcta internalización del

compuesto y así asegurar de su futura actividad biológica. Los resultados de

internalización celular mostraron como el QM56 era internalizado por las células a

través de mecanismos de endocitosis a tiempos bajos, lo que auguraba buenos

resultados en el caso de los estudios de citotoxicidad y actividad biológica que se

muestran a continuación.

4. 2. 2 Evaluación de la toxicidad celular y actividad biológica del QM56

a) Ensayos de MTT: ensayos de toxicidad y de recuperación de la viabilidad celular

El QM56 no mostró ningún tipo de toxicidad celular en las células tratadas. Asimismo,

cuando se testó su capacidad biológica tras la inducción de muerte en la célula se

observó una clara capacidad de recuperación de la viabilidad celular (Figure 4. 5).

Page 257: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

27

24H48H

72HHeLaSaos-2A549U-2 OSU937

0

20

40

60

80

100

24H48H

72HSaos- 2

A 54 9HeLaU 2 - OS

U 9 3 70

20

40

60

80

100%

Via

bilid

adce

lula

r(%

Cél

ulas

tota

les)

% R

ecup

erac

ión

celu

lar

(% C

élul

asto

tale

s)

A B

24H48H

72HHeLaSaos-2A549U-2 OSU937

0

20

40

60

80

100

24H48H

72HSaos- 2

A 54 9HeLaU 2 - OS

U 9 3 70

20

40

60

80

100%

Via

bilid

adce

lula

r(%

Cél

ulas

tota

les)

% R

ecup

erac

ión

celu

lar

(% C

élul

asto

tale

s)

A B

Figura 4. 5. Porcentaje de viabilidad y de recuperación celular (A y B, respectivamente) del QM56 a concentraciones de 100, 50 y 20 μM equivalentes de fármaco (barras negras, grises y blancas, respectivamente).

b) Ensayos de medida de la actividad caspasa 3

El QM56 se testó junto con sus dos derivados QM56-P1 y QM56-P2 en ensayos de

inhibición de la actividad caspasa 3. En todos los casos, los compuestos fueron capaces

de inhibir la activación de la caspasa 3, aunque ninguno de los derivados del QM56

sintetizados presentó una mayor actividad biológica de modo significativo con respecto

al QM56. Se muestran como ejemplo las medidas efectuadas en la línea Saos-2 (Tabla

4. 1).

Tabla 4. 1. Porcentaje de inhibición de la apoptosis por medida de la actividad caspase 3 en los diferentes derivados del QM56

Saos-2

(%) Compuesto

24 h 48 h

QM56 54±3 (n=20) 93±5 (n=10)

QM56-P1 75±12 (n=3) 93±23 (n=3)

QM56-P2 67±4 (n=3) 34±5 (n=3)

Page 258: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

28

4. 3. Capacidad de inhibición del derivado de conformación restringida QM31 y

sus derivados

4. 3. 1. Actividad biológica de los diversos derivados del QM31 en los ensayos de

reconstitución in vitro del apoptosoma

Los compuestos fueron testados en el ensayo de reconstitución in vitro del apoptosoma,

la subsiguiente medida de la activación de la procaspasa 9 nos indicaba el grado de

inhibición de los compuestos ejercido sobre Apaf-1. Los valores de inhibición

obtenidos abarcan un rango del 10-20 % de inhibición de la actividad caspasa 9. La

explicación de este valor un tanto bajo, podría deberse a la dificultad de solubilizar los

compuestos testados en las condiciones óptimas del ensayo. No obstante, posteriores

ensayos de MTT y medidas de caspasa 3 nos permitieron caracterizar la actividad

biológica de dichos compuestos.

4. 3. 2. Evaluación de la toxicidad celular y la actividad biológica del QM31 y

derivados

a) Ensayos de MTT: toxicidad y recuperación de la viabilidad celular del QM31

Los ensayos de viabilidad celular mostraron como el QM31 y los diferentes derivados

sintetizados del QM31 y el QM57 no resultan tóxicos para las células en las condiciones

de ensayo estudiadas. Asimismo, su capacidad de recuperación de la viabilidad celular

tras la inducción de muerte en las células mostró como las moléculas sintetizadas eran

capaces de aumentar, en diferente medida, el porcentaje de células viables. No obstante

ninguno de los compuestos testados mostró una actividad biológica significativamente

mayor a la del compuesto líder, el QM31. A modo de ejemplo se muestran los valores

obtenidos en los diferentes ensayos para esta molécula (Figuras 4. 6 y 4. 7).

Page 259: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

29

24H48H

72HA 54 9

HeLaU 2 - OS

U 9 3 7Sao s- 2

0

20

40

60

80

100

24H48H

72HA549U-2 OSHeLaSaos-2U937

0

10

20

30

40

50%

Via

bilid

adce

lula

r(%

Cél

ulas

tota

les)

% R

ecup

erac

ión

celu

lar

(% C

élul

asto

tale

s)

A B

24H48H

72HA 54 9

HeLaU 2 - OS

U 9 3 7Sao s- 2

0

20

40

60

80

100

24H48H

72HA549U-2 OSHeLaSaos-2U937

0

10

20

30

40

50%

Via

bilid

adce

lula

r(%

Cél

ulas

tota

les)

% R

ecup

erac

ión

celu

lar

(% C

élul

asto

tale

s)

A B

Figuras 4. 6. Porcentaje de viabilidad y de recuperación celular (A y B, respectivamente) del QM31 a concentraciones de 10, 5 y 1 μM (barras negras, grises y blancas, respectivamente).

-10

0

10

20

30

40

50

60

70

Saos-2 HeLa U2-OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n%

Inhi

bici

ónac

tivid

adca

spas

a3

-10

0

10

20

30

40

50

60

70

Saos-2 HeLa U2-OS U937

% C

aspa

se 3

act

ivity

inhi

bitio

n%

Inhi

bici

ónac

tivid

adca

spas

a3

Figura 4. 7. Medida de la actividad caspasa 3 en diversas líneas celulares. QM31 se testó a 5 μM en todas las líneas. Las medidas se llevaron a cabo tras 24, 48, y 72 h de incubación (barras negras, grises y blancas, respectivamente). Los datos se expresan como media ± ES (n> 3).

4. 4. Capacidad de inhibición de los derivados poliméricos del QM31 y el QM57

Nuestra estrategia sintetizando estos derivados era el de sacar provecho de la eficiente

internalización del peptoide 1 obtenida tras su conjugación al QM56 y, al mismo

tiempo, sacar provecho de la significativa actividad biológica obtenida por los derivados

cíclicos. Con el fin de testar estos nuevos derivados poliméricos, se efectuaron medidas

de su capacidad de inhibir la caspasa 3 (Tabla 4. 2).

Page 260: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

30

Tabla 4. 2. Inhibición de la apoptosis por inhibición de la actividad caspase 3 por los diferentes conjugados ciclopeptoide-PGA

U937 Saos-2 Compuesto

24 h 48 h 24 h 48 h

QM31-P2 74±3 (n=3) 85±1 (n=3) 67±4 (n=3) ND

QM31-P3 ND ND 61±7 (n=9) 84±9 (n=6)

QM31-P4 ND ND 53±3 (n=9) 100±3 (n=6)

QM57-P1 ND ND 58±5 (n=6) 100±10 (n=6)

QM57-P2 ND ND 27±9 (n=6) 95±20 (n=6)

Los datos obtenidos muestran como en todos los casos los derivados poliméricos

mostraron una marcada capacidad de inhibir la actividad caspase 3.

Page 261: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

31

CAPÍTULO 5: DERIVADOS DEL PEPTOIDE 1 COMO

INHIBIDORES DEL APOPTOSMA: CARACTERIZACIÓN DEL

MECANISMO MOLECULAR DE ACCIÓN

En previos ensayos, se ha postulado la posible interacción del peptoide 1 con Apaf-1

[158]. Con el fin de caracterizar de un modo más preciso esta interacción diversos

ensayos in Vitro y ex vivo se llevaron a cabo y se muestran en el presente capítulo.

5. 1. Ensayos in vitro de caracterización del sitio de unión peptoide 1/Apaf-1

a) Medidas de polarización de fluorescencia

Tal y como se explica en el capítulo 9 de materiales y métodos, se sintetizó un peptoide

1 marcado con CF y su interacción con el dominio CARD de Apaf-1 fue testada. Como

resultado se vio una marcada variación en la fluorescencia de polarización que indicaría

la existencia de una unión entre ambas entidades (Figura 5. 1). Específicamente el

peptoide 1 sería capaz de interaccionar con Apaf-1 a través de su dominio CARD.

Subsiguientes ensayos empleando resonancia magnética nuclear y el CARD de Apaf-1

marcado con 15N demostraron esta misma interacción en presencia de uno de los

derivados del peptoide 1 el PEN-1.

Page 262: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

32

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

A

B

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

405060708090

100110

10 30 50 70 90 110[CARD] nM

mP

O COOH

FO

FHO

O

HN

O

NH

NN

NN

NNH2

O

N

O

O

Cl

Cl

O

O

O

Cl

Cl

A

B

Figure 5. 1. El CF-peptoide 1 se une al rCARDApaf-1. (A) Estructura química del CF-peptoide 1 (B) Se empleó una solución a 60 nM del CF-peptoide 1 en tampón A y fue titulada con crecientes concentraciones de rCARDApaf-1 (■). La fluorescencia de polarización fue medida a 30 ºC. Los datos se muestran como (media ± s. d. ; n=3) y fueron tomados en unidades de milipolarización (mP) ajustando los datos a un modelo de dos estados.

b) Ensayos de doble híbrido Los ensayos de doble híbrido han sido ampliamente utilizados en la determinación de

interacciones proteína-proteína. Para un mayor conocimiento de la base de dichos

ensayos son interesantes los trabajos presentados por S. Fields [219, 224, 225]. Un

pequeño esquema de la base de este ensayo se muestra en la Figura 5. 2.

Se emplearon las construcciones mostrados en la Tabla 5. 1 con el objetivo de

determinar el efecto de la interacción de nuestros compuestos con Apaf-1. El

objetivo era determinar si esta interacción inhibe la oligomerización de Apaf-1 o

el reclutamiento de procaspasa 9.

Page 263: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

33

promotor Gen indicador

X Y

DADU

Maquinaria detranscripción

activo

I

promotor Gen indicador

X

Y

DA

DU inactivo

XAD

DU

Z

inactivo

promotor Gen indicador

A

B

C

promotor Gen indicador

X Y

DADU

Maquinaria detranscripción

activo

promotor Gen indicador

X Y

DADU

X Y

DADADU

Maquinaria detranscripción

activo

I

promotor Gen indicador

X

Y

DA

DU inactivo

I

promotor Gen indicador

X

Y

DA

Y

DADA

DU inactivo

XAD

DU

Z

inactivo

promotor Gen indicador

XADAD

DU

Z

inactivo

promotor Gen indicador

A

B

C

Figure 5. 2. Ensayo de doble híbrido (A) el dominio de unión (DU) se fusiona a la proteína Y. a menos que dicha proteína Y se una a X, el dominio de activación (DA) no se encontrará próximo al DU y la maquinaria de transcripción no será reclutada. Si las células crecen en un medio restrictivo el y el gen marcador de esta interacción es autotrófico no se producirá el crecimiento de las células. (B) Interacción entre las proteínas X e Y resulta en el reclutamiento de la maquinaria de transcripción, la expresión del gen autotrófico (en nuestro modelo de ensayo) y el consiguiente crecimiento de las células en el medio restrictivo. (C) La introducción de una molécula inhibidora (I) de la interacción entre X e Y lleva a la inhibición de la expresión en el gen autotrófico y la ausencia de crecimiento de las células en medio mínimo. Tabla 5. 1. Construcciones empleadas en los experimentos

Plásmido Proteínas de fusión

pGilda

(contiene DU)

(1) Vacío

(2) Apaf-1 (95-530)

(3) Apaf-1 CARD

(4) Procaspasa 9 CARD

pGJ4-5

(contiene DA)

(1) Vacío

(2) Apaf-1 (95-530)

(3) Apaf-1 CARD

(4) Procaspasa 9 CARD *Expresión inducible por galactosa. No expresión en presencia de glucosa.

La cepa de levadura empleada fue transfectada con los diferentes plásmidos pGilda y

pGJ4-5 del ensayo dando lugar a los sistemas 1, 2, 3 y 4. Una vez seleccionadas las

cepas con los diferentes plásmidos, se trataron con el QM31 a diferentes

concentraciones y se siguió su crecimiento con el fin de determinar la capacidad de

Page 264: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

34

romper las diferentes interacciones proteicas del QM31. Los resultados se muestran en

la Figura 5. 3. La disminución del crecimiento celular en el sistema 2 tras tratar a las

células con QM31 indicaría que nuestros compuestos son capaces de inhibir la

interacción entre los CARD de Apaf-1 y de procaspasa 9.

00,20,40,60,8

11,21,41,61,8

pGilda/pJG4-5 pGilda Apaf-1CARD/pJG4-5 C9

CARD

pGilda C9CARD/pJG4-5Apaf-1 CARD

pGilda Apaf-1 (95-530)/pJG4-5 Apaf-

1 (95-530)

DO

(600

nm

)

Figura 5. 3. Se efectuaron medidas de la densidad óptica a 600 nm tras 96 h de incubación. Las células se trataron con DMSO o QM31 a concentraciones de 1.25, 2.5 and 5 μM (barras negras, rayadas, grises o blancas, respectivamente).

c) Ensayos in silico

Los ensayos in silico efectuados permitieron confirmar la existencia de una interacción

entre el QM31 y Apaf-1 a través de su dominio CARD (Figuras 5. 4 y 5. 5). La

localización de QM31 en esta cavidad permite formular hipótesis sobre la forma en que

inhibe la actividad proapoptotica de Apaf-1. Por un lado, esta cavidad se encuentra

conectada mediante un canal al lugar de unión de ADP, por tanto es plausible que la

presencia de QM31 bloquee el acceso a dicho lugar por el ATP/dATP necesario para la

activación del apoptosoma. Por otra parte, Riedl y colaboradores. postulan que la

interacción CARD-CARD entre Apaf-1 y procaspasa 9 requiere un cambio

conformacional previo en Apaf-1 que expone residuos que son menos accesibles en la

estructura “cerrada” de Apaf-1(CARD-NOD). La interacción con QM31 podría

estabilizar la estructura de Apaf-1 en dicha conformación “cerrada” impidiendo así la

interacción con el CARD de procaspasa e inhibiendo la formación del apoptosoma.

Page 265: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

35

Finalmente, no puede descartarse que QM31 sea capaz de unirse también al complejo

CARD-CARD, si este llega a formarse, perturbando su función.

Figura 5. 4. Modelo del complejo Apaf-1(CARD-NOD)/QM31 obtenido por docking. A. El modelo representa la pose más favorable obtenida en amarillo, mientras que en verde y azul se representan, respectivamente, los dominios CARD y NOD de Apaf-1 [48]. B. Representación de la misma pose y de la superficie de la proteína, coloreada en función del potencial electrostático (negativo en rojo, positivo en azul).

Figura 5. 5. Diagrama de interacciones determinadas por docking entre QM31 y Apaf-1

Page 266: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

36

5. 2. Caracterización del sitio de unión en célula entera

Para ello se llevaron a cabo dos tipos de ensayos: el fraccionamiento de extractos

celulares tras tratar a las células con un inductor de muerte y uno de los inhibidores de

Apaf-1; o bien, tratando a las células con el activador del apoptosoma descrito por

Nguyen et al. [151].

5. 2. 1. Fraccionamiento de extractos

Tras tratar a las células tal y como se describe en el capítulo 9 y su subsiguiente

fraccionamiento tras cromatografía de exclusión molecular se analizó la presencia de

procaspasa 9 y Apaf-1 por western-blot. Los resultados indican, en acuerdo con los

resultados de doble híbrido, como en caso de inducir la apoptosis y tratar con el QM56

la procaspasa 9 no es reclutada al apoptosoma (no se observa en las fracciones

correspondientes a los pesos moleculares altos del apoptosoma), algo que sí se observa

en caso de inducir la muerte celular (Figura 5. 6)

5. 2. 2. Inhibición de la apoptosis inducida a través del apoptosoma

Las células fueron tratadas con el inductor de la apoptosis descrito por Nguyen et al. y

nuestros inhibidores. A continuación, se llevaron a cabo ensayos de medida de la

actividad caspasa 3 (Figura 5. 7). Estas medidas indicaron alta capacidad por parte de

nuestros compuestos de inhibir la apoptosis inducida a través del apoptosoma, lo que

corroboraría la especificidad de acción de nuestros compuestos por Apaf-1.

Page 267: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

37

Fracción nº

a47 KDa Procaspasa 9

47 KDa Procaspasa 9

47 KDa Procaspasa 9

130 KDa Apaf-1

130 KDa Apaf-1

130 KDa Apaf-1

Fracción nº

a47 KDa Procaspasa 9

47 KDa Procaspasa 9

47 KDa Procaspasa 9

130 KDa Apaf-1

130 KDa Apaf-1

130 KDa Apaf-1

Figura 5. 6. Estudios de cromatografía de exclusión molecular en HeLa. Las células se trataron con PBS (A), doxorrubicina 1. 25 μM (B) o doxorrubicina en presencia de QM56 50 μM, equivalentes de fármaco (C), por 24 h. Los extractos celulares se obtuvieron y se llevó a cabo su fraccionamiento por cromatografía de exclusión molecular. Se recogieron fracciones de 750 μL y se analizó la presencia de Apaf-1 (círculos verdes) y procaspasa 9 (círculos naranjas) a través de Western-blot. Tabla 5. 2. Porcentaje de inhibición de la actividad caspase 3 tras la inducción de apoptosis con el compuesto 2. Los datos se muestran como media ± ES (n = 3).

Línea celular U937 Saos-2

Compuesto 24 h 48 h 24 h 48 h

QM56 82 ± 1 64 ± 1 ND ND

QM31-P2 27 ± 6 95 ± 2 22 ± 2 41 ± 14

Page 268: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

38

Page 269: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

39

CAPÍTULO 6: CARACTERIZACIÓN DEL EFECTO

CITOPROTECTOR DEL QM31

Demostrada la actividad biológica de los compuestos, el QM31 fue elegido para llevar

a cabo una serie de ensayos con el fin de mejorar la caracterización de su mecanismo de

acción dentro de la célula. Estas medidas fueron llevadas a cabo en los laboratorios del

Dr. Guido Kroemer en el Instituto Gustave Roussy (París, Francia) y el Prof. Douglas

Green en el Hospital de investigación San Judas para niños (Memphis, EE. UU. ).

Estas medidas se dividen en dos partes, una caracterización por citometría e

inmunofluorescencia de diferentes parámetros implicados en la muerte por apoptosis.

A continuación, un estudio más exhaustivo de la influencia de nuestros compuestos en

la cinética de liberación del cit c. Finalmente, un último ensayo efectuado fue un

ensayo de clonogenicidad con el fin de determinar la continuidad del efecto de nuestros

compuestos a largo plazo.

6. 1 Caracterización del efecto citoprotector del QM31 en célula

Para llevar a cabo esta caracterización se realizaron medidas de exposición de

fosfatidilserina por tinción con Anexina V (AnnV) que marcan específicamente el inicio

de la apoptosis; marcaje con yoduro de propidio (IP), como marcaje de la muerte de la

célula; tinción con DiOC6(3) que marca a las células con alto ΔΨm (potencial de

membrana mitocondrial) y, por último, marcaje del cit c en sus diferente localizaciones

mitocondrial (células sanas) y citoplasmática (células apoptóticas).

Los resultados obtenidos se muestran en las Figuras 6. 1 y 6. 2. Asimismo se introdujo

el inhibidor de caspasas Z-VAD-fmk como control para determinar el grado de

citoprotección ejercido por nuestros compuestos. En el caso de medidas de Ann V, PI y

DiOC6(3) QM31 y Z-VAD-fmk mostraron una capacidad de inhibición de la muerte

celular semejante. Sin embargo, cuando fueron comparadas su capacidad de inhibir la

liberación de cit c, el QM31 mostró una clara habilidad para parar este proceso, hecho

que no fue igualado por el Z-VAD-fmk.

Page 270: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

40

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DPEv

ento

s

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DP

IP

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

Caspasa 3a-FITC

AnnV-FITC

% C

élul

as%

Cél

ulas

Cas

p-3a

-FIT

C

AnnV+

IP+

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DPEv

ento

s

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DP

IP

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

Caspasa 3a-FITC

AnnV-FITC

% C

élul

as%

Cél

ulas

Cas

p-3a

-FIT

C

AnnV+

IP+

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DPEv

ento

s

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Con

trol

CD

DP

IP

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

Caspasa 3a-FITC

AnnV-FITC

% C

élul

as%

Cél

ulas

Cas

p-3a

-FIT

C

AnnV+

IP+

Figure 6. 3. A549 fueron tratada con cis-platino (CDDP) solo o en combinación con Z-VAD-fmk (pretratamiento de 1 h) 50 μM o QM31 5 μM (post-tratamiento, tras 30 min de la adición del CDDP). Tras 48 h de incubación se efectuó la medida de los diferentes parámetros de apoptosis tal y como se indica en el capítulo 9. Los paneles A y C muestran los datos crudos y la cuantificación de la caspasa 3 activa presente en las muestras (Casp-3a cells). En el caso de los paneles C y D se muestran los datos crudos y las cuantificaciones efectuadas tras la tinción con IP y Ann V (IP-/AnnV+). Los asteriscos indican los valores estadísticamente significativos (analizados con la t de Student, p < 0. 05).

Page 271: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

41

Control CDDP

Cyt cmito Cyt ccitop

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

% C

élul

asC

ytcci

top

% C

élul

asC

ytcci

top

% C

élul

as

Cyt c-FITC

DiOC6(3)

Con

trol

CD

DPEv

ento

s

Con

trol

CD

DP

IP

Cyt cmito Cyt ccitop

DiOC6(3) lowIP+

Control CDDP

Cyt cmito Cyt ccitop

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

Control Z-VAD-fmk QM31Z-VAD-fmk

+ QM31

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

CDDPZ-VAD-fmk

QM31

% C

élul

asC

ytcci

top

% C

élul

asC

ytcci

top

% C

élul

as

Cyt c-FITC

DiOC6(3)

Con

trol

CD

DPEv

ento

s

Con

trol

CD

DP

IP

Cyt cmito Cyt ccitop

DiOC6(3) lowIP+

Figura 6. 4. Las células A549 se trataron tal y como se indica en la figura 6. 3 y en el capítulo 9 de la tesis y se efectuó la posterior medida de la liberación de cit c. En el panel A, se muestra una inmunofluorescencia representativa de la localización del cit c mitocondrial (Cit c mito) vs. citosólico (Cit c rel) Cit c (señal verde). Los núcleos se han teñido en azul con Hoechst 33342. las barras blancas indican la escala de la fotografía. Columnas en el panel B indican el porcentaje de células con el cit c en el citosol. En el panel C y E se muestran los datos crudos de las tinciones de cit c y de DiOC6(3)/ PI) efectuadas. El análisis cuantitativo de las mismas se muestra en los paneles D y F. En todos los casos los datos se muestran como media ± ES, n = 4. Los asteriscos indican los resultados significativos estadísticamente (Test de student, p < 0. 05).

Page 272: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

42

6. 2 Comparación de la supervivencia celular en Heltog tratadas con QM31 y q-

VD-OPH

Con el objetivo de estudiar de un modo más específico la influencia del QM31 sobre la

liberación del cit c y con la idea de una posible existencia de un bucle de amplificación

de la permeabilización de la membrana externa mitocondrial (MOMP, tomaremos la

abreviatura en inglés a partir de este momento). Se efectuaron estudios empleando la

línea celular HeLa expresando el cit c-GFP (Heltog) con el fin de efectuar el

seguimiento de esta proteína por microscopia confocal de fluorescencia. Se efectuó una

puesta a punto de las condiciones de ensayo empleando estaurosporina (STS), un

inhibidor inespecífico de fosfoquinasas, y se trataron las células con el QM31 y el q-

VD-OPH. Se observó que el QM31 necesitaba estar acompañado de q-VD-OPH en este

modelo para ejercer un efecto sobre la liberación del cit c. Este hecho podría deberse a

que la línea celular Heltog presenta una mayor resistencia a los estímulos apoptóticos y

una mayor velocidad de división. Asimismo, se observó un ruido de fondo verde en el

citosol que podría corresponder al cit c-GFP que estuviera presente en el citosol, aunque

este hecho no pudo ser corroborado. Este hecho podría afectar a su comportamiento

tras la inducción de la apoptosis y haría que nuestro compuesto únicamente no fuera

suficiente a la hora de frenar el proceso de muerte.

Por tanto, tratando a las células con STS y QM31 y q-VD-OPH, estos últimos solos o en

combinación se llevaron a cabo los diferentes estudios de la cinética de liberación del cit

c. Los resultados se muestran en la Figura 6. 3. Se observó, como la presencia de

QM31 produce un retraso en la liberación del cit c cuando se compara con el q-VD-

OPH solo. Este hecho confirma las observaciones hechas con la línea celular A549,

aunque en este caso el QM31 ejercía su función inhibidora de apoptosis sin ayuda del Z-

VAD-fmk.

Page 273: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

43

B

0

5

10

15

20

25

30

35

DMSO QM31 q-VD-OPH q-VD-OPH +QM31

STS

Tie

mpo

(h)

BB

0

5

10

15

20

25

30

35

DMSO QM31 q-VD-OPH q-VD-OPH +QM31

STS

Tie

mpo

(h)

0

5

10

15

20

25

30

35

DMSO QM31 q-VD-OPH q-VD-OPH +QM31

STS

Tie

mpo

(h)

Figura 6. 3. Las Heltog fueron tratadas con STS 0. 25 μM por 6 h sola o en combinación con QM31 5 μM y/o q-VD-OPH 20 μM. Tras 6 h, la STS fue eliminada y se añadió medio fresco a las muestras junto con QM31 y/o q-VD-OPH en las muestras correspondientes. Tras añadir IP al medio, fotos de las diferentes muestras se tomaron durante 37 h (FITC, verde, y dsRed, rojo) a intervalos de 15 min. (A) Ejemplo representativo de las diferentes fotografías tomadas y los fenotipos obtenidos. (B) Cuantificación de la liberación de cit c y la tinción por IP.

6. 2. 2 Ensayos de clonogenicidad con Heltog

Intrigados por los resultados obtenidos y con el fin de determinar si la inhibición de

Apaf-1 puede ayudar verdaderamente a las células a sobrevivir tras la inducción de

apoptosis, se llevó a cabo un ensayo de clonogenicidad tras inducir la muerte en las

células con STS y tratarlas con QM31 y/o q-VD-OPH. Los resultados se muestran en la

Figura 6. 4. Estos datos indicarían que la inhibición de Apaf-1 puede ayudar a las

células a sobrevivir tras un estímulo de muerte al observarse un marcado incremento en

el número de colonias cuando QM31 en combinación con q-VD-OPH se añade a las

células (q-VD-OPH muestra una modesta capacidad de aumentar la formación de

Page 274: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

44

colonias). Aunque quedan todavía experimentos por realizar, estos datos podrían

indicar que la inhibición de Apaf-1 aumenta el tiempo en el que las células pueden

recuperarse de un estímulo de muerte. Asimismo, los datos obtenidos indicarían

también la posible existencia de un bucle de amplificación del MOMP y que es

dependiente de Apaf-1 [42, 249, 250].

Figura 6. 9. Ensayo clonogénico en Heltog. 2500 células/pocillo fueron sembradas en una placa de 12 pocillos y tras 48 h las células fueron tratadas sin (A) o con STS 2 uM (B) por 6 h. Pasado este tiempo, la STS fue eliminada y medio fresco conteniendo los diferentes compuestos en concentraciones QM31 5 μM y q-VD-OPH 20 μM fueron añadidos. 24 h después se cambió el medio y los compuestos fueron añadidos de nuevo. Después de 2 semanas se efectuó la cuantificación de las colonias formadas.

Page 275: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

45

CAPÍTULO 7: FUNCIONES DE APAF-1 NO RELACIONADAS

CON LA APOPTOSIS

Tras la publicación del artículo de Zermati et al. [94], se le ha atribuido un nuevo rol a

Apaf-1 independiente de la apoptosis como es el de efectuar un arresto en la fase S del

ciclo celular tras inducir un daño subletal a las células. Con el fin de comprobar que

dicho efecto era también inhibido por nuestros compuestos y que dichos compuestos no

eran simplemente inhibidores de la capacidad apoptótica de Apaf-1. Algunos de los

ensayos mostrados en dicho artículo fueron reproducidos en presencia de nuestros

compuestos.

7. 1. Inhibición del arresto celular en fase S por el QM31

De nuevo se tomó al QM31 como molécula modelo y tras tratar a las células A549 tal y

como se indica en el capítulo 9 con dosis subletales de CDDP y el QM31 se analizó el

porcentaje de células en cada una de las fases del ciclo celular. El resultado obtenido

demuestra cómo el QM31 es capaz de ejercer un efecto semejante al del siRNA de

Apaf-1 y reducir en un 10 % aproximadamente el porcentaje de células en fase S tras el

arresto producido en dicha fase por la adición del CDDP (Figura 7. 1). Se comprueba

así que nuestros compuestos son capaces de frenar otras funciones de Apaf-1 en la

célula diferentes a la apoptosis.

Page 276: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

46

Eve

ntos

% C

élul

asto

tale

s

siUNR siApaf-1

siUNRsiApaf-1

Control QM31 5 μM QM31 7.5 μM

β-actina

Apaf-1

Con

trol

CD

DP

A

B

C

IP

130 kDa

47 kDa

G2/M

S

G0/G1

CDDPQM31 5 μM

QM31 7.5 μM

Eve

ntos

% C

élul

asto

tale

s

Eve

ntos

% C

élul

asto

tale

s

siUNR siApaf-1

siUNRsiApaf-1

Control QM31 5 μM QM31 7.5 μM

β-actina

Apaf-1

Con

trol

CD

DP

A

B

C

IP

130 kDa

47 kDa

G2/M

S

G0/G1

CDDPQM31 5 μM

QM31 7.5 μM

Figura 7. 1. A549 fueron transfectadas con siRNA control (siUNR)o específico para Apaf-1 (siApaf-1) por 48h. Tras este tiempo se trataron con el QM31 por una hora. Pasado este tiempo CDDP 20 μM fue añadido y 24 h después se efectuó la cuantificación de la reducción de Apaf-1 en el medio por el siApaf-1 (C) y el consiguiente análisis y cuantificación del porcentaje de células en los distintos estadíos del ciclo celular (A, B). Barras negras, blancas y grises marcan el porcentaje de células en las fases G0/G1, S y G2/M, respectivamente. Los resultados se muestran como media ES (n = 3).

7. 2. Influencia de dosis altas de L-glutamina en la supervivencia celular tras el

tratamiento con los derivados del peptoide 1

De modo accidental se observó cómo la presencia de dosis altas de L-glutamina

(GlutaMAX®) en el medio en presencia de los inhibidores de Apaf-1 causaban una

importante disminución de la viabilidad celular (Figure 7. 3). La toxicidad de la L-

Page 277: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

47

glutamina en altas dosis se ha descrito anteriormente [268, 269], pero en este caso

solamente se apreciaba en combinación con nuestros compuestos. Con el fin de

caracterizar el tipo de muerte que podría ser inducida se efectuaron estudios de

inducción de autofagia mediante el estudio de la proteína LC-3 marcada

fluorescentemente en la línea celular MCF-7 (Figure 7. 4). Como resultado se observó

una inducción de la autofagia tras la adición del QM31 y del QM56 en presencia de

dosis altas de L-glutamina. En el caso del QM56 se observó incluso una disminución

de la viabilidad celular a concentraciones de 50 μM equivalentes de fármaco.

Los resultados obtenidos nos hicieron pensar en una hipótesis “arriesgada” como es la

existencia de una conexión entre Apaf-1, el metabolismo de la L-glutamina y la

producción de ATP. Esta hipótesis surgió a raíz del trabajo presentado por el grupo de

Pascal Meier en el que describían una posible interacción entre DARK (homólogo de

Apaf-1 en Drosophila) y GFAT2, una proteína implicada en la ruta de las hexosaminas

(RH) [279]. La glutamina-6-fosfoaminotransferasa 2 es una isoforma de la GFAT2.

Ambas proteínas controlan el flujo de glucosa en la RH y catalizan la reacción de

formación de glucosamina-6-fosfato. La activación de estas rutas debido a un exceso de

glucosa se ha relacionado con la progresión de diversas patologías asociadas a

hiperglicemia [281-284], alteraciones de las proteína quinasas activadas por AMP

(AMPK) y niveles de Ca+2 [281], este hecho podría relacionarse también con el aumento

de autofagia observado y el estado de pseudo-hipoxia metabólica debido a un descenso

en los niveles de ATP. Interesantemente, la sobreexpresión de GFAT o el tratamiento

con glucosamina (sustrato de GFAT) reproducen algunos de los fenotipos observados

[283]. Por esta razón, se llevó a cabo el ensayo de reconstitución in vitro del

apoptosoma con el fin de determinar la posible interacción entre GFAT2 y Apaf-1 en

humanos (Figura 7. 2). Como control positivo del experimento se utilizó Bcl-XL cuya

interacción con Apaf-1 [43] in vitro ha sido descrita y la adición de la proteína CDK2

sirvió como control negativo de interacción.

Page 278: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

48

0

0,5

1

1,5

2

2,5

3

Control PGA QM56 PGA QM56 PGA QM56

50 25 10

OD

(570

nm

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

50 μM50 μM 25 μM25 μM 10 μM10 μM

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

ado

(% T

otal

cel

ls)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 difuso

eGFP-LC3 vesicular

0

0,5

1

1,5

2

2,5

3

Control PGA QM56 PGA QM56 PGA QM56

50 25 10

OD

(570

nm

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 diffused

eGFP-LC3 dots

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM

A

C

B

50 μM50 μM50 μM50 μM 25 μM25 μM25 μM25 μM 10 μM10 μM10 μM10 μM

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

atio

n (%

Tot

al c

ells

)

ControlQM31

1 μM 5 μM0

102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

ado

(% T

otal

cel

ls)

0102030405060708090

Control 1 mM 5 mM

QM31% L

C-3

tran

sloc

ado

(% T

otal

cel

ls)

ControlQM31

1 μM 5 μM

A

C

B

eGFP-LC3 difuso

eGFP-LC3 vesicular

Figura 7. 2. MCF-7 sobreexpresando el LC3-GFP se cultivaron en presencia de 2 mM GlutaMAX con el QM31 5, 1 μM o QM56 o PGA 50, 25 and 10 μM equivalentes de fármaco. En el panel A, se muestra una fotografía ejemplo de la localización de LC-3-GFP en células sanas (eGFP-LC3 difuso) y en células en la que la autofagia ha sido inducida y se produce su translocación a los autofagosomas (eGFP-LC3 vesicular). En el panel B se muestra la cuantificación efectuada de las células en las que LC3 se transloca a los autofagosomas. Los datos se expresan en media ± ES (n =3). Finalmente, el panel C muestra un ensayo de viabilidad celular en presencia de QM56 y GlutaMAX® tras incubar las células por 24, 72, 96 y 120 h (barras negras, grises, grises con círculos y blancas, respectivamente).

Page 279: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

49

0

10

20

30

40

50

1:1 2:1 3:1 1:1 2:1 3:1 1:1 2:1 3:1

GFAT2/Apaf-1 Bcl-XL/Apaf-1 CDK2/Apaf-1

% C

aspa

se 9

act

ivity

inhi

bitio

n%

Inhi

bici

ónac

tivid

adca

spas

a9

Figura 7. 3. Reconstitución in vitro del apoptosoma. Se incubó rApaf-1 40 nM con GFAT2, Bcl-XL y CDK2 en proporciones 1:1, 1:2 y 1:3 durante 30 min a 30 ºC. El resto de componentes del apoptosoma se añadió tal y como se describe en el capítulo 9. Finalmente, la actividad caspasa 9 fue medida y se expresó como inhibición de la actividad caspase 9.

De acuerdo a los datos obtenidos, podría existir una interacción entre GFAT2 y Apaf-1.

La proteína GFAT2 fue capaz de inhibir la actividad caspasa 9 al igual que Bcl-XL, tal

y como se esperaba de este control. En el caso de CDK2 no se observó su influencia en

la formación del apoptosoma. De acuerdo a estos datos preliminares, una posible

explicación a nuestros resultados podría encontrarse en la existencia de una interacción

GFAT2/Apaf-1 en la que ambas proteínas inhiben la función de la otra. Este complejo

(u otro conteniendo un mayor número de proteínas) podría verse afectado por la adición

de nuestros compuestos y debido a la existencia de altas concentraciones de L-

glutamina se produciría la activación de la RH con todas las consecuencias negativas

para la célula que hemos observado.

Page 280: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

50

Page 281: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

51

CAPÍTULO 8: EXPERIMENTOS DE HIPOXIA IN VIVO

Diversos estudios efectuados en humanos y animales han demostrado la importancia de

la apoptosis en procesos relacionados con isquemia (ataques, fallos cardíacos, procesos

derivados del transplante de órganos,. . . ) [95, 96]. Se ha descrito también que el

principal factor transcripcional implicado en la regulación de la respuesta a hipoxia

controla la expresión de diversas proteínas que se unen a Apaf-1. Por tanto la

inhibición de Apaf-1 puede ser una Buena estrategia con el fin de disminuir el daño

causado por la hipoxia. [98, 99]. Experimentos preliminares realizados en nuestro

laboratorio han demostrado la eficacia de los inhibidores de Apaf-1 en la disminución

del daño causado por la hipoxia en cultivos primarios de cardiomiocitos [200]. Con esta

premisa y con el objetivo de encontrar una aplicación terapéutica de nuestros

compuestos se desarrolló en colaboración con el Dr. Antonio Alcaraz (Hospital Clínic,

Barcelona) un modelo animal de isquemia en caliente, ya que este el tiempo de

isquemia es crucial en la determinación de la viabilidad de un órgano para ser

transplantado. En nuestro caso el estudio se llevó a cabo con riñones de ratón

sometidos a hipoxia. Se trata de experimentos preliminares que podrán mejorarse en

rondas sucesivas.

8. 2. Estudio de la inhibición de apoptosis en un modelo de hipoxia en rata

En el presente estudio, se seleccionaron una serie de inhibidores de Apaf-1 que

presentaron una mayor actividad biológica en ensayos anteriores y se testaron frene a

ratas Wistar bajo diferentes condiciones de isquemia en caliente. Los parámetros

estudios realizados fueron análisis patológicos, TUNEL y medida de la actividad

caspasa 3. Se escogieron 7 grupos de 8 animales cada uno (Tabla 8. 1). Tras pretratar a

las ratas durante 6 h con cada uno de los compuestos se sacrificaron y se mantuvieron a

37 ºC por 90 min. Pasado este tiempo los riñones fueron extirpados y divididos en tres

partes para llevar a cabo los análisis antes mencionados. Los resultados obtenidos se

muestran en las Figuras 8. 1, 8. 2 y 8. 3.

Page 282: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

52

Tabla 8. 1. Descripción de los grupos de animales y pretratamientos aplicados a cada grupo.

Grupo Pretratamiento

I (1-8) Control PBS (vehículo para terapias con PGA)

II (9-16) Control DMSO

QM57 se solubilizó en PBS:DMSO (70:30) (v/v)

III (17-24) QM57 (5 mg/Kg)

IV (25-32) QM57 (10 mg/Kg)

V (33-40) QM56 (70 mg/Kg)

VI (41-48) QM31-P2 (100 mg/Kg)

VII (49-56) QM31-P2 (45 mg/Kg)

De los compuestos seleccionados el QM57 fue el que mostró una mayor capacidad de

disminuir el daño tisular en los ensayos patológicos. Asimismo, mostró capacidad de

reducir el fenotipo apoptótico en los ensayos por TUNEL. Sin embargo, mostró nula

capacidad para disminuir la actividad caspase 3. Este ultimo hecho podría deberse a

problemas en los ensayos con el DMSO utilizado para disolver el compuesto. En el

caso de los polímeros estos mostraron poca capacidad de disminuir el daño tisular en los

ensayos patológicos, pero disminuyeron el fenotipo apoptótico en los ensayos de

TUNEL e inhibieron la actividad caspasa 3. la causa del bajo efecto de los polímeros en

los ensayos patológicos podría deberse a problemas en el tiempo de tratamiento y de la

inducción del estímulo de muerte ya que deben ser procesados por la catepsina B para

ser liberado el fármaco. No obstante, estos problemas podrán se solucionados en un

futuro próximo.

En conjunto, podemos decir que la inhibición de apoptosis por Apaf-1 es una estrategia

efectiva a la hora de disminuir el daño renal por isquemia en caliente. De este modo nos

encontramos con una más que posible aplicación terapéutica de nuestros compuestos,

aunque para ello necesitaremos realizar un mayor número de experimentos con el fin de

seleccionar un único candidato.

Page 283: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

53

A

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

AA

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

PBSDMSO

QM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

QM57 10 mg/Kg

QM57 5 mg/Kg

B C

-ns0.234Kruskal Wallis

-ns0.241Anova

ResultadosemparejadosResumenpTest estadístico

-ns0.234Kruskal Wallis

-ns0.241Anova

ResultadosemparejadosResumenpTest estadístico

-ns0.096Kruskal Wallis

DMSO vs QM57 10 mg/Kg *0.044Anova

ResultadosemparejadosResumenpTest estadístico

-ns0.096Kruskal Wallis

DMSO vs QM57 10 mg/Kg *0.044Anova

ResultadosemparejadosResumenpTest estadístico

Valo

raci

ón

Valo

raci

ón

ControlValoración 0

90 min isquemiaValoración 4

Figura 8. 1. Ensayos patológicos e histológicos de las preparaciones de los riñones sometidos a isquemia. (A) Rango de puntuaciones dado en función del estado del tejido: tejido sano (score 0) y tejido dañado (score 4). (B,C) Los animales fueron pretratados durante 6 h y se sometieron a hipoxia en caliente por 90 min. Los resultados se evaluaron por Anova y el test de Kruskal-Wallis. PBS y DMSO (PBS:DMSO, 70:30) fueron los vehículos control.

Page 284: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

54

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

DMSOQM57 10 mg/Kg

QM57 5 mg/Kg

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

A B

C D

A B

C D

E FE F

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Resultadosemparejados

ResumenpTest estadístico

-*0.025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b**0.007Anova

Resultadosemparejados

ResumenpTest estadístico

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Resultadosemparejados

ResumenpTest estadístico

DMSO vs QM57 10 mg/Kg**0.002Kruskal Wallis

DMSO vs QM57 10 mg/Kg**0.007Anova

Resultadosemparejados

ResumenpTest estadístico

Pos

itivo

s/ca

mpo

Pos

itivo

s/ca

mpo

Figura 8. 2. Ensayo de TUNEL aplicado a un número determinado de preparaciones. Los resultados se evaluaron por el test de Kruskal-Wallis.

Page 285: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

55

Tabla 8. 2. Análisis de la actividad caspase 3 en riñón

Compuesto % inhibición actividad caspasa 3

PBS (control) 0 DMSO (control) 0

QM57** 5 mg/Kg 0 QM57** 10 mg/Kg 0 QM56 70 mg/Kg 79

QM31-P2 45 mg/Kg 75 QM31-P2 100 mg/Kg 60

** Inspección visual de las muestras sugirió una posible interferencia del DMSO empleado como vehículo en la medida de esta actividad enzimática.

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

Act

ivid

ad D

EV

Das

a(Δ

F/m

in)

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

Act

ivid

ad D

EV

Das

a(Δ

F/m

in)

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

PBSQM56 70 mg/Kg

QM31-P2 100 mg/Kg

QM31-P2 45 mg/Kg

Act

ivid

ad D

EV

Das

a(Δ

F/m

in)

-**0.0025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b***0.0002Anova

Resultados emparejadosResumenpTest estadístico

-**0.0025Kruskal Wallis

PBS vs QM56PBS vs QM31-P2a

PBS vs QM31-P2b***0.0002Anova

Resultados emparejadosResumenpTest estadístico

Figura 8. 3. Análisis estadístico de los valores obtenidos de inhibición de la actividad caspasa 3

Page 286: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

56

Page 287: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

57

CAPÍTULO 9: CONCLUSIONES

El objetivo principal del trabajo presentado era el de desarrollar una segunda generación

mejorada de inhibidores de Apaf-1 así como la caracterización de los mecanismos

moleculares de acción de los mismos. El desarrollo de dichos inhibidores se llevó a

cabo ante la necesidad de inhibidores de apoptosis que fueran efectivos y pudieran

avanzar hasta convertirse en fármacos para el posible tratamiento de enfermedades

relacionadas con una muerte por apoptosis excesiva. Las estrategias iniciales se

dirigieron a la búsqueda de inhibidores de caspasas. Sin embargo, estos inhibidores no

han cumplido las expectativas debido a la existencia de problemas de internalización

celular y de mecanismos de compensación de muerte independiente de caspasas. La

situación estratégica del apoptosoma antes de la activación de la caspasa 3 y por debajo

de la inducción de MOMP ha llevado a considerar a este complejo proteico como una

más que interesante diana terapéutica. Hasta ahora, solamente se ha descrito un

inhibidor de Apaf-1 a través de un cribado de una quimioteca realizado con extractos

celulares [155]. No se ha descrito su mecanismo de acción o el tipo de interacción

existente entre dicha molécula y Apaf-1. Por esta razón, en nuestro laboratorio se

propuso un ensayo basado en la reconstitución del apoptosoma in vitro a través de sus

componentes recombinantes con el fin de conseguir compuestos que verdaderamente

interaccionaran con alguno de los componentes del apoptosoma y modularan su

actividad. El cribado de una quimioteca de N-alquilglicinas permitió la identificación

del peptoide 1, una molécula capaz de inhibir la formación del apoptosoma.

Sin embargo, problemas de internalización celular llevaron a la síntesis de derivados de

dicha molécula con el fin de conseguir una mayor capacidad de penetrar la membrana

celular. Se sintetizaron diversos derivados siendo los derivados de conformación

restringida (QM31 y familia) y la conjugación a un transportador polimérico las

estrategias que mejor funcionaron en diferentes ensayos ex vivo. En ambos casos,

QM31 y QM56 mostraron baja toxicidad y una actividad biológica significativa

reduciendo la muerte por apoptosis en las células. Posteriormente, se caracterizó el

modo de acción de los compuestos y el tipo de interacción con Apaf-1. Se determine

cómo los compuestos impiden el reclutamiento de procaspasa 9 por Apaf-1, ya que

estos se unen al dominio CARD de Apaf-1.

Page 288: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

58

Una cuestión crucial a ser contestada en apoptosis es si una célula es capaz tras iniciar el

proceso de apoptosis de recuperarse y ser viable. En la presente tesis se ha intentado

abordar este problema. Los resultados aquí presentados indican que la respuesta es sí

cuando se inhibe la apoptosis mediante inhibición de Apaf-1. Mediante ensayos de

clonogenicidad se demostró que la inhibición de Apaf-1 no sólo reduce de manera

marcada el fenotipo apoptótico sino que disminuye la cantidad de cit c liberado al

citosol. Con estos resultados en mente y diversos trabajos que apuntan a la existencia

de un bucle de amplificación de MOMP dependiente de las caspasas 9 y 3 y de Bid [42,

249, 250]se llevó a cabo un ensayo de clonogenicidad. En este ensayo se demostró

cómo las células tratadas con el QM31 mostraban un aumento significativo del número

de colonias cuando se comparaba con el control de la muestra.

Durante un largo tiempo se asumió que las caspasa (proteasas responsables de la

ejecución de la muerte celular), las proteínas proapoptóticas de la familia Bcl-2 y Apaf-

1 podrían jugar un papel importante en la señalización de la muerte celular. Sin

embargo, se produjo un cambio en el pensamiento con el aumento de publicaciones

indicando la realización de funciones no apoptóticas por parte de estas proteínas [93,

94]. De hecho, nuestros inhibidores sirvieron para confirmar la participación de Apaf-1

en procesos de control del ciclo celular. Lo que es más, en esta tesis quisiera también

hipotetizar una posible función extra de Apaf-1 en la célula diferente de la apoptosis. El

tratamiento de las células con los inhibidores de Apaf-1 en presencia de concentraciones

altas de L-glutamina induce una marcada toxicidad celular. La causa podría estar en

una interacción GFAT2-Apaf-1 indicada con anterioridad en Drosophila [279] y hemos

encontrado evidencias de una inhibición parcial de la formación del apoptosoma por la

GFAT2. Mi hipótesis, necesita todavía un largo proceso de experimentación, pero sería

la de proponer que GFAT2 y Apaf-1 interaccionan y ejercen un efecto inhibidor la una

sobre la otra y se regularía así la activación de la ruta de las hexosaminas. Si se

confirmara, el papel de Apaf-1 en célula cambiaría totalmente pasando a considerarse

una proteína clave en el control del metabolismo celular tras la inducción de muerte.

Demostrada la eficiencia de los inhibidores de Apaf-1 como una estrategia para

recuperar la viabilidad celular, pasamos a buscar una posible aplicación terapéutica a

nuestras moléculas. Se desarrolló un modelo animal de isquemia en caliente y tras

tratar a los animales con nuestros compuestos se obtuvo una marcada reducción del

Page 289: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

59

daño tisular en riñón. Asimismo, se obtuvo una reducción de los parámetros de

apoptosis. Este hecho abre las puertas a una posible aplicación de nuestros compuestos

en el tratamiento de enfermedades relacionadas con isquemia y el transplante de

órganos. Asimismo, esta no es la única posible aplicación de Apaf-1, ya que el papel

crucial de Apaf-1 en la muerte neuronal, abre las puertas a una posible aplicación en el

tratamiento de enfermedades neurodegenerativas como puede ser el Huntington [141].

Page 290: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

60

CAPÍTULO 10: MATERIALES Y MÉTODOS

10. 1. Síntesis del peptoide 1 y sus derivados

Las síntesis del peptoide 1, TAT-1, PEN-1, QM56, QM31 y derivados del QM31 se

hallan descritas en los artículos aquí referenciados [192, 196, 200]. En el caso del

QM57 y derivados y de los derivados del QM56 por razones de patentabilidad no se

efectuará la descripción de dichas síntesis.

10. 2. Manipulación de Escherichia coli: producción de procaspasa 9 y CARDApaf-1

Se emplearon células BL21(DE3) y BL21(DE3)pLysS Codon + de bacteria para la

expression de las proteínas procaspasa 9 y el dominio CARD de Apaf-1 cuyo ADN se

encontraba dentro de los plásmidos pET23b y pET15b, respectivamente. En el caso de

la procaspasa 9 se siguió el protocolo publicado por Denault et al [203]. En el caso del

dominio CARD de Apaf-1 se siguieron las indicaciones del artículo de Riedl et al. [48]

para la expresión de Apaf-1 1-591. En el caso de la expresión del 15N-CARD las

células se crecieron en medio mínimo buscando las condiciones de densidad óptica del

artículo de Riedls en presencia de 15NH4Cl.

10. 3. Manipulación de Saccharomyces cerevisiae

Se empleó la cepa EGY048 modificada genéticamente (MATα trp1, ura3, his3

leu2::p6LexAop-LEU2). Esta cepa se creció en medio SC-drop out eliminando los

aminoácidos trp e his para seleccionar las células transfectadas con los plásmidos

correspondientes. Por último, se eliminó la leu para determinar qué proteínas

expresadas por los plásmidos y fusionadas al DU y al DA eran capaces de interaccionar

y activar el gen que nos reporta la existencia de interacción entre las proteínas. .

Page 291: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

61

10. 4. Manipulación de células de insecto

Se efectuó de acuerdo a los protocolos descritos en el artículo referenciado [158].

10. 5. Manipulación de células de mamífero

Los protocolos correspondientes a los ensayos de MTT, de medidas de actividad

caspasa 3, de internalización celular, de medida de los diferentes parámetros de

apoptosis, de medida de diferentes parámetros del ciclo celular se encuentran descritos

en los artículos indicados [196, 200, 240]. El resto de experimentos se detallan a

continuación.

a) Medidas de polarización de fluorescencia

rCARDApaf-1 se disolvió en 20mM NaH2PO4 pH = 6 y se añadió a una solución de CF-

peptoide 240 nM. La polarización de fluorescencia se midió tras cada adición de

proteínas a 30 ºC. (λexc = 485 and λem = 535 nm).

b) Interacción 15N-CARD/peptoide por RMN

Se incubó el 15N-CARD junto con el PEN-1 en tampón 20 mM NaH2PO4 pH 6 a

concentraciones de 75 y 100 μM, respectivamente. Se efectuaron medidas de los

espectros de 15N-HSQC del CARD de Apaf-1 en presencia y en ausencia de PEN-1.

c) Estudios de interacción in silico

Los experimentos de docking se realizaron empleando el modulo Dock incluido en el

programa MOE (Chemical Computing Group, Montreal), considerando la proteína

rígida y los ligandos flexibles. Para el cálculo de energías se empleó el campo de

fuerzas MMFF94x y condiciones de solvente continuo[230, 298, 299].

Page 292: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

62

d) Fraccionamiento de extractos por cromatografía de exclusión molecular

Se trataron 7·106 células Hela con doxorrubicina sola o en combinación con QM56 a 50

μM equivalentes de fármaco por 24 h. Como control se añadió el volumen equivalente

de PBS. Pasadas 24 h las muestras se procesaron de acuerdo al artículo [110] con la

diferencia de que la columna empleada para el fraccionamiento fue una columna

Superosa 6 10/300 de Amersham.

e)Experimentos de inducción de apoptosis en Heltog

Las células Heltog fueron donadas por el Prof. Douglas Green (Hospital de

investigación San Judas, Memphis, EE. UU. ). Se trataron con STS 0. 25 μM por 6 h

sola o en combinación con QM31 5 μM y/o q-VD-OPH 20 μM. Pasado este tiempo se

cambió el medio eliminándose así la STS y el QM31 y q-VD-OPH se volvieron a

añadir. Así reefectuaron los estudios de cinética de liberación del cit c y los ensayos de

clonogenicidad. En el caso de los ensayos de clonogenicidad, se volvió a cambiar el

medio 24 h después. La tinción de las colonias se efectuó con azul de metileno 0.5 %

en una mezcla metanol:agua al 50 %.

10. 6. Experimentos in vivo de isquemia en caliente

Los compuestos fueron inyectados a las ratas mediante vía intravenosa. Pasadas 6 h los

animales fueron sacrificados y mantenidos a 37 ºC durante 90 min. A continuación, se

extirparon los riñones y se dividieron en tres partes para llevar a cabo los diferentes

ensayos: patológicos, TUNEL y medida de la actividad caspasa 3.

a) Estudios patológicos

Los riñones se fijaron en formaldehído y seguidamente se embebieron en parafina para

su posterior corte en láminas de 5 μM. Las tinciones utilizadas fueron Masson tricromo

y hematoxilina. Se evaluó la simplificación tubular, la existencia de mitosis y la

pérdida de núcleos en el tejido de riñón.

Page 293: DISCOVERY AND DEVELOPMENT OF APAF-1 INHIBITORS: …digital.csic.es/bitstream/10261/20880/1/TESIS_Laura Mondragon final150909.pdfOF APAF-1 INHIBITORS: ADVANCING TOWARDS UNWANTED CELL

63

b) Ensayo de TUNEL

Los riñones se conservaron en formol más 20 % sacarosa y se procesaron de acuerdo a

las indicaciones del artículo [305] indicado.

c) Medida de la actividad caspase 3

Los riñones fueron machacados hasta polvo tras ser congelados en nitrógeno líquido.

Seguidamente, se les añadió un tampón de extracción (50 mM Hepes-KOH pH = 7,

10% sacarosa, 0.1% CHAPS, 5 mM DTT, 5 mM GSSG). Seguidamente las muestras se

sonicaron y se procedió a medir la caspase 3 de acuerdo al protocolo descrito en los

artículos [196, 200] mencionados.