discrete-time fourier transform - mclmcl.korea.ac.kr/wp-content/uploads/2014/04/05_dtft.pdf ·...

27
Discrete-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT

Upload: others

Post on 13-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Discrete-Time Fourier

    Transform

    Chang-Su Kim

    continuous time discrete time

    periodic (series) CTFS DTFS

    aperiodic (transform) CTFT DTFT

  • DTFT Formula and Its Derivation

  • DTFT Formula

    DTFT

    cf) CTFT

    Note that in DT case, 𝑋(𝑒𝑗𝜔) is periodic with period 2𝜋 and the inverse transform is defined as a integral over one period

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

  • Examples

    11

    (a) [ 1]2

    (b) [ 1] [ 1]

    n

    u n

    n n

    2 , 0(a) ( )

    2 , 0

    jwj w

    X ej w

    Find the Fourier transforms of

    Find the inverse Fourier transform of

  • Derivation of DTFT from DTFS

    x[n]

    N-N-N1 N2

    ][~ nx

    0

    2

    2

    ( )

    ( )

    [ ]

    1[ ]

    N

    N

    jk n

    k

    k N

    jk n

    k

    n N

    x n a e

    a x n eN

    As , [ ] [ ]

    and the DTFS formula becomes the desired DTFT formula

    N x n x n

  • DTFT of Periodic Functions

    0

    0[ ] ( ) 2 ( )jk n F j

    k k

    k N k

    x n a e Χ e a k

    Periodic functions can also be represented as

    Fourier Transforms

  • Examples

    DTFT of periodic functions

    0

    (a) cosine function

    [ ] cos

    (b) periodic impulse train

    [ ] [ ] k

    x n w n

    y n n kN

  • Selected Properties of DTFT

  • Shift in Frequency

    This property can be used to

    convert a lowpass filter to a

    highpass one, or vice versa

    0 0( )

    ( )

    [ ] ( )

    ( 1) [ ] ( )

    jw n j w wF

    Fn j w

    e x n X e

    x n X e

  • Differentiation in Frequency

    ( )[ ]

    jwF dX enx n j

    dw

  • Parseval’s Relation

    22

    2

    1[ ] ( )

    2

    jw

    n

    x n X e dw

  • Time Expansion

    otherwise , 0

    of multipleinteger an is if , ]/[][)(

    knknxnx k

    . . .

    ][nx

    1 2 3

    ][)3( nx

    3 6 94 5

    For a natural number k, we define

    )(][ )(jkF

    k enx

  • Convolution

    [ ] [ ] [ ] ( ) ( ) ( )F jw jw jwy n x n h n Y e X e H e

  • Multiplication

    ( )

    1 2 1 22

    1[ ] [ ] [ ] ( ) ( ) ( )

    2

    F j j jy n x n x n Y e X e X e d

    Multiplication in time domain corresponds to the

    periodic convolution in frequency domain

  • Summary of Fourier Series and

    Transform Expressions

  • All the Four Formulas

    CT DT

    Periodic(series)

    CTFS DTFS

    Aperiodic(transform)

    CTFT DTFT

    0

    0

    ( ) ,

    1( )

    jk t

    k

    k

    jk t

    k

    T

    x t a e

    a x t e dtT

    2

    2

    ( )

    ( )

    [ ]

    1[ ]

    N

    N

    jk n

    k

    k N

    jk n

    k

    n N

    x n a e

    a x n eN

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

  • Time Frequency

    aperiodic continuousperiodic discretediscrete periodiccontinuous aperiodic

    [ ], ( )x n x t

    [ ], ( )x n x t

    [ ]x n

    ( )x t

    ( ), ( )jX e X j

    ( ), ( )jX e X j

    ( )jX e

    ( )X j

    Properties

    CT DT

    Periodic(series)

    CTFS DTFS

    Aperiodic(transform)

    CTFT DTFT

    0

    0

    0

    ( )

    1(

    ) )

    )

    ( 2 (

    jk t

    k

    k

    jk t

    k

    k

    k

    T

    x t a e

    a x t e d

    a k

    t

    X

    T

    j

    2

    2

    ( )

    (

    0

    )

    [ ]

    1[

    ( 2 (

    ]

    ) )

    N

    N

    jk n

    k

    k N

    jk n

    k

    k

    N

    k

    n

    j

    x n a e

    a x n eN

    Χ e a k

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

    sampling of continuous

    functions => discrete

  • Dualities

    CT DT

    Periodic(series)

    CTFS DTFS

    Aperiodic(transform)

    CTFT DTFT

    0

    0

    ( ) ,

    1( )

    jk t

    k

    k

    jk t

    k

    T

    x t a e

    a x t e dtT

    2

    2

    ( )

    ( )

    [ ]

    1[ ]

    N

    N

    jk n

    k

    k N

    jk n

    k

    n N

    x n a e

    a x n eN

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

  • Dualities

    CT DT

    Periodic(series)

    CTFS DTFS

    Aperiodic(transform)

    CTFT DTFT

    0

    0

    ( ) ,

    1( )

    jk t

    k

    k

    jk t

    k

    T

    x t a e

    a x t e dtT

    2

    2

    ( )

    ( )

    [ ]

    1[ ]

    N

    N

    jk n

    k

    k N

    jk n

    k

    n N

    x n a e

    a x n eN

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

  • Dualities

    CT DT

    Periodic(series)

    CTFS DTFS

    Aperiodic(transform)

    CTFT DTFT

    0

    0

    ( ) ,

    1( )

    jk t

    k

    k

    jk t

    k

    T

    x t a e

    a x t e dtT

    2

    2

    ( )

    ( )

    [ ]

    1[ ]

    N

    N

    jk n

    k

    k N

    jk n

    k

    n N

    x n a e

    a x n eN

    2

    1[ ] ( )

    2

    ( ) [ ]

    j j n

    j j n

    n

    x n X e e d

    X e x n e

    1( ) ( )

    2

    ( ) ( )

    j t

    j t

    x t X j e d

    X j x t e dt

  • Causal LTI Systems Described

    by Difference Equations

  • Linear Constant-Coefficient Difference

    Equations

    The DE describes the relation between the input x[n]

    and the output y[n] implicitly

    In this course, we are interested in DEs that

    describe causal LTI systems

    Therefore, we assume the initial rest condition

    0 0

    [ ] [ ]N M

    k k

    k k

    a y n k b x n k

    0 0If [ ] 0 for , then [ ] 0 forx n n n y n n n

  • Frequency Response

    What is the frequency response H(ejw) of the

    following system?

    It is given by

    0

    0

    ( )

    M jkw

    kjw k

    N jkw

    kk

    b eH e

    a e

    0 0

    [ ] [ ]N M

    k k

    k k

    a y n k b x n k

  • Example

    3 1[ ] [ 1] [ 2] 2 [ ],

    4 8

    1[ ] [ ]. What is [ ]?

    4

    n

    y n y n y n x n

    x n u n y n

    Q)

  • Analogy between Differential Equations

    and Difference Equations

    Many properties, learned in differential equations,

    can be applied to solve interesting problems

    described by difference equations

    Fibonacci sequence

    a0 = a1 = 1

    an = an-1 + an-2 (n≥2)

    Golden ratio = 1.61803

  • Golden Ratio

    Golden rectangle is said to be the most visually pleasing geometric

    form

    1

    1.618

  • Golden Ratio

    Golden rectangle is said to be the most visually

    pleasing geometric form

    1

    1.618