discussion #11 - dynamic circuitsbmazzeo/ecen_301_f08/fall2008/slides/ecen301… · ecen 301...

27
ECEN 301 Discussion #11 Dynamic Circuits 1 Date Day Class No. Title Chapters HW Due date Lab Due date Exam 8 Oct Wed 11 Dynamic Circuits 4.2 4.4 9 Oct Thu 10 Oct Fri Recitation HW 5 11 Oct Sat 12 Oct Sun 13 Oct Mon 12 Exam 1 Review LAB 4 EXAM 1 14 Oct Tue 15 Oct Wed 13 AC Circuit Analysis 4.5 Schedule…

Upload: others

Post on 30-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 1

Date Day Class

No.

Title Chapters HW

Due date

Lab

Due dateExam

8 Oct Wed 11 Dynamic Circuits 4.2 – 4.4

9 Oct Thu

10 Oct Fri Recitation HW 5

11 Oct Sat

12 Oct Sun

13 Oct Mon 12 Exam 1 Review

LAB 4

EXAM 114 Oct Tue

15 Oct Wed 13 AC Circuit Analysis 4.5

Schedule…

Page 2: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 2

Change1 Corinthians 15:51-57

51 Behold, I shew you a mystery; We shall not all sleep, but we shall all be

changed,

52 In a moment, in the twinkling of an eye, at the last trump: for the trumpet

shall sound, and the dead shall be raised incorruptible, and we shall be

changed.

53 For this corruptible must put on incorruption, and this mortal must put on

immortality.

54 So when this corruptible shall have put on incorruption, and this mortal

shall have put on immortality, then shall be brought to pass the saying that is

written, Death is swallowed up in victory.

55 O death, where is thy sting? O grave, where is thy victory?

56 The sting of death is sin; and the strength of sin is the law.

57 But thanks be to God, which giveth us the victory through our Lord Jesus

Christ.

Page 3: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 3

Lecture 11 – Dynamic Circuits

Time-Dependent Sources

Page 4: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 4

Time Dependent Sources

Periodic signals: repeating patterns that appear

frequently in practical applications

A periodic signal x(t) satisfies the equation:

...,3,2,1)()( nnTtxtx

0.0

1.0

0.00 2.00

time

x(t

)

-1.5

0.0

1.5

0.00 2.00 4.00

time

x(t

)

-1.5

0.0

1.5

0.00 2.00 4.00

time

x(t

)

Page 5: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 5

Time Dependent Sources

Sinusoidal signal: a periodic waveform satisfying the

following equation:

)cos()( tAtx

A – amplitude

ω – radian frequency

φ – phase

-1.5

0.0

1.5

0.00 2.00 4.00

time

x(t

)

A

-A

T

φ/ω

Page 6: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 6

Sinusoidal Sources

Helpful identities:

deg360

2

2

/2

)/(1

T

t

radT

t

sT

sradf

scyclesHzT

f

)sin()sin()cos()cos()cos(

)cos()sin()sin()cos()sin(

90sin2

sin)cos(

90cos2

cos)sin(

ttt

ttt

ttt

ttt

Page 7: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 7

Sinusoidal Sources

Why sinusoidal sources?

• Sinusoidal AC is the fundamental current type supplied to homes throughout the

world by way of power grids

• Current war:

• late 1880’s AC (Westinghouse and Tesla) competed with DC (Edison) for

the electric power grid standard

• Low frequency AC (50 - 60Hz) can be more dangerous than DC

• Alternating fluctuations can cause the heart to lose coordination

(death)

• High frequency DC can be more dangerous than AC

• causes muscles to lock in position – preventing victim from releasing

conductor

• DC has serious limitations

• DC cannot be transmitted over long distances (greater than 1 mile)

without serious power losses

• DC cannot be easily changed to higher or lower voltages

Page 8: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 8

Measuring Signal Strength

Methods of quantifying the strength of time-

varying electric signals:

Average (DC) value

• Mean voltage (or current) over a period of time

Root-mean-square (RMS) value

• Takes into account the fluctuations of the signal about its

average value

Page 9: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 9

Measuring Signal Strength

Time – averaged signal strength: integrate signal

x(t) over a period (T) of time

T

dxT

tx0

)(1

)(

Page 10: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 10

Measuring Signal Strength

Example1: compute the average value of the signal –

x(t) = 10cos(100t)

Page 11: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 11

Measuring Signal Strength

Example1: compute the average value of the signal –

x(t) = 10cos(100t)

100

2

2T

Page 12: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 12

Measuring Signal Strength

Example1: compute the average value of the signal –

x(t) = 10cos(100t)

0

)0sin()2sin(2

10

)100cos(102

100

)(1

)(

100/2

0

0

dtt

dxT

txT

100

2

2T

NB: in general, for any sinusoidal signal

0)cos( tA

Page 13: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 13

Measuring Signal Strength

Root–mean–square (RMS): since a zero average

signal strength is not useful, often the RMS value is

used instead

The RMS value of a signal x(t) is defined as:

T

rms dxT

tx0

2)(1

)(

NB: the rms value is simply the square root of the average

(mean) after being squared – hence: root – mean – square

NB: often notation is

used instead of)(~ tx

rmstx )(

Page 14: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 14

Measuring Signal Strength

Example2: Compute the rms value of the sinusoidal

current i(t) = I cos(ωt)

Page 15: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 15

Measuring Signal Strength

Example2: Compute the rms value of the sinusoidal

current i(t) = I cos(ωt)

2

02

1

)2cos(222

1

)2cos(2

1

2

1

2

)(cos2

)(1

2

/2

0

22

/2

0

2

/2

0

22

0

2

I

I

dI

I

dI

dI

diT

iT

rms

Integrating a sinusoidal waveform

over 2 periods equals zero

2

1)2cos()(cos2 t

t

Page 16: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 16

Measuring Signal Strength

Example2: Compute the rms value of the sinusoidal

current i(t) = I cos(ωt)

2

02

1

)2cos(222

1

)2cos(2

1

2

1

2

)2(cos2

)(1

2

/2

0

22

/2

0

2

/2

0

22

0

2

I

I

dI

I

dI

dI

diT

iT

rms

The RMS value of any sinusoid

signal is always equal to 0.707

times the peak value (regardless of

amplitude or frequency)

Page 17: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 17

Network Analysis with Capacitors

and Inductors (Dynamic Circuits)

Differential Equations

Page 18: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 18

Dynamic Circuit Network Analysis

Kirchoff’s law’s (KCL and KVL) still apply, but they

will now produce differential equations.

+ R –

iR +

C

iCvs(t)+

–~

Page 19: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 19

Dynamic Circuit Network Analysis

Kirchoff’s law’s (KCL and KVL) still apply, but they

will now produce differential equations.

+ R –

iR +

C

iCvs(t)+

–~

dt

tdv

Rti

RCdt

tdi

diC

tRitv

tvtvtv

SC

C

t

CCS

CRS

)(1)(

1)(

:sidesboth ateDifferenti

0)(1

)()(

0)()()(

:KVL

Page 20: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 20

Dynamic Circuit Network Analysis

Kirchoff’s law’s (KCL and KVL) still apply, but they

will now produce differential equations.

+ R –

iR +

C

iCvs(t)+

–~

)(1

)(1)(

)()]()([

)()(

:KCL

tvRC

tvRCdt

tdv

dt

tdvC

R

tvtv

dt

tdvC

R

tv

ii

SCC

CCs

CR

CR

Page 21: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 21

Sinusoidal Source Responses

Consider the AC source producing the voltage:

vs(t) = Vcos(ωt)

)cos(

)cos()sin()(

tC

tBtAtvC

+ R –

iR +

C

iCvs(t)+

–~

The solution to this diff EQ will be a sinusoid:

)cos(1

)(1)(

tVRC

tvRCdt

tdvC

C

Page 22: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 22

Sinusoidal Source Responses

Consider the AC source producing the voltage:

vs(t) = Vcos(ωt)

+ R –

iR +

C

iCvs(t)+

–~

Substitute the solution form into the diff EQ:

)cos1

)]cos)sin[1

)]cossin[

cossin

)cos(1

)(1)(

t(VRC

t(Bt(ARC

dt

t(Bt)(Ad

(ωωtB(ωωtA(t)v

tVRC

tvRCdt

tdv

C

CC

Substitute

Page 23: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 23

Sinusoidal Source Responses

Consider the AC source producing the voltage:

vs(t) = Vcos(ωt)

0cossin

)cos1

)]cos)sin[1

)sincos

tRC

V

RC

BAtB

RC

A

t(VRC

t(Bt(ARC

t(Bt)(A

+ R –

iR +

C

iCvs(t)+

–~

For this equation to hold, both the sin(ωt) and

cos(ωt) coefficients must be zero

0BRC

A0

RC

V

RC

BA

Page 24: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 24

Sinusoidal Source Responses

Consider the AC source producing the voltage:

vs(t) = Vcos(ωt)

0BRC

A

+ R –

iR +

C

iCvs(t)+

–~

Solving these equations for A and B gives:

0RC

V

RC

BA

22 )(1 RC

RCVA

22 )(1 RC

VB

Page 25: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 25

Sinusoidal Source Responses

Consider the AC source producing the voltage:

vs(t) = Vcos(ωt)

+ R –

iR +

C

iCvs(t)+

–~

Writing the solution for vC(t):

)cos()(1

)sin()(1

)(2222

tRC

Vt

RC

RCVtvC

NB: This is the solution for a single-order

diff EQ (i.e. with only one capacitor)

Page 26: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 26

Sinusoidal Source Responses

vc(t) has the same frequency, but different amplitude

and different phase than vs(t)

)cos()(1

)sin()(1

)(2222

tRC

Vt

RC

RCVtvC

vs(t)

vc(t)

What happens when

R or C is small?

Page 27: Discussion #11 - Dynamic Circuitsbmazzeo/ECEn_301_F08/Fall2008/slides/ECEN301… · ECEN 301 Discussion #11 –Dynamic Circuits 2 Change 1 Corinthians 15:51-57 51 Behold, I shew you

ECEN 301 Discussion #11 – Dynamic Circuits 27

Sinusoidal Source Responses

In a circuit with an AC source: all branch voltages and currents are also sinusoids with the same frequency as the source. The amplitudes of the branch voltages and currents are scaled versions of the source amplitude (i.e. not as large as the source) and the branch voltages and currents may be shifted in phase with respect to the source.

+ R –

iR +

C

iCvs(t)+

–~

3 parameters that uniquely identify a sinusoid:

• frequency

• amplitude

• phase