diversity and multiplexing; a fundamental tradeoff in wireless systems

79
8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems http://slidepdf.com/reader/full/diversity-and-multiplexing-a-fundamental-tradeoff-in-wireless-systems 1/79 Diversity and Freedom: A Fundamental Tradeoff in Wireless Systems David Tse Department of EECS, U.C. Berkeley September 23, 2003 University of Toronto

Upload: adams-sebastian

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    1/79

    Diversity and Freedom:

    A Fundamental Tradeoff in Wireless Systems

    David Tse

    Department of EECS, U.C. Berkeley

    September 23, 2003

    University of Toronto

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    2/79

    Wireless Fading Channels

    •   Fundamental characteristic of wireless channels:   multi-path fading.

    •   Two important resources of a fading channel: diversity and

    degrees of freedom.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    3/79

    Wireless Fading Channels

    •   Fundamental characteristic of wireless channels:   multi-path fading.

    •   Two important resources of a fading channel:   diversity   and

    degrees of freedom.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    4/79

    Diversity

    Channel Quality

    t

    A channel with more diversity has smaller probability in deep fades.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    5/79

    Example: Spatial Diversity

    Fading Channel: h1

    •   Additional independent fading channels increase diversity.

    •   Spatial diversity: receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    6/79

    Example: Spatial Diversity

    1Fading Channel: h

    2Fading Channel: h

    •   Additional independent fading channels increase  diversity.•   Spatial diversity: receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    7/79

    Example: Spatial Diversity

    1Fading Channel: h

    2Fading Channel: h

    •   Additional independent fading channels increase  diversity.•   Spatial diversity   : receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    8/79

    Example: Spatial Diversity

    1Fading Channel: h

    2Fading Channel: h

    •   Additional independent fading channels increase  diversity.•   Spatial diversity: receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    9/79

    Example: Spatial Diversity

    1

    Fading Channel: h

    Fading Channel: h

    4

    Fading Channel: h

    Fading Channel: h

    2

    3

    •   Additional independent fading channels increase  diversity.•   Spatial diversity: receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    10/79

    Example: Spatial Diversity

    1

    Fading Channel: h

    Fading Channel: h

    4

    Fading Channel: h

    Fading Channel: h

    2

    3

    •   Additional independent fading channels increase  diversity.•   Spatial diversity: receive, transmit or both.

    •   Repeat and Average: compensate against channel unreliability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    11/79

    Degrees of Freedom

    y2

    y1

    Signals arrive in multiple directions provide multiple degrees of freedom

    for communication.

    Same effect can be obtained via scattering even when antennas are

    close together.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    12/79

    Degrees of Freedom

    y2

    y

    Signature 1

    1

    Signals arrive in multiple directions provide multiple degrees of freedom

    for communication.

    Same effect can be obtained via scattering even when antennas are

    close together.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    13/79

    Degrees of Freedom

    y2

    y1

    Signature 2

    Signature 1

    Signals arrive in multiple directions provide multiple degrees of freedom

    for communication.

    Same effect can be obtained via scattering even when antennas are

    close together.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    14/79

    Degrees of Freedom

    y2

    y1

    Signature 2Signature 1

    Signals arrive in multiple directions provide multiple degrees of freedom

    for communication.

    Same effect can be obtained via scattering even when antennas are

    close together.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    15/79

    Degrees of Freedom

    y2

    y1

    Signature 2

    Signature 1

    Environment

    Fading

    Signals arrive in multiple directions provide multiple degrees of freedom

    for communication.

    Same effect can be obtained via scattering even when antennas are

    close together.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    16/79

    Diversity vs. Freedom

    Fading Channel: h 1

    Fading Channel: h

    Fading Channel: h

    Fading Channel: h

    Spatial Channel

    Spatial Channel

    2

    3

    4

    The two resources have been considered mainly in isolation: existing

    schemes focus on maximizing either the  diversity   gain or the

    multiplexing   gain.

    The right way of looking at the problem is a tradeoff between the two

    types of gain.

    The optimal tradeoff achievable by a coding scheme gives a

    fundamental performance limit on communication over fading channels.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    17/79

    Diversity vs. Freedom

    Fading Channel: h 1

    Fading Channel: h

    Fading Channel: h

    Fading Channel: h

    Spatial Channel

    Spatial Channel

    2

    3

    4

    The two resources have been considered mainly in isolation: existing

    schemes focus on maximizing either the  diversity   gain or the

    multiplexing   gain.

    The right way of looking at the problem is a   tradeoff   between the two

    types of gain.

    The optimal tradeoff achievable by a coding scheme gives a

    fundamental performance limit on communication over fading channels.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    18/79

    Diversity vs. Freedom

    Fading Channel: h 1

    Fading Channel: h

    Fading Channel: h

    Fading Channel: h

    Spatial Channel

    Spatial Channel

    2

    3

    4

    The two resources have been considered mainly in isolation: existing

    schemes focus on maximizing either the  diversity   gain or the

    multiplexing   gain.

    The right way of looking at the problem is a   tradeoff   between the two

    types of gain.

    The optimal tradeoff achievable by a coding scheme gives a

    fundamental performance limit   on communication over fading channels.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    19/79

    Talk Outline

    •   point-to-point MIMO channels (Zheng and Tse 02)

    •   multiple access MIMO channels (Tse, Viswanath, Zheng 03)

    •   cooperative relaying systems (Laneman,Tse, Wornell 02)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    20/79

    Point-to-point MIMO Channel

    n1

    x

    x

    x

    y

    y

    y

    nm

    w

    w

    wm

    1

    2

    1

    2

    2

    1

    n

    n

    h

    h

    h

    h

    11

    22

    yt  = Htxt + wt,   wt ∼ CN (0, 1)

    •   Rayleigh flat fading i.i.d. across antenna pairs (hij  ∼ CN (0, 1)).

    •   SNR   is the average signal-to-noise ratio at each receive antenna.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    21/79

    Coherent Block Fading Model

    •   Focus on codes over   l   symbols, where  H  remains constant.

    •   H   is known to the receiver but not the transmitter.

    •   Assumption valid as long as

    l coherence time   ×   coherence bandwidth.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    22/79

    Space-Time Block Code

    Y = HX+W

    Y

    l

    H WX

    m x

    space

    time

    Focus on coding over a single block of length   l.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    23/79

    Diversity Gain

    Motivation: Binary Detection

    y = hx+w   P e ≈ P (h   is small   ) ∝ SNR−1

    y1  = h1x+w1y2  = h2x+w2

    P e   ≈ P (h1, h2   are both small)∝ SNR−2

    Definition

    A space-time coding scheme achieves diversity gain   d, if 

    P e(SNR) ∼ SNR−d

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    24/79

    Diversity Gain

    Motivation: Binary Detection

    y = hx+w   P e ≈ P (h   is small   ) ∝ SNR−1

    y1  = h1x+w1

    y2  = h2x+w2

    P e   ≈ P (h1, h2   are both small)∝ SNR−2

    General Definition

    A space-time coding scheme achieves  diversity gain   d, if 

    P e(SNR) ∼ SNR−d

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    25/79

    Spatial Multiplexing Gain

    Motivation: Channel capacity  (Telatar ’95, Foschini’96)

    C (SNR) ≈ min{m, n} log SNR   (bps/Hz)

    min{m, n}   degrees of freedom  to communicate.

    Definition   A space-time coding scheme achieves spatial multiplexing

    gain   r, if 

    R(SNR

    ) = r logSNR

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    26/79

    Spatial Multiplexing Gain

    Motivation: Channel capacity  (Telatar’ 95, Foschini’96)

    C (SNR) ≈ min{m, n} log SNR   (bps/Hz)

    min{m, n}   degrees of freedom  to communicate.

    Definition  A space-time coding scheme achieves  spatial multiplexing

    gain   r, if 

    R(SNR) = r log SNR

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    27/79

    Fundamental Tradeoff 

    A space-time coding scheme achieves

    Spatial Multiplexing Gain   r   :   R =  r logSNR

    and

    Diversity Gain   d   :   P e  ≈ SNR−d

    Fundamental tradeoff: for any   r, the maximum diversity gain

    achievable:   d∗m,n(r).

    r → d∗

    m,n(r)

    It is a tradeoff between data rate and error probability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    28/79

    Fundamental Tradeoff 

    A space-time coding scheme achieves

    Spatial Multiplexing Gain   r   :   R =  r logSNR

    andDiversity Gain   d   :   P e  ≈ SNR−d

    Fundamental tradeoff: for any   r, the maximum diversity gain

    achievable:   d∗m,n(r).

    r → d∗m,n(r)

    It is a tradeoff between data rate and error probability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    29/79

    Fundamental Tradeoff 

    A space-time coding scheme achieves

    Spatial Multiplexing Gain   r   :   R =  r logSNR

    and

    Diversity Gain   d   :   P e  ≈ SNR−d

    Fundamental tradeoff: for any   r, the maximum diversity gain

    achievable:   d∗m,n(r).

    r → d∗m,n(r)

    It is a tradeoff between data rate and error probability.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    30/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (

              r             )

    (min{m,n},0)

    (0,mn)

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    31/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (

              r             )

    (min{m,n},0)

    (0,mn)

    (1,(m−1)(n−1))

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    32/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)

    As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (

              r             )

    (min{m,n},0)

    (0,mn)

    (2, (m−2)(n−2))

    (1,(m−1)(n−1))

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    33/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)

    As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (

              r             )

    (min{m,n},0)

    (0,mn)

    (r, (m−r)(n−r))

    (2, (m−2)(n−2))

    (1,(m−1)(n−1))

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    34/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)

    As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (

              r             )

    (min{m,n},0)

    (0,mn)

    (r, (m−r)(n−r))

    (2, (m−2)(n−2))

    (1,(m−1)(n−1))

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    35/79

    Main Result: Optimal Tradeoff 

    (Zheng and Tse 02)

    As long as block length   l ≥ m + n− 1:

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (min{m,n},0)

    (0,mn)

    (r, (m−r)(n−r))

    1

    Multiple Antenna

      m x n channel

    Single Antenna

      channel

    1

    For integer   r, it is   as though   r   transmit and   r   receive antennas were

    dedicated for multiplexing and the rest provide diversity.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    36/79

    What do I get by adding one more antenna at thetransmitter and the receiver?

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    37/79

    Adding More Antennas

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y

       A   d  v  a  n   t  a  g  e  :

       d             *             (          r             )

    •   Capacity result: increasing   min{m, n}   by   1   adds   1  more degree of 

    freedom.

    •   Tradeoff curve: increasing both   m   and   n   by   1  yields multiplexing

    gain   +1   for any diversity requirement   d.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    38/79

    Adding More Antennas

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   A

       d  v  a  n   t  a  g  e  :

       d             *             (          r             )

    •   Capacity result   : increasing   min{m, n}   by   1   adds   1  more degree of 

    freedom.

    •   Tradeoff curve : increasing both  m   and   n   by   1  yields multiplexing

    gain   +1   for any diversity requirement   d.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    39/79

    Adding More Antennas

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   A

       d  v  a  n   t  a  g  e  :

       d             *             (          r             )

    d

    •   Capacity result: increasing   min{m, n}   by   1   adds   1  more degree of 

    freedom.

    •   Tradeoff curve: increasing both   m   and   n   by   1  yields multiplexing

    gain   +1   for any diversity requirement   d.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    40/79

    Geometric Picture

    ε

    Scalar Channel

    Bad H Good H

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    41/79

    Geometric Picture

    ε

    Scalar Channel

    Bad H Good H

    2 =  SNR−1

    P e ∼ SNR−1

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    42/79

    Geometric Picture

    ε

    Scalar Channel

    Bad H Good H

    2 =  SNR−1

    P e ∼ SNR−1

           

           

           

           

           

    Good H

    εBad H

    h2

    1h

    x1 2 Channel

    P e  ∼ SNR−2

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    43/79

    Geometric Picture for General  m× n   Channels

    Multiplexing gain   = r   (r   integer)

    Rank H =r

    Good H

    Full Rank

    MIMO Channel

    The co-dimension of the sub-manifold of rank   r  matrices within the set

    of all   m× n   matrices is   (m− r)(n− r).

    P e ∼ SNR−(m−r)(n−r)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    44/79

    Geometric Picture for General  m× n   Channels

    Multiplexing gain   = r   (r   integer)

    Good H

    Full Rank

    Typical Bad H

    MIMO Channel

    Rank H =rε

    The co-dimension of the sub-manifold of rank   r  matrices within the set

    of all   m× n   matrices is   (m− r)(n− r).

    P e ∼ SNR−(m−r)(n−r)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    45/79

    Geometric Picture for General  m× n   Channels

    Multiplexing gain  = r

      (r

      integer)

    Good H

    Full Rank

    Typical Bad H

    MIMO Channel

    Rank H =rε

    The co-dimension of the sub-manifold of rank   r  matrices within the set

    of all   m× n   matrices is   (m− r)(n− r).

    P e ∼ SNR−(m−r)(n−r)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    46/79

    Typical Error Events

    •   In   1× 1   and   1× n  channels, error occurs when the channel gain

    h2

    is small.•   In general   m× n   channel, error occurs when some or all of the

    singular values of  H   are small. There are many ways for this to

    happen.

    •   High SNR analysis shows that errors occur  typically   when  H   is

    close to a rank   r   matrix.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    47/79

    Tradeoff Analysis of Specific Designs

    Focus on two transmit antennas.

    Y = HX+W

    Repetition Scheme:

    X =x 0

    0 x

    time

    space

    1

    1

    y1  = HF x1 + w1

    Alamouti Scheme:

    X =

    time

    space

    x -x*

    x x2

    1 2

    1*

    [y1y2] = HF [x1x2] + [w1w2]

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    48/79

    Comparison:   2× 1   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)

    (0,2)

    Repetition

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    49/79

    Comparison:   2× 1   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)

    (0,2)

    (1,0)

    Alamouti

    Repetition

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    50/79

    Comparison:   2× 1   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)

    (0,2)

    (1,0)

    Optimal Tradeoff

    Alamouti

    Repetition

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    51/79

    Comparison:   2× 2   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v

      e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)

    (0,4)

    Repetition

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    52/79

    Comparison:   2× 2   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v

      e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)(1,0)

    (0,4)

    Alamouti

    Repetition

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    53/79

    Comparison:   2× 2   System

    Repetition:   y1  = HF x1 + w

    Alamouti:   [y1y2] = HF [x1x2] + [w1w2]

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v

      e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (1/2,0)(1,0)

    (0,4)

    (1,1)

    (2,0)

    Optimal Tradeoff

    Alamouti

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    54/79

    Talk Outline

    •   point-to-point MIMO channels

    •   multiple access MIMO channels

    •   cooperative relaying systems

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    55/79

    Multiple Access

    User K

    Tx

    User 2

    Tx

    User 1

    Tx

    M Tx Antenna

    M Tx Antenna

    N Rx Antenna

    Rx

    In a point-to-point link, multiple antennas provide diversity and

    multiplexing gain.

    In a system with  K  users, multiple antennas can be used to discriminate

    signals from different users too.

    Continue assuming i.i.d. Rayleigh fading,  n  receive antennas,   m

    transmit antennas   per user.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    56/79

    Multiuser Diversity-Multiplexing Tradeoff 

    Suppose we want  every   user to achieve an error probability:

    P e ∼ SNR−d

    and a data rate

    R =  r log SNR   bits/s/Hz.

    What is the optimal tradeoff between the diversity gain  d   and the

    multiplexing gain   r?

    Assume a coding block length   l ≥ Km + n− 1.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    57/79

    Optimal Multiuser D-M Tradeoff:   m ≤ n/(K + 1)

    (Tse, Viswanath and Zheng 02)

    Spatial Multiplexing Gain: r=R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :

       d             *             (          r             )

    (min{m,n},0)

    (0,mn)

    (r, (m−r)(n−r))

    (2, (m−2)(n−2))

    (1,(m−1)(n−1))

    In this regime, the diversity-multiplexing tradeoff of each user is as

    though it is the only user in the system, i.e.   d∗m,n(r)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    58/79

    Multiuser Tradeoff:   m > n/(K + 1)

    K+1n

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s

       i   t  y   G  a   i  n  :   d   (  r   ) Single User

    Performance

    (0,mn)

    (2,(m−2)(n−2))

    (r,(m−Kr)(n−r))

    * d (r)*

    m,n(1,(m−1)(n−1))

    Single-user diversity-multiplexing tradeoff up to  r∗ = n/(K  + 1).

    For  r   from  N/(K  + 1)   to  min{N/K, M }, tradeoff is as though the  K   users

    are pooled together into a single user with   KM   antennas and rate   Kr,

    i.e.   d∗KM,N (Kr)   .

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    59/79

    Multiuser Tradeoff:   m > n/(K + 1)

    K+1n

    d (r)*

    m,n

    *

    Km,nd (Kr)

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s

       i   t  y   G  a   i  n  :   d   (  r   ) Single User

    Performance

    (0,mn)

    (2,(m−2)(n−2))

    (r,(m−r)(n−r))

    Antenna Pooling

    (min(m,n/K),0)

    *(1,(m−1)(n−1))

    Single-user diversity-multiplexing tradeoff up to  r∗ = m/(K  + 1).

    For   r   from   n/(K  + 1)   to   min{n/K, m}, tradeoff is as though the   K   users

    are pooled together into a single user with   Km   antennas and rate  Kr,

    i.e.   d∗Km,n(Kr)   .

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    60/79

    Benefit of Dual Transmit Antennas

    User K

    Tx

    User 2

    Tx

    User 1Tx

    1 Tx Antenna

    1 Tx Antenna

    N Rx Antenna

    Rx

    Question: what does adding one more antenna at each mobile buy me?

    Assume there are more users than receive antennas.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    61/79

    Benefit of Dual Transmit Antennas

    User K

    Tx

    User 2

    Tx

    User 1Tx

    M Tx Antenna

    M Tx Antenna

    N Rx Antenna

    Rx

    Question: what does adding one more antenna at each mobile buy me?

    Assume there are more users than receive antennas.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    62/79

    Answer

    K+1n

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :   d   (  r   )

    *

    Optimal tradeoff 

    1 Tx antenna

    n

    Adding one more transmit antenna does not increase the number of degrees of freedom for each user.

    However, it increases the maximum diversity gain from   N   to   2N .

    More generally, it improves the diversity gain  d(r)   for every   r.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    63/79

    Answer

    K+1n

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :   d   (  r   )

    * 2 Tx antenna

    2n

    Optimal tradeoff 

    n

    1 Tx antenna

    Adding one more transmit antenna does not increase the number of degrees of freedom for each user.

    However, it increases the maximum diversity gain from   n   to   2n.

    More generally, it improves the diversity gain  d(r)   for every   r.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    64/79

    Suboptimal Receiver: the Decorrelator/Nuller

    User K

    Tx

    User 2

    Tx

    User 1

    TxDecorrelator

    User 1

    Decorrelator

    User 2

    Decorrelator

    User K

    1 Tx Antenna

    1 Tx Antenna

    N Rx Antenna

    Rx

    Data for user 1

    Data for user 2

    Data for user K

    Consider only the case of   m = 1  transmit antenna for each user and

    number of users   K < n.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    65/79

    Tradeoff for the Decorrelator

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :   d   (  r   )

    *

    n−K+1

    1

    Decorrelator

    Maximum diversity gain is   n−K  + 1: “costs   K − 1  diversity gain to null

    out   K − 1   interferers.” (Winters, Salz and Gitlin 93)

    Adding one receive antenna provides either more reliability per user oraccommodate   1   more user at the same reliability. Optimal tradeoff 

    curve is also a straight line but with a maximum diversity gain of   N .

    Adding one receive antenna provides more reliability per user and

    accommodate   1   more user.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    66/79

    Tradeoff for the Decorrelator

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :   d   (  r   )

    *

    n−K+1

    1

    Decorrelator

    Maximum diversity gain is   n−K  + 1: “costs   K − 1  diversity gain to null

    out   K − 1   interferers.” (Winters, Salz and Gitlin 93)

    Adding one receive antenna provides either more reliability per user   or

    accommodate   1   more user at the same reliability.

    Optimal tradeoff curve is also a straight line but with a maximum

    diversity gain of   n.

    Adding one receive antenna provides more reliability per user and

    accommodate   1   more user.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    67/79

    Tradeoff for the Decorrelator

    Spatial Multiplexing Gain : r = R/log SNR

       D   i  v  e  r  s   i   t  y   G  a   i  n  :   d   (  r   )

    *

    n−K+1

    1

    n

    Optimal tradeoff 

    Decorrelator

    Maximum diversity gain is   n−K  + 1: “costs   K − 1  diversity gain to null

    out   K − 1   interferers.” (Winters, Salz and Gitlin 93)

    Adding one receive antenna provides either more reliability per user   or

    accommodate   1   more user at the same reliability.

    Optimal tradeoff curve is also a straight line but with a maximum

    diversity gain of   n.

    Adding one receive antenna provides more reliability per user   and

    accommodate   1   more user.

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    68/79

    Talk Outline

    •   point-to-point MIMO channels

    •   multiple access MIMO channels

    •   cooperative relaying systems

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    69/79

    Cooperative Relaying

    Tx 1

    Tx 2

    Rx

    Channel 2

    Channel 1

    Cooperative relaying protocols can be designed via a

    diversity-multiplexing tradeoff analysis.

    (Laneman, Tse, Wornell 02)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    70/79

    Cooperative Relaying

    Tx 1

    Tx 2

    Rx

    Channel 2

    Channel 1

    Cooperation

    Cooperative relaying protocols can be designed via adiversity-multiplexing tradeoff analysis.

    (Laneman, Tse and Wornell 02)

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    71/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    72/79

    Cooperative Relaying

    Tx 1

    Tx 2

    Rx

    Channel 2

    Channel 1

    Cooperation

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    73/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    74/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

    amplify +

    forward

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    75/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

    amplify +

    forward

    ?

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    76/79

    Cooperative Relaying

    Tx 1

    Tx 2

    Rx

    Channel 2

    Channel 1

    Cooperation

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    77/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

    amplify +

    forward

    ?

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    78/79

    Tradeoff Curves of Relaying Strategies

    Multiplexing

    gain

         D     i    v    e    r    s     i     t    y

        g    a     i    n

    1

    2

    direct

    transmission

    amplify +

    forward

    amplify + forward

    + ack

  • 8/18/2019 Diversity and Multiplexing; A Fundamental Tradeoff in Wireless Systems

    79/79

    Conclusion

    Diversity-multiplexing tradeoff is a unified way to look at performance

    over wireless channels.

    Future work:

    •   Code and receiver design to achieve good tradeoffs.

    •   Application to other wireless scenarios.