dowdell dissertation final

162
INVESTIGATION OF THE LIPOPROTEOME OF THE LYME DISEASE BACTERIUM BORRELIA BURGDORFERI BY Alexander S. Dowdell Submitted to the graduate degree program in Microbiology, Molecular Genetics & Immunology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _____________________________ Wolfram R. Zückert, Ph.D., Chairperson _____________________________ Indranil Biswas, Ph.D. _____________________________ Mark Fisher, Ph.D. _____________________________ Joe Lutkenhaus, Ph.D. _____________________________ Michael Parmely, Ph.D. Date Defended: April 27 th , 2017

Upload: others

Post on 30-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dowdell Dissertation FINAL

INVESTIGATION OF THE LIPOPROTEOME OF THE LYME DISEASE BACTERIUM

BORRELIA BURGDORFERI

BY

Alexander S. Dowdell

Submitted to the graduate degree program in Microbiology, Molecular Genetics & Immunology

and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

_____________________________

Wolfram R. Zückert, Ph.D., Chairperson

_____________________________

Indranil Biswas, Ph.D.

_____________________________

Mark Fisher, Ph.D.

_____________________________

Joe Lutkenhaus, Ph.D.

_____________________________

Michael Parmely, Ph.D.

Date Defended: April 27th, 2017

Page 2: Dowdell Dissertation FINAL

ii

The dissertation committee for Alexander S. Dowdell certifies that this is the approved version

of the following dissertation:

INVESTIGATION OF THE LIPOPROTEOME OF THE LYME DISEASE BACTERIUM

BORRELIA BURGDORFERI

_____________________________

Wolfram R. Zückert, Ph.D., Chairperson

Date Approved: May 4th, 2017

Page 3: Dowdell Dissertation FINAL

iii

Abstract

The spirochete bacterium Borrelia burgdorferi is the causative agent of Lyme borreliosis, the top

vector-borne disease in the United States. B. burgdorferi is transmitted by hard-

bodied Ixodes ticks in an enzootic tick/vertebrate cycle, with human infection occurring in an

accidental, “dead-end” fashion. Despite the estimated 300,000 cases that occur each year, no

FDA-approved vaccine is available for the prevention of Lyme borreliosis in humans.

Development of new prophylaxes is constrained by the limited understanding of the

pathobiology of B. burgdorferi, as past investigations have focused intensely on just a handful of

identified proteins that play key roles in the tick/vertebrate infection cycle. As such,

identification of novel B. burgdorferi virulence factors is needed in order to expedite the

discovery of new anti-Lyme therapeutics. The multitude of lipoproteins expressed by the

spirochete fall into one such category of virulence factor that merits further study. These

lipoproteins play diverse roles in the organism and localize to different membrane-peripheral

cellular compartments.

The overarching goal of the current study was to further define the structure-function of the B.

burgdorferi cell envelope by comprehensively and conclusively defining the localization of the

bacterium’s predicted lipoproteome, using an epitope-tagged lipoprotein expression library. The

data show that the majority of B. burgdorferi lipoproteins are surface-exposed, and that the

plasmids of B. burgdorferi are enriched in surface lipoprotein genes relative to the chromosome.

The study also establishes and validates a high-throughput proteomics approach that can be used

in future studies to assess localization of endogenously expressed untagged lipoproteins. Finally,

an analysis of the lipoproteome using data mining and in silico fold recognition algorithms

Page 4: Dowdell Dissertation FINAL

iv

demonstrates potential roles for several uncharacterized lipoproteins and identifies new targets

for vaccine development.

Page 5: Dowdell Dissertation FINAL

v

Acknowledgements

I’d like to thank Dr. Wolfram Zückert for providing me with funding, support, and advice over

the past several years. I couldn’t have asked for a better graduate experience or mentor. I’d

also like to thank my graduate committee and the other faculty of University of Kansas Medical

Center for providing helpful advice and for always pushing me to become a better scientist. I’d

like to thank the administrative staff of the Department of Microbiology, Molecular Genetics &

Immunology for always being willing to help me throughout my graduate career. Finally, I’d

like to thank my family and friends for all of the support throughout my Ph.D. studies. I’d

especially like to thank my amazing wife Anita for sticking with me throughout all of the

working weekends and late nights at the lab. I’m finally done, sweetest heart!

Page 6: Dowdell Dissertation FINAL

vi

Table of Contents Chapter 1: Background.................................................................................................................1 Chapter 2: Lipoprotein Biosynthesis in B. burgdorferi............................................................20 Chapter 3: Previous Research of B. burgdorferi Lipoproteins................................................38 Chapter 4: Localization of B. burgdorferi Lipoproteome.........................................................41 Chapter 5: Detailed Experimental Protocols............................................................................89 Chapter 6: In-depth Analysis of Selected B. burgdorferi Lipoproteins................................104 Appendix: Supplemental Figures and Tables.........................................................................123 References...................................................................................................................................140

Table of Figures and Tables Figure 1. Sec-dependent translocation of lipoproteins............................................................23 Figure 2. Post-translational modification of lipoproteins.......................................................27 Figure 3. The sorting of lipoproteins via Lol machinery.........................................................31 Figure 4. Alignment of the B. burgdorferi OppA homolog tether sequences.........................35 Figure 5. Plasmid map of the expression vector pSC-LP........................................................43 Figure 6. Surface proteolysis of B. burgdorferi strains using Proteinase K...........................63 Figure 7. Membrane fractionation of B. burgdorferi...............................................................69 Figure 8. Surface proteolysis of B. burgdorferi using Pronase................................................73 Figure 9. Membrane fractionation of B. burgdorferi...............................................................77 Figure 10. Sequence alignment of B. burgdorferi tether peptides...........................................81 Figure 11. Structural Analysis of BB0155 using I-TASSER.................................................113 Figure 12. COACH Analysis of BB0352.................................................................................117 Figure S1. Statistical analyses of quantitative proteomics features.....................................123 Figure S2. Graphical Representation of putative lipoproteins..............................................125

Table 1. List of oligonucleotide primers used for lipoprotein amplification.........................47 Table 2. B. burgdorferi lipoproteome localization data..........................................................55 Table 3. Comparison of lipoprotein tether length based on localization...............................85 Table 4. Analysis of Lipoprotein Genes by HMMSCAN......................................................105 Table 5. Analysis of putative TPR Lipoproteins....................................................................107 Table 6. Remote Homology Analysis of B. burgdorferi Lipoproteins..................................109 Table S1. Detailed peptide and spectral counts of MudPIT-detected proteins.....................85

Page 7: Dowdell Dissertation FINAL

1

Chapter 1: Background

1.1 History of Lyme borreliosis (Lyme Disease)

Although Lyme borreliosis has only recently been described and the etiologic agent

determined to be the spirochete Borrelia burgdorferi, evidence exists that humanity has been

afflicted with this disease for much longer. European researchers had long known that the bite of

certain hard-bodied ticks could results in a disease with dermatological and neurological

complications (1). One of the first documented presentations of possible Lyme borreliosis came

from Arvid Afzelius, a founder of the Swedish Society of Dermatology, in 1909. He presented

the case of an elderly woman with the now-characteristic expanding annular erythema, which he

termed “erythema migrans”, at the site of an Ixodes reduvius tick bite. Subsequent clinical

observations of tick-bitten patients found similar dermatological manifestations and occasionally

observed pathology of the central nervous system (lymphocytic meningitis). The 1922 findings

of Garin & Bujadoux are believed to be the first recorded description of Lyme neuroborreliosis,

although a retrospective diagnosis of their patient has led to speculation that he may have been

co-infected with other tick-borne pathogens (2, 3). Researchers in Europe eventually concluded

that a causal link existed between the disease and ticks, with speculation that a tick salivary

gland toxin or tick-associated pathogen was ultimately responsible (4). Evidence exists that

human infection by B. burgdorferi may even predate these published accounts. PCR analysis of

DNA present in the Tyrolean Iceman “Ötzi”, a 5,000-year-old preserved mummy from the

Italian Alps, showed that he had been infected with B. burgdorferi and is the oldest known

human to have had Lyme borreliosis (5).

In 1975, the Connecticut State Health Department was contacted concerning an epidemic

of juvenile rheumatoid arthritis in Lyme, Connecticut, with an unknown etiology. Dr. Allen

Page 8: Dowdell Dissertation FINAL

2

Steere, working on behalf of a joint investigation between the Yale University School of

Medicine and Connecticut State Health Department, published his observations of oligoarticular

arthritis in both children and adults (6). Investigation showed that juvenile rheumatic arthritis

was not the cause of the observed symptoms, as the incidence of reported arthritis was 100 times

the expected prevalence, and consequently the new affliction was termed “Lyme arthritis”.

Many patients also developed expanding erythematous lesions reminiscent of those observed in

Europe, and a further subset of patients also developed cardiological and/or neurological

complications (7). Although the causative agent of Lyme arthritis was still known, it was

demonstrated that early administration of antibiotics could ameliorate the symptoms of the

disease (8). Epidemiological studies implicated Ixodes ticks with the transmission of disease,

similar to the previous findings in Europe (9).

The identification of the spirochete B. burgdorferi came later, during 1978 and 1979

investigations into outbreaks of the tickborne Apicomplexan parasite babesiosis in the Northeast.

Serosurveys conducted in Shelter Island, New York, identified a number of individuals who did

not have babesiosis but instead reported symptoms resembling patients from Lyme, Connecticut.

Sera from these patients were reactive to spirochetes grown in Kelly’s Medium from ticks

collected on Shelter Island, demonstrating a connection between these spirochetes and the

disease from Lyme (10). These spirochetes were also later isolated directly from patients with

Lyme disease, further strengthening the evidence that this bacterium was the causative agent (11,

12). The organism was named Borrelia burgdorferi to honor Dr. Willy Burgdorfer’s efforts in

the organism’s discovery, with its accompanying disease renamed “Lyme borreliosis” (13).

Today, Lyme borreliosis is the most common vector-borne disease in the United States, and an

estimated 300,000 cases occur each year (14). There is no FDA-approved vaccine currently

Page 9: Dowdell Dissertation FINAL

3

available for the prevention of Lyme borreliosis. Lyme borreliosis is considered an emerging

disease and research into the pathogenesis of B. burgdorferi, as well as prophylaxis and

treatments, is ongoing (15).

1.2 The Enzootic Cycle of B. burgdorferi

In nature, B. burgdorferi exists in a complex relationship with its tick and vertebrate

hosts, transitioning between the two at different stages of the tick life cycle. Only certain hard-

bodied ticks of the genus Ixodes can become infected with B. burgdorferi, and the molecular

specificity of the tick-spirochete interaction suggests that B. burgdorferi has evolved to utilize

this genus of tick as the means by which it spreads between vertebrates. B. burgdorferi is not

transmitted transovarially in ticks, and newly hatched larvae acquire the bacterium from a

previously infected host (16, 17). The transmission cycle typically begins with an uninfected

tick larva feeding on an infected vertebrate host, typically a small bird or mammal. The white-

footed mouse, Peromyscus leucopus, is especially notable as an important natural reservoir of B.

burgdorferi in North America. Interestingly, laboratory infected adult Peromyscus mice can

become persistently infected with B. burgdorferi but do not develop many of the pathologies

associated with human infection, suggesting that host factors may modulate the severity of B.

burgdorferi infection (18). Spirochetes can be detected in the feeding tick within 12 hours from

the start of feeding, and bacterial colonization of the tick continues for the full extent of the

feeding period (typically 72-96 hours) (16, 17). B. burgdorferi takes up residence in the tick

midgut, wherein it can persist for several months while the larval tick molts into a nymph.

During this time, the tick does not feed and displays limited metabolic activity. The molecular

mechanisms by which B. burgdorferi senses host feeding and transits to the tick, as well as how

Page 10: Dowdell Dissertation FINAL

4

it survives in the nutrient-depleted midgut for months, are unclear at this time. Microarray

studies examining the transcriptome of B. burgdorferi in larvae, nymphs, and dialysis membrane

chambers have shed light on which genes are important for certain stages of the tick/vertebrate

cycle; however, many of these genes encode proteins without identifiable functions or homologs

in non-spirochetes, thus preventing full understanding of the molecular mechanism behind the B.

burgdorferi tick/vertebrate life cycle (19).

After molting, the unfed nymph then proceeds to feed on a second host, usually of the

same variety chosen by the unfed larvae (16, 17). Transmission of B. burgdorferi to the

uninfected vertebrate host occurs at this stage and replenishes the B. burgdorferi reservoir in

small animals. Accidental transmission to humans, dogs, and other “accidental” hosts also occur

at this stage. The steps leading to transmission of B. burgdorferi have been well-characterized.

During the first 36 hours of tick feeding, B. burgdorferi in the tick midgut is immersed in

undigested blood from the host and begins a period of rapid cell division and dissemination. The

bacteria penetrate the tick gut and migrate to the salivary gland, wherein they pass into the

vertebrate host and begin further dissemination. Interestingly, this process of transmission can

take up to 72 hours for B. burgdorferi but can occur in less than an hour for relapsing fever

Borrelia spirochetes, which colonize fast-feeding soft-bodied ticks (20). Tick salivary gland

proteins are thought to play a beneficial role in B. burgdorferi transmission based on gene

expression and bacterial surface binding studies (21, 22). The fed nymphs then detach from their

hosts and, after several months, molt into male and female adult ticks. Adult ticks seem to play

little role in the transmission of B. burgdorferi to humans, although they play an important role

in nature through perpetuation of the tick population.

Page 11: Dowdell Dissertation FINAL

5

1.3 The Fundamental Role of B. burgdorferi Lipoproteins

Lipid-modified proteins, or “lipoproteins”, are ubiquitous in both Gram-positive and

Gram-negative bacteria. B. burgdorferi is noteworthy in that it dedicates a large percentage of

its genome to the expression of lipoproteins, with one estimate placing the number of lipoprotein

encoding-genes at about 8% of all reading frames (23). This is especially significant considering

that the B. burgdorferi genome is highly reduced at approximately 1.314 MBp (24).

Lipoproteins are peripheral membrane proteins, anchored to either the inner or outer membrane

through a conserved, acylated cysteine residue at the N terminus (also see 2. Lipoprotein

Biosynthesis in B. burgdorferi) (25). Following the acylated cysteine is a span of disordered

residues (the “tether”) which, in Proteobacteria, contains the necessary information for

lipoprotein sorting at the inner membrane (26). Prelimiary evidence shows that, although this

region can modulate surface exposure of outer membrane lipoproteins, it does not seem to play a

role in the release of outer membrane lipoproteins at the inner membrane (27-30). In B.

burgdorferi, tether regions are highly variable in both length and amino acid content, with no

obvious correlation existing between a lipoprotein’s localization and its tether

length/biochemical properties (Table 3) (27). However, the length of surface lipoprotein tethers

may act to position the lipoprotein in a distinct spatial setting relative to other membrane

proteins, with its positioning possibly tied to the biological role of the lipoprotein (25).

Following the tether region is a more constrained region of the protein that is believed to be

responsible for the lipoprotein’s biological function.

The lipoproteins of B. burgdorferi play diverse roles in the organism, with identified

functions ranging from housekeeping duties to host interactions, and consequentially these

lipoproteins are necessary for both in vitro growth using artificial culture medium as well as the

Page 12: Dowdell Dissertation FINAL

6

more complex tick/vertebrate transmission cycle found in nature. Many lipoproteins also have

no identifiable function or homology, yet are indispensable to B. burgdorferi at a specific stage

in its life cycle. Here, the various archetypes of lipoproteins will be discussed using well-

researched, prototypical examples.

Certain B. burgdorferi lipoprotein play important housekeeping functions to the organism

and are among those that show the most homology to proteins in other bacteria (31, 32). These

lipoproteins often act as nutrient uptake factors and are frequently found as part of inner

membrane ATP-binding cassette (ABC) transporters. These lipoproteins, called substrate-

binding proteins, are responsible for coordinating the binding and ATP hydrolysis-driven uptake

of specific solutes from the periplasm into the cytoplasm (33). Of these substrate-binding

lipoproteins, some of the most prominent belong to the Oligopeptide Permease (OppA) family of

substrate-binding proteins. These proteins facilitate the transport of small peptides from the

periplasm into the cytoplasm through interaction with the ABC transport subunits OppB/C/D/F.

B. burgdorferi, interestingly, expresses five copies of oppA: three on the linear chromosome, one

on the mini-chromosome cp26, and one on the dispensable linear plasmid lp54 (34, 35). These

copies seem to have arisen from paralogous gene duplication, as they are homologous in amino

acid sequence (≥44% pair-wise identity) but show different peptide binding affinities (34, 36).

Transposon mutagenesis screens suggest that these genes are not individually essential, implying

that there may be some overlap or redundancy in their substrate specificity that permits growth

of B. burgdorferi in vitro (37). The authors of this study also came to the conclusion that the

OppA homologs in B. burgdorferi could complement each other in vitro. The B. burgdorferi

gene oppA-1 (BB0328) was found to be able to complement an E. coli ΔoppA strain, further

supporting the conservation of these proteins between disparate bacterial lineages (38). The

Page 13: Dowdell Dissertation FINAL

7

OppA proteins also show individual transcriptional regulation patterns based on environmental

cues and host species, indicating that their expression may correlate with different nutritional

demands at various phases of the tick/vertebrate cycle through their dissimilar peptide binding.

Further research of their transcription showed that oppA-1 (BB0328), oppA-2 (BB0329), and

oppA-3 (BB0330) can be transcribed tricistronically, bicistronically, or individually, and that

these genes were not regulated by temperature (34). In contrast, the gene oppAV (BBA34) is

under control of the alternative sigma factors RpoN (BB0450) and RpoS (BB0771), implicating

the expression of this gene in the vertebrate stage of infection and supporting previous findings

that this OppA gene is the only one regulated by temperature(34, 39, 40). Similarly, the gene

oppAIV (BBB16) showed regulation by the B. burgdorferi BosR/Fur homolog (BB0647), a

transcriptional regulator that has been associated with expression of virulence genes in

vertebrates (41). These data suggest that the genes oppAIV and oppAV may be upregulated

during transmission of B. burgdorferi from the tick to the vertebrate host. Despite this evidence

implicating oppAIV and oppAV in the infection cycle, transposon mutagenesis studies and gene

deletion experiments have not conclusively demonstrated that either gene is required for

infection in the mouse model (37, 42). In addition to OppA homologs, other substrate-binding

proteins have been identified in B. burgdorferi. The protein ProX (BB0144) is a predicted L-

proline/glycine betaine substrate-binding protein and is situated in a likely operon with putative

ABC transporter components (31, 32). Based on homology, it likely functions in transport of

osmoregulatory molecules into the cell; however, this has not been demonstrated experimentally.

The protein PstS (BB0215) is also predicted to be a substrate-binding protein, with homology to

characterized phosphate-binding proteins. Similar to ProX, PstS exists in a possible operon with

predicted ABC transporter proteins. Surprisingly, binding assays performed with soluble,

Page 14: Dowdell Dissertation FINAL

8

recombinant PstS show that the protein binds to sulfate anions with at least 20-fold greater

affinity than for phosphate, suggesting that PstS may be involved in the transport of both anions

into the cytoplasm (43). Transposon mutagenesis assays suggest that both ProX and PstS are

essential for in vitro cultivation of B. burgdorferi, consistent with their predicted role in substrate

transport (37). One interesting observation of B. burgdorferi substrate-binding proteins is that

they appear to be lipoproteins, based on conserved cysteine residues and a putative lipobox motif

(23). The structure of these proteins in B. burgdorferi contrasts with that of substrate-binding

proteins in E. coli and other diderms, in which they are soluble periplasmic proteins rather than

peripheral, membrane anchored proteins (33). In this regard, the substrate-binding proteins of B.

burgdorferi are more similar to those of Gram-positive bacteria, which also express substrate-

binding proteins as lipoproteins. However, the presence of outer membrane biogenesis

machinery, such as the Bam and Lol complexes, suggests that the most recent common ancestor

of B. burgdorferi with non-spirochetes was Gram-negative, a conclusion supported by 16S rRNA

sequencing and alignment (44). Although the evolution of B. burgdorferi is unclear based on the

early divergence of the phylum Spirochaetes, it is most likely that convergent evolution is

responsible for the observation that the substrate-binding proteins of both B. burgdorferi and

Gram-positive organisms are lipoproteins.

In addition to such metabolic roles, certain B. burgdorferi lipoproteins are also mediators

of pathogenicity. These lipoproteins have been shown to be important in various stages of the

tick/vertebrate infectious cycle, with data showing that their loss interrupts the cycle at a point

that corresponds to the biological function of the protein. One such way that lipoproteins

mediate pathogenicity is through acting as surface adhesion proteins. Expression of such

lipoproteins facilitates survival in the tick vector and infection of the vertebrate host. OspA

Page 15: Dowdell Dissertation FINAL

9

(BBA15), an abundant surface lipoprotein, was one of the first B. burgdorferi adhesins to be

discovered. OspA was first reported as a shared antigen on both human- and tick-isolated B.

burgdorferi based on affinity of a monoclonal antibody H5332, and it was later determined

through [3H]-palmitate metabolic labeling and radioimmunoprecipitation that OspA was

lipidated in B. burgdorferi (45, 46). Lipidated OspA was also found to be highly immunogenic

in mice, and inoculation with lipidated OspA could result in a protective immune response

against subsequent intradermal challenges with live B. burgdorferi (47). This study and others

were the foundation for the first FDA-approved anti-Lyme vaccine, LYMErix, which was based

on recombinant OspA as the immunogen (48). The discovery of OspA as an adhesin was

preceded by findings that OspA was selectively expressed in the tick vector and downregulated

upon transmission to the vertebrate host, leading to speculation that OspA plays a role in tick

colonization (49). Further work using tick gut extracts and yeast two-hybrid experiments

determined that OspA binds to a tick gut epithelium protein called TROSPA (Tick Receptor for

OspA) (50, 51). Studies using infectious B. burgdorferi isolates found that OspA is not required

for infection or persistence in the mouse model, but the loss of OspA prevents re-acquisition of

B. burgdorferi by uninfected feeding ticks (52). These results show that OspA acts to adhere B.

burgdorferi to the midgut epithelium during tick colonization and that it is essential for

completion of the natural tick/vertebrate infection cycle. OspA exists in a bicistronic operon

with OspB, a lipoprotein with similar amino acid sequence and structure to OspA (53-55). Tick

acquisition assays suggest that OspA and OspB are functionally and that spirochetes expressing

solely OspB can colonize and survive in larval ticks (56). Likewise, expression of OspA alone

has been shown to permit survival of B. burgdorferi in nymphal ticks after microinjection (52).

Expression of both OspA and OspB, though, has been shown to permit a greater extent of tick

Page 16: Dowdell Dissertation FINAL

10

colonization that expression of just OspA, suggesting that these two proteins play

complementary, but distinct, functions in vivo (52). The current working hypothesis is that

OspA and OspB arose from a gene duplication event and have diverged to some extent; however,

their precise biological function in relation to each other still has yet to be fully understood.

Besides OspA and OspB, other lipoproteins have been shown to act as B. burgdorferi adhesins in

the vertebrate host. These lipoproteins presumably facilitate the dissemination of B. burgdorferi

throughout various tissues. One prominent surface adhesin is the fibronectin binding protein P47

(FBP; BBK32). Fibronectin, a large mammalian glycoprotein, is a component of the

extracellular matrix and binds a variety of biological polymers such as heparin and collagen. B.

burgdorferi cell lysates were shown to bind fibronectin after transfer to nitrocellulose

membranes, resulting in a single unique band corresponding to FBP (57). Adhesion of B.

burgdorferi onto fibronectin-coated glass slides was also competitively inhibited by pre-

incubation with purified FBP, showing that fibronectin binding is solely due to FBP. Despite

these results, disruption of FBP was shown to have no effect on B. burgdorferi pathogenicity

(58). These results suggest that fibronectin binding is not essential to infectivity, likely due to

the actions of other B. burgdorferi adhesins. These other adhesins include the decorin-binding

proteins A and B (DbpA/B, BBA24/25). Decorin, a proteoglycan that associates closely with

collagen, was shown to facilitate the adhesion of B. burgdorferi to the wells of microtiter plates

and, through radiolabeling, was also shown to be specifically bound by the spirochetes (59). B.

burgdorferi that had their dbpAB genes disrupted were nevertheless able to fully complete the

tick/vertebrate infection cycle, suggesting that, like FBP, other surface adhesins may be able to

compensate for the lack of decorin binding in vivo (60). Finally, it has been established that the

putative lipoprotein ErpX (BBQ47) binds laminin, a family of large glycoproteins that are

Page 17: Dowdell Dissertation FINAL

11

components of the mammalian extracellular matrix (61). ErpX belongs to a family of

paralogous, plasmid-encoded lipoproteins (Erp) that are up-regulated during transmission to the

vertebrate host and are immunogenic (62). As the authors demonstrated, B. burgdorferi

selectively bound to laminin-coated slides and that this binding could be diminished through

addition of soluble, recombinant ErpX. Although the role of ErpX in the infection cycle of B.

burgdorferi has not been investigated, it is highly probable that it, like the other B. burgdorferi

adhesins, is singularly dispensable for infection in the mouse model due to compensation effects.

Other lipoproteins are associated with transmission of B. burgdorferi and the

establishment in the vertebrate host. These lipoproteins play a critical role in the natural

tick/vertebrate enzootic cycle of B. burgdorferi, and their absence results in a noticeable

impediment to infection. The surface lipoprotein OspC is the prototypical example of such a

protein. It is selectively up-regulated by an increase in temperature or pH, that is, a shift to

conditions that mimic those of the vertebrate host (49, 63). Examination of the temporal

regulation of OspC in vivo has revealed that it is rapidly induced during tick feeding, with

immunofluorescence assays showing that 75% of spirochetes expressed the lipoprotein after 48

hours of tick feeding (64). Interestingly, the expression of OspA appeared to be somewhat

reciprocal to that of OspC, in which OspA-expressing cells decreased to 40% of the total

population by 96 hours (49, 64). The increase in temperature and pH flux appears to be the

driving factor of OspC expression, as spriochetes that are continually maintained at the

temperature and pH of a vertebrate host slowly down-regulate expression of OspC (64). OspC

has been shown to bind the tick salivary gland protein Salp15, an immunomodulatory factor that

is believed to allow B. burgdorferi to establish itself in the host. Salp15 has been shown to

inhibit the activation of CD4+ T-cells through binding of the CD4 receptor and has also been

Page 18: Dowdell Dissertation FINAL

12

demonstrated to modulate the action of dendritic cells through binding to the C-type lectin DC-

SIGN, ultimately resulting in lower dendritic cell activation and lower levels of cytokine release

(65-67). Salp15 has also been implicated in resistance to serum complement through inhibiting

the deposition of membrane attack complex factors (as have other lipoproteins, see next section)

(68). In addition to Salp15, OspC has been shown to the bind serum plasminogen, which is

subsequently converted to enzymatically active plasmin (69). This plasmin, still bound to the

surface of B. burgdorferi, has been demonstrated to enhance penetration of the endothelium by

B. burgdorferi and allow it to disseminate beyond the site of tick feeding (70). Corresponding to

these identified biological roles, inactivation of OspC in B. burgdorferi abrogated infectivity in

the mouse model either through needle inoculation or through tick feeding, demonstrating the

necessity of this lipoprotein for the transmission of B. burgdorferi (71).

In order for B. burgdorferi to establish a persistent infection in the vertebrate host, it must

tirelessly evade the host’s immune defenses. These defenses compose a variety of distinct anti-

bacterial responses that interact with specialized B. burgdorferi immune evasion proteins. One

way that B. burgdorferi evades the immune response so is by avoiding destruction by the host’s

complement system. The surface lipoprotein CRASP-1 (CspA; BBA68) is noteworthy in this

regard as it binds the complement regulatory proteins Factor H and Factor H-like protein 1

(FHL-1), soluble plasma proteins that are implicated in endogenous regulation of the alternative

complement pathway(72, 73). Factor H and FHL-1 bound in this way were found to be

biologically active, and expression of CRASP-1 correlated with resistance to serum complement

in vitro (73, 74). CRASP-1 was also found to be upregulated during infection of the vertebrate

host and downregulated during tick acquisition, further supporting the role of this lipoprotein in

host complement evasion (75). In addition to CRASP-1, B. burgdorferi has been shown to

Page 19: Dowdell Dissertation FINAL

13

expresses one additional Factor H/FHL-1 binding protein CRASP-2 (CspZ; BBH06) and three

additional Factor H binding proteins CRASP-3 (ErpP; BBN38), CRASP-4 (ErpC, no locus tag

available), and CRASP-5 (ErpA; BBL39) (76). In addition to binding Factor H, CRASP-3 and

CRASP-5 have been shown to bind CFHR-2 and CFHR-5, two additional complement

regulatory proteins (77). A recent study also found that recombinant, soluble CRASP-1 and

CRASP-3, but not other CRASPs, could inhibit hemolysis of rabbit erythrocytes by the

alternative complement pathway (78). CRASP-1 was further shown to inhibit all three

complement pathways through binding of the terminal complement factors C7 and C9, thereby

directly preventing assembly of the membrane attack complex and avoiding complement-

mediated lysis. These functional differences are possibly one reason why CRASP-2-deficient B.

burgdorferi remained resistant to complement and retained full infectivity in mice (79).

Interestingly, B. burgdorferi could still infect mice deficient in Factor H, further supporting the

hypothesis that certain CRASPs may bind complement regulatory proteins somewhat

promiscuously (80). Taken together, these results suggest that the interplay between CRASP

proteins and the complement system is complex and dynamic, and it can be surmised that these

lipoproteins evolved to have complementary, but distinct, functions in preventing complement-

mediated lysis of B. burgdorferi.

Besides neutralization of the host’s complement system, B. burgdorferi is also able to

evade the humoral immune response so that it can persistently infect its host. Although various

anti-B. burgdorferi antibodies can be detected in Lyme borreliosis patients, the bacterium is

nevertheless able to survive in the face of a targeted humoral response. One important way that

B. burgdorferi evades the host’s humoral defense is through expression of the surface lipoprotein

Vmp-like sequence E (VlsE; BBF0041). VlsE undergoes homologous recombination in vivo

Page 20: Dowdell Dissertation FINAL

14

with 15 neighboring, silent vls cassettes that results in antigenic variation of the lipoprotein (81).

Lipidation of VlsE was confirmed through [3H]-palmitate metabolic labeling of B. burgdorferi

and radioimmunoprecipitation. This antigenic variation allows for evasion of previously

generated anti-VlsE antibodies, keeping B. burgdorferi one step ahead of the host and forcing

adaptation of the antibody response against the new VlsE antigen. Deletion studies of the vls

genetic locus showed that not only is expression of the VlsE lipoprotein necessary for persistence

of infection in the mouse model, but recombination of VlsE with the silent vls cassettes is

indispensable as well (82). It was also observed that recombination of VlsE occurred

continuously throughout the infection of mice by B. burgdorferi, and the study’s authors

hypothesized that VlsE recombination does not cease while B. burgdorferi persists in the

vertebrate host and would result in an immense number of VlsE serotypes (83). A subsequent

study found that VlsE does not undergo recombination in the tick vector, conclusively

demonstrating that VlsE recombination is a vertebrate-specific phenomenon (84). The

importance of VlsE antigenic variation was further shown in experiments conducted with severe

combined immunodeficient (SCID) mice, which lack an adaptive immune response, versus

immunocompetent controls (85). B. burgdorferi recovered from immunocompetent mice

showed VlsE recombination at a higher frequency and with a greater amount of complexity as

compared with spirochetes from SCID mice, suggesting that the adaptive immune response

places selection pressure directly on VlsE to maintain an antigenically novel façade. These

results, in total, show that the lipoprotein VlsE is a novel means by which B. burgdorferi evades

the host immune system in order to establish a persistent infection.

Finally, certain uncharacterized proteins are important for the tick/vertebrate enzootic

cycle. These proteins have been shown to be crucial for certain steps of infection, yet lack

Page 21: Dowdell Dissertation FINAL

15

characterization of their molecular function and have no identifiable non-spirochete homologs.

One such lipoprotein is the small, abundant protein Lp6.6 (BBA62). Lp6.6 was first identified as

mitogenic, low molecular weight protein with pronounced abundancy in B. burgdorferi,

accounting for about 2% of the cell dry weight (86). [3H]-palmitate labeling of B. burgdorferi

and subsequent radioimmunoprecipitation with the monoclonal anti-Lp6.6 antibody 270.7

demonstrated that Lp6.6 is indeed a lipoprotein. Localization assays revealed that Lp6.6

localized to the inner leaflet of the outer membrane, and is one of only a few lipoproteins to

localize in such a way (27, 86, 87). Lp6.6 was found to be up-regulated during tick acquisition

and down-regulated during transmission to the vertebrate host (88). Interestingly, B. burgdorferi

cells lacking Lp6.6 retained full infectivity in mice by needle inoculation, and uninfected ticks

that fed on these mice acquired the bacteria equally to those expressing Lp6.6. However, the

absence of Lp6.6 led to reduced spirochete load in mouse tissues when transmission occurred by

tick feeding, and qRT-PCR analysis of tick tissues showed that bacterial populations in the gut

and salivary glands were reduced 5- to 10-fold as compared with wild-type cells. It was also

found that Lp6.6 exists in outer membrane complexes with other pathogenesis-associated

lipoproteins, such as OspA (88, 89). Structural analysis of Lp6.6 showed that it exists primarily

in aggregation-prone α-helices and disordered stretches, and it is hypothesized that its

unconstrained tertiary structure may be important for its biological role (90). Another similarly

uncharacterized factor is the lipoprotein (Ip)LA7 (P22; BB0365). LA7 was first identified based

on reactivity with Lyme patient sera: it appeared as an approximately 22 kilodalton protein with

an acidic pI (5.7) that was chromosomally encoded and lipidated, based on [3H]-palmitate assays

(91, 92). Further studies determined that it localized primarily to the inner membrane of the

periplasm and that its expression could be induced by a temperature shift, pH shift, or through

Page 22: Dowdell Dissertation FINAL

16

addition of the autoinducer-2 precursor 4,5-dihydroxy-2,3-pentanedione (27, 93). This

regulation may be due to a putative binding site 5’ of la7 for the DNA-binding protein EbfC

(BB0462), which has been implicated in the vertebrate host-induced expression of other plasmid-

encoded lipoproteins (94, 95). Correspondingly, expression of LA7 in tick midguts declined

significantly as compared with expression in the mouse model, suggesting that LA7 is

specifically expressed in the vertebrate host (93). Recent studies also found that LA7 expression

spiked during tick feeding, and deficiency of LA7 in B. burgdorferi resulted in pronounced

inability to both transmit to mice and re-colonize uninfected ticks (96, 97). LA7-deficient

spirochetes were also significantly impaired in their ability to migrate to tick salivary glands

following the initiation of feeding. The combined results of LA7 expression and inactivation

data suggest that LA7 may play a role in chemotaxis of the organism, allowing it to recognize the

need to disseminate to a new host. The absence of LA7, in turn, would impair the spirochete’s

recognition of chemotaxis or dissemination signals. This hypothesis is supported by data

showing that inactivation of LA7 does not impair B. burgdorferi’s ability to maintain itself

within the tick or to establish infection in the mouse after needle inoculation (96, 97). Further

support is found in that inactivation of a B. burgdorferi luxS homolog also does not interfere with

infection of mice by needle inoculation, which then suggests that chemotaxis proteins in general

may not be essential for establishing a persistent infection in vertebrates (98).

1.4 Development of Anti-Lyme borreliosis Vaccines

There is currently no FDA-approved vaccine to prevent Lyme borreliosis, despite the 300,000+

cases of the disease that occur each year (14). The lack of preventative measures against B.

burgdorferi infection has numerous implications, the economic burden of which has been

Page 23: Dowdell Dissertation FINAL

17

estimated at over $16,000 for a single late-stage/chronic Lyme patient (14). A vaccine would be

highly beneficial to areas where B. burgdorferi is endemic, as 95% of 2015 Lyme borreliosis

cases occurred in just two geographic foci comprising 14 U.S. states (14). Past research has

demonstrated that numerous B. burgdorferi proteins are naturally immunogenic; however, the

majority of natural B. burgdorferi immunogens occur on the spirochete’s plasmids, which are

naturally less stable and more dynamic than the chromosome (99, 100). However, it has also

been observed that the plasmids cp26 and lp54 are highly conserved in all clinical B. burgdorferi

isolates, and therefore it is no surprise that the immunogenic proteins from these genetic

elements were among the first to be examined for potential as vaccine candidates (101, 102).

OspA, as noted in the previous section, plays an indispensable role in the tick/vertebrate

transmission cycle and has been thoroughly investigated for potential as a vaccinogen. It has

been observed that pre- or co-administration of an OspA-based antibody to mice inhibited the

transmission of B. burgdorferi from feeding ticks (103). Specifically, migration to tick salivary

glands and spirochete multiplication in the feeding tick were disrupted due to passive

immunization with anti-OspA antibodies. These results suggest that a pre-established immune

response against OspA may prevent the transmission of B. burgdorferi from feeding ticks.

Further experiments also found that a high titer of passive OspA immunization was necessary to

expunge the spirochetes from a feeding tick, but a significantly lower titer was nevertheless

protective against infection in the mouse model (104). These studies eventually led to the

development of the first FDA-approved vaccine against B. burgdorferi, LYMErix, which used

recombinant, lipidated OspA as its immunogen (105, 106). To compensate for the noted

heterogeneity of the OspA protein, the most common North American OspA sequences were

used as the basis for the vaccine (107). Initally, the outlook for LYMErix was promising.

Page 24: Dowdell Dissertation FINAL

18

However, some reports of neurological and rheumatological adverse effects were reported by

users. Although it was determined that these adverse events of OspA vaccination were below

background based on a comparison with the clinical trials, the subsequent unpopularity of the

vaccine and the need for yearly booster vaccines led to its voluntary withdrawl in 2002 (108,

109). Investigation of the OspA epitope has revealed that the potential for cross-reactivity exists

between it and the immune cell surface molecule LFA-1, which could promote the development

of autoimmunity (110). The correlation of B. burgdorferi infection and autoimmune disorders

has been previously observed in individuals with certain HLA-DR alleles (e.g. HLA-DR4) (111).

These results suggest that certain genetic backgrounds are more susceptible to OspA-promoted

autoimmunity, and this hypothesis is being addressed in the future generation of OspA-based

vaccines through the engineering of OspA sequences to lack the molecular mimicry of the LFA-

1 epitope (112). In addition, investigations into chimeric OspA sequences are being conducted

so as to improve protection against multiple B. burgdorferi serotypes (113). Still other proteins

are currently being investigated as potential vaccinogens. OspC, a lipoprotein essential for the

transmission of B. burgdorferi to vertebrates, elicits an early, type-specific antibody response in

vivo, suggesting potential role as a human immunogen (114). In contrast to OspA, however, is

the diversity of OspC serotypes (115, 116). This remarkable diversity impedes development of

OspC-based vaccines by preventing broad coverage based on immunization with a single

serotype of the lipoprotein. To overcome this, chimeric OspC lipoproteins have been

constructed based on conserved regions between different serotypes and are undergoing

investigation for potential as vaccinogens (117, 118). These have the potential to convey broad

coverage against B. burgdorferi without the pitfalls of OspA vaccines, although further testing is

still needed to assess their efficacy in human subjects. Finally, other researchers are

Page 25: Dowdell Dissertation FINAL

19

investigating the novel avenues of tick salivary gland proteins or ΔospAB B. burgdorferi cell

preparations to induce protective immune responses (119, 120). In any case, it is undeniable that

an anti-Lyme vaccine is needed and that future research should focus on development of

prophylaxes against this disease.

Page 26: Dowdell Dissertation FINAL

20

Chapter 2: Lipoprotein Biosynthesis in B. burgdorferi

The understanding of lipoprotein biosynthesis in B. burgdorferi is primarily based on that

of E. coli. Like B. burgdorferi, E. coli is a diderm bacterium that localizes lipoproteins to both

its outer and inner membranes (25, 26, 121). Although E. coli does not express the multitude of

surface lipoproteins characteristic of B. burgdorferi, recent studies have shown that some

lipoproteins are indeed surface-exposed in this organism (122-126). The primary biochemical

research in which the function of various biosynthetic enzymes was also conducted, for the most

part, in E. coli. Therefore, the lipoprotein biosynthetic pathway will be described using E. coli as

a model and, where appropriate, clarifications will be made for differences observed in B.

burgdorferi. The lipoprotein biosynthesis genes in B. burgdorferi are given using the standard

nomenclature in parentheses following the accepted E. coli common name (31, 32, 127).

Lipoproteins are first translated in the cytoplasm without lipid modification. The

translated protein contains an N-terminal signal sequence, a characteristic region of amino acids

that directs the unfolded protein to the Sec translocase for export into the periplasm. In some

bacteria, certain lipoproteins are translocated in a folded conformation via the Tat (Twin arginine

translocation) machinery; however, this system appears to be absent from B. burgdorferi and will

not be discussed further (31, 32, 128). The signal sequence region typically contains three sub-

regions: an N-terminal region containing positively charged amino acids, a central hydrophobic

region with uncharged amino acids, and a C-terminal region containing a characteristic

consensus sequence termed the “lipobox” (25, 26). In E. coli, the lipobox consensus sequence is

typically Leu-[Ala/Ser]-[Gly/Ala]-Cys, with the final cysteine absolutely conserved in all

lipoproteins and acting as the site of lipid modification (25, 26). B. burgdorferi, however, has

been found to contain a much more degenerate lipobox (23). Based on comparisons of

Page 27: Dowdell Dissertation FINAL

21

experimentally verified lipoproteins, the B. burgdoreri lipobox likely includes one additional

amino acid at the N-terminal side and tolerates a larger variety of residues at each position with

the exception of the final cysteine residue, which is absolutely conserved in all lipoproteins.

This degeneracy of the B. burgdorferi lipobox has complicated in silico calculation of the

lipoprotein proteome (lipoproteome), and the identity of the B. burgdorferi has yet to be

conclusively established.

After translation, the unmodified lipoprotein peptide (“preprolipoprotein”) is then

directed to the Sec translocase for secretion to the periplasm (Figure 1) (25, 26, 121). Evidence

exists that, in E. coli, lipoproteins are exported by Sec in a co-translational manner mediated by

signal recognition particle (SRP; BB0694) and the inner membrane SRP receptor FtsY (BB0076)

(129). The Sec translocase is composed of a primary heterotrimer of the channel-forming,

integral inner membrane proteins SecY (BB0498), SecE (BB0395), and SecG (BB0054). The

ATPase SecA (BB0154) provides the driving force for protein translocation through ATP

hydrolysis. In addition, the integral membrane protein YidC (BB0442) assists with the lateral

transfer of the hydrophobic signal sequence region into the inner membrane, anchoring the

preprolipoprotein to the outer leaflet of the inner membrane (129). The accessory factors SecD

(BB0652), SecF (BB0653), and YajC (BB0651) form an inner membrane complex that serves to

assist protein translocation by coordingating YidC and SecYEG (130). These accessory proteins,

unlike the other members of the Sec translocase, are nonessential (121). In addition, certain

other bacteria (primarily the α/β/γ-proteobacteria) express the soluble cytosolic chaperone SecB

(no homolog in B. burgdorferi) that presumably serves to prevent premature folding in proteins

that are secreted post-translationally (131). Its absence from B. burgdorferi, and indeed many

other bacterial classes, suggests that other means of preventing premature folding of secreted

Page 28: Dowdell Dissertation FINAL

22

proteins have evolved. The necessity of these genes in B. burgdorferi is suggested indirectly

through transposon mutagenesis assays; no cells were recovered containing disruption of any of

the above listed components of the Sec translocase (37). This suggests that, in contrast to E. coli,

the SecDFYajC complex is essential in this organism.

After translocation, the preprolipoprotein is anchored at the outer leaflet of the inner

membrane through the hydrophobic region of its N-terminal signal sequence. The

preprolipoprotein is then modified through the addition of diacylglycerol to the thiol group of the

absolutely conserved cysteine by a thioether linkage. This reaction is catalyzed by the inner

membrane protein prolipoprotein diacylglyceryl transferase (Lgt; BB0362), with the

diacylglycerol group derived from phosphatidylglycerol, an abundant membrane phospholipid

(Figure 2) (132). The prolipoprotein is then liberated of its signal peptide through the action of

lipoprotein signal peptidase (Lsp; Signal Peptidase II; BB0469). Lsp cleaves the prolipoprotein

on the N-terminal side of the acylated cysteine, leaving the lipoprotein still embedded in the

membrane through its diacylglycerol modification. It has been shown that cleavage of the signal

sequence peptide is dependent on protein modification by Lgt, possibly due to the action of the

diacylglycerol group in coordinating the Lsp-prolipoprotein interaction (133). E. coli Lsp is

reversibly and noncompetitively inhibited by the cylic peptide antibiotic globomycin, preventing

signal peptide processing and subsequent export of outer membrane lipoproteins (134, 135).

Although data are limited, there is evidence that globomycin similarly inhibits Lsp homologs in

the genus Borrelia, lending support to the notion that lipoprotein biogenesis proteins are highly

conserved in diderm bacteria (136).

Cleaved signal peptides are then digested by an inner membrane protease, though the

identity of this protease is currently unclear. Initally, the atypical serine protease SppA (no

Page 29: Dowdell Dissertation FINAL

23

Figure 1. Sec-dependent translocation of lipoproteins. Secretion of lipoproteins occurs co-translationally through the binding of signal recognition particle (SRP) to the N-terminal hydrophobic signal peptide (121, 129, 130). Translocation occurs through the SecYEG channel and is driven by SecA-catalyzed ATP hydrolysis. Insertion of the lipoprotein’s signal peptide into the inner membrane is mediated by the integral membrane protein YidC, which associates with SecYEG through the SecDFYajC complex. IM = “inner membrane.” LP = “lipoprotein.” SP = “signal peptide.”

Page 30: Dowdell Dissertation FINAL

24

IM SecYEGSecDFYajC YidC

SecA

Ribosome

ATP

ADP

SRP

LP

SP

Page 31: Dowdell Dissertation FINAL

25

homolog in B. burgdorferi) was thought to be responsible for this digestion, as it was shown that

SppA, also called Protease IV, could digest signal peptides in detergent extracts (137). Later

studies instead pointed to RseP (BB0118), a member of the site-2 metalloprotease family I-CLiP,

as the protein responsible for signal peptide degradation (138). RseP also plays a role in the

regulation of the extracytoplasmic stress response through targeted cleavage of RseA (no

homolog in B. burgdorferi), the anti-sigma factor for E. coli σE (139). While sppA is not an

essential gene, rseP (yaeL/ecfE) is only dispensable when rseA is also deleted (140, 141). These

results suggest that the accumulation of cleaved signal peptides may be tied to the bacterial

extracytoplasmic stress response, and that multiple proteins may ultimately be responsible for

degradation of cleaved signal peptides. The rseP gene could be disrupted by transposon

mutagenesis in B. burgdorferi, suggesting that this gene is nonessential for in vitro growth (37).

This is not surprising, as the B. burgdorferi genome does not contain RseP’s cognate RseA nor

does it contain a σE homolog, with only three (rpoD (BB0712), rpoN (BB0450), rpoS (BB0771))

sigma factor genes present in the genome (31, 32, 142). The dispensability of rseP in B.

burgdorferi suggests that this organism possesses other, undiscovered means of degrading

cleaved signal peptides.

The final step of lipoprotein biosynthesis is acylation of the newly liberated amino group

on the N-terminal S-acylated cysteine through an amine bond (143). This is performed by the

inner membrane protein apolipoprotein N-acyltransferase (Lnt; BB0237) using

phosphatidylglycerol as the preferred acyl donor, although other phospholipids can be utilized

(144). This final acylation step is primarily only found in Gram-negative bacteria, although

exceptions do exist (notably, Mycobacterium) (145). Acylation by Lnt is a prerequisite for

release of lipoproteins from the inner membrane, as in depletion of the otherwise-essential Lnt

Page 32: Dowdell Dissertation FINAL

26

protein in E. coli results in lethal retention of Lpp (no homolog in B. burgdorferi) in the inner

membrane (146). Subsequent studies found that deletion of lnt could be tolerated by E. coli only

when both the lipoprotein localization complex LolCDE was overexpressed and either Lpp or

Lpp-peptidoglycan transpeptidases were absent (147). The other genes of lipoprotein

biosynthesis, lgt and lsp, have likewise been found to be essential in E. coli (140). Interestingly,

the gene for lnt is not essential in the Proteobacteria Francisella tularensis and Neisseria

gonorrhoeae (148). The deletion of lnt in these bacteria had no major effects on cell physiology,

suggesting that lipoprotein transport to the outer membrane was not dependent on N-acylation.

The authors of this study suggest that the dispensability of lnt in these bacteria is linked to

expression of a homodimeric, hybrid LolC/LolE protein (termed “LolF”, see next paragraph) and

speculate that bacteria expressing this hybrid protein may not require N-acylation of their

lipoproteins. Regulation of lipoprotein processing could also be a means by which pathogenic

bacteria regulate interactions with their host, a hypothesis which merits further inquiry in future

studies (149). B. burgdorferi contains two distinct genes for LolC and LolE; therefore, it is

believed that all lipoproteins are N-acylated and that this step is required for release of

lipoproteins to the outer membrane. Supporting this are transposon mutagenesis experiments

showing that no mutants could be recovered when lgt, lsp, or lnt were disrupted (37).

Lipoproteins are initially all situated at the outer leaflet of the inner membrane following

the final processing step by Lnt. In order for these proteins to perform their proper biological

function, they must then be sorted to an appropriate destination. In E. coli, most lipoproteins are

either sorted to either the inner leaflet of the outer membrane or retained in the outer leaflet of

the inner membrane, although some exceptions have recently been found (126). Proper sorting

of lipoproteins is key to their biological role in the cell and, indeed, lipoprotein mislocalization

Page 33: Dowdell Dissertation FINAL

27

Figure 2. Post-translational modification of lipoproteins. After Sec-mediated secretion, lipoproteins undergo a sequential series of modifications in which the absolutely conserved N-terminal cysteine residue is lipidated and the N-terminal signal peptide is removed (25, 26, 143, 147). OM = “outer membrane.” IM = “inner membrane.” LP = “lipoprotein.” SP = “signal peptide.”

Page 34: Dowdell Dissertation FINAL

28

IM

OM

LP

SP

Lgt Lsp

LP

SP

LP

Lnt

LP

Page 35: Dowdell Dissertation FINAL

29

can often prove detrimental to bacterial viability. In E. coli, for example, mislocalization of the

major outer membrane lipoprotein Lpp to the inner membrane as a result of lnt deletion is toxic

to the cell due to aberrant peptidoglycan crosslinking (147). Sorting of lipoproteins to the outer

membrane is accomplished by the Lol machinery (25, 26, 121). The Lol sorting machinery is

composed of an inner membrane protein complex of LolCDE, the periplasmic lipoprotein

chaperone LolA, and the outer membrane lipoprotein acceptor LolB. Initially, lipoproteins either

associate with the inner membrane LolCDE complex or “avoid” association with it based on

whether the lipoprotein is destined to sort to the outer membrane or remain in the inner

membrane. In E. coli, discrimination between inner and outer membrane lipoproteins is

achieved through recognition of amino acid residues immediately following the acylated

cysteine. Initially, it was found that an aspartic acid at the “+2” position, where the acylated

cysteine represents “+1”, causes lipoprotein retention in the inner membrane (150). It was later

discovered that the amino acid identity at +3 can also affect inner membrane retention of

lipoproteins in E. coli (151, 152). The mechanism behind this retention has been shown to be

possibly the result of steric and electrostatic interactions of the +2 and +3 amino acids with the

abundant membrane phospholipid phosphatidylethanolamine (153). Similar studies in the

related bacterium Pseudomonas aeruginosa showed that the amino acids at +2/+3/+4 could all

influence lipoprotein sorting in this organism (154, 155). However, in B. burgdorferi results

have shown that retention of inner membrane lipoproteins is not strictly dependent on the amino

acid identities at +2/+3/+4, and the exact logic by which B. burgdorferi retains lipoproteins in the

inner membrane remains unknown (27-30, 156). In E. coli, the complex LolCDE is composed of

the integral inner membrane proteins LolC (BB0078/0079, region originally mis-sequenced in

B31) and LolE (BB0081), as well as a homodimer of the ATPase LolD (BB0080). The

Page 36: Dowdell Dissertation FINAL

30

homodimer of LolD binds two ATP molecules on the cytoplasmic face of the inner membrane,

utilizing ATP hydrolysis to drive the transfer of lipoproteins from the inner membrane to the

periplasmic chaperone LolA through the actions of LolC and LolE (Figure 3) (157). The

proteins LolC and LolE show remarkable similarity to each other; however, despite their

similarity they seem to play distinct roles in the cell (158). Site-directed crosslinking studies

have shown that LolE is responsible for binding lipoproteins at the inner membrane whereas

LolC binds LolA in the periplasm, with ATP hydrolysis driving a conformational change in the

proteins that results in “mouth-to-mouth” transfer of lipoproteins from LolE to LolC and, finally,

to LolA in the periplasm (159, 160). Studies in E. coli have shown that expression of the

LolCDE complex is essential for cell viability, and that disruption of the complex results in the

lethal accumulation of lipoproteins at the inner membrane (161). Likewise, transposon

mutagenesis studies in B. burgdorferi have supported the hypothesis that expression of LolCDE

is necessary for cell survival (37).

The periplasmic chaperone LolA (BB0346) is responsible for transport of lipoproteins

between the inner and outer membranes. Originally termed “p20”, it was first discovered in E.

coli as the factor responsible for the release of soluble Lpp from spheroplasts (162). The solved

crystal structure of LolA revealed that the protein contains a distinct hydrophobic cavity formed

by an 11-stranded, antiparallel β-sheet in an unclosed β-barrel configuration with an α-helical

“lid” (163). This hydrophobic cavity was proposed to contain the insoluble lipid moiety of the

cargo lipoproteins, although to this date to LolA-lipoprotein co-crystals have been achieved. A

subsequent crystallization of the P. aeruginosa revealed that it contains additional hydrophobic

surface patches that, when mutated, reduce or eliminate lipoprotein transport function of LolA

(164). The authors speculate that the surface hydrophobic patches of P. aeruginosa may

Page 37: Dowdell Dissertation FINAL

31

Figure 3. The sorting of lipoproteins via Lol machinery. Lipoproteins, after lipidation of the conserved cysteine residue and cleavage of the signal peptide, are sorted through the inner membrane LolCDE complex, the periplasmic chaperone LolA, and the outer membrane receptor LolB (25, 26, 157, 162, 165). Lipoproteins either interact with the LolCDE complex or avoid the complex based on bacterial species-specific sorting signals as described in the text.

Page 38: Dowdell Dissertation FINAL

32

IM

OM

LP

LolC LolE

LolD LolD

LolA LP

LolB

LP

ATP ADP

Page 39: Dowdell Dissertation FINAL

33

accommodate lipoprotein acyl chains, and that the entire lipid moiety may not be contained

within the central hydrophobic cavity. In E. coli, LolA is essential for the survival of the

bacterium and its depletion results in the toxic buildup of lipoproteins at the inner membrane

(166). In B. burgdorferi, the homolog of LolA appears to be likewise essential for cell viability

(37).

Integration of lipoproteins into the outer membrane is achieved by transfer from LolA to

the outer membrane lipoprotein acceptor LolB (no homolog in B. burgdorferi), which is itself a

lipoprotein (165). Depletion of LolB was lethal for cells and prevented the incorporation of

outer membrane lipoproteins into E. coli total membrane fractions. Further, a soluble form of

LolB was found to be able to accept lipoproteins from LolA in vitro. These results also show

that lipidation of LolB is disensable for transfer of lipoprotein from LolA in vitro. Further

experimentation revealed that soluble periplasmic LolB could compensate for loss of lipidated

LolB in vivo, with the corresponding localization of lipoproteins to the outer membrane (167).

Transient mislocalization of outer membrane lipoproteins to the inner membrane was noted,

though, and showed that soluble LolB incorporated LolA-delivered lipoproteins into cell

membranes indiscriminately. These results show that lipidation of LolB is dispensable for its

function and primarily serves to assist LolB in properly integrating lipoproteins into the outer

membrane. Site-directed crosslinking studies have shown that LolA transfers lipoproteins to

LolB in a “mouth-to-mouth” fashion, wherein the lipid moiety moves from one hydrophobic

cavity to the other while being constantly shielded from the hydrophilic periplasm (160). LolB

has been crystallized in a soluble form and shows distinct structural similarity to LolA, despite a

notable lack of primary sequence homology (163). It too has an unclosed β-barrel structure

composed of 11 antiparallel β-strands and an α-helical lid, with a distinct hydrophobic cavity that

Page 40: Dowdell Dissertation FINAL

34

accepts the lipid group of transported lipoproteins from LolA. However, structural comparison

of crystallized LolA and (soluble) LolB proteins shows that the central cavity of LolB is more

hydrophobic than that of LolA (163). This difference in hydrophobicity results in an irreversible

transfer of lipoproteins from LolA to LolB due to the difference in affinity of the lipid moiety for

the two hydrophobic cavities (168). This allows for an energy-independent transfer of the

lipoprotein cargo, a necessity in the ATP-devoid periplasm. Other structural differences between

LolA and LolB also contribute to their different functions (169). The mechanism by which LolB

releases bound lipoproteins and integrates their lipid moiety into the outer membrane, however,

is currently unknown.

Unlike the other members of the Lol machinery, which are widely conserved in Gram-

negative bacteria, LolB seems to be found only in the β- and γ-proteobacteria (170). This raises

the interesting question of how other bacteria integrate lipoproteins into their outer membrane, as

the insolubility of the lipid modification of lipoproteins implies that some outer membrane

receptor must accept the lipid moiety from LolA. In B. burgdorferi, the abundance of outer

membrane lipoproteins suggests that a functional homolog of LolB exists (27). The identity of

this outer membrane lipoprotein receptor in B. burgdorferi, and whether it can be found in other

bacteria that lack an identifiable lolB gene, is currently under investigation. Studies of soluble

periplasmic LolB in E. coli have shown that it could at least somewhat compensate for the

absence of lipidated, outer membrane LolB in vivo (167). These results suggest that soluble

periplasmic factors can receive lipoproteins from LolA and that future searches for the receptor

of LolA-lipoprotein complexes should not be limited solely to outer membrane proteins.

The majority of lipoproteins in E. coli are localized to the periplasmic face of the outer

membrane or retained at the inner membrane. However, recent evidence suggests that surface

Page 41: Dowdell Dissertation FINAL

35

Figure 4. Alignment of the B. burgdorferi OppA homolog tether sequences. The tether sequences of the five OppA homologs were aligned using the Clustal Omega program using the default settings (173). The OppAIV (BB_B16) tether was defined based on its crystal structure, PDB# 4GL8. Other OppA tethers were extrapolated based on the OppAIV tethers. OppA homologs are annotated using the standard B. burgdorferi genetic locus notation (31, 32).

Page 42: Dowdell Dissertation FINAL

36

Page 43: Dowdell Dissertation FINAL

37

exposure of lipoproteins is a more common phenomenon than once thought. The major outer

membrane lipoprotein Lpp has been known for some time to exist in both a peptidoglycan-bound

form and an unbound form, and it was recently shown that the unbound form spans the periplasm

and is exposed on the bacterial surface (122). This was the first recorded example of a

membrane lipoprotein possessing two distinct cellular localizations. Subsequent studies also

found that the membrane lipoprotein RcsF (no homolog in B. burgdorferi), the sensor protein of

the Rcs envelope stress response system, was also found to adopt a unique bi-localization

phenotype (123, 171). RcsF, after localization to the inner leaflet of the outer membrane, is

“threaded” through the lumen of several β-barrel outer membrane proteins during assembly by

the Bam Complex. This results in RcsF becoming localized on the bacterial surface at its N

terminus, while the C-terminal signaling domain remains in the periplasm. RcsF seems to be able

to utilize different outer membrane proteins, with interactions detected between RcsF and

OmpA, OmpC, and OmpF. Finally, the pathogen Neisseria meningitidis expresses two

noteworthy outer membrane proteins termed surface lipoprotein assembly modulators (Slam; no

homolog in B. burgdorferi) (172). Slam proteins were shown to be responsible for export of the

outer membrane lipoprotein TbpB to the bacterial surface and, when expressed in E. coli, Slam

proteins were sufficient to reconstitute surface lipoprotein secretion. Conservation of Slam

proteins in Proteobacteria genomes was also reported by the authors. Preliminary analysis of the

B. burgdorferi genome shows that it does not contain an identifiable homolog to Slam. Because

of the abundance of surface lipoproteins in B. burgdorferi, it would not be surprising for another

membrane protein to be responsible for export of lipoproteins to the bacterial surface.

Page 44: Dowdell Dissertation FINAL

38

Chapter 3: Previous Research of B. burgdorferi Lipoproteins

Although the E. coli proteins involved in the biosynthesis have identifiable homologs in

B. burgdorferi (with the notable exception of LolB), lipoprotein sorting appears to obey a

completely different set of rules in this spirochete than in Proteobacteria (27-30, 156). Notably,

B. burgdorferi does not follow the above described +2/+3/+4 rule that is present in other

bacteria. A review of previously localized lipoproteins shows that residues in these positions are

highly variable and residues seem to be common between inner membrane, outer membrane sub-

surface, and surface lipoproteins (27-30). It has also been shown that, in contrast to the

functional regions of the protein, the N-terminal region can be highly variable even in

homologous lipoproteins. For example, an alignment of the five OppA homologs in B.

burgdorferi shows significant variability in the +2 through +9 positions, in contrast to the

conservation seen in the C-terminal regions of the proteins (Figure 4). As this N-terminal region

was previously thought to contain the information necessary for lipoprotein sorting, this

variability suggests that other, unknown factors may dictate sorting. Finally, mutagenesis

experiments of the prototypical surface lipoproteins OspA and OspC have shown that, although

deletion or mutagenesis of tether residues C-terminal from the +2/+3/+4 positions can modulate

surface localization of these lipoproteins, their export to the outer membrane remains largely

unaffected through tether mutations (28-30). Currently, it is not well understood why inner

membrane lipoproteins are retained and not exported to the outer membrane, although

interesting, testable hypotheses can be formulated based on existing data.

In contrast to sorting at the inner membrane, surface exposure of outer membrane

lipoproteins has been characterized to a fuller extent. Mutagenesis assays have shown that

alteration of key residues in OspA and OspC, residues in so-called “essential tether” motifs, can

Page 45: Dowdell Dissertation FINAL

39

cause sub-surface retention of an otherwise wild-type protein. In addition, deletion of OspC

tether regions C-terminal of the essential tether can likewise cause subsurface retention of the

lipoprotein. These results suggest that the N terminus of a mature lipoprotein plays a role in

surface localization and that alteration of this sequence can modulate a lipoprotein’s surface

exposure (28-30). In addition, experiments involving fusion of OspA to calmodulin, a protein

whose folding is dependent on the binding of Ca2+, revealed that OspA containing “sub-surface”

tether mutations could be exported to the surface in the context of an unstructured C terminus

(174). In addition, a separate study found that a sub-surface mutant of OspA could be restored to

the bacterial surface through fold-destabilizing mutations at the C terminus, indicating that

lipoprotein secretion through the outer membrane may initiate at the C terminus (29). These

results, taken together, suggest that lipoprotein surface exposure is an interplay between

recognition of an N-terminal export signal and sufficient disorder at the C terminus. It has also

been proposed that the driving force for export of lipoproteins to the surface is the potential

energy gradient of protein folding outside of the cell, and that the N-terminal region is crucial in

binding holding chaperones that prevent premature folding in the periplasm (25). This model

would explain how lipoproteins are exported out of the periplasm in the absence of molecular

energy sources such as ATP, as well as accounting for the retention of surface lipoprotein tether

mutant that show sub-surface, premature folding (29, 174). However, the identity of the putative

holding chaperone, the precise structure-function of the B. burgdorferi Lol homologs, the

identity of a potential outer membrane LolA-lipoprotein complex receptor, and the outer

membrane factors responsible for lipoprotein surface exposure all remain a mystery. Although

evidence exists in E. coli that the outer membrane β-barrel assembly complex Bam can cause

surface localization of lipoproteins by folding outer membrane proteins around them (see RcsF

Page 46: Dowdell Dissertation FINAL

40

in 1.3 The Fundamental Role of B. burgdorferi Lipoproteins, above), there is currently no

evidence to support this function of the Bam complex in B. burgdorferi.

The development of a powerful “toolbox” of genomic and proteomic techniques,

however, has put the field of B. burgdorferi research in a place to finally answer these questions.

Although B. burgdorferi is not nearly as experimentally tractable as the model organism E. coli,

endeavoring investigators have discovered ways to manipulate the bacterium in order to

overcome many of the limitations inherent to the spirochete. B. burgdorferi can be cultured in

vitro to high densities using artificial culture medium, in contrast to certain other spirochetes

such as Treponema pallidum (175-177). B. burgdorferi can also be transformed with foreign

DNA through electroporation, and the development of E. coli-B. burgdorferi shuttle vectors has

facilitated cloning of spirochetal genes (178, 179). Techniques to localize proteins in B.

burgdorferi are well-established and include surface “shaving” using a membrane-impermeable

protease and fractionation of the outer membrane of the cell from the protoplasmic cylinder (180,

181). Analysis of the products of these assays is accomplished by Western Blot using antisera

specific to characteristic proteins (27-30, 156). Finally, it was recently shown that B. burgdorferi

detergent extracts of surface shaving assays are amenable to proteomics analysis by

Multidimensional Protein Identification Technology (MudPIT) (27). This demonstrates that

existing protocols can be applied to emerging, high-throughput technologies to expedite

characterization of the B. burgdorferi proteome.

Page 47: Dowdell Dissertation FINAL

41

Chapter 4: Localization of B. burgdorferi Lipoproteome

(Note: An abridged version of this chapter was published as: Dowdell AS, Murphy MD, Azodi

C, Swanson SK, Florens L, Chen S, Zückert WR. Comprehensive Spatial Analysis of the

Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial

Surface. J Bacteriol. 2017 Feb 28;199(6). pii: e00658-16. doi: 10.1128/JB.00658-16. PubMed

PMID: 28069820)

4.1 Rationale for Study

It has been known for some time that certain proteins are indispensable for infection of

vertebrates by B. burgdorferi (182). For example, the protein OspC is required to establish an

infection in the mouse model of Lyme borreliosis, and the genetic locus containing the antigenic

variation protein VlsE is necessary for persistence in immunocompetent mice (71, 82). It was

also discovered early on that many of these critical proteins are lipoproteins and are

immunogenic in humans (46, 99). Therefore, a significant portion of the past few decades of

research has been focused on the clinical importance of lipoproteins in the prevention and

treatment of Lyme borreliosis (112-114, 117, 118). These efforts yielded the first FDA-

approved, anti-Lyme vaccine (LYMErix) at the end of 1998 (101, 105, 106). This vaccine was

based on immunization against the B. burgdorferi lipoprotein OspA, which is expressed in the

unfed tick prior to influx of the blood meal. However, the vaccine’s perception by the public

was tainted by reports of vaccine-related arthritis and other complications (108, 109). While the

CDC and FDA evaluated all available data and concluded that no correlation exists between the

vaccine and the reported adverse events, the vaccine was nevertheless perceived negatively by

the public and sales declined. In addition, it was found that high anti-OspA titers are required in

Page 48: Dowdell Dissertation FINAL

42

order to prevent B. burgdorferi transmission, further complicating adoption of LYMErix. For

these reasons, the vaccine was voluntarily removed from the market in 2002, just a few years

after its introduction.

Previous research has focused on just a limited subset of lipoproteins, with the focus on

those that have a clear role in pathogenesis or application as a possible vaccinogen. This has left

many lipoproteins under-studied, aside from cursory in silico homology analysis. One

complication to the further study of B. burgdorferi lipoproteins is that, due to their comparatively

degenerate lipobox region, it is difficult to predict lipoproteins based from primary sequence

alone. The “gold standard” for identifying protein lipid modification, the detection of

incorporated [3H]-palmitate into an immunoprecipitated protein, is low-throughput and ideally

requires antisera to the protein of interest (46). As such, study of B. burgdorferi lipoproteins

focused on a handful of “usual suspects” for some time and neglected a potentially large fraction

of the remaining B. burgdorferi proteome.

In 2006, an algorithm was developed specifically for prediction of lipoproteins in

spirochetal genomes. Utilizing experimentally verified lipoproteins as a training set, the SpLip

algorithm identified the putative “lipoproteome” of the B. burgdorferi type strain B31 (23).

Many of the proteins identified as lipoproteins in this study were “under-studied” and lacked the

in-depth characterization that had been performed for other lipoproteins such as OspA. Using

this in silico prediction, our group hypothesized that we could perform an initial characterization

of this putative lipoproteome through localization of each protein to a specific cellular location.

Based on our previous observation that lipoproteins seem to be secreted to the surface by default,

we hypothesized that the majority of lipoproteins would be surface-localized (30). We also

hypothesized that homologous lipoproteins would localize similarly, such as those encoded by

Page 49: Dowdell Dissertation FINAL

43

Figure 5. Plasmid map of the B. burgdorferi lipoprotein expression library vector backbone pSC-LP. pSC-LP is a derivative of the B. burgdorferi-E. coli shuttle vector pBSV2 (29, 179) that drives expression of cloned genes using the B. burgdorferi flaB promoter (PflaB) and provides a C-terminal hexa-histidine tag preceded by a flexible 6-amino-acid linker peptide. Restriction enzyme sites and primer sequences used for amplification and cloning of lipoprotein genes are indicated (see also Table 1 and text).

Page 50: Dowdell Dissertation FINAL

44

Page 51: Dowdell Dissertation FINAL

45

the evolutionarily related cp32 family of plasmids (100, 183). Finally, we hypothesized that,

after localizing the entire lipoproteome, sorting rules for B. burgdorferi could be established

similar to those in Proteobacteria (150, 154).

4.2 Experimental Design

(Note: An unabridged version of experimental protocols can be found in Chapter 5)

4.2.1 Bacterial Strains and Culture Conditions

E. coli strains TOP10 and DH5α (Invitrogen) were used for plasmid cloning and

propagation. E. coli was grown in LB-Miller broth or on LB-Miller agar plates (both from BD

Difco) at 37°C, supplemented with 50 µg/mL kanamycin (Sigma-Aldrich) as necessary. B.

burgdorferi strain B31-e2, a high-passage noninfectious clone of the type strain B31 (95)

(provided by Dr. Brian Stevenson, Univ. of Kentucky, Lexington, KY), was chosen due to its

amenability to transformation and established use in lipoprotein localization assays (28-30).

Additionally, low-passage infectious B. burgdorferi B31-A3 (184) (provided by Dr. Patti Rosa,

NIH/NIAID Rocky Mountain Laboratories, Hamilton, MT) was used for proteomic analysis of

cellular protein fractions by Multidimensional Protein Identification Technology (MudPIT) mass

spectrometry. B31-A3 was confirmed to contain all linear and circular plasmids characteristic of

strain B31 with the exception of lp5, using a set of multiplex-PCR-compatible oligonucleotide

primers (185) (data not shown). B. burgdorferi B31-e2 and B31-A3 were maintained in BSK-II

complete medium at 34°C, containing 300 µg/mL kanamycin as necessary (175, 177). Recovery

of B. burgdorferi transformants was performed using semi-solid BSK-II as described, with plates

incubated at 34°C in a humidified 5% CO2 atmosphere until the development of colonies (175,

177).

Page 52: Dowdell Dissertation FINAL

46

4.2.2 Construction of an epitope-tagged B. burgdorferi lipoprotein expression library

A total of 127 B. burgdorferi type strain B31 lipoproteins were selected for the study

based on the cumulative list of “probable”, “possible” and “false negative” lipoprotein genes

identified by the SpLip algorithm (23) (Table 2); of note, this algorithm-based list omits some

lipoproteins such the variable surface lipoprotein VlsE (81). Genomic DNA from cultured low-

passage infectious B. burgdorferi B31-A3 was isolated (Promega Wizard gDNA Kit), and

lipoprotein genes were amplified by PCR using Phusion HF enzyme (New England Biolabs)

with gene-specific oligonucleotide primers (Integrated DNA Technologies) containing 5’ NdeI

and XmaI restriction site extensions, respectively (Table 1). The resulting PCR amplicons were

digested with NdeI and XmaI and ligated into pSC:LP (Figure 5), a vector backbone derived

from recombinant plasmid pSC1000 (29) by digestion with NdeI and XmaI. pSC1000, a

derivative of the B. burgdorferi-E. coli shuttle vector pBSV2 (179), expresses the lipoprotein

OspA (BBA15) under the constitutive flagellin promoter (PflaB) with a C-terminal his-tag; the

NdeI (CA’TATG) and XmaI (C’CCGGG) sites are within the start codon and the his-tag linker,

respectively. Due to Borrelia DNA being about 70% AT, this approach allowed for the direct

amplification by PCR and in-frame cloning of 115 Borrelia lipoprotein genes. 10 lipoprotein

genes containing internal NdeI sequences were amplified and cloned using a modified forward

PCR primer that produced an amplicon with a 5’ blunt-end compatible with the pSC:LP NdeI

site filled in using Klenow (Figure 5). BB0352 and BBB16 (oppA4) were cloned under their

native promoters, taken to be within about 150 bp upstream of their respective start codons.

Recombinant plasmids were recovered from cultured E. coli transformants using the QIAprep

Spin Kit according to the manufacturer’s instructions (QIAGEN) and screened for the expected

Page 53: Dowdell Dissertation FINAL

47

Table 1. List of oligonucleotide primers used for B. burgdorferi lipoprotein amplification. Oligonucleotide sequences used to amplify and clone lipoprotein genes as described in the text.

Page 54: Dowdell Dissertation FINAL

48

ORF Cloning Primer Fwd Cloning Primer Rev BB_A15 N/A - this is pSC1000 N/A - this is pSC1000 BB_0365 ACCTGCATATGTATAAAAATGGTTTTTTTAA

AAAC ATCAGCCCGGGATTCGTTAACATAGG

TGAAATTTT BB_B19 ACCTGCATATGAAAAAGAATACATTAAGTG

C ATCAGCCCGGGAGGTTTTTTTGGACTT

TCTGC BB_B16 CATGGAGGAATGACATATGAAAATATTGAT

AAAAAAGTTAAAAG ATCAGCCCGGGTTTAATTGGTTTTATT

TCAGATAAATT BB_0328 ACCTGCATATGAAAAAGGAAAATCCCATGA

AATAT ATCAGCCCGGGTTTTTTAGTTTTAATA

TCTTCATATAAAT BB_0329 ACCTGCATATGAAATTACAAAGGTCATTATT

TTTA ATCAGCCCGGGTTTATTTTTTAATTTT

AGCTGAGATA BB_0330 ACCTGCATATGAGCTTTAATAAAACTAAAA

AAATC ATCAGCCCGGGATTATGTTTTGCATTT

TTAATTGG BB_A24 ACCTGCATATGATTAAATGTAATAATAAAA

CTTTT ATCAGCCCGGGGTTATTTTTGCATTTT

TCATCAG BB_A16 GGAGGAATGACATATGAGATTATT CCCCGGGTTTTAAAGCGTT BB_P38 TGAATAAGAAAATGAAAATGTTTAT ATCAGCCCGGGTTTTAAATTTCTTTTA

AGCTCTTC BB_J09 ACCTGCATATGAAAAAATTAATAAAAATAC

TACTG ATCAGCCCGGGAGTATTTAACAAGGC

CACAAC BB_R42 ACCTGCATATGAATAAAAAAATAAAAATGT

TTATT ATCAGCCCGGGTTCTTTTTTACCTTCT

ACAGTTTC BB_S41 ACCTGCATATGAATAAGAAAATGAAAAATT

TAAT ATCAGCCCGGGTTTTTTATCTTCTATA

TTTTGAGG BB_B08 ACCTGCATATGAAAAAAAAGTTTAATTTTAT

TTTTC ATCAGCCCGGGTTGTAAAAATTTTTCA

ATTGC BB_0028 ACCTGCATATGAAACAAAAATACGAAAAC ATCAGCCCGGGTTCTTTAGTTAATTTT

CTGTTTTC BB_0689 ACCTGCATATGAAAAAATTGATTATAATTTT

TAC ATCAGCCCGGGATTCTTATATTTTCTT

TTTCCAA BB_0840 ACCTGCATATGAAGAATATTAATAGATTAA

TATTATT ATCAGCCCGGGACTTCCTGAGCACCA

G BB_B27 ACCTGCATATGAAGAAGTTTTTAATATCCG ATCAGCCCGGGAGTTAAAAACTTTTT

GAGTATATAT BB_0324 ACCTGCATATGAAAAAGCTAATATTACTAA

AC ATCAGCCCGGGTTTTTTATTATTTTCT

ATTTTATTTAAT BB_0832 ACCTGCATATGTTAAAAACATTAACAAAAA

TA ATCAGCCCGGGGGTTTGAATATTTGA

AGCTAG BB_0144 ACCTGCATATGTATAAATTATTTTTATTTTTT

ATTAT ATCAGCCCGGGATCAAATAAGGTCTT

ATATTTTTC BB_0382 ACCTGCATATGAGAATTGTAATTTTTATATT

CG ATCAGCCCGGGTAACTTTAATATTTGT

TTTATAAAAAT BB_0628 ACCTGCATATGAGAAAGTGTTTTGTTAG ATCAGCCCGGGATAAACTAATCTAAG

TTTTATTGG BB_0141 ACCTGCATATGAATTTGATTTTTAATATTAA

TTTAT ATCAGCCCGGGAATATTGCTTTCGGCT

G BB_B25 ACCTGCATATGAAATACTGTTTTTCTTTG ATCAGCCCGGGTAAAATTTTGTTTTTA

AATGCAT BB_0542 ACCTGCATATGGATAATTTAAATAGTATAA

ATAGT ATCAGCCCGGGACTCTTAAGAATAGA

AGAAAC BB_0227 ACCTGCATATGCTAAATCCAAGAACAA ATCAGCCCGGGTTTTACAAATTGTGCT

ATTTC

Page 55: Dowdell Dissertation FINAL

49

BB_0460 ACCTGCATATGAAAACTAGAATAATCATTTTTC

ATCAGCCCGGGAGACTGAGAGTGAAGG

BB_0298 ACCTGCATATGAAAATTTTGTGGTTAATAA ATCAGCCCGGGCTTCAAATTACTCATGATCC

BB_0215 ACCTGCATATGAAAAAAGTTATTATCTTAATTTT

ATCAGCCCGGGTGTTTTTATCCCTAAAAAGC

BB_0385 ACCTGCATATGTATTATGAGATCTATTTTTTG

ATCAGCCCGGGATTTTCCATTTGCAAAACA

BB_0323 TGAATATAAAGAATAAATTAATATCGC ATCAGCCCGGGTTTGGCAGGAATTATTATCTTC

BB_0664 ATAATCATATGTTACATAATACAATGC ATCAGCCCGGGTTGGGCTTTGATTTCTTG

BB_0398 ACCTGCATATGAATCTATTGGTCAAAATTG ATCAGCCCGGGTTTTTTACCTAAATACACGC

BB_0155 ACCTGCATATGAAAAAACACTATAAAGCTC ATCAGCCCGGGTAATTTTAATAATGCATTTAAATTCC

BB_0384 ACCTGCATATGTTTAAAAGATTTATTTTTATTAC

ATCAGCCCGGGTAACTTTGATTTAAATAAATCAAATG

BB_0158 ACCTGCATATGGTATTTAGAACATATAAAC ATCAGCCCGGGTATATCTTCAAATAAATCTCCAG

BB_0806 TGAAATTTGTTTTGAATAATTTATTTAAAG ATCAGCCCGGGTAACTGTTTTTTAATATTTTCATC

BB_0758 ACCTGCATATGCTGCAAAAAAGTATGG ATCAGCCCGGGATTGATAACTATTTTTTGAGG

BB_0844 ACCTGCATATGAAAAAAAAAAATTTATCAATTTAC

ATCAGCCCGGGTTTACTCGTCTCTAAAAAATC

BB_0193 ACCTGCATATGTCTGGCCCTAAAAAAC ATCAGCCCGGGTTGTTTATAAATGTTAAATTCATATTG

BB_0823 ACCTGCATATGAATACAAAAACATTATATTTAATA

ATCAGCCCGGGTTTAGAATGATCAATTATTAAATTG

BB_0652 ACCTGCATATGAAAAAAGGATCTAAGC ATCAGCCCGGGATTACTCTTTGCATATTTTGAAC

BB_0536 GGAGGAATGACATATGAATTATCAAAG TGAGCCCCCGGGTTCAGGTATTAG BB_0224 ACCTGCATATGCCTGGAAGAAAGG ATCAGCCCGGGATTGTATTGGTAATTA

AAGCA BB_0475 ACCTGCATATGATGAAAGCTCAAAAATTTA ATCAGCCCGGGTTGTTTTTCAAAAATG

TATAATG BB_0213 ACCTGCATATGCAGAGCGGATTAAA ATCAGCCCGGGGCCAACTTTAAAAAA

AAGATT BB_0171 ACCTGCATATGGGACGAAACTTTTTAG ATCAGCCCGGGCCAATCTTCTTTTGGA

ACAG BB_0456 ACCTGCATATGAAGCAAAAATTAAGTTG ATCAGCCCGGGAATTCCAGGCGATAA

AAC BB_0352 ACCTGCATATGAATAATTTTATGAGAATAA

AAAAT ATCAGCCCGGGATTTTTATTTTTTTTT

AGATTATTAGC BB_B09 ACCTGCATATGAAATACCTTAAAAACATTTC ATCAGCCCGGGAAATTTATGCCTACTT

GATTG BB_A62 ACCTGCATATGACAAAATTAATGTACGC ATCAGCCCGGGCTTTTTCATTGACTTT

GTC BB_A57 ACCTGCATATGAACGGCAAGCTTAG ATCAGCCCGGGTTGATAATTTTTTTCT

ACCAATAA BB_A33 ACCTGCATATGAAGAGATATATTTATGTATA

TATC ATCAGCCCGGGTTTTTGAATTAGTGCT

AAAGC BB_A34 ACCTGCATATGATAATAAAAAAAAGAGGAC ATCAGCCCGGGTTCTTCTATAGGTTTT

ATTTCTG

Page 56: Dowdell Dissertation FINAL

50

BB_A05 ACCTGCATATGAATAAAATAGGAATTGCAT ATCAGCCCGGGACGCCTGCTAATCTCTTTTA

BB_A59 ACCTGCATATGGTTAAAAAAATAATATTTATTTC

ATCAGCCCGGGATTGCTCTGCTCACTCTC

BB_A69 ACCTGCATATGAAAAAAGCCAAACTAAATAT

ATCAGCCCGGGATAAAAGGCAGATTGTAAAG

BB_A04 ACCTGCATATGAAAAGAGTCATTGTATCC ATCAGCCCGGGGTTAATTAACGAATTAAATGC

BB_A64 ACCTGCATATGAAGGATAACATTTTGAAA ATCAGCCCGGGCTGAATTGGAGCAAGAATA

BB_A07 ACCTGCATATGTGTGGGAGACGTATG ATCAGCCCGGGAAACGAAGCAGATGCATC

BB_A68 ACCTGCATATGAAAAAAGCCAAACTAAATAT

ATCAGCCCGGGGTAAAAGGCAGGTTTTAAAG

BB_A36 ACCTGCATATGATGCAAAGGATAAGTATT ATCAGCCCGGGAACATTTCCATAATTTTTCAAA

BB_A65 ACCTGCATATGAATAAAATAAAATTATCAATATTAAT

ATCAGCCCGGGATTATTATTAAATTTAAATAATGTGTC

BB_A32 ACCTGCATATGAGAATTACCGGTCTTC ATCAGCCCGGGAAGCTTTCTGTTTCTACG

BB_A03 ACCTGCATATGAAAAAAACGATTATTGTATT

ATCAGCCCGGGTATAGTGTCTTTAAGTTTATTAAGT

BB_A72 ACCTGCATATGCATAAGGAGAGTGTT ATCAGCCCGGGTTCATTTTTCTGATCTTTTAAC

BB_A14 ACCTGCATATGCAAATTAAAAATTTCCCC ATCAGCCCGGGAGGTATATTTTTTGAGTATTTTTTG

BB_P28 ACCTGCATATGAAAATCATCAACATATTATT ATCAGCCCGGGGGACCCATTGCCGCAG

BB_P39 ACCTGCATATGAATAAAAAAACAATTATTATTTG

ATCAGCCCGGGATCTTCTTCATCATAATTATCC

BB_P27 TGAGAAATAAAAACATATTTAAATT ATCAGCCCGGGATTAGTGCCCTCTTCGAG

BB_S30 ACCTGCATATGAAAATCATCAACATATTATTT

ATCAGCCCGGGGCCACCATTATTGCAGTT

BB_R40 ACCTGCATATGAATAAGAAAATGAAAAATTTA

ATCAGCCCGGGGCCAATACTTTGCTCATC

BB_R28 ACCTGCATATGAAAATTATCAACATATTATTTTG

ATCAGCCCGGGTGAATTTTTGCACGTACTAC

BB_M38 ACCTGCATATGGAGCAACTTATGAATAAG ATCAGCCCGGGTTCTTTTTTATTAGAATCTTTAGAT

BB_M28 ACCTGCATATGAAAATCATCAACATATTATT ATCAGCCCGGGGGAACCACCATTGTTGC

BB_M27 TGAGAAATAAAAACATATTTAAATT ATCAGCCCGGGATTAGTGCCCTCTTCGAG

BB_O39 ACCTGCATATGAATAAGAAAATGAAAATGTT

ATCAGCCCGGGTTCTTTTTTATCTTCTTCTATTC

BB_O40 ACCTGCATATGAATAAAAAAATATTGATTATTTTTG

ATCAGCCCGGGATATGAATTACTATCCTCAATG

BB_O28 ACCTGCATATGAAAATTATCAACATATTATTTTG

ATCAGCCCGGGATTGCAGGTAGCAGTTGC

BB_L39 TGGAGAAATTTATGAATAAGAA ATCAGCCCGGGTTTTAAATTTCTTTTAAGCTCTTC

BB_L40 ACCTGCATATGAATAAAAAAACAATTATTATTTG

ATCAGCCCGGGATCTTCTTCATCATAATTATCC

Page 57: Dowdell Dissertation FINAL

51

BB_L28 ACCTGCATATGAAAATCATCAACATATTATT ATCAGCCCGGGGGAACCGTTGCATGTAG

BB_N38 TGAATAAGAAAATGAAAATGTT ATCAGCCCGGGTTTTAAATTTTTTTTAAGCACTTC

BB_N39 ACCTGCATATGAATAAAAAAACATTGATTATT

ATCAGCCCGGGCTGACTGTCACTGATGTATC

BB_N28 ACCTGCATATGAAAATTATCAACATATTATTTTG

ATCAGCCCGGGTTGCTGAGCTTGGCAG

BB_C10 ACCTGCATATGCAAAAAATAAACATAGC ATCAGCCCGGGATCTTCTTCAAGATATTTTATTATAC

BB_D10 ACCTGCATATGAATTCAAAATTTATTTTAAAG

ATCAGCCCGGGACTGCCACCAAGTAATTTAAC

BB_E08 ACCTGCATATGCAAAAAAATGTTTATTG ATCAGCCCGGGTAAAACAAAATTTGATAAGCA

BB_E31 TGAAATACCATATAATCGTAAG ATCAGCCCGGGAAGGTTGCTTATTGACAA

BB_E04 ACCTGCATATGAAAAACCCCAAATCAA ATCAGCCCGGGATTTTGGTTATTTTCTGGA

BB_F20 ACCTGCATATGAACAAAAAATTTTCTATTTC ATCAGCCCGGGGTTGCTTTTGCAATATGAA

BB_F01 ACCTGCATATGAAATTATTAAAAATATTTATGTGTG

ATCAGCCCGGGACTTAAACCCTTTACACTT

BB_G25 ACCTGCATATGAAAAATTTAAAGACAAAAATT

ATCAGCCCGGGTCTTCTGCTGTATTTTTTG

BB_G01 ACCTGCATATGAGAAAAAGTTTGTTTTTAT ATCAGCCCGGGTTTTTTATTGAGACTTTCTAAAAC

BB_H18 GAGGAATGACATATGAAAATGAAGG TGAGCCCCCGGGTAGGCTAATACC BB_H32 ACCTGCATATGAAATATAATACGATTATAA

GC ATCAGCCCGGGAAGGGTATATATTAA

AATTATCTCG BB_H06 ACCTGCATATGAAAAAAAGTTTTTTATCAAT ATCAGCCCGGGTAATAAAGTTTGCTT

AATAGCT BB_H01 ACCTGCATATGAACAAATTATTGATATTCAT ATCAGCCCGGGGTAATAATGGTTGAA

CGTG BB_H37 ACCTGCATATGATTAAGGGAAAGGAGAG ATCAGCCCGGGAGACTTACTTAAAGC

ATTTTTTG BB_I28 ACCTGCATATGAAATGCCATATAATTGC ATCAGCCCGGGAATCCGACAGATCTG

G BB_I16 ACCTGCATATGAAATACCACATAATTACA ATCAGCCCGGGAAGTTTATATTTTGAC

ACTATAAG BB_I42 ACCTGCATATGAGGATTTTGGTTGG ATCAGCCCGGGTGTAGGTAAAATAGG

AACTG BB_I36 ACCTGCATATGAAAAACTTTAAATTAAATA

CTATT ATCAGCCCGGGATCAGCTTGATCTAG

TAGAT BB_I38 ACCTGCATATGAAAAACTTTAAATTAAATA

CTATT ATCAGCCCGGGATCAGCTTGATCTAG

TAGAT BB_I39 ACCTGCATATGAAAAACTTTAAATTAAATA

TTATTAA ATCAGCCCGGGATCAGCTTGGTTTAGT

AG BB_I14 ACCTGCATATGAAAAACAAAATAATTTTAT

G ATCAGCCCGGGGTTTTTTATTTTATCA

GCATG BB_I29 ACCTGCATATGAAAAACAACATAATTTTAT

G ATCAGCCCGGGATTCGGCAGTGATAA

TATG BB_K50 ACCTGCATATGAATTTAATAATTAAAGTGAT

GTTG ATCAGCCCGGGTCTAGAGTCCATATCT

TGC BB_K07 ACCTGCATATGAGTAAACTAATATTGGC ATCAGCCCGGGATTATTAAAGCACAA

ATGTATG

Page 58: Dowdell Dissertation FINAL

52

BB_K12 ACCTGCATATGAGTAAACTAATATTGGC ATCAGCCCGGGGCTTAAAGTTGTCAATGTT

BB_K48 ACCTGCATATGAATTTAATTAATAAATTATTTATTCTA

ATCAGCCCGGGTCTAGAGTCCATATCTTGC

BB_K19 ACCTGCATATGAAAAAATATATTATCAATTTAAGT

ATCAGCCCGGGATTGTTAGGTTTTTCTTTTCC

BB_K53 ACCTGCATATGAGGATTTTGGTTGG ATCAGCCCGGGTGTAGGTAAAATAGAAACTGG

BB_K52 ACCTGCATATGAAAAAGAACATATATATTTTG

ATCAGCCCGGGTTCATCAGTAAAAAGTTTTAATT

BB_K32 ACCTGCATATGAAAAAAGTTAAAAGTAAATATTTG

ATCAGCCCGGGGTACCAAACGCCATTCTTG

BB_K01 ACCTGCATATGAGAAAAAGTTTGTTTTTAT ATCAGCCCGGGTTTTTTATTGAGACTTTCTAAAAC

BB_J36 ACCTGCATATGAAAAGGAAAAGCAATATATG

ATCAGCCCGGGAAGCGCAACTTTTTTATAAAC

BB_J34 ACCTGCATATGATAAAAGGCAATACGT ATCAGCCCGGGTTTATCTTTATTTTTAGGCTTAAC

BB_J41 ACCTGCATATGAAAAACCTTAAATTAAATATTATT

ATCAGCCCGGGATCAGCTTGGTTTAGTAGAT

BB_J01 ACCTGCATATGAAATACCATATAATCGTAAG

ATCAGCCCGGGTCCTGCACTAGCTGTTTC

BB_J47 TGAGGAATATTAGCAATTGTATC ATCAGCCCGGGGTAAGAACTATTCTCCTTTTC

BB_Q46 ACCTGCATATGATTAAAAATGTAATTTATATTTTAC

ATCAGCCCGGGTCCTACAATCCAAATTTTG

BB_Q05 TGAAATACTATATATGTGTGT ATCAGCCCGGGAAGGTTACTTATTGAAAATATCTG

BB_Q03 ACCTGCATATGAGGATTTTGGTTGG ATCAGCCCGGGTAAAATTTTTCCATTAATTGTATTT

BB_Q47 ACCTGCATATGAATAAAAAAATGAAAATATTTATT

ATCAGCCCGGGCTGACTGTAACTGATGTATC

BB_Q35 ACCTGCATATGAAAATCATCAACATATTATT ATCAGCCCGGGGTTTTGCCAATTAGCTG

BB_Q89 ACCTGCATATGAACAAATTATTGATATTCAT ATCAGCCCGGGGTAATAATGGTTGAACGTG

N/A CCCAGGCTTTACACTTTATGC GGCCTCTTCGCTATTACGC

Page 59: Dowdell Dissertation FINAL

53

insert by PCR using Taq polymerase and a primer pair complementary to pSC:LP sequences 5’

of the NdeI site and 3’ of the XmaI site, respectively (pSCreen-fwd, 5’-

AAGGATTTGCCAAAGTCAG-3’; pSCreen-rev, 5’-GTAAAACGACGGCCAG-3’)(Figure 5

and Table 1). PCR-positive clones were sequenced to verify the expected insert sequence

(ACGT; Eton Bioscience). E. coli clones harboring the verified recombinant plasmids were

stored in LB containing 15% (v/v) glycerol at -80°C.

Next, B. burgdorferi B31-e2 were transformed with the verified plasmids by

electroporation (178), cloned by plating in semi-solid BSK-II and expanded in liquid BSK-II as

described (30). Cultures of putative transformants were screened by both PCR using gene-

specific primers (see Table 1) and by Western Blot of whole cell lysates with the HisProbe-HRP

reagent (Thermo Fisher) according to the manufacturer’s instructions. Clones that expressed

epitope-tagged protein were then expanded in BSK-II and used in subsequent assays. Verified B.

burgdorferi clones were stored in BSK-II containing 10% (v/v) DMSO at -80°C (177).

4.2.3 Surface proteolysis of intact B. burgdorferi spirochetes

Proteolytic shaving of intact spirochetes with proteinase K was performed as described (28-30,

180), with minor modifications. Treatment of cells with Pronase (Roche) followed previously

published protocols (186, 187) but used the manufacturer’s currently recommended reaction

conditions (Roche# 10165921001, Version 07). Briefly, cells were grown at 34˚C to late-

logarithmic phase in BSK-II and harvested by centrifugation at room temperature using a

centrifugal force not exceeding 3,000 x g using a Sorvall Legend RT centrifuge. Cells were then

washed once by resuspension in sterile, room temperature Dulbecco’s phosphate buffered saline

(dPBS) containing 5mM MgCl2 (dPBS+Mg) and re-pelleted. Cells were then resuspended in

Page 60: Dowdell Dissertation FINAL

54

dPBS+Mg with either dH2O (mock), proteinase K (Invitrogen, 200 µg/mL final concentration) or

Pronase (Roche Life Sciences, 1 mg/mL final concentration). Proteinase K-containing samples

and respective controls were incubated for 1 hour at room temperature, and reactions were

stopped after 1 hour by addition of PMSF to a final concentration of 5mM (188, 189). Pronase-

containing samples and respective controls were incubated for two hours at 37°C, and reactions

were stopped by addition of EDTA, PMSF, and Pefabloc SC to 1mM, 0.2mM, and 0.8mM final

concentrations, respectively. Subsequently, cells were pelleted by microcentrifugation,

resuspended in SDS-PAGE sample buffer containing 50mM dithiothreitol (DTT; final

concentration), boiled for 5 minutes and stored at -20°C until analysis by SDS-PAGE (190).

4.2.4 Isolation of B. burgdorferi OM Vesicles (OMVs)

OMVs from spirochetes were isolated as previously described (28-30, 181). Briefly, cells were

grown to early exponential phase, harvested, and washed with dPBS containing 0.1% (w/v)

bovine serum albumin. Cells were then resuspended in 25mM sodium citrate, pH 3.2 containing

0.1% (w/v) bovine serum albumin (BSA) (citrate buffer+BSA). Cell suspensions were shaken

for two hours at room temperature in a New Brunswick C24 incubator at 250 rpm to release

OMVs, at which point the cell suspension was harvested, resuspended in citrate buffer+BSA, and

loaded onto a discontinuous 56/42/25% (w/w) sucrose gradient in citrate buffer without BSA.

Cell suspensions were centrifuged at 100,000 x g for 18 hours at 4°C in a Beckman-Coulter

XPN-80 ultracentrifuge using a SW 32 Ti rotor and Beckman UltraClear tubes, and the resulting

upper (OMV) bands and lower (protoplasmic cylinder, PC) bands were separated by needle

aspiration. Fractions were diluted in cold dPBS, re-pelleted separately, and then resuspended in

dPBS containing 1mM PMSF. A portion of the resuspended fractions was used to prepare SDS-

Page 61: Dowdell Dissertation FINAL

55

Table 2. B. burgdorferi lipoproteome localization data. Localization data from the current study were reconciled with previously published data and genome-wide studies of in vivo gene expression, protein immunogenicity and requirement for in vitro growth. Column 1 lists the assayed lipoproteins by ORF (open reading frame) nomenclature (31, 32); ORFs that were identical in mature sequence to other analyzed ORFs are marked with an asterisk (*)(see Fig. 6 and text). Column 2 lists common protein names used in the literature. Column 3 states the determined consensus localization of the assayed lipoproteins, as described in the text. S, surface; P-OM, periplasmic-outer membrane; P-IM, periplasmic-inner membrane; nd, not detected. Column 4 lists the determined localization of the C-terminally His-tagged proteins (Figs. 6, 7 and 8). Localizations followed with a dot (•) indicate that the His-tagged protein was resistant to proteinase K (Fig. 6), but not pronase (Fig. 8). Column 5 lists the dNSAF ratio (dNSAF pK–/dNSAF pK+) determined by MudPIT analysis (see text). nd, not detected. ∞, infinite value due to lack of detection of any peptides after pK treatment, i.e., division by 0. Column 6 lists the previously determined and published lipoprotein localization along with the PubMed ID (PMID) of the associated publication. Columns 7 and 8 list the predicted and observed molecular masses (in kilodalton, kDa) of each protein. nd, not detected. Column 9 lists the paralogous family with key member and number according to Casjens et al. (31). Column 10 lists the observed in vivo expression pattern according to Iyer et al (19). Transcripts that showed significant elevation in the fed larval stage relative to at least one other stage were classified as important for tick acquisition (TA) or tick persistence (TP), as these genes were up-regulated in the transition from infected mice to naïve larvae. Transcripts that showed significant elevation in the fed nymph stage relative to at least one other stage were associated with vertebrate transmission (VT), based on their apparent importance for the spirochete’s passage from the feeding nymph to the naïve mouse. Finally, transcripts that were significantly elevated in dialysis membrane chambers (DMCs) relative to at least one other stage were considered necessary for vertebrate persistence(VP), given their induction in a quasi-steady state mammalian environment. Column 11 lists protein immunogenicity as determined by Barbour et al. (99). A Microsoft Excel version of this table is available upon request.

Page 62: Dowdell Dissertation FINAL

56

Page 63: Dowdell Dissertation FINAL

57

Page 64: Dowdell Dissertation FINAL

58

Page 65: Dowdell Dissertation FINAL

59

Page 66: Dowdell Dissertation FINAL

60

PAGE samples and stored at -20°C after boiling. The remainder of the sample was stored at -

80°C for later analysis.

4.2.5 SDS-PAGE analysis and immunoblotting

SDS-PAGE analysis and immunoblotting was performed as described (28-30). Protein

samples were prepared as described above and separated using a 12% SDS-polyacrylamide gel

(Bio-Rad). After transfer, gels were either Coomassie-stained for total protein (EZ-RUN Protein

Gel Staining Solution, Fisher) or were transferred to nitrocellulose membranes (Amersham, GE

Healthcare) using a Trans Blot SD apparatus (Bio-Rad). Membranes were then blocked post-

transfer with either 5% (w/v) nonfat dry milk or 2.5% (w/v) BSA and probed with mouse anti-

FlaB (H9724 (191); 1:300 dilution), mouse anti-OspA (H5332 (45); 1:1,000), rabbit polyclonal

anti-OppAIV ((34); 1:1,500) , or the HisProbe-HRP reagent according to the manufacturer’s

instructions. H9724 and H5332 antibodies were a gift from Dr. Alan Barbour (Univ. of

California at Irvine, CA), and anti-OppAIV antibody was generously provided by Dr. Patricia

Rosa (NIH/NIAID Rocky Mountain Laboratories, Hamilton, MT). Blots were treated with

corresponding AP-conjugated secondary antibodies (Sigma-Aldrich Cat. No’s A3562, A3687,

1:30,000) and developed using LumiPhos (Thermo Fisher, now discontinued) or Immun-Star AP

(Bio-Rad). Blots probed with HisProbe-HRP reagent were developed with SuperSignal West

Dura reagent (Thermo Fisher). Signals were detected and captured using a Fujifilm LAS-4000

CCD imager and further processed with Adobe Photoshop CS6.

4.2.6 Analysis of protein fractions by Multidimensional Protein Identification Technology

(MudPIT)

Page 67: Dowdell Dissertation FINAL

61

Localization of lipoproteins endogenously expressed under standard culture conditions

was determined using multidimensional protein identification technology (MudPIT) mass

spectrometry (192). B. burgdorferi B31-A3 cells were subjected to surface proteolysis with

proteinase K as described above. Membrane-associated proteins were then enriched by

overnight extraction of the mock and proteinase K-treated samples with Triton X-114 as

described (186). The washed detergent extracts were then precipitated overnight using acetone

(80% v/v), resuspended in 0.1M Tris-HCl, pH 8.5, and precipitated again overnight using TCA

(20% v/v). The addition of acetone precipitation was in the protocol was necessary to effectively

remove detergent prior to analysis by MudPIT. Two biological replicates of the resulting

desiccated, frozen protein samples were then submitted for MudPIT analysis (Proteomics Center,

Stowers Institute for Medical Research; Kansas City, MO). Resuspended protein samples were

digested with endoproteinases Lys-C (Roche) and Trypsin (Promega) at 0.1 µg/µL final, each.

The protease-digested samples were then analyzed by MudPIT on an LTQ linear ion trap

(Thermo Scientific) coupled to a Quarternary Agilent 1100 series HPLC (193). Protein content

in mock control vs. proteinase K-treated whole cell protein preparations were analyzed by

comparison of the average dNSAF (distributed normalized spectral abundance factor) for each

unique protein, which correlates directly with the relative abundance of a particular protein in the

sample (194). A dNSAF ratio of control vs. protease-treated sample (dNSAF–pK/dNSAF+pK) was

calculated for each detected protein. Theoretically, a ratio of 1 indicates that the protein is as

abundant after surface proteolysis as before, i.e., not susceptible to proteinase K due to either

periplasmic localization or intrinsic resistance to protease. Conversely, a ratio greater than 1

indicates that a protein is less abundant after proteolytic shaving, i.e., surface exposed.

Page 68: Dowdell Dissertation FINAL

62

4.3 Experimental Results

4.3.1 Generation of an epitope-tagged lipoprotein expression library in B. burgdorferi

Our long-standing interest in understanding the biogenesis of spirochetal envelopes,

particularly the sorting mechanisms for the numerous and abundant B. burgdorferi lipoproteins

(25, 28-30, 156, 174, 195, 196), has been continually thwarted by the quite limited and biased

data set of characterized lipoproteins. As shown in Table 2, 49 B. burgdorferi lipoproteins have

been localized independently to date, with over two thirds of them found on the bacterial surface.

We therefore set out to comprehensively localize the published list of proteins that are predicted

to make up the B. burgdorferi lipoproteome (23). This list was compiled by training a computer

algorithm (SpLip) on a set of spirochete proteins that had been experimentally verified to be

lipidated, and then using that trained algorithm to scan the published genome of B. burgdorferi

B31 (31, 32). A total of 127 putative open reading frames (ORFs) were annotated as “probable,”

“possible,” or “false negative” lipoproteins (23). These 127 ORFs were used as our “working

lipoproteome” for the creation of a C-terminally histidine-tagged expression library. This

approach allowed us to use a single commercial blotting reagent (HisProbe-HRP) to probe the

entire lipoprotein library, bypassing the need to generate individual and validated lipoprotein-

specific antibodies.

B. burgdorferi B31-e2 clones expressing each individual epitope-tagged lipoprotein were

obtained as described above. Of the 127 lipoproteins that were to be cloned, three (BB0536,

BB0652 (SecD), and BBQ46.) showed no expression of his-tagged protein in multiple B.

burgdorferi clones; all clones contained the respective recombinant plasmid when assayed by

PCR and DNA sequencing, indicating that the lack of expression was not due to absence of

plasmid or mutation of the promoter or coding sequence. These three ORFs were not pursued

Page 69: Dowdell Dissertation FINAL

63

Figure 6. Surface proteolysis of B. burgdorferi strains expressing a his-tagged lipoprotein library using Proteinase K. Intact cells expressing the his-tagged lipoprotein were treated with Proteinase K or mock-treated as described in the text. Cell lysates were then separated by SDS-PAGE, transferred to nitrocellulose, and analyzed by Western Blotting using anti-OspA or anti-FlaB mouse MAbs, or HisProbe-HRP reagent. Lipoproteins are organized according to open reading frame (ORF) nomenclature (31, 32), with the common name of the protein listed if applicable (Table 2). pK–, untreated mock control; pK+: proteinase K-treated sample. Red parentheses flanking the ORF designation indicate the determined lipoprotein localization as follows: ))ORF, surface; (ORF), periplasmic. A red dot (•) indicates proteins where the consensus localization was ultimately changed to the periplasm [•))] or surface [))•] due to independent data or follow-up pronase digestion (Figure 8A). Determined molecular weights of the his-tagged proteins are indicated in Table 2.

Page 70: Dowdell Dissertation FINAL

64

Page 71: Dowdell Dissertation FINAL

65

further. In addition, four pairs of lipoproteins were found to be 100% identical in their mature,

processed sequences when analyzed by sequence alignment (T-COFFEE;

http://www.tcoffee.org/) (197): BBP38 (ErpA) and BBL39 (ErpN), BBP39 (ErpB) and BBL40

(ErpO), BBP27 (RevA) and BBM27 (RevA), as well as BBH01 and BBQ89. As it is all but

certain that proteins with identical primary sequences localize identically (25), each of these

pairs is represented by a single member (the first ORF listed of the pair). This resulted in an

assayed dataset of 120 unique lipoproteins covering 124 members (or 98%) of the predicted B.

burgdorferi lipoproteome.

4.3.2 Initial assignment of lipoproteins to the bacterial surface based on proteinase K

accessibility

We used an established and validated stepwise experimental protocol to individually

localize each epitope-tagged lipoprotein within the spirochetal cell envelope. As described, we

first subjected each recombinant B. burgdorferi clone to in situ surface proteolysis (or

“proteolytic shaving”) with proteinase K, a membrane impermeable, nonspecific protease that

selectively digests surface lipoproteins in the context of an intact OM (28-30). Surface

lipoprotein OspA was used as a positive control as it is readily degraded by proteinase K under

the assay conditions. Conversely, the periplasmic flagellar protein FlaB was used as a negative

control to ascertain OM integrity of the assayed cells. The His-tag epitope was used to assess the

sensitivity of the tagged lipoprotein to Proteinase K, assuming that the localization of the C-

terminal his-tag mirrors that of the lipoprotein itself. Of note, C-terminal processing of secreted

proteins in B. burgdorferi is rather specific and limited to a small set of proteins (198, 199), and

C-terminal tags are not known to alter lipoprotein localization (29, 200). Lipoproteins that lost

Page 72: Dowdell Dissertation FINAL

66

the his-tag signal upon proteolysis were considered to be surface-exposed (S), whereas

lipoproteins that showed no loss in signal relative to the controls were considered to localize to

the periplasmic (P) face of the OM (OM) or inner membrane (IM). Compiled Western blot

results for each of the assayed lipoproteins are shown in Figure 6, organized by ascending ORF

nomenclature. Of the 124 lipoproteins covered by the analysis, were classified as surface-

exposed, while 41 were considered to localize to the periplasm. Interestingly, a subset of

lipoproteins exemplified by the Mlp protein family showed only partial degradation of the his-

tag after proteinase K treatment (Figure 6). This could indicate that only fractions of these

lipoproteins are exported to the surface. Alternatively, it could reflect the lipoproteins’ native

folding, which may render their C termini less accessible to protease in the context of the

spirochetal envelope.

4.3.3 Initial assignment of periplasmic lipoproteins to the outer or inner membrane by

membrane fractionation

Recombinant B. burgdorferi clones that expressed epitope-tagged lipoproteins protected

from surface proteolysis with proteinase K were subjected to membrane fractionation. OM

vesicles (OMVs) and protoplasmic cylinder (PCs) fractions were obtained as described above by

incubating harvested cells in a hypotonic citrate buffer followed by loading on a step-wise

sucrose gradient. Note that due to the not entirely efficient separation of the OM during the

process (181), the PC fraction should be interpreted as a partially OM-depleted whole cell

protein fraction. Thus, the surface/OM control OspA is abundant in the OMV fractions, but also

detected in the PC fractions (29, 30). In contrast, the inner membrane lipoprotein OppAIV can

be used as a control to assess the purity of the OMV preparation, as it should be absent from an

Page 73: Dowdell Dissertation FINAL

67

ideal OMV preparation. A lipoprotein was scored as an OM component if the His-tag was

detected in the OMV fraction in a ratio similar to the OspA control. Absence or only traces of a

His-tag signal from the OMV fraction indicated that the lipoprotein was retained in the inner

membrane. As shown in the Western immunoblots in Fig. 7, 31 of the 40 lipoproteins assayed

showed an OppAIV-like fractionation pattern, i.e., they were retained in the IM. Conversely, 9

lipoproteins were detected in appreciable amounts in the OMV fraction, indicating that they were

released to the OM.

4.3.4 Reassessment of select OM lipoproteins for potential intrinsic proteinase K resistance

The lipoprotein BBQ47 (ErpX) was previously established as a surface-exposed but

intrinsically proteinase K resistant protein (187). Consequently, the ErpX-expressing B.

burgdorferi clone was not subjected to membrane fractionation despite the protein’s apparent

resistance to proteinase K. Yet, this example raised the specter that other surface lipoproteins

may have been erroneously scored as OM periplasmic lipoproteins due to their resistance to

proteinase K. We therefore re-evaluated the 9 lipoproteins in our initial P-OM lipoprotein data

set using pronase, a mixture of nonspecific proteases that has been shown to digest B.

burgdorferi proteins that are otherwise protease-resistant (186, 187). ErpX was used as a

control.

As shown in Figure 8A, pronase treatment led to complete degradation of OspA, while

FlaB remained intact, indicating that assay conditions lead to selective removal of surface-

exposed proteins. Parallel treatment of B. burgdorferi B31-A3 cells and staining of SDS-PAGE-

separated protein samples by Coomassie (Figure 8B) indicated almost indistinguishable overall

proteolysis patterns between pK and pronase; the only appreciable difference in the pronase-

Page 74: Dowdell Dissertation FINAL

68

treated sample was the absence of a 51 kDa band that has been attributed to a proteinase K-

resistant fragment of the OM porin P66 (201). As expected, the control protein BBQ47 (ErpX)

was largely susceptible to degradation by pronase. Three additional lipoproteins, BBA14,

BBA65, and BBB25, showed selective degradation by pronase as well. The remaining 6

lipoproteins were found to be pronase-resistant in the context of intact cells (Fig. 8A), but readily

digested and undetectable when the cells were permeabilized (not shown). This indicated that

these 6 proteins are not intrinsically protease-resistant, but indeed localize to the periplasmic

leaflet of the OM. In summary, this set of experiments localized BBA14 and BBB25 to the

surface de novo. BBA65 had been localized previously (202). In that study, the authors found

that BBA65 was susceptible to both pronase and proteinase K; the latter could be due to the

higher concentration of proteinase K used (400 µg/mL). It also established BB0460, BB0475,

BBB09, and BBG25 as additional bona fide P-OM lipoproteins and confirmed the previous

localization results for both BB0324 and Lp6.6 (87, 203).

4.3.5 Localization of endogenously expressed lipoproteins by quantitative mass spectrometry

To validate our lipoproteome expression library data with the localization of lipoproteins

endogenously expressed by B. burgdorferi, we employed quantitative MudPIT mass

spectrometry to analyse the lipoproteome of B. burgdorferi B31-A3 (184, 193). Our stock of

B31-A3 was shown by multiplex PCR (185) to contain all linear and circular plasmids except for

lp5, which is not predicted to encode for any lipoproteins (23) (data not shown). Cells were

cultured and treated with proteinase K as above. To reduce the complexity of the samples, the

mock control and proteinase K-treated samples were enriched for membrane-associated proteins

by extraction with Triton X-114 as described (186). Peptide abundance, expressed as distributed

Page 75: Dowdell Dissertation FINAL

69

Figure 7. Membrane fractionation of B. burgdorferi strains expressing a his-tagged lipoprotein library. Strains that were found to express proteinase K-resistant recombinant lipoproteins were subjected to membrane fractionation using a hypotonic acidic citrate buffer and sucrose gradient to obtain OMVs. Lipoproteins were then localized based on presence or absence in OMV fraction relative to control proteins. OMVs and PCs were separated by SDS-PAGE, transferred to nitrocellulose, and analyzed by Western Blot using anti-OspA mouse MAb, anti-OppAIV rabbit polyclonal antiserum, or HisProbe-HRP reagent. Lipoproteins are organized by open reading frame with the common name listed, if applicable. OMV, outer membrane vesicle fraction; PC, protoplasmic cylinder fraction. Note that the PC fraction is equivalent of a whole cell protein preparation partially depleted of OM proteins (see text). Red parenthesis flanking the ORF designation indicate the determined lipoprotein localization as follows: (ORF, inner membrane; ORF), outer membrane. The localization of BBA65 remains undetermined [(ORF)] due to multiple isoforms with variable distributions. Determined molecular weights of the his-tagged proteins are indicated in Table 2.

Page 76: Dowdell Dissertation FINAL

70

Page 77: Dowdell Dissertation FINAL

71

Normalized Spectral Abundance Factor (dNSAF) (194), was captured from two biological

replicates and averaged. A comparison of the MudPIT results with the results from our his-

tagged lipoprotein assays can be seen in Table 2 and Fig. 9. 86 of the predicted 127 lipoproteins

were detectable in B. burgdorferi B31-A3 after growth at 34°C in BSKII-C. Among them were

2 of the 3 lipoproteins that were not detectable as His-tagged proteins, BB0536 and BB652

(SecD). The remaining 40 lipoproteins are most likely expressed below the levels detectable by

MudPIT under the culture conditions used.

The relative abundance of proteins before and after proteolytic shaving, expressed as a

ratio of dNSAF values in the mock control vs. the treated samples (dNSAF-pK/dNSAF+pK), was

calculated, ranging from 0.00 (BB0628) to 185.84 (BBA16/OspB). 11 lipoproteins were

undetectable after proteolysis, resulting in an infinite (∞) ratio; for analysis purposes, the values

of these proteins were capped at the highest calculated value (185.84). Plotting the dNSAF

ratios for the surface and periplasmic lipoprotein cohorts identified in the expression library

showed a clear separation (Fig. 9). The mean dNSAF ratio for periplasmic lipoproteins was

0.80(range: 0.00-2.22), below but close to the expected ratio of 1.0. One explanation is that

surface proteolysis yields a significantly less complex protein sample (see Fig. 8B), which may

lead to the “unmasking” of previously undetectable/unassignable peptides. Consequently, the

ratio’s numerator may be depressed relative to the denominator. The mean dNSAF ratio for

surface proteins was 60.00 (range: 0.00-185.84 [capped; see above]). 12 surface-assigned

lipoproteins had low dNSAF ratios around or below 1.0. Most of the proteins in this cohort were

members of the paralogous Mlp, Rev, and Erp protein families that had shown at least partial

resistance to proteinase K in our experiments (Figure 6) or prior studies (Table 2). Also, 4 of

these proteins were subsequently shown to be accessible to in situ pronase digestion (Fig. 8A).

Page 78: Dowdell Dissertation FINAL

72

As shown in Fig. 9, a dNSAF ratio of 2 or above is a high-confidence predictor for surface

exposure. This cutoff was statistically confirmed by a Mann-Whitney non-parametric U test

using the OriginPro 9.1 software suite. Parallel analysis of sequence coverage, i.e., the % of

protein sequence covered by detected peptides, before and after pK treatment also showed that a

reduction of 10% or higher was a statistically valid predictor of surface exposure (see Fig. S1

and Table S1).

All mass spectrometry data are available from the ProteomeXchange repository under

accession number PXD005617. The complete MudPIT mass spectrometry dataset (raw files,

peak files, search files, as well as DTASelect result files) can be obtained from the MassIVE

database via ftp://[email protected] (password ASD06166).

4.3.6 Reconciliation of independent localization data produces a consensus localization catalog

for the B. burgdorferi lipoproteome

Our lipoproteome expression library contained 49 lipoproteins that had been

independently localized prior to this study (Table 2). The main rationale for their inclusion in

the present study was to use them as internal validation controls. For 41 lipoproteins, the current

localization data were in unequivocal agreement with published data. Three lipoproteins,

BB0298, BBA05/S1 antigen and BBA34/OppA5, were more precisely localized within the

periplasmic compartment to the IM. Discrepancies with previously published localization data

were found for 8 lipoproteins, but all disagreements could be reconciled: (i) A first set of 4

proteins was previously described as surface-exposed but was found to be restricted to the

periplasm in our assays (see Table 2). BmpB (BB0382), like the other homologs of this protein

family, was localized by us to the IM. An earlier study had detected BmpB on the surface by

Page 79: Dowdell Dissertation FINAL

73

Figure 8. Surface proteolysis of B. burgdorferi strains expressing a his-tagged lipoprotein library using Pronase. (A) Intact cells expressing his-tagged lipoproteins that were determined to be Proteinase K resistant but enriched in the OM were subjected to surface proteolysis with Pronase. Cell lysates were then separated by SDS-PAGE and analyzed by Western Blot as in Fig. 6. Pronase –, untreated mock control; Pronase +: Pronase-treated sample. Red parentheses flanking the ORF designation indicate the determined lipoprotein localization as in Fig. 6: ))ORF, surface; (ORF), periplasmic. (B) Coomassie-stained SDS-PAGE gel of B. burgdorferi strain B31-A3 whole cell protein preparations obtained before (–) or after (+) incubation with proteinase K or Pronase. Protein MWs in kDa, indicated to the left, were derived from a protein molecular weight marker (BioRad). An asterisk (*) indicates a known proteinase K-resistant, but apparently Pronase-sensitive fragment of integral OM protein P66 (201).

Page 80: Dowdell Dissertation FINAL

74

Page 81: Dowdell Dissertation FINAL

75

immunofluorescence, albeit without controlling for accidental permeabilization of the fragile

spirochetal OM (204). OppA1 and OppA2 were also localized to the IM, as were the other

homologs of that oligopeptide-binding lipoprotein family. Again, prior studies had solely relied

on immunofluorescence data without controlling for the integrity of the bacterial envelope (205,

206). The fourth protein in this set, BBA03, was also found solely in the IM in the present study.

A prior well-controlled localization study remained equivocal in that BBA03 was found by

immunofluorescence to be partially surface-exposed, but at the same time was protected from

proteinase K in intact, but not permeabilized cells (207). (ii) Two IM lipoproteins, BB0227 and

BBB27, were localized to the inner leaflet of the OM in one of our earlier studies (29); we now

believe that these localization results were erroneous due to contamination of the OMV fraction

and a less stringent interpretation of the data. (iii) BB0323 was localized by us to the IM but was

identified by others as an OM periplasmic lipoprotein (208). BB0323 was shown to undergo

multistep proteolytic processing in the periplasm (209). Consequently, upon protein maturation,

any C-terminal epitope tag will partition together with a C-terminal soluble fragment.

Accordingly, we detected only a 14-kDa fragment of the 44-kDa full-length protein in the PC

fraction (Table 2). We therefore defer to the previous work on BB0323 as a more accurate

reflection of this lipoprotein’s localization. (iv) Our final, but probably most intriguing

disagreement with a previous finding was BB0028. This lipoprotein was found to be at least

partially surface-exposed in our work but has been previously described as a periplasmic OM

associated with the OM Beta-barrel Assembly Machinery (BAM) complex (203). In other

bacterial systems, BAM lipoprotein modules were shown to assume topologies that expose their

C termini on the bacterial surface under certain experimental conditions (125, 210). Thus, we

hypothesize that BB0028 transiently and partially (i.e., predominantly via its C terminus)

Page 82: Dowdell Dissertation FINAL

76

localizes to the surface. Any excess of BB0028 in the B. burgdorferi BAM complex may

detectably shift the protein’s topological equilibrium towards the cell surface.

The aggregation of the present and past data produces a comprehensive and internally validated

consensus catalog of lipoprotein localization within the B. burgdorferi envelope (Table 2). Of

the spirochete’s 127 predicted lipoproteins within this set, 125 localize conclusively to either the

surface (86), periplasmic leaflet of the OM (8), or the IM (31). The remaining two predicted

lipoproteins remained undetectable as epitope-tagged proteins and could not be conclusively

localized, but one (BB0536) was detected by mass spectrometry with a dNSAF ratio consistent

with periplasmic localization.

4.3.7 Reassessment of potential B. burgdorferi lipoprotein sorting motifs within the N-terminal

tethers

Our earlier studies indicated that lipoprotein tether peptides are structurally similar in that

they are intrinsically disordered. Yet, they lack any significant peptide sequence homology

beyond the N-terminal cysteine residue. Together with our extensive mutational analyses, this

led us to conclude that there are no specific canonical peptide motifs that direct lipoproteins to

the different envelope compartments of B. burgdorferi (29). With the lipoproteome localization

data in hand, we decided to reopen this inquiry. Tether peptide sequences from the cohorts of

surface, periplasmic OM and periplasmic IM lipoproteins were aligned and compared. Again, no

compartment-specific peptide motifs emerged from this analysis (Fig. 6). A recent study of

lipoprotein secretion in the Gram-negative pathogen Capnocytophaga canimorsus showed that

N-terminal patches of negatively charged Asp and Glu residues in the proper sequential and

positional N-terminal context can drive lipoprotein surface localization, and that this surface

Page 83: Dowdell Dissertation FINAL

77

Figure 9. Scatter plot of MudPIT-derived dNSAF ratios of surface and periplasmic lipoproteins. dNSAF ratios before and after proteinase K treatment (dNSAF-pK/dNSAF+pK) were calculated for 87 lipoproteins detected by MudPIT and plotted using GraphPad Prism. Horizontal lines indicate the mean dNSAF ratios for surface and subsurface proteins. Note that (i) infinite dNSAF values due to undetectable protein after pK treatment were capped at the highest calculated value of 185.84 for BBA16/OspB, and (ii) surface-assigned proteins that are partially resistant to pK (see Fig. 6 and text) cluster with subsurface proteins (see Table 2 for specific dNSAF values).

Page 84: Dowdell Dissertation FINAL

78

Page 85: Dowdell Dissertation FINAL

79

lipoprotein secretion signal is conserved and recognized in other members of the phylum

Bacteroidetes (212, 213). While we cannot fully exclude a similar charge-based sorting

mechanism in Borrelia barring additional experimentation, we did not detect any positional

conservation of negative charges in the 86 B. burgdorferi surface lipoproteins (Fig. 10).

4.4 Discussion of Experimental Results

4.4.1 Overview of results

The lipoprotein repertoire of B. burgdorferi is exceptionally large, especially when taking

into account the spirochete’s small and fragmented genome. Compared to E. coli’s 4-Mb

circular genome with about 90 lipoprotein genes (214, 215), B. burgdorferi’s 1.6 Mb genome

spread across a linear chromosome and a collection of linear and circular plasmids encodes for

over 120 lipoproteins. Since the initial identification of OspA and OspB as a common surface

antigens of Lyme disease spirochetes (45, 216) three decades ago, numerous studies have shown

that lipoproteins play an outsized and multifunctional role as virulence factors in the

transmission, colonization, dissemination and persistence of Borrelia burgdorferi and the

resulting pathology of Lyme disease. Following OspA’s and OspB’s precedent, much of the

research focus has been on identifying additional surface lipoproteins that contribute to B.

burgdorferi’s interface with the tick vector or host and could serve as vaccine targets. Thus, it

may be not surprising that 36 of the 47 additional lipoproteins that were subsequently studied

localized to the surface. Together, these studies yielded a rather limited and potentially biased

data set, covering less than 40% of the predicted B. burgdorferi lipoproteome. In the present

Page 86: Dowdell Dissertation FINAL

80

study, we have closed this gap in our understanding of the complex cell envelope of B.

burgdorferi by providing spatial information on 98% of its predicted lipoproteome.

4.4.2 Correlation of gene and protein localization

It has been noted earlier that B. burgdorferi’s megabase linear chromosome, and to some

degree the cp26 “minichromosome”, tend to encode for essential genes, while the remainder of

the circular and linear plasmids appear non-essential for growth in culture (31, 37, 217-219).

While this generalization at least partially extends to the lipoproteins encoded by these replicons,

there is a remarkable correlation of gene localization and protein localization: 79 of the 90

plasmid-encoded lipoproteins (88%) are surface-exposed, while only 7 out of the 37

chromosomally encoded lipoproteins (19%) are found on the surface (Table 2). This dichotomy

is understandable when considering the biological function and primary protein sequence. Many

of the plasmid-encoded lipoproteins share significant homology, which has led to their

organization into “paralogous gene families” (31). Instructive examples are the Erp, Mlp, and

“Pfam54” lipoproteins encoded on the multiple prophage-related B. burgdorferi cp32/lp56

plasmids (31, 100, 183, 220). Overall, 62 of the 86 surface lipoproteins (72%) belong to a

paralogous group. By contrast, only 14 of the 39 periplasmic lipoproteins (36%) have other

paralogs (31) (Table 2). This well-titrated variability and redundancy in surface lipoproteins

may stem from the need of B. burgdorferi to adapt to a multitude of environments during its

enzootic cycle. Chromosomally encoded but surface-localized BB0352 and BB0689 were

identified to possess putative sugar- and lipid-binding domains by the HHPRED algorithm (221).

This suggests that surface lipoproteins encoded by essential genetic elements play housekeeping

or metabolic roles. Similarly, sub-surface lipoproteins located on non-essential plasmids seem to

Page 87: Dowdell Dissertation FINAL

81

Figure 10. Sequence alignment of B. burgdorferi surface, periplasmic OM or IM lipoprotein tether peptides. A LogoBar (211) representation of the N-terminal sequence of known or predicted mature B. burgdorferi lipoproteins (23) illustrates the maintained complexity of surface (S), periplasmic OM (P-OM) and IM (P-IM) lipoprotein tether peptides. The height of each column, measured in bits, is proportional to the lack of complexity at a given position. The columns are stacked from the bottom starting with the most frequently occurring residue at that position and continuing upward. Below each column are the six most frequently occurring residues at each position, in order of frequency from top (bold) to bottom. Colors represent residues with similar characteristics (e.g., red for negatively charged Asp and Glu residues).

Page 88: Dowdell Dissertation FINAL

82

Page 89: Dowdell Dissertation FINAL

83

have a role in transmission and virulence. BBJ47, which we localized to the IM, was identified

by HHPRED to belong to Pfam17044. This groups BBJ47 with the B. burgdorferi BptA

proteins and suggests a role in tick persistence (222).

4.4.3 Correlation of lipoprotein localization to in vivo expression and immunogenicity

To gain further insight into the biological significance of our data, we explored potential

correlations of lipoprotein spatial compartmentalization with temporal expression and

immunogenicity (Table 2). Our working lipoproteome data were first cross-referenced with a

previous study that examined the reactivity of Lyme borreliosis patient vs. control sera to various

B. burgdorferi proteins (99). 43 of the 127 lipoproteins were found in that study to be

immunogenic (Table 2). Next, we referenced our data set against a study that looked at the

transcription of B. burgdorferi genes at various stages of the spirochete’s enzootic cycle, using

an RNA-hybridized microarray assay that was validated through qRT-PCR (19). 53 lipoproteins,

mostly plasmid-encoded and surface-localized, were found to have some variable role in the

infectious cycle based on significantly different levels of transcripts during tick acquisition, tick

persistence, vertebrate transmission and vertebrate persistence (Table 2). Of note, this data

mining approach neglects any proteins that may be essential to the cell but are not differentially

regulated between environments. Immunogenic surface lipoproteins expressed during tick

acquisition, tick persistence or vertebrate transmission may work in a preventive setting,

similarly to the FDA-approved but no longer available OspA vaccine (109). Within this group

are BBA04 (S2 antigen), BBA07, BBA16 (OspB), BBB19 (OspC), BBK53, and BBL40 (ErpO).

Both OspB and OspC have previously been shown to elicit protection when used to immunize

laboratory mice (223, 224). Of the remaining four lipoproteins (BBA04, BBA07, BBK53, and

Page 90: Dowdell Dissertation FINAL

84

BBL40), BBA07 has been implicated in transmission from the tick to vertebrate host and BBL40

is part of the Erp protein family, a group of lipoproteins implicated in Factor H binding and

complement resistance (72, 225).

4.4.4 Mechanistic insights into tether peptide-mediated lipoprotein sorting in diderm bacteria

Our results show that two thirds of the lipoproteins expressed by B. burgdorferi are

exported to the cell surface, while the remaining periplasmic lipoproteins are mostly retained in

the inner membrane. Whereas the periplasmic OM lipoprotein Lp6.6 is among the most

abundant envelope proteins (88), the relative simplicity of the B. burgdorferi lipoproteome in the

inner leaflet of the OM is unexpected. In E. coli, an organism with a diderm membrane

architecture similar to that of B. burgdorferi, most of the lipoproteins are exported to the OM as

well (226), but the majority are not surface exposed (126). A generalization that lipoprotein

surface exposure is rare and limited appears to hold for most diderm bacteria, with the emerging

exception of the Gram-negative Bacteroidetes such as Bacteroides fragilis and C.

capnocytophaga (212, 213, 227). Yet, the identified charge-based C. capnocytophaga

lipoprotein secretion signals appear to be restricted to that phylum (212, 213), and the B.

burgdorferi surface localization determinants identified in our own studies appear to extend only

to other members of that expanding genus (196). This hints at significant mechanistic

differences in lipoprotein secretion between Gram-negative bacteria and spirochetes. Our

current data remain compatible with a lipoprotein secretion model that includes two separate

secretion checkpoints: The first checkpoint is set up the IM where some lipoproteins are retained

and others are released to the OM after completion of N-terminal processing. Whether

lipoprotein retention and release is generally mediated by the partial B. burgdorferi Lol pathway

Page 91: Dowdell Dissertation FINAL

85

Table 3. Comparison of lipoprotein tether length based on localization. Lipoprotein tethers for each localization phenotype were either predicted in silico using PSSPRED (228) or using crystal structure PDB data, if available. PSSPRED predictions were performed using the mature lipoprotein sequences from the residue immediately following the acylated cysteine. Lipoproteins are annotated using the standard B. burgdorferi genetic locus notation (31, 32), with the PDB structure given in parentheses if available. Lipoprotein localizations were taken from consensus localization data (see Table 2). Representative lipoproteins were chosen so that only a single member of each paralogous family (Table 2) was represented. Ellipses and numbers indicate the number of tether residues omitted for clarity.

Page 92: Dowdell Dissertation FINAL

86

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 Surface

BBA15 (3AUM) C K Q N V S S L D …(3) BBA24 (4ONR) C G L T BBA68 (5A2U) C A P F S K I D P …(40)

OM-PERI

BBA62 C E T T R I BB0028 C S S BB0324 C Y T I N L E K L …(5)

IM

BBB16 (4GL8) C V N E S N R N K …(1) BB0215 (4N13) C K N Q D N E

BB0141 (4KKT) C V G D N K L D D …(12)

Page 93: Dowdell Dissertation FINAL

87

(25) and dependent on specific N-terminal tether peptide residues is under current investigation.

Alternatively, release from the IM may be hindered by functional interactions of folded IM

lipoproteins with other IM protein complexes. Multiple lines of evidence point to a similar

“exclusion” mechanism at the second checkpoint in the OM, where periplasmic lipoproteins are

blocked from “flipping” through the OM due to assumption of their final tertiary structure (28-

30, 174, 195). The B. burgdorferi OM β-barrel assembly machinery (BAM) protein BamA was

shown to be at least indirectly involved in this process (229), and it remains to be determined

if/how the other identified B. burgdorferi BAM complex proteins (203, 210), including the IM

protein TamB (230), play a role in lipoprotein secretion. Recent work has shown that some

Neisseria surface lipoproteins are secreted to the surface through the lumen of β-barrel integral

OM proteins (172), but homologs are missing from Borrelia genomes. Together, this supports

our earlier notions that lipoprotein secretion pathways in Borrelia spirochetes are unique.

4.4.5 Final Conclusions Regarding Localization of the B. burgdorferi Lipoproteome

We have comprehensively localized the B. burgdorferi lipoproteome using an epitope-

tagged expression library and validated our findings by proteomics and by reconciling our data

with prior independent protein localization data. The used approaches, such as the initial

reliance on C-terminal epitope tags for protein detection, are not without limitations that will

only be eliminated with the generation of protein-specific antibodies and further in-depth studies

of the newly localized proteins. Yet, we are confident that the consensus B. burgdorferi

lipoproteome localization catalog presented here reflects the proteins’ native partition in the

spirochetal cell envelope. Lyme borreliosis remains the most common vector-borne illness in the

United States and is common throughout temperate climates in the Northern hemisphere, and

Page 94: Dowdell Dissertation FINAL

88

there are continuing efforts to improve diagnostics and preventive measures. Placing our

lipoproteome localization data into the context of genome- and proteome-wide studies may

facilitate the identification of additional diagnostic targets and vaccine candidates. The

proteomic localization data presented here also provide a predictive framework for proteomic

studies of host-pathogen interfaces and envelope structures of other members of the ever

expanding Borrelia genus, including the relapsing fever spirochete Borrelia miyamotoi (231,

232) and the recently described North American Lyme disease spirochete Borrelia mayonii (233,

234).

Page 95: Dowdell Dissertation FINAL

89

Chapter 5: Detailed Experimental Protocols

5.1 Preparation of basal Barbour-Stoenner-Kelly II (BSK-II) Medium (175)

1. Pre-rinse all glassware to be used thoroughly with Milli-Q ultra-pure dH2O.

2. Prepare 1L of 1X CMRL-1066 w/o l-glutamine (U.S. Biologicals# C5900-01) in a 2L

glass beaker by adding 9.7g of powder to approximately 1L of Milli-Q dH2O. Gently

mix using a magnetic stir bar.

3. Dissolve 5g of neopeptone (BD Bacto# 211681) into solution.

4. Dissolve 50g of Probumin bovine serum albumin, universal grade (EMD Millipore#

810037) slowly into solution using a magnetic stir bar. This process should take at least

an hour at room temperature.

5. Dissolve the following reagents into solution in order, making sure that each has

dissolved before adding the next. Where no manufacturer is indicated, use ACS grade

reagent.

a. 2g of TC Yeastolate (BD Bacto# 255772)

b. 6g of HEPES, free acid

c. 5g of dextrose (D-glucose)

d. 0.7g of sodium citrate (tribasic dihydrate)

e. 0.8g of sodium pyruvate

f. 0.4g of N-acetyl-D-glucosamine

g. 2.2g of sodium bicarbonate

6. Adjust the pH of the medium to 7.6 using 1M NaOH. The NaOH solution should be no

more than one week old.

Page 96: Dowdell Dissertation FINAL

90

7. Filter sterilize the solution using two 0.22µm PES filter units (Corning# 431097) using

fiberglass prefilters (Corning# 431412). Prefilters should be pre-wetted using Milli-Q

dH2O and applied to the top of the filter unit under vacuum before applying medium.

8. Under a biological safety hood, aseptically remove the vacuum unit from the bottles and

cap. Distribute the medium evenly between the two bottles so that each contains

approximately one-half of the total preparation of medium.

9. Store up to six months in the dark at 4°C.

5.2 Preparation of complete BSK-II Medium (175)

1. Equilibrate one bottle of basal medium (see Section 5.1) to 37°C in a water bath.

2. Prepare a 100mL solution of 7% (w/v) gelatin:

I. Pre-rinse a 250mL bottle thoroughly with Milli-Q dH2O.

II. Measure 7g of gelatin (BD Difco# 214340) into the bottle.

III. Add approximately 95mL of Milli-Q dH2O to the bottle, swirl gently to mix, and

incubate at room temperature 10 minutes to hydrate the gelatin.

IV. Solubilize the gelatin, either using a microwave or by autoclaving.

V. Equilibrate to 37°C in a water bath.

3. Equilibrate a 40mL aliquot of sterile, trace-hemolyzed rabbit serum (Pel-Freez# 31126-5)

to 37°C in a water bath.

4. Thoroughly rinse a 1L bottle with Milli-Q dH2O. Combine the basal BSK-II, gelatin, and

rabbit serum in the 1L bottle and swirl to mix. (Note: At this stage, a portion of medium

can be measured out using a pre-rinsed glass graduated cylinder for the addition of

additives, e.g. antibiotics).

Page 97: Dowdell Dissertation FINAL

91

5. Filter sterilize the medium using 0.22µm PES filter units (Corning# 431096 & 431097).

This step must be completed before the medium has cooled to below room temperature;

otherwise, the gelatin will begin to solidify and impede filtration of the medium.

6. Aseptically cap the bottles under a biological safety hood. Store the completed medium

at 4°C in the dark and should be used within one month of preparation for optimal results.

Before use, medium must be equilibrated to 34-37°C due to solidification of gelatin at

lower temperatures.

5.3 Preparation of Competent B. burgdorferi (177, 178)

1. Inoculate 500mL of complete BSK-II with 1mL of the desired culture in late-logarithmic

growth phase.

2. Incubate culture at 34°C until the cell density reaches approximately 5x107 cells/mL.

3. Divide the culture evenly between two sterile 500mL centrifuge bottles. Manipulation of

B. burgdorferi in this step, as well as in all following steps, must be performed aseptically

under a biological safety hood.

4. Pellet cells at 4,000 x g for 20min at room temperature. Carefully decant the supernatant.

5. Resuspend each cell pellet in 30mL of sterile, ice-cold phosphate buffered saline (pH 7.4)

+ 5mM MgCl2. Transfer cell suspensions to two sterile, conical 50mL tubes (Corning#

352098) that had been pre-chilled on ice. Keep cells cold or on ice from this point

forward.

6. Re-pellet cells at 3,000 x g for 15min at 4°C. Carefully remove the supernatant with a

serological pipette.

Page 98: Dowdell Dissertation FINAL

92

7. Resuspend each cell pellet in 10mL of sterile, ice-cold 272mM sucrose. Transfer cell

suspensions to two sterile, conical 15mL tubes (Corning# 352097) that had been pre-

chilled on ice.

8. Re-pellet cells at 2,000 x g for 10min at 4°C. Carefully remove the supernatant using a

serological pipette.

9. Repeat Steps 7 and 8, but without transferring the cell suspensions to new tubes.

10. Pool the cell pellets by resuspension in 1mL of sterile, ice-cold 272mM sucrose. Cells

should be resuspended completely – no particulates should be visible when pipetted.

Divide cell suspension into 50µL aliquots into sterile, pre-chilled 1.5mL microcentrifuge

tubes on ice for electroporation. Alternatively, cells can be resuspended in 1mL of

sterile, ice-cold 272mM sucrose + 15% (v/v) glycerol, divided into aliquots, and flash-

frozen at -80°C for long-term storage.

5.4 Electroporation of B. burgdorferi (177, 178)

1. Thaw a 50µL aliquot of competent cells on ice for 5min, if using a pre-made stock.

2. Add 1-5µL of DNA in dH2O to competent cells and flick gently to mix. The amount of

DNA needed varies depending on the genetic background of the competent cells and on

the nature of the DNA to be transformed. High-passage B. burgdorferi B31 can be

transformed with as little as a few hundred nanograms of the shuttle vector pBSV2,

whereas low-passage (infectious) B. burgdorferi strains require approximately 30µg total

DNA. Preparations of DNA should be free from salts to minimize risk of arcing during

electroporation. Manipulation of cells in this step, as well in all following steps, must be

performed aseptically.

Page 99: Dowdell Dissertation FINAL

93

3. Incubate cells and DNA on ice for 1min.

4. Transfer cells/DNA to a sterile 0.2cm electroporation cuvette (Bio-Rad# 1652086) that

had been pre-chilled to 4°C. Tap the cuvette gently to bring the cells/DNA liquid to the

bottom of the chamber, so that the liquid spans the void between the two electrodes.

5. Electroporate the cells using a single exponential decay pulse on a Bio-Rad GenePulser at

2.5kV, 25µF, 200Ω. Alternatively, a Bio-Rad MicroPulser can be used on the “Ec2”

setting and should optimally result in a time constant of approximately 5.8ms.

6. Immediately (within 1 minute of electroporation), add approximately 1mL of pre-

warmed (34°C) complete BSK-II to the cells in the cuvette using a sterile Pasteur pipette

(Fisher# 13-711-20). Pipette to mix, then transfer the cells to a 15mL Falcon tube

containing an additional 11mL of pre-warmed complete BSK-II. Cap the tube and invert

several times to mix. At this stage, antibiotics should not be used unless the genetic

background of the competent cells requires it.

7. Incubate at 34°C for 18-24 hours to allow for outgrowth of transformants.

5.5 Plating and Selection of B. burgdorferi Transformants (177, 178)

1. Prepare 2X basal BSK-II medium using the protocol as described in Section 5.1,

except that the initial volume of dH2O is reduced by half.

2. Measure 250mL of 2X basal BSK-II using a pre-rinsed glass graduated cylinder.

Dissolve necessary antibiotics at 2X necessary concentration.

3. Filter-sterilize 250mL of 2X basal BSK-II+antibiotics and 30mL of trace-hemolyzed

rabbit serum using a 500mL 0.22µm filter unit. Aspetically cap bottle and equilibrate

to 50°C in a water bath.

Page 100: Dowdell Dissertation FINAL

94

4. Prepare a 220mL solution of 1.52% (w/v) agarose:

i. Pre-rinse a 500mL bottle thoroughly with Milli-Q dH2O.

ii. Measure 3.33g of SeaKem LE agarose into bottle.

iii. Add approximately 220mL of Milli-Q dH2O. Microwave until agarose

has been completely dissolved.

iv. Autoclave solution and equilibrate to 50°C.

5. Aseptically add the agarose solution to the BSKII+antibiotics+rabbit serum. Cap and

mix well by swirling the solution. All of the following steps where cells and/or

medium is manipulated must be performed aseptically under a biological safety hood.

6. Pipette 15mL of the molten medium into three sterile 100x15mm Petri dishes

(Fisher# FB0875712) for each transformation performed. Re-cap bottle of

BSKII/agarose and equilibrate to 42°C in a water bath.

7. While the plates are solidifying and BSKII/agarose is equilibrating, pellet

transformed cells at 3,000 x g for 30min at room temperature. Cells can be examined

beforehand under a microscope to examine health after outgrowth.

8. Remove supernatant from transformed cells using a serological pipette except for

approximately 1mL of liquid. Resuspend the cells completely in the 1mL of

remaining supernatant. Ensure that the plates have solidified and that the

BSKII/agarose is at 42°C before proceeding.

9. Label each plate on the outside rim with the date, the cell background, the DNA used

for transformation, and one of the following percentages: 1%, 10%, 89%.

10. Label three fresh 15mL Falcon tubes with 1%, 10%, and 89%. To each, add 10µL,

100µL, or 890µL of the resuspended transformed cells (respectively).

Page 101: Dowdell Dissertation FINAL

95

11. Add 12mL of BSKII/agarose to one tube of cells, mix by pipetting, and layer

cells/BSKII/agarose over the pre-poured plate that corresponds to the cell

background, transformation and percentage. Avoid bubbles, if possible.

12. Repeat Step 11 for each tube and each transformation, using a fresh serological

pipette for each plate. Allow plates to solidify completely under the hood (≤30min).

13. Incubate plates lid-side-up at 34°C in a humidified 5% CO2 atmosphere. The time

until colonies appear depends on the genetic background of the cells and the nature of

the DNA introduced, with 1-3 weeks being commonplace.

5.6 Surface Proteolysis of B. burgdorferi Using Proteinase K (180)

1. Inoculate 45mL of complete BSK-II (with antibiotics, if necessary) in a 50mL sterile

tube at 1:500 with the desired strain and incubate at 34°C until the culture reaches

late-logarithmic growth phase.

2. Transfer 6mL of the culture to a fresh 15mL tube and harvest at 3,000 x g for 25min,

room temperature. Remove the supernatant using a pipette.

3. Wash the cells once by resuspending gently in 6mL of sterile, room temperature

phosphate buffered saline (pH 7.4) + 5mM MgCl2 (PBS/Mg).

4. Re-pellet the cells at 3,000 x g for 20min. Remove the supernatant using a pipette.

5. Resuspend the cell pellet gently but completely in 300µL of PBS/Mg. Divide the cell

suspension into two 144µL aliquots using fresh 1.5mL microcentrifuge tubes. To

one, add 6µL of Milli-Q dH2O as a control. To the other, add 6µL of 5mg/mL

Proteinase K (Invitrogen# AM2544) in Milli-Q dH2O for 200µg/mL final

concentration. Mix gently by flicking the sides of the tubes.

Page 102: Dowdell Dissertation FINAL

96

6. Incubate the cells at room temperature for one hour.

7. Add 8µL of 100mM PMSF in DMSO (Sigma-Aldrich# 78830-5G, D2650-5X10ML)

to each sample for approximately 5mM final concentration. Mix thoroughly by

flicking tubes.

8. Pellet cells at 8,000 x g for 10 minutes, room temperature. Completely remove

supernatant using a 200µL pipette.

9. Resuspend each cell pellet in approximately 20µL final volume of Milli-Q dH2O.

Add 5µL of 1M DTT (Fisher# BP172-5, freshly made in Milli-Q dH2O) and 25µL of

2X SDS-PAGE Sample Buffer (Formulated as per Sigma-Aldrich# S3401 but without

β-mercaptoethanol). Mix by flicking tube and cap tightly.

10. Boil samples for 5 minutes and store at -20°C until needed.

5.7 Surface Proteolysis of B. burgdorferi Using Proteinase K (187, 235)

1. Inoculate 45mL of complete BSK-II (with antibiotics, if necessary) in a 50mL sterile

tube at 1:500 with the desired strain and incubate at 34°C until the culture reaches

late-logarithmic growth phase.

2. Transfer 6mL of the culture to a fresh 15mL tube and harvest at 3,000 x g for 25min,

room temperature. Remove the supernatant using a pipette.

3. Wash the cells once by resuspending gently in 6mL of sterile, room temperature

phosphate buffered saline (pH 7.4) + 5mM MgCl2 (PBS/Mg).

4. Re-pellet the cells at 3,000 x g for 20min. Remove the supernatant using a pipette.

5. Resuspend the cell pellet gently but completely in 300µL of PBS/Mg. Divide the cell

suspension into two 142.5µL aliquots using fresh 1.5mL microcentrifuge tubes. To

Page 103: Dowdell Dissertation FINAL

97

one, add 7.5µL of Milli-Q dH2O as a control. To the other, add 7.5µL of 20mg/mL

Pronase (Roche# 10165921001) in Milli-Q dH2O for 1mg/mL final concentration.

Mix gently by flicking the sides of the tubes.

6. Incubate the cells at 37°C for two hours.

7. Add the following to each sample. Mix by flicking the tubes gently.

i. 48.8µL of PBS/Mg

ii. 0.4µL of 0.5M EDTA (Invitrogen# 15575020)

iii. 0.4µL of 100mM PMSF in DMSO (Sigma-Aldrich# 78830, D2650)

iv. 0.4µL of 400mM Pefabloc SC (Sigma-Aldrich# 76307)

8. Pellet cells at 8,000 x g for 10 minutes, room temperature. Completely remove

supernatant using a 200µL pipette.

9. Resuspend each cell pellet in approximately 20µL final volume of Milli-Q dH2O.

Add 5µL of 1M DTT (Fisher# BP172-5, freshly made in Milli-Q dH2O) and 25µL of

2X SDS-PAGE Sample Buffer (Formulated as per Sigma-Aldrich# S3401 but without

β-mercaptoethanol). Mix by flicking tube and cap tightly.

10. Boil samples for 5 minutes and store at -20°C until needed.

5.8 Membrane Fractionation of B. burgdorferi (30, 181)

1. Inoculate two 250mL cultures of complete BSK-II (with antibiotics, if necessary) using

250µL of a late-logarithmic growth phase culture of each desired strain.

2. Incubate at 34°C until the culture reaches early exponential phase, about 5x106 cells/mL.

At this point, the culture medium should still have its original color and there should not

be visible clumps of cells at the bottom of the bottle. Do not let the culture overgrow.

Page 104: Dowdell Dissertation FINAL

98

3. Prepare solutions for experiment:

a. Prepare 1L of 25mM citrate buffer by dissolving 4.8g of anhydrous citric acid into

800mL of Milli-Q dH2O, adjusting the pH to 3.2 using freshly made 1M NaOH,

and adjusting the volume to 1L using Milli-Q dH2O. Pre-rinse all glassware to be

used thoroughly with Milli-Q dH2O. Divide the preparation of citrate buffer into

two 500mL aliquots.

b. Prepare 500mL of citrate buffer + 0.1% BSA by adding 0.5g of Probumin

BSA(EMD Millipore# 810037) and mixing until dissolved.

c. Prepare the following sucrose solutions in 50mL conical tubes. Each solution will

eventually fully dissolve at room temperature with periodic mixing. Chill on ice

when dissolved.

i. 32g of 25% (w/w) sucrose in citrate buffer

ii. 40g of 42% (w/w) sucrose in citrate buffer

iii. 14g of 56% (w/w) sucrose in citrate buffer

4. Transfer each culture into pre-rinsed 500mL centrifuge bottles and harvest at 3,000 x g

for 25min at room temperature. Decant supernatant.

5. Wash each pellet by resuspension in 250mL of phosphate buffered saline (PBS) + 0.1%

(w/v) Probumin BSA.

6. Re-pellet cells at 3,000 x g for 20min at room temperature. Decant supernatant.

7. Resuspend each pellet completely (no visible particulates) in 45mL of ice-cold 25mM

citrate buffer + 0.1% BSA and transfer to fresh 50mL conical tubes. Seal with Parafilm.

Page 105: Dowdell Dissertation FINAL

99

8. Incubate at room temperature for two hours on a rocker. Every 30 minutes, vortex each

tube for 30 seconds. During this time, pre-chill the XPN-80 ultracentrifuge and SW32Ti

rotor to 4°C.

9. Divide each cell suspension evenly between two pre-rinsed SS-34 tubes and pellet at

20,000 x g for 30min, room temperature.

10. While the cell suspensions are pelleting, pour the discontinuous sucrose gradients in

Beckman UltraClear tubes (#344058). Sucrose solutions must be ice-cold. UltraClear

tubes are not wettable; therefore, the lightest (25%) layer must be poured first and can be

added using a serological pipette. The 42% and 56% layers must then be added in that

order by pipetting underneath the previous layer, displacing the lighter layer upwards.

Use disposable syringes (BD# 302832, 309604) and a blunt-tip syringe needle (Sigma-

Aldrich# Z261351-1EA) to underlay each solution, ensuring crisp interfaces between

each layer. Label the outside of each gradient with a Sharpie and store at 4°C until the

previous step’s centrifugation is finished.

i. 12.5mL of 25% (w/w) sucrose

ii. 15.5mL of 42% (w/w) sucrose

iii. 5mL of 56% (w/w) sucrose

11. Decant the tubes and place on ice. Pool cell pellets from matching samples by

resuspending completely (no visible particulates) in 5mL of ice-cold citrate buffer +

0.1% BSA.

12. Using a 10mL syringe and an 18½G needle, slowly and carefully overlay each cell

suspension over the labeled gradients. Insert each gradient into opposing SW32Ti

swinging buckets (e.g. buckets #’s 1 and 4) using tweezers to slowly drop the gradient

Page 106: Dowdell Dissertation FINAL

100

into place. Add the caps to the buckets and balance the opposing rotors to within 0.01g,

using ice-cold citrate buffer + 0.1% BSA to make up any difference.

13. Place all six buckets into the pre-chilled SW32Ti rotor in their designated places. Run

the ultracentrifuge at 100,000 x g for 20 hours, 4°C.

14. Immediately remove the gradients from the ultracentrifuge without disturbing the

samples. Leave the ultracentrifuge on and cooled for the following steps.

15. Visualize each gradient. There should be a faint “haze” about 2/3rd of the way up from

the bottom, at the interface between the 25% and 42% solutions. This is the outer

membrane vesicle (OMV) fraction. Towards the bottom of the tube there should be an

obvious, flat disc at the interface between the 42% and 56% solutions. This is the

protoplasmic cylinder (PC) fraction.

16. Using a fresh 10mL syringe + 18½G needle for each layer, needle-aspirate the OMV and

PC fractions from each sample into fresh 50mL conical tubes on ice.

17. Dilute each fraction to approximately 36mL using ice-cold PBS (pH 7.4), which should

result in at least a five-fold dilution of the aspirated sample. Vortex each sample

thoroughly.

18. Prepare the two fractions as follows:

a. Pellet the OMV fractions by transferring the diluted samples to fresh UltraClear

tubes and balancing using ice-cold PBS (pH 7.4). Run in the ultra-centrifuge at

150,000 x g for 4 hours, 4°C. Immediately remove the sample at the end of the

run and carefully decant. The pelleted OMV samples should be visible as

whitish, faint, glassy pellets at the bottom of the tubes. Resuspend each OMV

pellet in 100µL of PBS (pH 7.4) + 1mM PMSF and transfer to fresh 1.5mL

Page 107: Dowdell Dissertation FINAL

101

microcentrifuge tubes. Use a portion of each to prepare SDS-PAGE samples as

was done in Section 5.6. Store the boiled SDS-PAGE samples at -20°C and the

unprocessed OMV suspension at -80°C.

b. Pellet the PC fraction by transferring each to a fresh SS-34 tube and centrifuging

at 10,000 x g for 20min, 4°C. Decant supernatant. Resuspend each cell

completely in 1mL of PBS (pH 7.4) + 1mM PMSF and transfer to fresh 1.5mL

microcentrifuge tubes. Use a portion of each to prepare SDS-PAGE samples as

was done in Section 5.6. Store the boiled SDS-PAGE samples at -20°C and the

unprocessed PC suspension at -80°C.

19. Use equal volumes of each sample for SDS-PAGE analysis.

5.9 Triton X-114 Extraction of Hydrophobic B. burgdorferi Proteins (186)

1. Inoculate two 45mL volumes of complete BSK-II (with antibiotics, if necessary) in

sterile 50mL conical tubes using 90µL each of the desired strain. Incubate at 34°C until

cultures have reached late-logarithmic growth phase. Alternatively, protease-treated cells

can be extracted following Step 8 of Sections 5.6 and 5.7 as long as the volumes are

scaled-up appropriately (in this case, skip to Step 5).

2. Harvest cultures at 3,000 x g for 30min at room temperature. Remove supernatant by

pipetting.

3. Wash each cell pellet by resuspension in 45mL of PBS (pH 7.4) + 5mM MgCl2

(PBS/Mg). Re-pellet at 3,000 x g for 20min, room temperature. Remove supernatant by

pipetting.

4. Repeat Step 3 once more.

Page 108: Dowdell Dissertation FINAL

102

5. Pool cell pellets by resuspension in 1mL of ice-cold 2% (v/v) Triton X-114 in PBS (pH

7.4) + 0.002% (w/v) bromophenol blue. Transfer cell suspension to a fresh 1.5mL

microcentrifuge tube.

6. Rotate cells overnight on a rotisserie at 4°C.

7. Centrifuge sample at 12,000 x g for 30min, 4°C to remove Triton X-114 insoluble

material. Transfer supernatant to a fresh microcentrifuge tube. The insoluble pellet can

be saved for later SDS-PAGE analysis. Optionally, supernatant can be spun again at

12,000 x g for 15min, 4°C to remove remaining traces of insoluble material. In this case,

transfer supernatant again to a fresh tube.

8. Incubate sample at 37°C for 15min to phase-partition the Triton X-114 solution.

9. Centrifuge the sample at 16,000 x g for 15min at room temperature. The resulting

sample should have an upper, faintly blue aqueous phase and a lower, dark blue detergent

phase. Carefully transfer the upper aqueous phase (Sample AQ) to a fresh

microcentrifuge tube without disturbing the lower detergent phase (Sample DE).

10. Wash the samples three times as follows. The washing process should progressively

make Sample AQ less blue and Sample DE more blue.

a. Add 100µL of ice-cold 10% (v/v) Triton X-114 in PBS (pH 7.4) + 0.002% (w/v)

bromophenol blue to Sample AQ and vortex. Add 500µL of ice-cold 1% (v/v)

Triton X-114 in PBS (pH 7.4) + 0.002% (w/v) bromophenol blue to Sample DE

and vortex.

b. Incubate for 15min at 37°C to phase partition the samples.

Page 109: Dowdell Dissertation FINAL

103

c. Centrifuge at 16,000 x g for 15min at room temperature. Transfer the aqueous

phase of Sample AQ to a fresh tube and discard the pelleted detergent. Remove

the aqueous supernatant from Sample DE and retain the detergent phase.

11. Add ice-cold 1% (v/v) Triton X-114 in PBS (pH 7.4) + 0.002% (w/v) bromophenol blue

to Sample DE to a final volume of 500µL and vortex.

12. Divide Sample AQ and Sample DE evenly between four 1.5mL microcentrifuge tubes

each. Add four volumes of 100% acetone (chilled to -20°C) to each sample and vortex.

13. Incubate samples overnight at -20°C.

14. Centrifuge samples at 16,000 x g for 30min, 4°C. Discard supernatant.

15. Wash samples by adding 1mL of 80% (v/v) acetone in Milli-Q dH2O (chilled to -20°C) to

each sample and inverting gently several times.

16. Centrifuge at 16,000 x g for 15min, 4°C. Carefully remove the supernatant by pipetting.

Spin the samples briefly in a centrifuge to collect residual acetone at the bottom of the

tubes, then remove carefully with a 20µL pipette without disturbing the protein pellets.

17. Allow the samples to air-dry on the bench with the caps open for 10min.

18. Pool like samples by resuspension in a suitable buffer and use a fraction for SDS-PAGE

sample preparation (see Section 5.6). If the samples do not easily dissolve into solution,

allow them to incubate with buffer in sealed tubes at 4°C for at least one hour before

resuspension. Store unprocessed samples long-term at -80°C and SDS-PAGE samples at

-20°C.

Page 110: Dowdell Dissertation FINAL

104

Chapter 6: In-depth Analysis of Selected B. burgdorferi Lipoproteins

Lipoproteins are essential to the survival and pathogenesis of B. burgdorferi; however,

many of these have not been functionally characterized through experimentation. In order to

better understand the biological role of the B. burgdorferi lipoproteome, lipoproteins were

analyzed in silico using a variety of methods. Functional prediction using in silico analysis

generates testable hypotheses regarding the B. burgdorferi lipoproteome and can guide future

investigation of under-studied proteins. Of note is that lipoproteins were analyzed only from the

essential genetic elements, the linear chromosome and the circular plasmid cp26, as these

elements are the only ones common to all isolates of B. burgdorferi and, therefore, most likely to

contain essential biosynthetic factors (236). Initially, the full primary sequence of each

lipoprotein was analyzed with the HMMER-based HMMSCAN using all available databases and

the program’s default search settings (237). The top-scoring (by E-value) protein domain/family

for each lipoprotein is reported in Table 4, with relevant domain/family accession numbers and

descriptions given. Several lipoproteins were predicted to contain tetratricopeptide repeat (TPR)

domains, and the identity of these lipoproteins as putative TPR proteins was confirmed by

analysis using TPRpred and is recorded in Table 5 (238). Lipoproteins with no statistically

significant hits reported by HMMSCAN were then analyzed further using their predicted mature

sequence with HHPred, which detects remote homology based on HMM profile-profile

comparison between a multiple sequence alignment of query and deposited PDB structures

(239). HHpred is able detect proteins that share tertiary structural elements despite significant

differences in primary sequences. Table 6 reports the top-scoring PDB hit for each analyzed

lipoprotein. Several lipoproteins from this table were then selected for in-depth analysis, and a

hypothetical in vivo function was formulated based on all available data.

Page 111: Dowdell Dissertation FINAL

105

Table 4. Analysis of Lipoprotein Genes on Essential Genetic Elements by HMMSCAN. Lipoprotein-encoding genes from the essential genetic elements of B. burgdorferi, the chromosome and the circular plasmid cp26, were analyzed using HMMSCAN (236, 237). Genes are reported with the top profile hit by lowest E-value. “SF#” = Superfamily number (superfam.org). Interval corresponds to amino acid region of the unprocessed protein. Genes without a significant hit are reported with “None, n/a.”

Page 112: Dowdell Dissertation FINAL

106

Top Hit ID Description Interval E-value BB0028 None n/a n/a n/a BB0141 TIGR01730 Efflux transporter, RND family, MFP subunit 114-306 1.8e-29 BB0144 PF04069.11 Substrate binding domain of ABC-type glycine

betaine transport system 26-272 8.7e-60

BB0155 None n/a n/a n/a BB0158 None n/a n/a n/a BB0171 SF# 48452 TPR-like 28-144 3.2e-20 BB0193 None n/a n/a n/a BB0213 None n/a n/a n/a BB0215 SF# 53850 Periplasmic binding protein-like II 29-278 1.7e-56 BB0224 None n/a n/a n/a BB0227 None n/a n/a n/a BB0298 SF# 48452 TPR-like 46-211 1.1e-14 BB0323 PF01476.19 LysM domain 327-375 2.3e-08 BB0324 SF# 48452 TPR-like 25-115 2.6e-07 BB0328 PIRSF002741 Peptide binding protein, MppA type 23-528 1.2e-102 BB0329 PIRSF002741 Peptide binding protein, MppA type 14-520 1.6e-102 BB0330 PIRSF002741 Peptide binding protein, MppA type 6-533 3.4e-101 BB0352 None n/a n/a n/a BB0365 None n/a n/a n/a BB0382 PF02608.13 ABC transporter substrate-binding protein PnrA-like 27-328 9.0e-107 BB0384 PF02608.13 ABC transporter substrate-binding protein PnrA-like 29-343 3.1e-107 BB0385 PF02608.13 ABC transporter substrate-binding protein PnrA-like 46-348 6.1e-107 BB0398 SF# 48452 TPR-like 53-120,

158-190 5.9e-09

BB0456 None n/a n/a n/a BB0460 None n/a n/a n/a BB0475 None n/a n/a n/a BB0536 PF00675.19 Insulinase (Peptidase family M16) 45-183 6.3e-27 BB0542 SF# 48452 TPR-like 35-174 7.6e-16 BB0628 None n/a n/a n/a BB0652 TIGR01129 Protein-export membrane protein SecD 138-562 5.5e-141 BB0664 None n/a n/a n/a BB0689 PF00188.25 Cysteine-rich secretory protein family 34-148 3.1e-12 BB0758 None n/a n/a n/a BB0806 SF# 50998 Quinoprotein alcohol dehydrogenase-like 225-499 1.1e-10 BB0823 None n/a n/a n/a BB0832 None n/a n/a n/a BB0844 None n/a n/a n/a BBB08 None n/a n/a n/a BBB09 None n/a n/a n/a BBB25 None n/a n/a n/a BBB27 None n/a n/a n/a

Page 113: Dowdell Dissertation FINAL

107

Table 5. Analysis of putative B. burgdorferi Tetratricopeptide Repeat (TPR) Lipoproteins. Lipoproteins identified in Table 4 were further analyzed by TPRpred to determine the probability of being a true TPR protein (238).

Page 114: Dowdell Dissertation FINAL

108

TPR Probability Per-protein P-value BB0171 100.00% 3.2e-22 BB0298 100.00% 1.7e-16 BB0324 84.53% 5.7e-09 BB0398 99.87% 1.7e-12 BB0542 100.00% 8.9e-17

Page 115: Dowdell Dissertation FINAL

109

Table 6. Remote Homology Analysis of B. burgdorferi Lipoproteins. Lipoproteins without a detectable family/domain or with a hit resulting in an unclear function after HMMSCAN analysis (see Table 4) were analyzed by HHPred (239). Searches were performed against PDB profiles for conserved protein folds using the predicted mature sequence of the lipoprotein. The top-scoring hit by Probab. is reported for each lipoprotein, along with a description of the hit and the hit’s score. Lipoproteins without a significant hit are denoted by “n/a.”

Page 116: Dowdell Dissertation FINAL

110

Top PDB# Description Probab. BB0028 n/a n/a n/a BB0155 3WW9_A Pizza6 self-assembling, synthetic β-propeller protein 99.81 BB0158 n/a n/a n/a BB0193 n/a n/a n/a BB0213 n/a n/a n/a BB0224 4HVZ_A SIMPL domain protein, BP26, Brucella abortus 99.42 BB0227 3CYG_A DUF3298/4163 protein, Fnod_1146, Fervidobacterium nodosum Rt17-B1 100.00 BB0352 2ZYO_A Cyclo/maltodextrin solute-binding protein, Thermoactinomyces vulgaris 100.00 BB0365 n/a n/a n/a BB0456 n/a n/a n/a BB0460 3CYG_A DUF3298/4163 protein, Fnod_1146, Fervidobacterium nodosum Rt17-B1 100.00 BB0475 n/a n/a n/a BB0628 2NC8_A LppM, Rv2171, Mycobacterium tuberculosis 94.70 BB0664 2PLG_A YbjN-like protein T110839, Synechococcus elongatus 97.25 BB0758 n/a n/a n/a BB0806 4A2L_A Hybrid two-component system protein BT4663, Bacteroides

thetaiotaomicron 99.97

BB0823 2KT8_A SH3 domain protein CPE1231, Clostridium perfringens 96.44 BB0832 3K8G_A Outer membrane lipoprotein TP0453, Treponema pallidum 96.11 BB0844 n/a n/a n/a BBB08 n/a n/a n/a BBB09 n/a n/a n/a BBB25 n/a n/a n/a BBB27 n/a n/a n/a

Page 117: Dowdell Dissertation FINAL

111

The first lipoprotein to be investigated in-depth is the product of the gene bb0155. This protein

is well conserved only in the Borrelia genus based on analysis of its primary sequence using

HMMER, although it appears to be somewhat conserved in certain related spirochetes such as

Treponema (237). It may be transcribed as part of an operon with the downstream genes bb0156

and bb0157, although these two gene products are likewise poorly conserved outside of B.

burgdorferi (31, 32). A review of microarray data showed that bb0155 appears not to be

regulated by the Rrp2/RpoN/RpoS, BosR, or the Hk1/Rrp1 pathways (240). Additionally, it was

found that bb0155 was expressed in fed larvae, fed ticks, rat dialysis membrane chambers

(DMCs; a facsimile for vertebrate infection), and in vitro; however, expression was not found to

be significant different in any of the environments (19). Along with the microarray review

study, this indicates that bb0155 is likely a constitutively expressed gene. A different study that

examined the expression of genes in vitro versus in mice showed that bb0155 was expressed

after growth in culture medium and in severe combined immunodeficiency mice, but not in

immunocompetent C3H mice (241). In addition, transfer of ear tissue from infected to

uninfected mice led to transient expression of bb0155 at the 11-day and 22-day timepoints, but

no expression at the 33-day timepoint. It is possible that, based on these two studies, bb0155 is

down-regulated or selected against during persistent vertebrate infection. Interestingly, passive

immunization of mice resulted in down-regulation of most lipoprotein genes but not bb0155.

Taken together, these gene regulation data indicate that the expression of bb0155 is complex, and

its expression may be an interplay of multiple factors. A genome-wide transposon mutagenesis

study of B. burgdorferi failed to recover any bb0155 insertion mutants (bb0156 and bb0157

mutants were recovered), although a separate transposon mutagenesis study found that

insertional mutagenesis of bb0155 negatively impacted the ability of the bacterium to survive on

Page 118: Dowdell Dissertation FINAL

112

maltose as the primary carbon source (37, 242). This may suggest that BB0155 plays a role in

the metabolism of maltose or in the regulation of maltose-inducible genes in the organism.

Analysis using InterPro reveals that the protein contains a predicted six-bladed, β-propeller

(TolB-like) domain, IPR#011042 (243). β-propellers are a structural domain ubiquitous

throughout the domains of life, with varying numbers of “blades” in the propeller and diverse

functional roles (244, 245). Six-bladed β-propellers have been shown to act as structural

proteins, hydrolases, and ligand-binding proteins (amongst other roles). Further analysis of

BB0155 using the remote homology prediction server HHPred against a PDB profile database

revealed significant homology to NHL domain, six-bladed β-propeller proteins (SCOPe#

d1q7fa_, b.68.9.1; Probab=99.93, E-value=1.9e-21) (239). The best “hits” to eubacterial crystal

structures were the C-terminal domain of the Bacteroides thetaiotaomicron protein BT3679

(PDB# 3HRP_A) and the C-terminal domain of the Bacteroides ovatus protein

BACOVA_00264 (PDB# 4HW6_A). In-depth structural analysis of BB0155 using the I-

TASSER web server found striking homology to the Brain tumor protein of Drosophila

melanogaster (PDB# 1Q7F), a 6-bladed, NHL repeat β-propeller. As shown in Figure 11, the

predicted structure of BB0155 and PDB#1Q7F_B align closely, matching all six blades of their

β-propellers. 1Q7F belongs to the CATH superfamily 2.120.10.30 (“TolB, C-terminal domain”),

which contains members with diverse functional roles. Although the diverse functions of β-

propeller proteins make it impossible to ascertain the biological function of BB0155 without

further experimental data, it is likely that the inner membrane localization of BB0155 means that

it does not regulate translation in the same way that 1Q7F does (27, 246). Future studies will

need to focus on the exact biological role of

Page 119: Dowdell Dissertation FINAL

113

Figure 11. Structural Analysis of BB0155 using I-TASSER. The predicted mature sequence of BB0155 was analyzed using the I-TASSER web server with the default settings (247). PDB# 1Q7F_B, belonging to the NHL domain Brain tumor protein of Drosophila melanogaster, was calculated to be the closest structural analog by both TM-score and RMSD. The structure of 1Q7F_B was then superimposed onto the predicted tertiary structure of BB0832, with the rainbow-colored secondary structure cartoon representing BB0832 and the purple backbone trace representing 1Q7F_B.

Page 120: Dowdell Dissertation FINAL

114

Page 121: Dowdell Dissertation FINAL

115

BB0155 in B. burgdorferi and whether its role relating to growth in maltose-containing medium

is a direct or indirect effect of its disruption.

The putative lipoprotein BB0352 was similarly studied in detail. It is located in opposite

orientation with the neighboring genes bb0351 and bb0353, indicating that it likely is not part of

an operon with surrounding genes (31, 32). No conserved domains or families were detected

after a search using InterPro; likewise, a HMMER search found that only the Borrelia genus

contains identifiable homologs at the primary sequence level (237, 243). Transposon

mutagenesis experiments indicate that the gene may be essential: one study did not recover any

transposon mutants, while another only recovered a single mutant 3% from the end of the gene

(37, 242). Disruption of a gene within the last 10% of the reading frame is less likely to prevent

the expression of a functional protein (248); this indicates that the single transposon insertion of

bb0352 may in fact result in a protein that is still biologically active. Gene regulation studies

show that the gene may be part of the Rrp2/RpoN/RpoS regulon, with Rrp2 possibly the only

factor responsible for its expression (240, 249). However, other studies found that bb0352 was

not differentially regulated in fed tick environments or in DMCs (19). As the Rrp2/RpoN/RpoS

transcriptional cascade has often been associated with adaptation to the vertebrate host

environment, and because there seems to be no differential regulation in the tick vs. vertebrate

environments, these data suggest that other, unidentified factors may be additionally involved in

bb0352 gene regulation. Structural analysis of BB0352 reveals that the protein bears significant

homology (E-value < 1e-30) to sugar substrate binding proteins of ABC transporters (e.g. PDB#

2ZYO_A). As shown in Figure 12, analysis of a MODELLER-constructed BB0352 PDB using

the protein-ligand modelling server COACH demonstrates that BB0352 likely binds saccharides

such as glucose, maltose, and trehalose (FINDSITE, C-score=0.70, Cluster size=30, Cluster

Page 122: Dowdell Dissertation FINAL

116

representative=PDB#1A7L) (250, 251). This could suggest that BB0352 similarly acts as a

carbohydrate SBP in B. burgdorferi. However, BB0352 was found to localize to the surface of

the cell’s outer membrane, which means that it would not have access to ATP, and does not exist

in an operon with other ABC cassettes (27, 31, 32). Rather than acting in the acquisition of

nutrients, it could be that BB0352 binds sugars in order to mediate B. burgdorferi adhesion to

host tissues. Many proteins are glycosylated with diverse carbohydrates, including galactose

modification of collagen and xylose modification of proteoglycans, and such a modification

could provide an attachment point for B. burgdorferi (252). Similar strategies have been

reported for E. coli and Salmonella enterica, which bind to the extracellular matrix through

oligomannoside modifications (253). Additional support of this hypothesis is found the short

tether of BB0352. Secondary structure prediction of the BB0352 mature sequence using

PSSPRED shows that it contains a four-residue tether, reminiscent of the similarly short tether

region of decorin binding protein A (DbpA; PDB# 4ONR) (228). As the length of a surface

lipoprotein’s tether has been hypothesized to correlate with its biological role, it is quite possible

that, like DbpA, BB0352 acts as a B. burgdorferi adhesin (25). Although further

experimentation is needed in order to clarify the biological role of BB0352, the significant

homology to known sugar-binding proteins and predicted propensity to bind multiple types of

carbohydrates can help guide future study of this protein’s role in B. burgdorferi.

Finally, the putative lipoprotein BB0832 was selected for characterization. The gene

encoding this protein is located on the chromosome in a potential operon with the neighboring

Page 123: Dowdell Dissertation FINAL

117

Figure 12. COACH Analysis of BB0352 reveals a preference for carbohydrate binding. A tertiary structure of BB0352 was constructed by MODELLER using aligned HHPred-identified homologs (239, 251). The model was built using the automatic selection of multiple templates. The resulting model (as a PDB) was then analyzed using COACH to determine possible ligand binding based on previously characterized protein-ligand structures deposited to the PDB (250). The top-scoring hit by C-score was generated by the FINDSITE module, yielding a 30-member cluster represented by Chain A of PDB# 1A7L and a C-score of 0.70. Cluster members bound a variety of saccharides, including maltose, dextrose, trehalose, and maltotetraose. The complete list of cluster member PDBs and the input BB0352 PDB file are available upon request. The predicted binding pocket for maltose (PDB# 1A7L) and coordinating residues of BB0352 are shown above.

Page 124: Dowdell Dissertation FINAL

118

Page 125: Dowdell Dissertation FINAL

119

genes encoding isoleucine-tRNA synthetase (bb0833) and the C subunit of the ATP-dependent

Clp protease (bb0844) (31, 32). No transposon mutants of bb0832 were recovered in two

separate studies, suggesting that the gene is essential for in vitro growth (37, 242). Analysis of

microarray data shows that bb0832 is not regulated by any of the Rrp2/RpoN/RpoS, BosR, or

Hk1/Rrp1 pathways (240). It also appears to be expressed in fed larvae, fed nymphs, and DMCs;

yet, its expression is not significantly different between these environments (19). Analysis of

BB0832 using HMMER reveals that no significant homologs exist outside of the Borrelia genus

by primary sequence, and further analysis using HMMSCAN shows that BB0832 does not

contain any identifiable conserved domains or families (237). However, BB0832 was predicted

by HHPred to be homologous to PDB#3K8G_A, TP0453 from Treponema pallidum

(Probab.=96.11, E-value=0.055) (239). TP0453 is the only known lipoprotein of the T. pallidum

outer membrane and is not surface-exposed (254, 255). Interestingly, TP0453 contains

amphipathic α-helices that permit spontaneous membrane integration of nonlipidated TP0453.

Membrane insertion of nonlipidated TP0453 into membranes results in destabilization of the

bilayer and increased membrane permeability. In this way, TP0453 was found to act as a pore-

forming molecule in T. pallidum. TP0453 also contains an internal hydrophobic cavity, with a

large volume exceeding 3500 Å3. The authors of the studies that characterized TP0453

hypothesized that TP0453 may act as a functional homolog for LolB, in that it can spontaneously

insert itself into membranes through its amphipathic α-helices. The authors postulate that this

ability would explain the presence of lipoproteins in the outer membrane of T. pallidum despite

the absence of an identified LolB homolog in the spirochete’s genome. To confirm the

homology between TP0453 and BB0832, the predicted mature sequence of BB0832 was

analyzed using the I-TASSER web server with the default settings (Figure 13) (247).

Page 126: Dowdell Dissertation FINAL

120

Significant homology was found between these two proteins, as a predicted structure of BB0832

was considered structurally analogous to PDB# 3K8G (TP0453) as evidenced by a TM-score of

0.829 and a RMSD of 1.38. Although I-TASSER failed to find any high-confidence ligand-

binding or gene ontology assignments for BB0832, the distinct structural homology between

BB0832 and TP0453 yields the hypothesis that these proteins are analogous and may function

similarly in vivo. The propensity of TP0453 to spontaneously insert into membranes using

amphipathic helices, as well as its large hydrophobic binding pocket, suggest that a B.

burgdorferi homolog with these same properties could play a role in lipoprotein biosynthesis.

Further, the lack of any recovered transposon-disrupted bb0832 mutants suggests that the gene

may be essential for B. burgdorferi growth. Although BB0832 was localized to the inner

membrane using previous localization assays, and therefore might not act as a LolB functional

homolog, it can safely be theorized that it may play an important biosynthetic role in B.

burgdorferi and, as such, warrants further investigation in the future.

Page 127: Dowdell Dissertation FINAL

121

Figure 13. Analysis of BB0832 using I-TASSER. The predicted mature sequence of BB0832

was analyzed using the I-TASSER web server for structural prediction and homology detection

using known PDB structures (247). Significant homology was detected with the T. pallidum

lipoprotein TP0453, PDB# 3K8G. An overlay of the predicted structure of BB0832 (rainbow

cartoon) and PDB# 3K8G (purple backbone trace) is shown above.

Page 128: Dowdell Dissertation FINAL

122

Page 129: Dowdell Dissertation FINAL

123

Appendix: Supplemental Figures and Tables

Figure S1. Statistical analyses of quantitative proteomics features for differently-located B. burgdorferi proteins. A. For all proteins detected by MudPIT analysis (Table S1), the difference in sequence coverage (% of protein sequence covered by detected peptides) observed between the proteinase K-treated and control samples were calculated (DiffSeqCov). The ratio in average dNSAF values measured in the control and proteinase K-treated samples were also calculated (dNSAF ratio). The proteins were grouped based on their known or predicted location (7 categories as defined in Table 2 and Table S1) and box-plots of the distribution in DiffSeqCov and dNSAF ratios were built. B. The Mann−Whitney non-parametric U test was performed using OriginPro 9.1 to determine whether or not there were statistically significant differences between the distributions of the DiffSeqCov and dNSAF ratios parameters. The distributions of these parameters for proteins shown to be at the surface of B. burgdorferi B31-A3 cells ("S" proteins in Table 2) were systematically tested against the ranges of DiffSeqCov and dNSAF ratios for proteins shown (Table 2) or predicted to be localized elsewhere.

Page 130: Dowdell Dissertation FINAL

124

x yNull

HypothesisAlternative Hypothesis U Z

Exact Prob>U

Asymp. Prob>U

Table1_S Table1_P-OM F(x) >= G(y) F(x) < G(y) 36 -2.12302 0.01495 0.01688Table1_S Table1_P-IM F(x) >= G(y) F(x) < G(y) 137 -5.90927 3.88E-11 1.72E-09Table1_S SpII F(x) = G(y) F(x) <> G(y) 177 -1.50985 0.13261 0.13108Table1_S SpI F(x) >= G(y) F(x) < G(y) 227 -7.85903 4.82E-19 1.94E-15Table1_S TM F(x) >= G(y) F(x) < G(y) 229 -9.13218 7.40E-27 3.36E-20Table1_S CYT F(x) >= G(y) F(x) < G(y) 1044.5 -10.2737 5.09E-35 4.63E-25SpII Table1_P-OM F(x) = G(y) F(x) <> G(y) 18 -0.21213 0.83916 0.832SpII Table1_P-IM F(x) >= G(y) F(x) < G(y) 64 -2.50294 0.00523 0.00616SpII SpI F(x) >= G(y) F(x) < G(y) 106 -3.34516 2.06E-04 4.11E-04SpII TM F(x) >= G(y) F(x) < G(y) 122 -3.92613 8.60E-06 4.32E-05SpII CYT F(x) >= G(y) F(x) < G(y) 550 -3.76887 2.33E-05 8.20E-05SpI Table1_P-OM F(x) <= G(y) F(x) > G(y) 213 2.28908 0.00872 0.01104SpI Table1_P-IM F(x) = G(y) F(x) <> G(y) 1072 1.62958 0.10298 0.10319SpI TM F(x) = G(y) F(x) <> G(y) 2769 -1.29694 0.19494 0.19465SpI CYT F(x) = G(y) F(x) <> G(y) 10690.5 -0.88955 0.37442 0.37371TM Table1_P-OM F(x) <= G(y) F(x) > G(y) 359 2.68 0.00173 0.00368TM Table1_P-IM F(x) <= G(y) F(x) > G(y) 1894 2.84539 0.00202 0.00222TM CYT F(x) = G(y) F(x) <> G(y) 19291 0.87404 0.38255 0.3821CYT Table1_P-OM F(x) <= G(y) F(x) > G(y) 1288 2.62773 0.00226 0.0043CYT Table1_P-IM F(x) <= G(y) F(x) > G(y) 6603 2.57666 0.00473 0.00499Table1_S Table1_P-OM F(x) <= G(y) F(x) > G(y) 175 2.35912 0.00712 0.00916Table1_S Table1_P-IM F(x) <= G(y) F(x) > G(y) 1270 5.7011 2.78E-10 5.95E-09Table1_S SpII F(x) = G(y) F(x) <> G(y) 300.5 0.88201 0.38061 0.37777Table1_S SpI F(x) <= G(y) F(x) > G(y) 2969 7.77082 0 3.89E-15Table1_S TM F(x) <= G(y) F(x) > G(y) 4763 8.70839 0 0Table1_S CYT F(x) <= G(y) F(x) > G(y) 17343 10.01037 0 0SpII Table1_P-OM F(x) = G(y) F(x) <> G(y) 29 1.20874 0.21578 0.22676SpII Table1_P-IM F(x) <= G(y) F(x) > G(y) 204 2.10662 0.01664 0.01758SpII SpI F(x) <= G(y) F(x) > G(y) 485.5 2.73533 2.50E-03 3.12E-03SpII TM F(x) <= G(y) F(x) > G(y) 766.5 2.76717 2.22E-03 2.83E-03SpII CYT F(x) <= G(y) F(x) > G(y) 2834 2.99067 9.97E-04 1.39E-03SpI Table1_P-OM F(x) >= G(y) F(x) < G(y) 45 -2.13495 0.01464 0.01638SpI Table1_P-IM F(x) >= G(y) F(x) < G(y) 526 -3.06138 9.60E-04 0.0011SpI TM F(x) = G(y) F(x) <> G(y) 3433 0.96365 0.33578 0.33522SpI CYT F(x) = G(y) F(x) <> G(y) 11447.5 -0.05475 0.95654 0.95634TM Table1_P-OM F(x) >= G(y) F(x) < G(y) 62 -2.32492 0.00781 0.01004TM Table1_P-IM F(x) >= G(y) F(x) < G(y) 755 -3.71601 7.23E-05 1.01E-04TM CYT F(x) = G(y) F(x) <> G(y) 16786 -1.23175 0.21829 0.21804CYT Table1_P-OM F(x) >= G(y) F(x) < G(y) 302 -2.02041 2.04E-02 2.17E-02CYT Table1_P-IM F(x) >= G(y) F(x) < G(y) 3177 -3.34438 3.46E-04 4.12E-04

dNSA

F R

atio

(Con

trol

/PK

)D

iffer

ence

in S

eque

nce

Cov

erag

e (P

K -

Con

trol

)

-80

-60

-40

-20

0

20

40

Diff

eren

ce in

Seq

uenc

e C

over

age

(PK

-Cnt

rl)

Tb1_S Tb1_POM Tb1-PIM SpII SpI TM CYT

0

2

4

6

8

10

100200

dNSA

F R

atio

(Cnt

rl/P

K)

Supporting Figure S1: Statistical analyses of quantitative proteomics features for differently-located B. burgdorferi proteinsA. For all proteins detected by MudPIT analysis (Table S2), the difference in sequence coverage (% of protein sequence covered by detected peptides) observed between the proteinase K-treated and control samples were calculated (DiffSeqCov). The ratio in average dNSAF values measured in the control and proteinase K-treated samples were also calculated (dNSAF ratio). The proteins were grouped based on their known or predicted location (7 categories as defined in Table 1 and Table S2) and box-plots of the distribution in DiffSeqCov and dNSAF ratios were built.B. The Mann−Whitney non-parametric U test was performed using OriginPro 9.1 to determine whether or not there were statistically significant differences between the distributions of the DiffSeqCov and dNSAF ratios parameters. The distributions of these parameters for proteins shown to be at the surface of B. burgdorferi B31-A3 cells ("S" proteins in Table 1) were systematically tested against the ranges of DiffSeqCov and dNSAFratios for proteins shown (Table 1) or predicted to be localized elsewhere.

A B

Page 131: Dowdell Dissertation FINAL

125

Figure S2. Graphical representation of putative lipoprotein genes by localization phenotype and genomic element. Putative lipoproteins were designated as belonging to either an essential genetic element or to a nonessential plasmid based on their encoding genetic element (31, 37, 217-219). Lipoproteins were then assigned a localization phenotype based on the “consensus” localization as designated in Table 1. Pie piece numbers indicate the number of lipoproteins belonging to each class.

Page 132: Dowdell Dissertation FINAL

126

10

626

Chromosome + cp26

Surface OM, Sub-surface IM

76

25

Nonessential Plasmids

Surface OM, Sub-surface IM

Page 133: Dowdell Dissertation FINAL

127

Table S1. Detailed peptide and spectral counts of MudPIT-detected proteins from B. burgdorferi B31-A3 either with or without proteolytic shaving. Two replicate B. burgdorferi B31-A3 spirochetes samples subjected to proteinase-K as well as two untreated control samples were analyzed by MudPIT. The MS/MS datasets were searched against a protein database downloaded from the Spirochete Genome Browser, which contains accession numbers of all putative B. burgdorferi B31 ORFs (http://sgb.leibniz-fli.de/cgi/list.pl?ssi=free&c_sid=yes&sid=24&srt=ltg&.submit=Go). Exactly redundant sequences were removed from this database, leaving 1559 non-redundant Bb proteins. After adding usual contaminants and randomizing each protein entry, the total search space was 3472 amino acid sequences. The MS dataset was searched for Methionine oxidation as a differential modification. Combining all 4 runs, proteins had to be identified with at least 2 tryptic peptides of at least 7 amino acid long and/or 2 spectral counts. Proteins that were subsets of others were removed using the parsimony option in DTASelect on the proteins detected after merging all runs. Proteins that were identified by the same set of peptides (including at least one peptide unique to such protein group to distinguish between isoforms) were grouped together, and one accession number was arbitrarily considered as representative of each protein group. Half-tryptic peptides were allowed for the proteinase-K treated individual runs but did not contribute to establishing the master list of identified proteins ("ALL" columns). In each analysis, the following parameters are specified for each protein: Peptide counts (columns end with _P); Total spectral counts (_S); Spectral counts for peptides shared between protein isoforms (_sS); Peptide counts for peptides uniquely matching the protein (_uDP); Spectral counts for peptides uniquely matching the protein (_uS); Spectral counts distributed according to the spectral count contribution of peptides unique to each isoform (_dS); Sequence coverage as a percentage (_SC); Distributed Normalized Spectral Abundance Factors (_dNSAF), calculated based on distributed spectral counts and protein length. The number of times a protein is detected across replicates is listed in the "Detected # Out of" columns. dNSAF are averaged across replicate runs ("dNSAF AVG" columns). Summary statistics on False Discovery Rates (FDR, %) are calculated at the bottom of the table. A total of 621 proteins (excluding contaminants) were detected, including 83 listed in Table 2. Each of the detected proteins was subjected to prediction algorithms to detect potential signal peptidases I & II cleavage sites (LipoP1.0), signal peptide (SignalP4.1), and transmembrane domains (TMHMM2.0). For all detected proteins, the difference in sequence coverage (% of protein sequence covered by detected peptides, merging peptides from the 2 replicates analyzed for each condition) observed between the proteinase K-treated and control samples were calculated. The ratio in average dNSAF values measured in the control and proteinase K-treated samples were also calculated. The proteins were grouped based on their known or predicted location: 51 were tested to be surface (“S”) proteins, 4 were localized to the outer membrane (“P-OM”), and 28 were localized to the inner membrane (“P-IM”). An additional 10 proteins were predicted to contain a signal peptidase II cleavage site by LipoP1.0 (“SpII”), while another 63 were predicted to contain a signal peptide by LipoP1.0 (“SpI”) and/or SignalP4.1. Another 100 proteins were predicted to contain at least 1 transmembrane domain by TMHMM 2.0, but no signal peptide (“TM”), while the remaining 365 proteins were most likely cytoplasmic (“CYT”). The complete MudPIT mass spectrometry dataset (raw files, peak files, search files, as well as DTASelect result files) can be obtained from the MassIVE database via ftp://[email protected] (password ASD06166) and from the ProteomeXchange repository under accession number PXD005617.

Page 134: Dowdell Dissertation FINAL

128

Dowde

ll_TableS2

Supp

ortin

g Ta

ble

S2. D

etai

led

pept

ide

and

spec

tral

cou

nts

for p

rote

ins

dete

cted

by

Mud

PIT

anal

yses

of B

. bur

gdor

feri

B31

-A3

spiro

chet

es s

ubje

cted

or n

ot to

pro

teol

ytic

sur

face

sha

ving

In e

ach a

naly

sis

, th

e f

ollo

win

g p

ara

mete

rs a

re s

pecifie

d f

or

each p

rote

in:

Peptide c

ounts

(colu

mns e

nd w

ith _

P);

Tota

l spectr

al counts

(_S

);

Spectr

al counts

for

peptides s

hare

d b

etw

een p

rote

in isofo

rms (

_sS

);

Peptide c

ounts

for

peptides u

niq

uely

matc

hin

g the p

rote

in (

_uD

P);

Spectr

al counts

for

peptides u

niq

uely

matc

hin

g the p

rote

in (

_uS

);

Spectr

al counts

dis

trib

ute

d a

ccord

ing to the s

pectr

al count contr

ibution o

f peptides u

niq

ue to e

ach isofo

rm (

_dS

);

Sequence c

overa

ge a

s a

perc

enta

ge (

_S

C);

Dis

trib

ute

d N

orm

aliz

ed S

pectr

al A

bundance F

acto

rs (

_dN

SA

F),

calc

ula

ted b

ased o

n d

istr

ibute

d s

pectr

al counts

and p

rote

in length

.

The n

um

ber

of

tim

es a

pro

tein

is d

ete

cte

d a

cro

ss r

eplic

ate

s is lis

ted in the "

Dete

cte

d #

Out of"

colu

mns.

dN

SA

F a

re a

vera

ged a

cro

ss r

eplic

ate

runs (

"dN

SA

F A

VG

" colu

mns).

Sum

mary

sta

tistics o

n F

als

e D

iscovery

Rate

s (

FD

R, %

) are

calc

ula

ted a

t th

e b

ottom

of

the table

.

A tota

l of

621 p

rote

ins (

exclu

din

g c

onta

min

ants

) w

ere

dete

cte

d, in

clu

din

g 8

3 lis

ted in T

able

1. E

ach o

f th

e d

ete

cte

d p

rote

ins w

as s

ubje

cte

d to p

redic

tion a

lgorith

ms to d

ete

ct pote

ntial sig

nal peptidases I &

II cle

avage s

ites (

Lip

oP

1.0

), s

ignal peptide (

Sig

nalP

4.1

), a

nd tra

nsm

em

bra

ne d

om

ain

s (

TM

HM

M2.0

),

The p

rote

ins w

ere

gro

uped b

ased o

n their k

now

n o

r pre

dic

ted location:

The c

om

ple

te M

udP

IT m

ass s

pectr

om

etr

y d

ata

set (r

aw

file

s, peak f

iles, searc

h f

iles, as w

ell

as D

TA

Sele

ct re

sult f

iles)

can b

e o

bta

ined f

rom

the M

assIV

E d

ata

base v

ia f

tp://M

SV

000080434@

massiv

e.u

csd.e

du (

passw

ord

AS

D06166)

and f

rom

the P

rote

om

eX

change r

epository

under

accessio

n n

um

ber

PX

D005617.

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

SB

B_

01

58

BB

_0

15

8an

tig

en

6

8.4

92

3.5

3-4

4.9

60

.00

24

32

0.0

00

24

21

0.3

44

71

56

56

51

50

65

55

.50

.00

20

21

79

09

01

70

90

65

.60

.00

28

54

88

40

82

3.5

0.0

00

42

22

20

28

.82

6.9

E-0

52

11

65

16

52

10

16

56

8.5

0.0

01

52

38

27

26

26

.7

SB

B_

02

13

BB

_0

21

3p

red

icte

d c

od

ing

reg

ion

BB

02

13

9

.22

11

.52

2.3

0.0

00

11

8.4

E-0

52

1.2

14

29

23

32

03

9.2

20

.00

01

XX

XX

XX

XX

11

11

01

3.2

35

.5E

-05

23

32

03

11

.50

.00

01

14

66

40

61

86

E-0

52

17

25

76

06

.6

SB

B_

06

89

BB

_0

68

9p

red

icte

d c

od

ing

reg

ion

BB

06

89

5

8.0

69

.68

-48

.38

0.0

01

05

25

.3E

-05

11

9.8

67

98

34

34

80

34

46

.50

.00

16

24

10

10

40

10

35

.50

.00

04

9X

XX

XX

XX

X1

11

10

19

.68

5.3

E-0

51

14

54

51

10

45

58

.10

.00

06

31

55

17

97

19

.2

SB

B_

A0

4B

B_

A0

4an

tig

en

1

6.3

10

-16

.31

5.3

E-0

51

00∞

XX

XX

XX

XX

22

22

02

16

.35

.3E

-05

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

16

.31

.5E

-05

28

23

18

48

9.2

SB

B_

A0

7B

B_

A0

7ch

pA

I p

rote

in

40

.12

0-4

0.1

20

.00

01

62

00∞

12

21

02

9.2

69

.1E

-05

35

53

05

40

.10

.00

02

3X

XX

XX

XX

XX

XX

XX

XX

X3

77

30

74

0.1

9.3

E-0

51

62

18

58

99

SB

B_

A1

4B

B_

A1

4con

serv

ed

hyp

oth

etical p

rote

in

19

.01

8.2

6-1

0.7

50

.00

01

22

0.0

00

21

0.6

26

26

11

11

01

9.9

26

.1E

-05

33

33

03

19

0.0

00

19

12

21

02

8.2

60

.00

02

XX

XX

XX

XX

36

63

06

19

0.0

00

11

12

11

39

50

9.6

SB

B_

A1

5B

B_

A1

5ou

ter

su

rface p

rote

in A

(osp

A)

90

.11

66

.3-2

3.8

10

.21

79

22

0.0

03

33

26

5.4

22

18

47

19

27

19

28

40

71

92

90

.10

.19

46

11

11

87

53

87

53

11

10

87

53

90

.10

.24

12

31

38

88

81

30

88

48

0.0

03

85

18

94

94

18

09

45

3.5

0.0

02

81

11

6#

##

##

##

#1

16

0#

##

#9

0.1

0.1

27

76

27

32

93

67

8.7

SB

B_

A1

6B

B_

A1

6ou

ter

su

rface p

rote

in B

(osp

B)

38

.51

22

.97

-15

.54

0.0

54

08

20

.00

02

92

18

5.8

42

25

19

20

19

15

25

51

91

53

8.5

0.0

47

79

25

23

75

23

75

25

02

37

53

8.5

0.0

60

37

41

11

14

01

12

1.6

0.0

00

44

45

54

05

17

.60

.00

01

43

14

31

04

31

03

10

43

10

38

.50

.03

15

29

63

17

17

9

SB

B_

A2

4B

B_

A2

4d

ecorin

bin

din

g p

rote

in A

(d

bp

A)

53

.93

30

.89

-23

.04

0.0

01

26

20

.00

02

12

5.9

52

61

61

41

46

01

43

9.3

0.0

00

54

10

50

50

10

05

05

3.4

0.0

01

97

24

42

04

17

.30

.00

02

53

44

30

42

5.1

0.0

00

17

11

72

72

11

07

25

3.9

0.0

00

82

19

12

12

14

8.8

SB

B_

A5

7B

B_

A5

7p

red

icte

d c

od

ing

reg

ion

BB

A5

7

7.7

32

.17

-5.5

61

.8E

-05

22

.9E

-05

10

.62

06

91

11

10

17

.25

1.8

E-0

51

11

10

17

.73

1.8

E-0

51

11

10

12

.17

2.9

E-0

5X

XX

XX

XX

X2

22

20

27

.73

1E

-05

41

44

74

24

5.3

SB

B_

A5

9B

B_

A5

9lip

op

rote

in

72

.15

29

.11

-43

.04

0.0

10

54

20

.00

35

92

2.9

33

78

61

42

14

26

01

42

63

.30

.01

32

87

82

82

70

82

72

.20

.00

78

16

12

12

60

12

29

.10

.00

18

26

52

52

60

52

29

.10

.00

53

78

28

52

85

80

28

57

2.2

0.0

07

81

79

89

95

4.5

SB

B_

A6

4B

B_

A6

4an

tig

en

2

5.4

16

.19

-19

.22

0.0

00

24

23

.9E

-05

16

.23

07

75

99

50

92

1.8

0.0

00

22

51

11

15

01

12

4.8

0.0

00

27

11

11

01

6.1

93

.9E

-05

XX

XX

XX

XX

82

02

08

02

02

5.4

0.0

00

14

30

73

49

52

9.2

SB

B_

A6

8B

B_

A6

8p

red

icte

d c

od

ing

reg

ion

BB

A6

8

64

.54

32

.27

-32

.27

0.0

06

28

20

.00

02

62

24

.35

66

32

26

02

60

32

02

60

61

.40

.00

76

53

31

64

16

43

30

16

46

1.4

0.0

04

92

34

43

04

12

.80

.00

01

96

10

10

60

10

28

.70

.00

03

34

44

36

43

64

40

43

66

4.5

0.0

03

76

25

12

91

73

8.2

SB

B_

A6

9B

B_

A6

9p

red

icte

d c

od

ing

reg

ion

BB

A6

9

73

0-7

30

.00

33

42

00∞

26

13

01

30

26

01

30

65

.40

.00

36

52

51

06

10

62

50

10

66

6.2

0.0

03

03

XX

XX

XX

XX

XX

XX

XX

XX

36

23

62

36

36

02

36

73

0.0

01

94

26

33

04

87

8.9

SB

B_

B0

8B

B_

B0

8p

red

icte

d c

od

ing

reg

ion

BB

B0

8

24

.43

1.5

87

.18

0.0

00

46

20

.00

07

72

0.6

05

23

21

41

42

01

42

0.6

0.0

00

49

31

21

23

01

22

4.4

0.0

00

43

39

93

09

19

.10

.00

05

15

26

26

50

26

31

.60

.00

10

25

51

51

50

51

40

.70

.00

05

32

09

24

62

08

SB

B_

B1

9B

B_

B1

9ou

ter

su

rface p

rote

in C

(osp

C)

74

.76

30

.48

-44

.28

0.0

03

33

20

.00

04

22

7.8

62

88

16

12

71

27

16

01

27

71

.90

.00

44

71

46

16

11

40

61

62

.40

.00

21

92

66

20

62

10

.00

03

44

13

13

40

13

30

.50

.00

05

12

02

07

20

72

00

20

77

4.8

0.0

02

13

21

02

23

41

8.3

SB

B_

B2

5B

B_

B2

5p

red

icte

d c

od

ing

reg

ion

BB

B2

5

9.4

19

.41

08

.7E

-05

10

.00

01

72

0.5

24

11

22

10

29

.41

8.7

E-0

5X

XX

XX

XX

X1

22

10

29

.41

0.0

00

14

14

41

04

9.4

10

.00

01

91

88

10

89

.41

0.0

00

11

70

20

11

99

SB

B_

D1

0B

B_

D1

0con

serv

ed

hyp

oth

etical p

rote

in

38

.54

22

.4-1

6.1

40

.00

04

42

0.0

00

24

21

.83

47

14

19

19

40

19

31

.30

.00

07

32

44

20

41

4.1

0.0

00

16

33

33

03

22

.40

.00

01

91

77

10

71

20

.00

03

73

33

37

03

34

90

.00

03

71

92

22

70

59

SB

B_

E3

1B

B_

E3

1an

tig

en

4

6.5

0-4

6.5

0.0

00

72

20

0∞

92

42

49

02

43

7.5

0.0

00

73

82

32

38

02

33

9.9

0.0

00

71

XX

XX

XX

XX

XX

XX

XX

XX

12

47

47

12

04

74

6.5

0.0

00

42

24

32

81

53

9.2

SB

B_

F2

0B

B_

F2

0con

serv

ed

hyp

oth

etical p

rote

in

17

.53

9.2

8-8

.25

0.0

00

27

20

.00

01

52

1.8

35

62

25

52

05

17

.50

.00

03

81

22

10

28

.25

0.0

00

16

11

11

01

9.2

80

.00

01

22

22

20

29

.28

0.0

00

17

31

01

03

01

01

7.5

0.0

00

22

97

11

05

79

.2

SB

B_

G0

1B

B_

G0

1p

red

icte

d c

od

ing

reg

ion

BB

G0

1

74

.07

16

.5-5

7.5

70

.00

52

6.8

E-0

52

73

.48

53

23

30

52

08

21

97

25

86

5.7

0.0

06

42

22

14

61

37

19

91

41

63

.30

.00

35

72

22

20

26

.73

8E

-05

23

11

22

9.7

65

.5E

-05

30

45

33

47

27

10

63

98

74

.10

.00

29

29

73

45

56

8.8

SB

B_

H0

6B

B_

H0

6p

red

icte

d c

od

ing

reg

ion

BB

H0

6

68

.64

69

.07

0.4

30

.01

28

42

0.0

17

28

20

.74

32

71

74

04

40

41

70

40

46

4.4

0.0

12

65

14

40

94

09

14

04

09

50

0.0

13

04

93

71

37

19

03

71

54

.70

.01

87

91

44

56

45

61

40

45

66

5.3

0.0

15

77

20

16

39

16

39

20

01

63

96

8.6

0.0

15

03

23

62

71

62

7.1

SB

B_

H1

8B

B_

H1

8p

red

icte

d c

od

ing

reg

ion

BB

H1

8

21

.56

7.2

8-1

4.2

80

.00

01

92

3.2

E-0

51

5.9

37

55

15

15

50

15

21

.60

.00

03

24

42

04

6.4

78

.1E

-05

11

11

01

7.2

83

.2E

-05

XX

XX

XX

XX

61

91

96

01

92

1.6

0.0

00

11

37

14

26

27

9.3

SB

B_

H3

2B

B_

H3

2an

tig

en

2

7.7

11

0.4

4-1

7.2

70

.00

06

12

7.3

E-0

52

8.3

56

16

93

63

69

03

62

7.7

0.0

01

07

15

51

05

4.4

20

.00

01

51

11

10

14

.02

4.8

E-0

52

33

20

31

0.4

9.8

E-0

59

41

41

90

41

27

.70

.00

03

62

49

28

80

49

SB

B_

H3

7B

B_

H3

7p

red

icte

d c

od

ing

reg

ion

BB

H3

7

72

.44

18

.91

-53

.53

0.0

06

41

20

.00

01

26

2.2

03

93

43

11

30

33

38

31

16

8.9

0.0

07

36

33

22

62

26

33

02

26

67

.60

.00

54

53

44

30

41

2.8

0.0

00

15

22

22

02

14

.15

.2E

-05

42

54

35

35

41

85

43

72

.40

.00

37

73

12

35

33

28

.6

SB

B_

I16

BB

_I1

6p

red

icte

d c

od

ing

reg

ion

BB

I16

2

6.1

60

-26

.16

0.0

00

62

20

0∞

51

41

45

01

41

7.5

0.0

00

23

46

16

14

06

11

5.7

0.0

01

02

XX

XX

XX

XX

XX

XX

XX

XX

87

57

58

07

52

6.2

0.0

00

36

45

15

43

21

8.1

SB

B_

I29

BB

_I2

9p

red

icte

d c

od

ing

reg

ion

BB

I29

7

2.4

43

.89

-28

.51

0.0

02

91

20

.00

03

32

8.9

38

65

20

99

99

20

09

96

3.8

0.0

03

31

20

74

74

20

07

47

2.4

0.0

02

52

61

01

06

01

03

5.8

0.0

00

54

23

32

03

18

.60

.00

01

12

81

86

18

62

80

18

67

2.4

0.0

01

82

22

12

55

86

8.5

SB

B_

I36

BB

_I3

6an

tig

en

7

1.2

24

.32

-66

.90

.00

37

24

.3E

-05

18

5.9

30

22

72

65

72

25

81

82

69

.40

.00

48

32

61

35

63

12

99

4.6

66

.20

.00

25

61

20

02

14

.32

4.3

E-0

5X

XX

XX

XX

X3

44

02

13

33

89

26

07

1.2

0.0

02

02

27

83

21

86

8.7

SB

B_

I38

BB

_I3

8p

red

icte

d c

od

ing

reg

ion

BB

I38

6

4.7

54

.32

-60

.43

00

4.3

E-0

51

02

52

58

00

25

80

63

X2

31

29

00

12

90

59

.4X

12

00

21

4.3

24

.3E

-05

XX

XX

XX

XX

32

39

01

13

89

20

73

0.0

00

16

27

83

22

09

8.9

SB

B_

I39

BB

_I3

9p

red

icte

d c

od

ing

reg

ion

BB

I39

7

7.0

81

5.2

8-6

1.8

0.0

16

36

20

.00

02

91

56

.20

96

41

79

37

09

37

84

79

27

0.1

0.0

20

32

51

47

54

34

48

41

47

47

7.1

0.0

12

39

37

73

07

15

.30

.00

02

9X

XX

XX

XX

X5

81

27

51

15

05

31

25

12

73

77

.10

.00

95

72

88

32

96

49

.4

SB

B_

J0

9B

B_

J0

9ou

ter

su

rface p

rote

in D

(osp

D)

88

.33

50

.58

-37

.75

0.0

68

96

20

.00

30

12

22

.89

34

47

26

56

26

56

47

02

65

68

5.6

0.0

76

34

62

21

03

21

03

62

02

10

38

5.6

0.0

61

57

91

07

10

79

01

07

35

.40

.00

49

81

23

33

31

20

33

44

0.0

01

05

70

48

84

48

84

70

04

88

49

0.7

0.0

41

12

25

72

84

34

5.4

SB

B_

J3

4B

B_

J3

4p

red

icte

d c

od

ing

reg

ion

BB

J3

4

78

.09

4.4

9-7

3.6

0.0

03

28

22

.3E

-05

11

42

.69

63

12

45

24

53

10

24

57

50

.00

50

82

47

07

02

40

70

62

.60

.00

14

8X

XX

XX

XX

X1

11

10

14

.49

2.3

E-0

53

93

16

31

63

90

31

67

8.1

0.0

01

92

35

63

96

50

5.5

SB

B_

J3

6B

B_

J3

6p

red

icte

d c

od

ing

reg

ion

BB

J3

6

65

.06

0-6

5.0

60

.00

08

20

0∞

17

52

52

17

05

25

5.1

0.0

01

09

10

24

24

10

02

43

9.8

0.0

00

51

XX

XX

XX

XX

XX

XX

XX

XX

20

76

76

20

07

66

5.1

0.0

00

47

35

23

95

40

8.9

SB

B_

K0

1B

B_

K0

1p

red

icte

d c

od

ing

reg

ion

BB

K0

1

78

.79

9.4

3-6

9.3

60

.00

53

52

5.5

E-0

51

97

.29

09

31

29

01

93

29

97

24

06

60

.00

59

64

31

91

18

24

09

18

77

7.1

0.0

04

74

XX

XX

XX

XX

23

11

22

9.4

35

.5E

-05

51

48

43

78

48

10

64

33

78

.80

.00

31

62

97

34

14

09

SB

B_

K0

7B

B_

K0

7p

red

icte

d c

od

ing

reg

ion

BB

K0

7

9.2

0-9

.20

.00

01

20

0∞

15

51

05

9.2

0.0

00

15

12

21

02

9.2

6E

-05

XX

XX

XX

XX

XX

XX

XX

XX

17

71

07

9.2

6.1

E-0

52

50

27

75

87

.3

SB

B_

K1

9B

B_

K1

9p

red

icte

d c

od

ing

reg

ion

BB

K1

9

66

.35

16

.11

-50

.24

0.0

06

11

20

.00

01

52

39

.91

51

72

45

24

51

70

24

56

2.1

0.0

08

58

17

10

21

02

17

01

02

61

.60

.00

36

41

22

10

21

1.4

0.0

00

11

25

52

05

16

.10

.00

01

92

03

54

35

42

00

35

46

6.4

0.0

03

63

21

12

43

26

8.1

SB

B_

K5

0B

B_

K5

0im

mu

nog

en

ic p

rote

in P

37

4

4.2

81

6.2

7-2

8.0

10

.00

05

72

5.5

E-0

52

10

.41

82

92

42

49

02

43

0.4

0.0

00

53

12

27

27

12

02

73

7.4

0.0

00

61

11

11

01

3.3

13

.6E

-05

23

32

03

13

7.4

E-0

51

55

45

41

50

54

44

.30

.00

03

53

32

37

31

48

.2

SB

B_

L2

8B

B_

L2

8m

lpH

1

4.1

90

-14

.19

0.0

00

11

00∞

XX

XX

XX

XX

12

21

02

14

.20

.00

01

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

14

.22

.9E

-05

14

81

66

26

7.8

SB

B_

L3

9B

B_

L3

9;B

B_

P3

8erp

N

69

.49

48

.59

-20

.90

.00

81

32

0.0

00

75

21

0.8

69

17

24

72

47

17

02

47

65

0.0

10

31

19

14

01

40

19

01

40

69

.50

.00

59

51

11

10

17

.34

6.8

E-0

56

31

31

60

31

48

.60

.00

14

32

14

19

41

92

10

41

96

9.5

0.0

05

12

17

72

01

06

6.1

SB

B_

M2

7B

B_

M2

7;B

B_

P2

7re

vA

3

7.5

13

.13

-24

.37

0.0

00

35

20

.00

03

82

0.9

28

51

11

15

01

12

9.4

0.0

00

51

24

42

04

24

.40

.00

01

92

88

20

81

3.1

0.0

00

63

33

30

31

3.1

0.0

00

15

72

62

67

02

63

7.5

0.0

00

35

16

01

79

21

8.5

SB

B_

N3

8B

B_

N3

8erp

P

53

.23

8.0

6-4

5.1

70

.00

16

92

4.4

E-0

51

38

.47

73

11

70

70

11

07

05

3.2

0.0

02

78

81

51

58

01

54

6.8

0.0

00

61

XX

XX

XX

XX

11

11

01

8.0

64

.4E

-05

13

86

86

13

08

65

3.2

0.0

01

18

62

06

89

8.3

SB

B_

N3

9B

B_

N3

9erp

Q

37

.03

0-3

7.0

30

.00

02

52

00∞

81

31

38

01

33

70

.00

02

84

10

10

40

10

15

.70

.00

02

2X

XX

XX

XX

XX

XX

XX

XX

X9

23

23

90

23

37

0.0

00

15

34

33

93

48

5

SB

B_

O4

0B

B_

O4

0erp

M

9.3

79

.37

04

.1E

-05

16

.7E

-05

10

.61

19

41

20

02

03

.86

X1

22

10

25

.51

4.1

E-0

5X

XX

XX

XX

X2

32

11

39

.37

6.7

E-0

52

74

13

4.8

9.3

72

.9E

-05

36

34

18

43

5.1

SB

B_

P2

8B

B_

P2

8m

lpA

3

2.4

31

2.8

4-1

9.5

90

.00

02

62

8.1

E-0

51

3.1

60

49

31

13

28

5.1

82

0.3

0.0

00

26

35

53

05

24

.30

.00

02

51

11

10

11

2.8

8.1

E-0

5X

XX

XX

XX

X7

17

96

81

23

2.4

0.0

00

18

14

81

64

13

6

SB

B_

P3

9B

B_

P3

9erp

B

17

.99

17

.99

09

.8E

-05

29

.5E

-05

11

.03

15

84

86

32

81

80

.00

01

61

22

10

21

0.3

4E

-05

23

32

03

14

.39

.5E

-05

11

00

10

3.7

X5

14

11

43

13

.22

27

.6E

-05

37

84

36

36

4.9

SB

B_

Q0

5B

B_

Q0

5an

tig

en

7

.21

1.2

40

.00

01

21

9.8

E-0

51

1.2

24

49

XX

XX

XX

XX

14

41

04

7.2

0.0

00

12

XX

XX

XX

XX

23

32

03

11

.29

.8E

-05

37

73

07

18

.46

.1E

-05

25

02

89

41

5.8

SB

B_

Q3

5B

B_

Q3

5m

lpJ

26

.11

16

.75

-9.3

60

.00

01

32

0.0

00

07

21

.82

85

72

66

20

61

9.7

0.0

00

22

11

11

01

6.4

3.7

E-0

51

11

10

19

.36

5.9

E-0

51

22

10

27

.39

8E

-05

48

84

08

30

.58

.5E

-05

20

32

35

78

5.5

SB

B_

R2

8B

B_

R2

8m

lpD

1

5.7

11

0.7

1-5

0.0

00

18

10

.00

01

71

1.0

64

33

21

02

18

3.4

51

5.7

0.0

00

18

XX

XX

XX

XX

12

21

02

10

.70

.00

01

7X

XX

XX

XX

X2

12

41

85

.33

15

.78

.2E

-05

14

01

58

62

7.2

SB

B_

R4

2B

B_

R4

2erp

Y

16

.96

0-1

6.9

63

.3E

-05

20

0∞

11

11

01

7.5

93

.3E

-05

11

11

01

9.3

83

.4E

-05

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

17

1.9

E-0

52

24

25

41

68

.1

SB

B_

S3

0B

B_

S3

0m

lpC

3

1.7

61

2.1

6-1

9.6

0.0

00

36

25

.5E

-05

16

.54

54

54

14

63

81

0.4

31

.80

.00

05

21

44

10

41

8.9

0.0

00

2X

XX

XX

XX

X1

11

10

11

2.2

5.5

E-0

54

19

11

38

14

.73

1.8

0.0

00

21

14

81

67

31

6

SB

B_

S4

1B

B_

S4

1erp

G

20

.41

0-2

0.4

17

.6E

-05

20

0∞

11

11

01

20

.43

.8E

-05

23

32

03

20

.40

.00

01

2X

XX

XX

XX

XX

XX

XX

XX

X2

44

20

42

0.4

4.4

E-0

51

96

22

04

95

.5

P-O

MB

B_

00

28

BB

_0

02

8p

red

icte

d c

od

ing

reg

ion

BB

00

28

7

8.2

27

5.3

6-2

.86

0.0

07

63

20

.01

09

62

0.6

96

45

20

39

03

90

20

03

90

70

.20

.00

82

62

33

25

32

52

30

32

57

3.1

0.0

07

01

20

29

12

91

20

02

91

60

.70

.00

99

73

25

11

51

13

20

51

17

5.4

0.0

11

95

33

14

87

14

87

33

01

48

77

8.2

0.0

09

22

34

93

97

05

8.8

P-O

MB

B_

03

24

BB

_0

32

4p

red

icte

d c

od

ing

reg

ion

BB

03

24

4

4.5

44

5.3

80

.84

0.0

01

13

20

.00

16

42

0.6

88

88

71

91

97

01

93

6.1

0.0

01

18

61

71

76

01

74

4.5

0.0

01

07

38

83

08

29

.40

.00

08

11

36

36

11

03

64

5.4

0.0

02

47

13

80

80

13

08

05

3.8

0.0

01

45

11

91

38

98

9.5

P-O

MB

B_

04

60

BB

_0

46

0p

red

icte

d c

od

ing

reg

ion

BB

04

60

3

0.8

19

.41

-11

.39

0.0

00

58

20

.00

02

92

2.0

17

42

72

92

97

02

92

7.9

0.0

00

93

88

30

81

0.6

0.0

00

25

51

01

05

01

01

9.4

0.0

00

51

22

10

23

.38

6.9

E-0

58

49

49

80

49

30

.80

.00

04

52

37

28

19

18

.9

P-O

MB

B_

A6

2B

B_

A6

2lip

op

rote

in

50

38

.24

-11

.76

0.0

19

46

20

.03

27

92

0.5

93

54

15

23

32

33

15

02

33

50

0.0

25

31

11

12

31

23

11

01

23

50

0.0

13

61

13

15

81

58

13

01

58

38

.20

.02

77

71

63

15

31

51

60

31

53

8.2

0.0

37

81

77

99

79

91

70

79

95

00

.02

54

26

87

76

38

.1

P-I

MB

B_

01

41

BB

_0

14

1m

em

bra

ne fu

sio

n p

rote

in (

mtr

C)

35

.85

39

.62

3.7

70

.00

05

22

0.0

00

89

20

.58

87

61

13

83

81

10

38

35

.90

.00

08

84

77

40

71

9.5

0.0

00

17

93

33

39

03

33

6.2

0.0

01

24

62

12

16

02

12

8.3

0.0

00

54

14

99

99

14

09

94

1.8

0.0

00

67

31

83

51

74

9

P-I

MB

B_

01

44

BB

_0

14

4g

lycin

e b

eta

ine

85

.86

80

-5.8

60

.01

68

42

0.0

21

23

20

.79

34

81

66

36

63

61

60

63

67

0.3

0.0

16

22

56

74

67

42

50

67

48

5.9

0.0

17

49

23

47

54

75

23

04

75

65

.20

.01

95

83

28

13

81

33

20

81

37

5.9

0.0

22

88

30

25

33

25

33

30

02

53

38

5.9

0.0

18

92

90

33

26

35

.4

P-I

MB

B_

01

93

BB

_0

19

3p

red

icte

d c

od

ing

reg

ion

BB

01

93

1

2.6

9.7

6-2

.84

9.1

E-0

52

4.1

E-0

52

2.2

19

51

22

22

02

9.7

66

E-0

51

44

10

42

.85

0.0

00

12

11

11

01

4.8

84

.9E

-05

11

11

01

4.8

83

.3E

-05

38

83

08

12

.67

E-0

52

46

28

88

29

.5

P-I

MB

B_

02

15

BB

_0

21

5p

hosp

hate

AB

C t

ran

sp

ort

er

78

.93

70

.71

-8.2

20

.01

11

42

0.0

10

69

21

.04

19

92

34

83

48

32

30

48

37

6.1

0.0

12

74

20

35

53

55

20

03

55

65

.40

.00

95

42

03

20

32

02

00

32

07

0.7

0.0

13

66

16

26

52

65

16

02

65

63

.60

.00

77

22

91

41

61

41

62

90

14

16

78

.90

.01

09

42

80

31

25

08

P-I

MB

B_

02

27

BB

_0

22

7p

red

icte

d c

od

ing

reg

ion

BB

02

27

6

0.5

26

0.5

20

0.0

02

62

20

.00

46

22

0.5

67

13

13

98

98

13

09

85

7.5

0.0

03

11

13

66

66

13

06

64

6.8

0.0

02

13

12

94

94

12

09

45

7.5

0.0

04

82

16

12

61

26

16

01

26

60

.50

.00

44

11

73

79

37

91

70

37

96

0.5

0.0

03

52

23

32

74

91

6

P-I

MB

B_

02

98

BB

_0

29

8con

serv

ed

hyp

oth

etical p

rote

in

46

.52

62

.17

15

.65

0.0

00

52

0.0

01

37

20

.36

62

38

19

19

80

19

35

.70

.00

06

14

12

12

40

12

32

.60

.00

03

91

34

03

91

31

39

46

.50

.00

20

37

20

20

70

20

27

0.0

00

71

19

91

90

19

19

06

7.8

0.0

00

85

23

02

64

97

6.3

P-I

MB

B_

03

23

BB

_0

32

3p

red

icte

d c

od

ing

reg

ion

BB

03

23

3

3.1

62

3.0

8-1

0.0

80

.00

01

82

0.0

00

37

20

.47

32

69

16

16

90

16

33

.20

.00

03

11

22

10

23

.45

4E

-05

51

21

25

01

21

7.2

0.0

00

38

41

71

74

01

71

1.4

0.0

00

37

11

47

47

11

04

73

6.6

0.0

00

27

37

74

41

51

9.3

P-I

MB

B_

03

28

BB

_0

32

8olig

op

ep

tid

e A

BC

tra

nsp

ort

er

79

.21

80

.34

1.1

30

.02

57

72

0.0

45

06

20

.57

18

94

91

34

41

32

94

81

51

34

46

8.1

0.0

18

77

79

23

04

22

92

78

12

23

04

79

.20

.03

27

76

41

75

11

73

96

21

21

75

17

5.2

0.0

39

57

10

93

27

73

23

71

07

40

32

77

80

.30

.05

05

58

68

04

27

97

18

57

18

04

28

3.4

0.0

32

89

52

96

06

29

6

P-I

MB

B_

03

29

BB

_0

32

9olig

op

ep

tid

e A

BC

tra

nsp

ort

er

79

.17

75

.95

-3.2

20

.01

64

32

0.0

17

49

20

.93

96

83

91

01

31

01

33

90

10

13

66

.70

.01

41

74

41

31

21

31

24

40

13

12

76

.90

.01

87

46

83

68

34

45

28

35

65

0.0

18

89

51

10

47

10

37

49

10

10

41

73

.70

.01

60

85

64

11

34

11

35

60

41

13

79

.20

.01

68

55

28

60

66

35

.8

P-I

MB

B_

03

30

BB

_0

33

0olig

op

ep

tid

e A

BC

tra

nsp

ort

er

87

.06

76

.52

-10

.54

0.0

32

46

20

.03

52

72

0.9

20

27

58

18

88

18

88

58

01

88

88

2.3

0.0

25

78

77

28

14

28

14

77

02

81

48

5.6

0.0

39

14

71

19

58

19

56

70

21

95

76

9.3

0.0

43

25

71

18

13

18

03

69

10

18

09

71

.70

.02

72

98

98

33

08

33

08

90

83

30

87

.10

.03

33

25

41

62

36

89

.1

P-I

MB

B_

03

65

BB

_0

36

5lip

op

rote

in L

A7

8

2.9

98

2.9

90

0.0

39

76

20

.07

00

32

0.5

67

75

13

10

17

10

17

13

01

01

78

1.4

0.0

38

73

24

10

52

10

52

24

01

05

28

30

.04

08

25

14

80

14

80

25

01

48

06

9.1

0.0

91

19

27

11

62

11

62

27

01

16

28

20

.04

88

82

54

66

04

66

02

50

46

60

83

0.0

51

97

19

42

18

66

5.8

P-I

MB

B_

03

82

BB

_0

38

2b

asic

mem

bra

ne p

rote

in B

(b

mp

B)

68

.91

61

-7.9

10

.00

56

32

0.0

04

83

21

.16

41

11

61

73

17

31

60

17

36

1.9

0.0

03

75

18

34

03

40

18

03

40

64

.50

.00

75

15

17

41

74

15

01

74

61

0.0

06

11

31

49

14

91

30

14

95

9.8

0.0

03

57

21

83

68

36

21

08

36

68

.90

.00

53

34

13

75

93

5.2

P-I

MB

B_

03

84

BB

_0

38

4b

asic

mem

bra

ne p

rote

in C

(b

mp

C)

11

.05

16

.43

5.3

85

.3E

-05

20

.00

01

22

0.4

45

38

12

21

02

5.6

74

.2E

-05

13

31

03

5.3

86

.4E

-05

35

53

05

6.5

20

.00

01

72

33

20

39

.92

6.9

E-0

55

12

12

50

12

17

.67

.4E

-05

35

33

98

24

9.1

P-I

MB

B_

03

85

BB

_0

38

5b

asic

mem

bra

ne p

rote

in D

(b

mp

D)

82

.78

85

2.2

20

.02

89

12

0.0

32

53

20

.88

88

13

27

79

77

93

20

77

98

1.4

0.0

15

99

43

20

02

20

02

43

02

00

28

2.8

0.0

41

84

30

77

57

75

30

07

75

74

.70

.02

57

35

41

73

51

73

55

40

17

35

85

0.0

39

33

47

52

45

52

45

47

05

24

58

3.3

0.0

31

52

36

03

97

05

5.4

P-I

MB

B_

03

98

BB

_0

39

8p

red

icte

d c

od

ing

reg

ion

BB

03

98

0

2.9

22

.92

00

0.0

00

07

10

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

2.9

27

E-0

5X

XX

XX

XX

X1

22

10

22

.92

1.3

E-0

53

43

40

58

67

.5

P-I

MB

B_

04

56

BB

_0

45

6p

red

icte

d c

od

ing

reg

ion

BB

04

56

6

.97

15

.92

8.9

53

.7E

-05

10

.00

03

10

.12

45

81

11

10

16

.97

3.7

E-0

5X

XX

XX

XX

X3

55

30

51

5.9

0.0

00

3X

XX

XX

XX

X3

66

30

61

5.9

6.5

E-0

52

01

23

58

48

.3

P-I

MB

B_

05

42

BB

_0

54

2p

red

icte

d c

od

ing

reg

ion

BB

05

42

2

1.8

83

6.4

61

4.5

80

.00

08

82

0.0

00

72

1.2

58

99

62

02

06

02

02

1.9

0.0

00

77

32

52

53

02

51

1.5

0.0

00

98

28

82

08

11

.50

.00

05

62

12

16

02

13

6.5

0.0

00

89

87

47

48

07

44

0.1

0.0

00

83

19

22

22

19

7.9

P-I

MB

B_

06

28

BB

_0

62

8con

serv

ed

hyp

oth

etical p

rote

in

01

3.2

81

3.2

80

00

.00

02

22

0X

XX

XX

XX

XX

XX

XX

XX

X2

22

20

21

3.3

9.9

E-0

52

10

10

20

10

9.9

60

.00

03

43

12

12

30

12

13

.30

.00

01

12

41

27

49

05

.6

P-I

MB

B_

06

52

BB

_0

65

2p

rote

in-e

xp

ort

mem

bra

ne p

rote

in (

s1

3.6

53

8.2

32

4.5

80

.00

01

22

0.0

00

68

20

.17

76

84

99

40

91

0.2

0.0

00

11

31

01

03

01

01

0.4

0.0

00

13

11

21

21

11

02

12

2.5

0.0

00

43

15

67

67

15

06

73

4.5

0.0

00

93

19

10

51

05

19

01

05

35

.80

.00

03

95

86

65

02

88

.9

P-I

MB

B_

06

64

BB

_0

66

4p

red

icte

d c

od

ing

reg

ion

BB

06

64

3

4.3

65

9.9

12

5.5

50

.00

10

71

0.0

01

54

20

.69

83

16

33

33

60

33

34

.40

.00

10

7X

XX

XX

XX

X1

05

55

51

00

55

59

.90

.00

29

35

53

05

22

0.0

00

18

10

93

93

10

09

35

9.9

0.0

00

89

22

72

65

10

5.1

P-I

MB

B_

08

06

BB

_0

80

6p

red

icte

d c

od

ing

reg

ion

BB

08

06

2

4.7

18

.77

-5.9

30

.00

02

42

0.0

00

22

1.2

17

17

10

31

31

10

03

12

4.7

0.0

00

45

22

22

02

6.5

23

E-0

54

12

12

40

12

14

.20

.00

02

84

77

40

71

2.7

0.0

00

11

11

52

52

11

05

22

7.1

0.0

00

22

50

65

82

84

6.7

P-I

MB

B_

08

32

BB

_0

83

2p

red

icte

d c

od

ing

reg

ion

BB

08

32

8

.03

17

.15

9.1

22

.7E

-05

13

.7E

-05

20

.72

97

31

11

10

18

.03

2.7

E-0

5X

XX

XX

XX

X1

11

10

18

.03

4.4

E-0

51

11

10

19

.12

3E

-05

22

22

02

8.0

31

.6E

-05

27

43

11

19

9.6

P-I

MB

B_

A0

3B

B_

A0

3ou

ter

mem

bra

ne p

rote

in

78

.11

75

.15

-2.9

60

.02

12

52

0.0

30

24

20

.70

27

81

95

10

51

01

90

51

07

2.2

0.0

22

29

25

45

44

54

25

04

54

78

.10

.02

02

13

26

10

61

03

20

61

07

2.8

0.0

43

14

24

35

93

59

24

03

59

69

.20

.01

73

32

91

88

11

88

12

90

18

81

85

.80

.02

40

81

69

19

22

25

.4

P-I

MB

B_

A0

5B

B_

A0

5an

tig

en

1

6.0

74

.08

-11

.99

4.4

E-0

52

2.4

E-0

52

1.8

33

33

24

42

04

7.6

77

.1E

-05

11

11

01

8.3

91

.8E

-05

11

11

01

3.3

62

.9E

-05

11

11

01

3.8

42

E-0

53

55

30

51

6.1

2.6

E-0

54

17

48

84

29

.1

P-I

MB

B_

A3

4B

B_

A3

4olig

op

ep

tid

e A

BC

tra

nsp

ort

er

7.5

61

7.2

9.6

44

.3E

-05

25

.8E

-05

20

.74

13

83

20

31

17

3.0

47

.56

4.2

E-0

53

19

31

16

3.0

27

.56

4.3

E-0

54

15

32

12

3.0

21

0.4

6.8

E-0

55

44

32

41

3.0

41

2.7

4.7

E-0

54

89

11

27

81

1.1

12

.54

.5E

-05

52

96

09

93

5.7

P-I

MB

B_

B1

6B

B_

B1

6olig

op

ep

tid

e A

BC

tra

nsp

ort

er

76

.04

75

.47

-0.5

70

.01

75

82

0.0

28

78

20

.61

07

74

71

18

51

18

14

64

11

83

65

.10

.01

64

95

11

31

51

31

15

04

13

15

72

.60

.01

86

74

71

36

71

36

74

70

13

67

70

.40

.03

08

37

21

73

61

73

57

11

17

36

71

.50

.02

67

36

75

55

55

54

86

67

55

55

76

0.0

22

68

53

06

07

66

6.5

P-I

MB

B_

B2

7B

B_

B2

7p

red

icte

d c

od

ing

reg

ion

BB

B2

7

10

.93

8.7

4-2

.19

8.1

E-0

51

6.5

E-0

51

1.2

46

15

12

21

02

10

.98

.1E

-05

XX

XX

XX

XX

11

11

01

8.7

46

.5E

-05

XX

XX

XX

XX

23

32

03

19

.73

.5E

-05

18

32

15

51

9.5

For

all

dete

cte

d p

rote

ins, th

e d

iffe

rence in s

equence c

overa

ge (

% o

f pro

tein

sequence c

overe

d b

y d

ete

cte

d p

eptides, m

erg

ing p

eptides f

rom

the 2

replic

ate

s a

naly

zed f

or

each c

onditio

n)

observ

ed b

etw

een the p

rote

inase K

-tre

ate

d a

nd c

ontr

ol sam

ple

s w

ere

calc

ula

ted. T

he r

atio in a

vera

ge d

NS

AF

valu

es m

easure

d in the c

ontr

ol and p

rote

inase K

-tre

ate

d s

am

ple

s w

ere

als

o c

alc

ula

ted.

Tw

o r

eplic

ate

B. burg

dorf

eri B

31-A

3 s

pirochete

s s

am

ple

s s

ubje

cte

d to p

rote

inase-K

as w

ell

as tw

o u

ntr

eate

d c

ontr

ol sam

ple

s w

ere

analy

zed b

y M

udP

IT.

The M

S/M

S d

ata

sets

were

searc

hed a

gain

st a p

rote

in d

ata

base d

ow

nlo

aded f

rom

the S

pirochete

Genom

e B

row

ser,

whic

h c

onta

ins a

ccessio

n n

um

bers

of

all p

uta

tive B

. burg

dorf

eri B

31 O

RF

s (

http://s

gb.leib

niz

-fli.d

e/c

gi/list.pl?

ssi=

free&

c_sid

=yes&

sid

=24&

srt

=ltg&

.subm

it=

Go).

Exactly r

edundant sequences w

ere

rem

oved f

rom

this

data

base, le

avin

g 1

559 n

on-r

edundant B

b p

rote

ins. A

fter

addin

g u

sual conta

min

ants

and r

andom

izin

g e

ach p

rote

in e

ntr

y, th

e tota

l searc

h s

pace w

as 3

472 a

min

o a

cid

sequences. T

he M

S d

ata

set w

as s

earc

hed f

or

Meth

ionin

e o

xid

ation a

s a

diffe

rential m

odific

ation.

Com

bin

ing a

ll 4 r

uns, pro

tein

s h

ad to b

e identified w

ith a

t le

ast 2 try

ptic p

eptides o

f at le

ast 7 a

min

o a

cid

long a

nd/o

r 2 s

pectr

al counts

. P

rote

ins that w

ere

subsets

of

oth

ers

were

rem

oved u

sin

g the p

ars

imony o

ption in D

TA

Sele

ct on the p

rote

ins d

ete

cte

d a

fter

merg

ing a

ll ru

ns. P

rote

ins that w

ere

identified b

y the s

am

e s

et of

peptides (

inclu

din

g a

t le

ast one p

eptide u

niq

ue to s

uch p

rote

in g

roup to d

istinguis

h b

etw

een isofo

rms)

were

gro

uped togeth

er,

and o

ne a

ccessio

n n

um

ber

was a

rbitra

rily

consid

ere

d a

s r

epre

senta

tive o

f each p

rote

in g

roup. H

alf-t

ryptic p

eptides w

ere

allow

ed f

or

the p

rote

inase-K

tre

ate

d indiv

idual ru

ns b

ut did

not contr

ibute

to e

sta

blishin

g the m

aste

r list of

identified p

rote

ins (

"ALL"

colu

mns).

51 w

ere

teste

d to b

e s

urf

ace (

“S”)

pro

tein

s, 4 w

ere

localized to the o

ute

r m

em

bra

ne (

“P-O

M”)

, and 2

8 w

ere

localized to the inner

mem

bra

ne (

“P-I

M”)

. A

n a

dditio

nal 10 p

rote

ins w

ere

pre

dic

ted to c

onta

in a

sig

nal peptidase II cle

avage s

ite b

y L

ipoP

1.0

(“S

pII

”), w

hile

anoth

er

63 w

ere

pre

dic

ted to c

onta

in a

sig

nal peptide b

y L

ipoP

1.0

(“S

pI”

) and/o

r S

ignalP

4.1

. A

noth

er

100 p

rote

ins w

ere

pre

dic

ted to c

onta

in a

t le

ast 1 tra

nsm

em

bra

ne

dom

ain

by T

MH

MM

2.0

, but no s

ignal peptide (

“TM

”), w

hile

the r

em

ain

ing 3

65 p

rote

ins w

ere

most lik

ely

cyto

pla

sm

ic (

“CY

T”)

.

1

Page 135: Dowdell Dissertation FINAL

129

Dowde

ll_TableS2

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

PB

B_0

536

BB

_053

6zi

nc p

rote

ase

67.3

165

.17

-2.1

40.

0066

92

0.00

993

20.

6733

559

581

581

590

581

60.7

0.00

4671

1088

1088

710

1088

61.1

0.00

877

5351

251

253

051

252

.70.

0065

697

1525

1521

974

1521

64.6

0.01

3310

036

3436

3410

00

3634

71.7

0.00

843

933

1084

586.

3

SpI

IB

B_0

383

BB

_038

3ba

sic

mem

bran

e pr

otei

n A

(bm

pA)

86.7

379

.94

-6.7

90.

0409

72

0.05

328

20.

7689

134

1434

1432

342

1432

77.9

0.03

1243

2286

2286

430

2286

86.7

0.05

074

4316

9116

9143

016

9175

.50.

0596

359

1950

1950

590

1950

74.9

0.04

694

4972

2072

1349

772

1386

.70.

0460

433

936

968

5.3

SpI

IB

B_0

639

BB

_063

9sp

erm

idin

e/pu

tresc

ine

AB

C tr

ansp

o81

.976

.72

-5.1

80.

0166

12

0.01

806

20.

9197

134

630

630

340

630

70.1

0.01

337

4091

891

840

091

881

.60.

0198

543

644

644

430

644

70.7

0.02

212

5359

759

753

059

772

.70.

014

5827

1427

1458

027

1483

.90.

0168

734

840

681

5.9

SpI

IB

B_0

840

BB

_084

0pr

edic

ted

codi

ng re

gion

BB

0840

32

.16

27.7

-4.4

60.

0003

32

0.00

021

21.

5990

313

3636

130

3632

.20.

0004

94

1212

40

1213

.20.

0001

73

77

30

710

.60.

0001

69

1717

90

1727

.70.

0002

616

7070

160

7036

.60.

0002

853

862

131

8.9

SpI

IB

B_A

25B

B_A

25de

corin

bin

ding

pro

tein

B (d

bpB

) 20

.32

9.63

-10.

690.

0001

62

5.4E

-05

22.

9444

42

66

20

610

.70.

0002

42

22

20

215

.58E

-05

11

11

01

9.63

6.4E

-05

11

11

01

9.63

4.4E

-05

310

103

010

20.3

0.00

012

187

2039

89.

6S

pII

BB

_A60

BB

_A60

surfa

ce li

popr

otei

n P

27

79.4

29.

75-6

9.67

0.00

236

27.

3E-0

52

32.3

425

1462

6214

062

48.4

0.00

165

2611

311

326

011

378

0.00

307

22

22

02

9.75

8.6E

-05

12

21

02

5.42

5.9E

-05

3117

817

831

017

879

.40.

0013

927

732

444

9.1

SpI

IB

B_A

66B

B_A

66an

tigen

0

3.89

3.89

00

0.00

004

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

3.89

4E-0

51

22

10

23.

891.

1E-0

541

145

874

9.2

SpI

IB

B_A

73B

B_A

73an

tigen

6.

080

-6.0

85.

1E-0

51

00∞

XX

XX

XX

XX

12

21

02

6.08

5.1E

-05

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

6.08

1.5E

-05

296

3464

78.

9S

pII

BB

_J08

BB

_J08

pred

icte

d co

ding

regi

on B

BJ0

8 2.

2910

.46

8.17

00

5.3E

-05

10

18

00

80

2.29

XX

XX

XX

XX

XX

XX

XX

XX

X1

22

10

210

.55.

3E-0

52

102

18

2.03

12.8

1.4E

-05

306

3464

08.

9S

pII

BB

_K47

BB

_K47

pred

icte

d co

ding

regi

on B

BK

47

51.2

20

-51.

220.

0005

20

0∞

1237

125

2530

.845

.40.

0006

910

195

314

13.6

40.9

0.00

031

XX

XX

XX

XX

XX

XX

XX

XX

1656

155

4141

.451

.20.

0002

732

837

091

5.9

SpI

IB

B_K

49B

B_K

49pr

edic

ted

codi

ng re

gion

BB

K49

45

.92

0-4

5.92

0.00

018

20

0∞

1029

43

2510

.339

.60.

0002

39

152

213

5.43

37.2

0.00

012

XX

XX

XX

XX

XX

XX

XX

XX

1544

64

3816

.645

.90.

0001

133

137

658

6.2

SpI

BB

_001

6B

B_0

016

glpE

pro

tein

(glp

E)

28.8

9.6

-19.

28.

9E-0

52

0.00

036

20.

2493

22

22

02

16.8

0.00

012

11

11

01

126E

-05

12

21

02

9.6

0.00

019

18

81

08

9.6

0.00

052

313

133

013

28.8

0.00

023

125

1455

710

SpI

BB

_001

9B

B_0

019

pred

icte

d co

ding

regi

on B

B00

19

27.0

615

.88

-11.

180.

0002

62

0.00

038

20.

6912

93

88

30

822

.90.

0003

53

44

30

420

.60.

0001

83

66

30

615

.90.

0004

24

77

40

715

.90.

0003

45

2222

50

2227

.10.

0002

817

019

274

6.1

SpI

BB

_002

7B

B_0

027

pred

icte

d co

ding

regi

on B

B00

27

17.9

232

.08

14.1

60.

0022

22

0.00

433

20.

5123

61

33

10

37.

080.

0001

212

212

22

012

217

.90.

0043

33

1919

30

1928

.30.

0010

76

197

197

60

197

32.1

0.00

758

533

933

95

033

932

.10.

0034

621

223

865

9.1

SpI

BB

_003

1B

B_0

031

sign

al p

eptid

ase

I (le

pB-2

) 4.

619

.94

15.3

42.

3E-0

51

0.00

014

20.

1691

21

11

10

14.

62.

3E-0

5X

XX

XX

XX

X2

44

20

410

.40.

0001

53

55

30

515

0.00

013

510

105

010

24.5

6.6E

-05

326

3848

18.

9S

pIB

B_0

032

BB

_003

2pr

edic

ted

codi

ng re

gion

BB

0032

17

.14

34.9

17.7

60.

0001

82

0.00

051

20.

3575

67

1616

70

1615

.70.

0002

44

88

40

814

.10.

0001

212

2626

120

2628

.20.

0006

312

2323

120

2324

.50.

0003

820

7272

200

7235

.70.

0003

249

057

590

9.3

SpI

BB

_003

4B

B_0

034

pred

icte

d co

ding

regi

on B

B00

34

32.9

651

.418

.44

0.01

152

0.03

218

20.

3573

613

215

215

130

215

330.

0088

711

336

336

110

336

330.

0141

216

468

468

160

468

46.4

0.03

125

2372

672

623

072

648

0.03

3114

1699

1699

140

1699

37.4

0.02

054

179

1910

48.

6S

pIB

B_0

038

BB

_003

8pr

edic

ted

codi

ng re

gion

BB

0038

3.

179.

56.

332.

9E-0

51

0.00

012

10.

2457

61

22

10

23.

172.

9E-0

5X

XX

XX

XX

X3

55

30

59.

50.

0001

2X

XX

XX

XX

X4

77

40

712

.73E

-05

505

5902

46.

7S

pIB

B_0

058

BB

_005

8pr

edic

ted

codi

ng re

gion

BB

0058

10

.06

15.7

5.64

5.6E

-05

10.

0001

32

0.42

748

45

54

05

10.1

5.6E

-05

XX

XX

XX

XX

611

116

011

11.9

0.00

023

55

30

55.

646.

2E-0

510

2121

100

2118

.36.

9E-0

565

676

395

7.9

SpI

BB

_006

3B

B_0

063

pred

icte

d co

ding

regi

on B

B00

63

12.5

420

.98.

367.

8E-0

52

0.00

042

20.

1848

32

55

20

59.

550.

0001

11

22

10

22.

994.

5E-0

54

1010

40

1020

.90.

0003

63

2020

30

2016

.70.

0004

96

3737

60

3728

.40.

0002

433

537

306

8.8

SpI

BB

_008

7B

B_0

087

L-la

ctat

e de

hydr

ogen

ase

(ldh)

42

.41

40.5

1-1

.90.

0004

52

0.00

124

20.

3585

810

3533

102

3339

.60.

0007

73

55

30

517

.10.

0001

24

1111

40

1122

.20.

0004

212

8080

120

8040

.50.

0020

718

131

131

180

131

49.4

0.00

0931

634

901

6.9

SpI

BB

_012

6B

B_0

126

pred

icte

d co

ding

regi

on B

B01

26

64.5

366

.51.

970.

0050

22

0.01

015

20.

4946

814

119

119

140

119

58.1

0.00

433

1315

415

413

015

457

.60.

0057

110

120

120

100

120

56.7

0.00

707

2032

932

920

032

966

.50.

0132

320

715

715

200

715

64.5

0.00

762

203

2359

55.

3S

pIB

B_0

142

BB

_014

2pr

edic

ted

codi

ng re

gion

BB

0142

42

.73

46.3

63.

630.

0013

72

0.00

554

20.

2468

1511

311

315

011

338

.20.

0019

1249

4912

049

29.3

0.00

084

917

817

89

017

828

.40.

0048

426

337

337

260

337

46.4

0.00

625

2962

262

229

062

245

.50.

0030

644

050

847

8.7

SpI

BB

_015

9B

B_0

159

pred

icte

d co

ding

regi

on B

B01

59

11.1

616

.52

5.36

0.00

013

20.

0001

32

1.06

349

11

11

01

6.25

3.3E

-05

27

72

07

11.2

0.00

024

12

21

02

6.7

0.00

011

24

42

04

9.82

0.00

015

412

124

012

11.2

0.00

012

224

2580

59.

1S

pIB

B_0

202

BB

_020

2he

mol

ysin

3.

8810

.68

6.8

1.8E

-05

18.

7E-0

51

0.20

691

11

10

13.

881.

8E-0

5X

XX

XX

XX

X3

33

30

310

.78.

7E-0

5X

XX

XX

XX

X2

33

20

37.

771.

6E-0

541

246

391

9.2

SpI

BB

_020

4B

B_0

204

Lam

bda

CII

stab

ility-

gove

rnin

g pr

ot25

.39

30.0

34.

640.

0002

82

0.00

065

20.

4281

34

1010

40

1013

0.00

023

714

147

014

21.1

0.00

033

47

74

07

12.1

0.00

026

1141

4111

041

26.9

0.00

104

1271

7112

071

27.9

0.00

048

323

3719

49.

6S

pIB

B_0

209

BB

_020

9pr

edic

ted

codi

ng re

gion

BB

0209

11

.37

10.5

9-0

.78

0.00

015

19.

5E-0

52

1.52

632

25

52

05

11.4

0.00

014

XX

XX

XX

XX

12

21

02

6.67

9.4E

-05

23

32

03

9.02

9.6E

-05

410

104

010

15.3

8.5E

-05

255

3005

58.

4S

pIB

B_0

210

BB

_021

0su

rface

-loca

ted

mem

bran

e pr

otei

n 34

.32

40.1

35.

810.

001

20.

0018

12

0.55

132

2998

9829

098

25.4

0.00

065

2920

120

129

020

129

.20.

0013

524

114

114

240

114

21.2

0.00

122

5433

233

054

233

038

0.00

241

6273

373

362

073

344

.50.

0014

211

1912

8086

9.2

SpI

BB

_023

6B

B_0

236

pred

icte

d co

ding

regi

on B

B02

36

3.59

12.7

29.

131.

1E-0

51

7.2E

-05

20.

1527

8X

XX

XX

XX

X1

11

10

13.

591.

1E-0

54

66

40

612

.70.

0001

11

33

10

33.

593.

7E-0

54

1010

40

1012

.73.

2E-0

566

875

351

8.7

SpI

BB

_023

7B

B_0

237

acid

-indu

cibl

e pr

otei

n (a

ct20

6)

31.2

931

.29

00.

0002

42

0.00

053

20.

4459

26

2222

60

2220

0.00

031

611

116

011

13.8

0.00

016

37

73

07

7.68

0.00

016

1157

5711

057

28.8

0.00

089

1583

8315

083

34.6

0.00

034

521

5973

79.

2S

pIB

B_0

238

BB

_023

8pr

edic

ted

codi

ng re

gion

BB

0238

0

11.8

311

.83

00

6.1E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

4.58

9.1E

-05

11

11

01

7.25

3.1E

-05

23

32

03

11.8

2.5E

-05

262

3037

98.

3S

pIB

B_0

259

BB

_025

9pr

edic

ted

codi

ng re

gion

BB

0259

35

.55

36.3

60.

810.

0002

42

0.00

041

20.

5878

1440

4014

040

28.2

0.00

045

88

50

812

.88.

2E-0

516

4343

160

4334

.10.

0007

511

115

011

13.4

0.00

012

2397

9723

097

44.9

0.00

028

737

8633

79

SpI

BB

_026

1B

B_0

261

pred

icte

d co

ding

regi

on B

B02

61

17.8

326

.52

8.69

0.00

012

20.

0002

82

0.43

065

1212

50

1213

.70.

0001

93

33

30

310

.74.

9E-0

54

1010

40

1012

0.00

026

1217

1712

017

26.5

0.00

0314

4141

140

4131

.10.

0001

946

054

024

9.4

SpI

BB

_026

5B

B_0

265

pred

icte

d co

ding

regi

on B

B02

65

029

.48

29.4

80

00.

0002

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

116.

9E-0

52

77

20

718

.50.

0003

33

88

30

829

.50.

0001

173

2015

88.

3S

pIB

B_0

276

BB

_027

6fla

gella

r bio

synt

hesi

s pr

otei

n (fl

iZ)

8.17

19.7

111

.54

3.6E

-05

10.

0002

10.

1836

71

11

10

18.

173.

6E-0

5X

XX

XX

XX

XX

XX

XX

XX

X4

55

40

519

.70.

0002

45

54

05

135.

2E-0

520

824

405

5.9

SpI

BB

_031

5B

B_0

315

pred

icte

d co

ding

regi

on B

B03

15

16.2

310

.09

-6.1

40.

0001

61

0.00

014

11.

1328

74

55

40

516

.20.

0001

6X

XX

XX

XX

XX

XX

XX

XX

X1

44

10

410

.10.

0001

44

99

40

916

.28.

5E-0

522

826

880

9.4

SpI

BB

_031

9B

B_0

319

expo

rted

prot

ein

(tpn3

8b)

72.5

769

.43

-3.1

40.

0023

72

0.00

441

20.

5366

115

100

100

150

100

62.6

0.00

211

1412

212

214

012

258

.60.

0026

212

7474

120

7450

.90.

0025

328

270

270

280

270

69.4

0.00

6325

552

552

250

552

72.6

0.00

341

350

4013

08

SpI

BB

_033

6B

B_0

336

P26

0

9.56

9.56

00

0.00

255

20

XX

XX

XX

XX

XX

XX

XX

XX

179

791

079

5.58

0.00

376

241

412

041

9.56

0.00

133

12

21

02

3.98

1.7E

-05

251

2976

56.

8S

pIB

B_0

359

BB

_035

9ca

rbox

yl-te

rmin

al p

rote

ase

(ctp

) 59

.16

61.2

62.

10.

0015

12

0.00

392

20.

3851

123

127

127

230

127

510.

0019

821

6666

210

6648

0.00

105

2117

117

121

017

138

.50.

0043

3220

620

632

020

659

.40.

0035

437

562

562

370

562

61.1

0.00

256

475

5354

28.

3S

pIB

B_0

368

BB

_036

8gl

ycer

ol-3

-pho

spha

te d

ehyd

roge

nas

39.3

944

.08

4.69

0.00

201

20.

0035

92

0.55

955

813

313

38

013

335

.80.

0027

16

6363

60

6329

.80.

0013

17

129

129

70

129

320.

0042

511

130

130

110

130

44.1

0.00

292

1345

545

513

045

549

.60.

0027

136

340

697

6.2

SpI

BB

_039

3B

B_0

393

ribos

omal

pro

tein

L11

(rpl

K)

32.8

741

.96

9.09

0.00

026

20.

0003

42

0.77

679

24

42

04

210.

0002

12

66

20

623

.80.

0003

24

66

40

642

0.00

051

33

10

311

.90.

0001

74

1818

40

1839

.90.

0002

714

315

168

10S

pIB

B_0

395

BB

_039

5pr

epro

tein

tran

sloc

ase

subu

nit (

sec

19.6

419

.64

00.

0004

72

0.00

054

20.

8547

82

44

20

419

.60.

0005

31

33

10

319

.60.

0004

11

11

01

19.6

0.00

021

36

63

06

19.6

0.00

087

314

143

014

19.6

0.00

054

5666

959.

2S

pIB

B_0

405

BB

_040

5pr

edic

ted

codi

ng re

gion

BB

0405

53

.266

.01

12.8

10.

0055

32

0.02

236

20.

2474

1913

713

719

013

750

.70.

0049

919

164

164

190

164

47.8

0.00

608

925

525

59

025

527

.10.

0150

231

739

739

310

739

660.

0297

127

1252

1252

270

1252

56.7

0.01

334

203

2225

25.

2S

pIB

B_0

406

BB

_040

6pr

edic

ted

codi

ng re

gion

BB

0406

38

.42

38.9

20.

50.

0015

42

0.00

234

20.

6584

16

4343

60

4335

0.00

156

741

417

041

320.

0015

26

1414

60

1432

0.00

082

996

969

096

35.5

0.00

386

919

119

19

019

138

.40.

0020

420

322

800

8.3

SpI

BB

_041

8B

B_0

418

pred

icte

d co

ding

regi

on B

B04

18

32.4

640

.35

7.89

0.00

119

20.

0022

92

0.52

035

848

488

048

260.

0010

410

6161

100

6126

.30.

0013

49

2727

90

2725

.70.

0009

420

152

152

200

152

40.4

0.00

363

1528

028

015

028

039

.80.

0017

734

238

773

9S

pIB

B_0

420

BB

_042

0se

nsor

y tra

nsdu

ctio

n hi

stid

ine

kina

s0

4.89

4.89

00

1.6E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

1.34

1.6E

-05

33

33

03

3.55

1.6E

-05

34

43

04

3.61

5.8E

-06

1494

1728

188.

1S

pIB

B_0

504

BB

_050

4co

nser

ved

hypo

thet

ical

pro

tein

11

.18

22.7

511

.57

4.4E

-05

20.

0002

32

0.19

214

34

43

04

8.63

5.8E

-05

12

21

02

2.55

3E-0

55

1010

50

1012

.90.

0002

37

1414

70

1416

.70.

0002

211

2828

110

2823

.90.

0001

251

058

003

7.2

SpI

BB

_053

7B

B_0

537

cons

erve

d hy

poth

etic

al p

rote

in

18.2

233

.64

15.4

20.

0002

32

0.00

034

20.

6608

24

88

40

818

.20.

0002

83

55

30

518

.20.

0001

81

22

10

25.

140.

0001

17

1515

70

1533

.60.

0005

79

3030

90

3033

.60.

0003

214

2470

09.

3S

pIB

B_0

543

BB

_054

3pr

edic

ted

codi

ng re

gion

BB

0543

46

.33

56.8

810

.55

0.00

718

20.

0136

12

0.52

738

175

175

80

175

46.3

0.00

593

924

424

49

024

446

.30.

0084

214

8282

140

8256

.90.

0045

2360

760

723

060

756

.90.

0227

213

1006

1006

130

1006

50.9

0.00

998

218

2438

85.

2S

pIB

B_0

546

BB

_054

6pr

edic

ted

codi

ng re

gion

BB

0546

59

.09

48.9

5-1

0.14

0.00

242

20.

0020

92

1.16

211

1599

9915

099

48.3

0.00

256

1887

8718

087

59.1

0.00

229

1024

2410

024

34.6

0.00

118

111

111

180

111

490.

0031

722

318

318

220

318

59.1

0.00

241

286

3243

09.

4S

pIB

B_0

575

BB

_057

5C

TP s

ynth

ase

(pyr

G)

17.6

429

.27

11.6

30.

0001

20.

0004

20.

2574

36

1414

60

1415

0.00

019

11

11

01

2.63

1.4E

-05

819

198

019

19.1

0.00

043

925

259

025

24.6

0.00

038

1359

5913

059

31.1

0.00

024

533

5939

88

SpI

BB

_058

8B

B_0

588

pfs

prot

ein

(pfs

-2)

20.7

55.

66-1

5.09

0.00

011

13.

1E-0

51

3.61

293

44

30

420

.80.

0001

1X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

15.

663.

1E-0

53

44

30

420

.83.

3E-0

526

529

088

9.3

SpI

BB

_060

3B

B_0

603

mem

bran

e-as

soci

ated

pro

tein

p66

48

.38

57.9

39.

550.

0015

92

0.00

494

20.

3216

521

117

117

210

117

34.1

0.00

1425

146

146

250

146

44.3

0.00

178

1810

710

718

010

737

.50.

0020

739

591

591

390

591

53.2

0.00

7841

927

927

410

927

63.1

0.00

325

618

6817

26.

3S

pIB

B_0

646

BB

_064

6pr

edic

ted

codi

ng re

gion

BB

0646

54

.74

48.3

2-6

.42

0.00

068

20.

0017

82

0.37

892

814

148

014

31.2

0.00

032

1345

4513

045

43.4

0.00

104

1128

2811

028

40.4

0.00

102

1610

210

216

010

244

0.00

255

2117

817

821

017

854

.70.

0011

832

737

596

9.5

SpI

BB

_066

8B

B_0

668

flage

llar f

ilam

ent o

uter

laye

r pro

tein

0

16.5

716

.57

00

5.8E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

9.01

7E-0

52

22

20

27.

564.

7E-0

53

33

30

312

.81.

9E-0

534

438

835

8.1

SpI

BB

_071

4B

B_0

714

pred

icte

d co

ding

regi

on B

B07

14

13.9

821

.74

7.76

0.00

012

20.

0002

22

0.52

727

36

63

06

140.

0001

41

44

10

44.

049.

3E-0

53

55

30

510

.90.

0001

94

1010

40

1013

.40.

0002

56

2525

60

2521

.70.

0001

732

238

625

7.3

SpI

BB

_073

9B

B_0

739

pred

icte

d co

ding

regi

on B

B07

39

023

.59

23.5

90

00.

0001

42

0X

XX

XX

XX

XX

XX

XX

XX

X1

44

10

47.

690.

0002

51

11

10

115

.94.

2E-0

52

55

20

523

.65.

5E-0

519

523

102

8.1

SpI

BB

_074

4B

B_0

744

antig

en

01.

571.

570

03.

4E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

21.

573.

4E-0

5X

XX

XX

XX

X1

22

10

21.

576.

2E-0

670

079

929

5.3

SpI

BB

_075

1B

B_0

751

pred

icte

d co

ding

regi

on B

B07

51

71.1

570

.03

-1.1

20.

0039

72

0.00

806

20.

4926

832

225

225

320

225

65.6

0.00

466

2815

615

628

015

664

.20.

0032

922

146

145

221

145

60.5

0.00

485

3549

349

335

049

370

0.01

127

4410

1910

1844

110

1871

.20.

0061

735

741

901

6.5

SpI

BB

_077

6B

B_0

776

pred

icte

d co

ding

regi

on B

B07

76

55.0

847

.59

-7.4

90.

0014

22

0.00

192

20.

7385

24

3737

40

3735

.30.

0014

66

3434

60

3438

0.00

137

319

193

019

17.7

0.00

121

760

607

060

47.6

0.00

262

1214

414

412

014

457

.80.

0016

718

721

522

9.1

SpI

BB

_079

5B

B_0

795

oute

r mem

bran

e pr

otei

n 41

.956

.76

14.8

60.

0013

32

0.00

234

20.

5689

930

177

177

300

177

36.9

0.00

159

2711

711

727

011

734

.50.

0010

718

6969

180

6928

.60.

001

4137

737

041

737

054

.60.

0036

849

735

735

490

735

58.3

0.00

194

821

9456

86.

4S

pIB

B_0

796

BB

_079

6pr

edic

ted

codi

ng re

gion

BB

0796

0

10.8

110

.81

00

8.8E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

10.8

8.8E

-05

12

21

02

10.8

2.3E

-05

185

2144

68.

3S

pIB

B_0

811

BB

_081

1pr

edic

ted

codi

ng re

gion

BB

0811

0

6.82

6.82

00

2.1E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

4.69

2.5E

-05

11

11

01

2.13

1.7E

-05

22

22

02

6.82

9.2E

-06

469

5309

58.

6S

pIB

B_0

838

BB

_083

8pr

edic

ted

codi

ng re

gion

BB

0838

29

.14

36.4

77.

330.

0002

52

0.00

044

20.

5678

713

3232

130

3215

.10.

0002

117

4545

170

4520

.70.

0003

1122

2211

022

14.6

0.00

023

3292

9232

092

33.5

0.00

066

3718

318

337

018

340

.80.

0003

511

4613

4380

8.5

SpI

BB

_A52

BB

_A52

oute

r mem

bran

e pr

otei

n 17

.44

24.5

67.

120.

0000

81

0.00

032

0.26

667

XX

XX

XX

XX

23

32

03

17.4

8E-0

55

1010

50

1024

.60.

0004

32

66

20

66.

760.

0001

74

1818

40

1824

.20.

0001

428

133

103

8.7

SpI

BB

_B24

BB

_B24

pred

icte

d co

ding

regi

on B

BB

24

13.1

7.14

-5.9

64.

4E-0

51

0.00

014

10.

3098

61

11

10

113

.14.

4E-0

5X

XX

XX

XX

X1

22

10

27.

140.

0001

4X

XX

XX

XX

X2

33

20

320

.23.

9E-0

516

820

116

9.9

SpI

BB

_E09

BB

_E09

prot

ein

p23

13.2

40

-13.

240.

0002

11

00∞

28

82

08

13.2

0.00

021

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

28

82

08

13.2

6E-0

528

734

057

6.8

SpI

BB

_E16

BB

_E16

pred

icte

d co

ding

regi

on B

BE

16

5.34

20.8

715

.53

3.7E

-05

10.

0002

32

0.15

88X

XX

XX

XX

X1

11

10

15.

343.

7E-0

54

66

40

620

.90.

0003

52

33

20

313

.60.

0001

25

1010

50

1026

.20.

0001

120

624

534

9.3

SpI

BB

_F24

BB

_F24

cons

erve

d hy

poth

etic

al p

rote

in

38.9

836

.22

-2.7

60.

0003

42

0.00

056

20.

5960

97

2020

70

2039

0.00

058

23

32

03

7.87

8.9E

-05

615

156

015

18.9

0.00

071

513

135

013

33.1

0.00

042

1151

5111

051

42.1

0.00

043

254

2965

38.

7S

pIB

B_J

29B

B_J

29;B

B_J

43pr

edic

ted

codi

ng re

gion

BB

J29

04.

644.

640

04.

7E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X1

22

10

24.

644.

7E-0

51

22

10

24.

641.

3E-0

534

540

963

5S

pIB

B_K

45B

B_K

45im

mun

ogen

ic p

rote

in P

37

58.7

113

.23

-45.

480.

0037

42

0.00

035

110

.775

219

158

158

190

158

51.9

0.00

377

1815

315

318

015

356

.10.

0037

13

99

30

913

.20.

0003

5X

XX

XX

XX

X28

320

320

280

320

58.7

0.00

223

310

3532

39.

5S

pIB

B_M

26B

B_M

26co

nser

ved

hypo

thet

ical

pro

tein

24

.37

25.2

10.

840.

0001

71

7.6E

-05

22.

1842

12

32

11

2.67

24.4

0.00

017

XX

XX

XX

XX

22

00

20.

8325

.28.

4E-0

51

20

02

19.

246.

9E-0

54

72

15

534

.59.

1E-0

511

913

880

9.1

SpI

BB

_P26

BB

_P26

cons

erve

d hy

poth

etic

al p

rote

in

15.1

322

.69

7.56

00

5.1E

-05

20

11

00

10

15.1

XX

XX

XX

XX

X1

10

01

0.33

15.1

3.3E

-05

11

11

01

22.7

6.9E

-05

23

11

21.

522

.72.

7E-0

511

913

880

9.2

SpI

BB

_Q33

BB

_Q33

cons

erve

d hy

poth

etic

al p

rote

in

22.6

925

.21

2.52

8.3E

-05

17.

6E-0

52

1.09

211

22

11

11.

3322

.78.

3E-0

5X

XX

XX

XX

X2

20

02

0.83

25.2

8.4E

-05

12

00

21

9.24

6.9E

-05

46

11

52.

532

.84.

5E-0

511

913

877

9.1

TMB

B_0

006

BB

_000

6co

nser

ved

hypo

thet

ical

inte

gral

mem

8.56

22.4

613

.90.

0001

42

0.00

074

20.

1886

111

111

011

6.15

0.00

022

23

32

03

8.56

6E-0

54

1212

40

1215

.50.

0003

86

5050

60

5022

.50.

0010

97

7676

70

7624

.90.

0004

437

442

911

9.4

TMB

B_0

039

BB

_003

9pr

edic

ted

codi

ng re

gion

BB

0039

43

69.6

26.6

0.00

041

20.

0018

22

0.22

467

1743

4317

043

41.4

0.00

064

312

123

012

5.8

0.00

018

2911

311

329

011

364

.80.

0027

1657

5716

057

34.4

0.00

093

3721

921

937

021

971

.40.

0009

550

058

503

9.1

TMB

B_0

044

BB

_004

4pr

edic

ted

codi

ng re

gion

BB

0044

18

.05

17.2

9-0

.76

5.7E

-05

10.

0002

51

0.23

265

XX

XX

XX

XX

11

11

01

18.1

5.7E

-05

XX

XX

XX

XX

24

42

04

17.3

0.00

025

35

53

05

24.8

8.1E

-05

133

1605

34.

9TM

BB

_005

4B

B_0

054

pred

icte

d co

ding

regi

on B

B00

54

34.4

34.4

00.

0014

62

0.00

186

20.

7827

37

2929

70

2934

.40.

0017

17

2020

70

2034

.40.

0012

411

114

011

320.

0010

58

4141

80

4134

.40.

0026

88

9999

80

9934

.40.

0017

112

514

015

4.9

TMB

B_0

104

BB

_010

4pe

ripla

smic

ser

ine

prot

ease

DO

(htr

14.9

140

.58

25.6

70.

0001

62

0.00

072

0.22

869

515

155

015

14.9

0.00

023

26

62

06

7.04

9.3E

-05

1448

4814

048

35.4

0.00

119

713

137

013

17.4

0.00

022

1782

8217

082

40.6

0.00

037

483

5310

49.

1TM

BB

_010

6B

B_0

106

pred

icte

d co

ding

regi

on B

B01

06

3.51

7.03

3.52

3.3E

-05

20.

0001

12

0.3

14

41

04

3.51

5.2E

-05

11

11

01

3.51

1.3E

-05

25

52

05

7.03

0.00

011

28

82

08

3.51

0.00

011

318

183

018

7.03

6.8E

-05

569

6784

99

TMB

B_0

140

BB

_014

0ac

rifla

vine

resi

stan

ce p

rote

in (a

crB

) 5.

7929

.25

23.4

61.

8E-0

52

0.00

019

20.

0932

61

22

10

21.

831.

4E-0

52

33

20

33.

962.

2E-0

56

1111

60

1111

0.00

013

1533

3315

033

24.7

0.00

026

1748

4817

048

26.9

0.00

0110

3611

5439

8.2

TMB

B_0

203

BB

_020

3La

mbd

a C

II st

abilit

y-go

vern

ing

prot

32.4

828

.94

-3.5

40.

0003

82

0.00

086

20.

4449

65

1515

50

1522

.20.

0003

64

1717

40

1721

.50.

0004

12

2121

20

219

0.00

081

735

357

035

28.9

0.00

092

988

889

088

32.5

0.00

061

311

3582

55.

3TM

BB

_024

0B

B_0

240

glyc

erol

upt

ake

faci

litat

or (g

lpF)

7.

487.

480

0.00

003

10.

0005

32

0.05

682

XX

XX

XX

XX

11

11

01

7.48

3E-0

51

44

10

47.

480.

0001

92

2727

20

277.

480.

0008

72

3232

20

327.

480.

0002

725

427

195

7.6

TMB

B_0

257

BB

_025

7ce

ll di

visi

on p

rote

in

014

.61

14.6

10

00.

0001

20

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

5.97

4.6E

-05

415

154

015

12.1

0.00

016

314

143

014

11.1

3.8E

-05

787

9026

95.

8TM

BB

_026

3B

B_0

263

sign

al p

eptid

ase

I (le

pB-3

) 8.

338.

330

4.4E

-05

10.

0000

62

0.73

333

11

11

01

8.33

4.4E

-05

XX

XX

XX

XX

11

11

01

8.33

7.1E

-05

11

11

01

8.33

4.9E

-05

13

31

03

8.33

3.9E

-05

168

1983

79.

6TM

BB

_026

8B

B_0

268

cons

erve

d hy

poth

etic

al p

rote

in

35.8

537

.74

1.89

0.00

026

20.

0007

92

0.32

614

48

84

08

220.

0003

72

33

20

320

.10.

0001

44

88

40

823

.90.

0006

619

196

019

33.3

0.00

098

938

389

038

40.3

0.00

052

159

1834

45.

7TM

BB

_027

1B

B_0

271

flage

llar b

iosy

nthe

sis

prot

ein

(flhA

) 17

.93

32.1

414

.21

0.00

024

20.

0006

92

0.34

307

629

296

029

17.7

0.00

031

615

156

015

11.5

0.00

016

1026

2610

026

18.7

0.00

045

1879

7918

079

29.3

0.00

092

1914

614

619

014

631

0.00

045

697

7696

95.

2TM

BB

_027

9B

B_0

279

flage

llar p

rote

in (f

liL)

62.9

263

.48

0.56

0.01

364

20.

0184

20.

7413

87

199

199

70

199

51.7

0.00

826

1245

045

012

045

062

.90.

0190

214

238

238

140

238

56.2

0.01

598

1545

445

415

045

443

.30.

0208

115

1310

1310

150

1310

73.6

0.01

592

178

2006

05.

4TM

BB

_028

0B

B_0

280

flage

llar m

otor

rota

tion

prot

ein

B (m

41.5

443

.08

1.54

0.00

079

20.

0027

22

0.28

876

636

366

036

31.9

0.00

102

619

196

019

21.2

0.00

055

987

879

087

31.9

0.00

410

4646

100

4636

.50.

0014

412

188

188

120

188

52.7

0.00

156

260

2920

66.

1TM

BB

_028

1B

B_0

281

flage

llar m

otor

rota

tion

prot

ein

A (m

15.7

750

.38

34.6

10.

0003

32

0.00

088

20.

3747

23

1313

30

1312

.30.

0003

73

1010

30

1011

.20.

0002

95

1515

50

1525

.80.

0006

98

3434

80

3443

.90.

0010

78

7171

80

7140

.40.

0005

926

028

354

5.3

TMB

B_0

286

BB

_028

6fla

gella

r pro

tein

(flb

B)

40.1

40.5

80.

480.

0002

92

0.00

112

0.26

024

1212

40

1235

.80.

0004

32

44

20

416

.40.

0001

57

1515

70

1533

.30.

0008

76

3434

60

3440

.10.

0013

410

6565

100

6547

.30.

0006

820

724

579

6.3

TMB

B_0

332

BB

_033

2ol

igop

eptid

e A

BC

tran

spor

ter

13.0

713

.73

0.66

0.00

017

20.

0004

32

0.39

394

412

124

012

13.1

0.00

029

12

21

02

4.25

4.9E

-05

29

92

09

7.84

0.00

035

419

194

019

13.1

0.00

051

642

426

042

13.7

0.00

0330

634

061

9.8

TMB

B_0

353

BB

_035

3pr

edic

ted

codi

ng re

gion

BB

0353

3.

344.

671.

331.

2E-0

51

5.4E

-05

10.

2222

21

11

10

13.

341.

2E-0

5X

XX

XX

XX

XX

XX

XX

XX

X3

44

30

44.

675.

4E-0

54

55

40

58.

011.

8E-0

559

971

260

9TM

BB

_035

4B

B_0

354

pred

icte

d co

ding

regi

on B

B03

54

06.

656.

650

05.

8E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

23.

476.

9E-0

51

22

10

23.

184.

7E-0

52

44

20

46.

652.

5E-0

534

641

138

9.2

TMB

B_0

362

BB

_036

2pr

olip

opro

tein

dia

cylg

lyce

ryl t

rans

fer

15.8

521

.04

5.19

0.00

052

0.00

112

0.45

281

327

273

027

15.9

0.00

061

217

172

017

12.2

0.00

039

325

253

025

15.9

0.00

091

652

526

052

210.

0012

94

108

108

40

108

210.

0007

132

837

595

8.9

TMB

B_0

401

BB

_040

1gl

utam

ate

trans

porte

r 0

6.75

6.75

00

4.1E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

6.75

4.1E

-05

22

22

02

6.75

1.1E

-05

400

4571

39.

5TM

BB

_046

9B

B_0

469

sign

al p

eptid

ase

II (ls

p)

023

.53

23.5

30

00.

0002

92

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

28.

240.

0001

42

99

20

923

.50.

0004

31

1010

10

108.

240.

0001

317

019

976

9.8

TMB

B_0

498

BB

_049

8pr

epro

tein

tran

sloc

ase

subu

nit (

sec

4.84

13.3

68.

527.

7E-0

52

0.00

018

20.

4277

83

77

30

74.

840.

0001

21

22

10

21.

613.

5E-0

56

99

60

911

.80.

0002

53

66

30

67.

60.

0001

19

2424

90

2413

.40.

0001

243

448

610

9.7

TMB

B_0

526

BB

_052

6pr

edic

ted

codi

ng re

gion

BB

0526

12

.52

5.44

-7.0

80.

0001

61

0.00

004

23.

956

1313

60

1312

.50.

0001

6X

XX

XX

XX

X1

22

10

22.

143.

9E-0

52

33

20

33.

294E

-05

918

189

018

186.

4E-0

560

770

953

8.6

TMB

B_0

539

BB

_053

9co

nser

ved

hypo

thet

ical

inte

gral

me m

22.4

110

.78

-11.

630.

0006

92

0.00

053

21.

3123

87

2727

70

2710

.80.

0008

65

1616

50

1622

.40.

0005

22

44

20

47.

330.

0002

17

2424

70

2410

.80.

0008

49

7171

90

7122

.40.

0006

623

225

708

9.2

TMB

B_0

563

BB

_056

3pr

edic

ted

codi

ng re

gion

BB

0563

16

.57

25.9

79.

40.

0007

20.

0012

82

0.55

051

29

92

09

9.94

0.00

037

325

253

025

16.6

0.00

104

310

103

010

160.

0006

65

4242

50

4226

0.00

189

586

865

086

260.

0010

318

119

824

9.9

TMB

B_0

597

BB

_059

7m

ethy

l-acc

eptin

g ch

emot

axis

pro

tei

20.5

436

.46

15.9

20.

0001

82

0.00

083

20.

2128

211

3131

110

3118

0.00

031

14

41

04

2.59

4.1E

-05

1156

5611

056

18.6

0.00

091

2067

6720

067

34.6

0.00

074

2415

315

324

015

334

.60.

0004

573

584

570

5.6

TMB

B_0

600

BB

_060

0pr

edic

ted

codi

ng re

gion

BB

0600

2.

519.

276.

761.

4E-0

51

5.9E

-05

20.

2372

91

11

10

12.

511.

4E-0

5X

XX

XX

XX

X1

11

10

13.

472.

3E-0

52

66

20

65.

799.

5E-0

54

88

40

811

.83.

3E-0

551

860

479

6.6

TMB

B_0

602

BB

_060

2ch

aper

onin

10

.814

.43.

64.

5E-0

52

0.00

018

20.

2528

11

22

10

26

5.9E

-05

11

11

01

4.8

3E-0

51

22

10

26

9.6E

-05

38

83

08

14.4

0.00

026

413

134

013

19.2

0.00

011

250

2947

39.

2TM

BB

_060

4B

B_0

604

L-la

ctat

e pe

rmea

se (l

ctP

) 10

.410

.40

0.00

019

20.

0005

22

0.35

441

424

244

024

10.4

0.00

035

11

11

01

4.4

1.5E

-05

315

153

015

10.4

0.00

036

442

424

042

10.4

0.00

069

482

824

082

10.4

0.00

035

500

5368

09.

2TM

BB

_064

5B

B_0

645

PTS

sys

tem

4.

8624

.51

19.6

50.

0001

10.

0001

52

0.70

345

XX

XX

XX

XX

17

71

07

4.86

0.00

013

55

30

59.

530.

0001

28

1111

80

1122

.80.

0001

77

2121

70

2116

.78.

8E-0

551

455

843

9TM

BB

_065

1B

B_0

651

cons

erve

d hy

poth

etic

al p

rote

in

55.2

435

.24

-20

0.01

146

20.

0201

82

0.56

814

115

115

40

115

31.4

0.00

809

820

720

78

020

755

.20.

0148

35

164

164

50

164

35.2

0.01

867

527

927

95

027

932

.40.

0216

88

761

761

80

761

55.2

0.01

568

105

1184

09.

6TM

BB

_065

3B

B_0

653

prot

ein-

expo

rt m

embr

ane

prot

ein

(s0

19.4

19.4

00

0.00

016

20

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

7.69

0.00

012

57

75

07

19.4

0.00

019

510

105

010

19.4

7.2E

-05

299

3405

79

TMB

B_0

674

BB

_067

4pr

edic

ted

codi

ng re

gion

BB

0674

0

3.45

3.45

00

4.7E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

3.45

4.7E

-05

12

21

02

3.45

1.2E

-05

348

4167

99.

5TM

BB

_068

0B

B_0

680

met

hyl-a

ccep

ting

chem

otax

is p

rote

i13

.81

24.8

311

.02

9.8E

-05

10.

0002

22

0.45

161

610

106

010

13.8

9.8E

-05

XX

XX

XX

XX

915

159

015

17.9

0.00

024

1018

1810

018

20.3

0.00

0215

4242

150

4225

.20.

0001

275

384

579

5.1

TMB

B_0

681

BB

_068

1m

ethy

l-acc

eptin

g ch

emot

axis

pro

tei

14.9

418

.55

3.61

8.2E

-05

20.

0001

72

0.48

816

1010

60

1012

.90.

0001

23

44

30

48.

964.

7E-0

54

77

40

75.

820.

0001

38

1616

80

1615

.10.

0002

113

3535

130

3523

.40.

0001

263

671

460

5.9

TMB

B_0

709

BB

_070

9co

nser

ved

hypo

thet

ical

pro

tein

46

.65

53.3

56.

70.

0005

92

0.00

132

0.45

119

824

248

024

34.4

0.00

052

930

309

030

37.9

0.00

066

731

317

031

32.1

0.00

108

1664

6416

064

47.2

0.00

152

1614

814

816

014

853

.40.

0009

334

339

462

9TM

BB

_072

9B

B_0

729

glut

amat

e tra

nspo

rter (

gltP

) 7.

566.

7-0

.86

9.6E

-05

10.

0002

52

0.39

184

36

63

06

7.56

9.6E

-05

XX

XX

XX

XX

26

62

06

4.1

0.00

015

519

195

019

6.7

0.00

033

631

316

031

10.4

0.00

014

463

4962

19.

6TM

BB

_075

3B

B_0

753

mem

bran

e sp

anni

ng p

rote

in

6.97

15.5

78.

66.

2E-0

51

0.00

021

20.

2995

2X

XX

XX

XX

X1

22

10

26.

976.

2E-0

51

33

10

36.

970.

0001

52

88

20

815

.60.

0002

72

1313

20

1315

.60.

0001

224

427

646

9

2

Page 136: Dowdell Dissertation FINAL

130

Dowde

ll_TableS2

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

TMB

B_0

783

BB

_078

3pr

edic

ted

codi

ng re

gion

BB

0783

19

.29

28.1

78.

880.

0003

20.

0003

62

0.83

611

427

274

027

12.4

0.00

051

25

52

05

12.9

9.5E

-05

38

83

08

140.

0002

47

2323

70

2325

.60.

0004

810

6363

100

6332

.70.

0003

539

445

766

8.4

TMB

B_0

789

BB

_078

9ce

ll di

visi

on p

rote

in (f

tsH

) 20

.03

27.3

97.

368.

7E-0

52

0.00

041

20.

2148

16

1111

60

1115

.70.

0001

32

44

20

47.

984.

7E-0

59

1616

90

1626

0.00

0310

4040

100

4016

.60.

0005

115

6969

150

6924

.40.

0002

363

970

802

8.3

TMB

B_0

824

BB

_082

4pr

edic

ted

codi

ng re

gion

BB

0824

18

.58

28.9

610

.38

0.00

018

20.

0116

12

0.01

576

25

52

05

10.4

0.00

022

44

20

413

.10.

0001

64

124

124

40

124

23.5

0.00

817

339

339

70

339

290.

0151

25

4242

50

4218

.60.

0005

183

2117

58.

8TM

BB

_084

3B

B_0

843

cons

erve

d hy

poth

etic

al in

tegr

al m

em3.

533.

530

5.4E

-05

20.

0001

72

0.32

143

16

61

06

3.32

9.2E

-05

11

11

01

3.53

1.6E

-05

26

62

06

3.53

0.00

015

311

113

011

3.53

0.00

019

324

243

024

3.53

0.00

011

482

5285

68.

4TM

BB

_B22

BB

_B22

cons

erve

d hy

poth

etic

al p

rote

in

5.99

14.1

98.

20.

0001

22

0.00

025

20.

4563

52

99

20

95.

990.

0001

51

55

10

51.

778.

3E-0

53

44

30

48.

20.

0001

14

2222

40

2210

.60.

0004

539

395

039

120.

0001

945

148

977

8.5

TMB

B_B

28B

B_B

28pr

edic

ted

codi

ng re

gion

BB

B28

55

.56

57.9

72.

410.

0014

32

0.00

214

20.

6665

121

121

121

210

121

55.6

0.00

216

1038

3810

038

28.3

0.00

069

1745

4517

045

56.3

0.00

1320

151

151

200

151

52.7

0.00

298

2735

535

527

035

559

.70.

0018

641

449

380

8.6

TMB

B_B

29B

B_B

29P

TS s

yste

m

52.9

549

.08

-3.8

70.

0071

32

0.02

108

20.

3380

526

677

677

260

677

42.3

0.00

923

3336

236

233

036

253

0.00

503

2886

186

128

086

132

.50.

0189

946

1539

1539

460

1539

48.3

0.02

317

4231

1231

1242

031

1253

0.01

242

542

5893

88.

6TM

BB

_D15

BB

_D15

cons

erve

d hy

poth

etic

al p

rote

in

20.7

16.

43-1

4.28

0.00

027

28.

5E-0

51

3.11

765

47

74

07

14.3

0.00

037

23

32

03

150.

0001

61

11

10

16.

438.

5E-0

5X

XX

XX

XX

X5

1111

50

1120

.70.

0001

714

016

635

9.7

TMB

B_J

27B

B_J

27pr

edic

ted

codi

ng re

gion

BB

J27

11.1

97.

3-3

.89

0.00

011

14.

9E-0

52

2.20

408

36

63

06

11.2

0.00

011

XX

XX

XX

XX

12

21

02

3.16

5.8E

-05

22

22

02

7.3

4E-0

53

1010

30

1011

.25.

3E-0

541

146

456

5.8

TMB

B_K

13B

B_K

13co

nser

ved

hypo

thet

ical

pro

tein

14

.71

43.7

28.9

99.

5E-0

51

0.00

103

10.

0923

2X

XX

XX

XX

X2

33

20

314

.79.

5E-0

5X

XX

XX

XX

X9

3030

90

3043

.70.

0010

310

3333

100

3344

.50.

0003

238

2722

19.

2TM

BB

_025

2B

B_0

252

cons

erve

d hy

poth

etic

al in

tegr

al m

em7.

568.

61.

045.

8E-0

52

0.00

016

20.

3580

24

88

40

87.

567.

7E-0

51

44

10

42.

353.

9E-0

56

1818

60

188.

60.

0002

82

44

20

44.

564.

3E-0

57

3333

70

3310

.89.

3E-0

576

786

971

9.6

TMB

B_0

091

BB

_009

1V

-type

ATP

ase

2.8

22.5

319

.73

3.6E

-05

10.

0004

72

0.07

742

13

31

03

2.8

3.6E

-05

XX

XX

XX

XX

920

209

020

20.2

0.00

039

1240

4012

040

19.1

0.00

054

1362

6213

062

22.2

0.00

022

608

6912

58.

3TM

BB

_040

8B

B_0

408

PTS

sys

tem

32

.48

35.8

43.

360.

0017

32

0.00

458

20.

3765

630

186

186

300

186

31.7

0.00

2222

104

104

220

104

30.4

0.00

125

2026

226

220

026

226

.20.

0050

133

318

318

330

318

32.8

0.00

415

4186

386

341

086

338

.10.

0029

962

567

130

7.5

TMB

B_0

629

BB

_062

9P

TS s

yste

m

28.1

235

.46

7.34

0.00

031

20.

0009

20.

3456

1020

2010

020

24.3

0.00

024

932

329

032

21.3

0.00

038

1123

2311

023

25.4

0.00

044

2810

410

428

010

435

.50.

0013

631

178

178

310

178

36.4

0.00

062

626

6780

58.

9TM

BB

_B04

BB

_B04

PTS

sys

tem

7

10.8

43.

840.

0001

32

0.00

092

20.

1459

72

99

20

95.

870.

0001

53

77

30

77

0.00

012

523

235

023

10.8

0.00

062

466

664

066

9.71

0.00

122

449

494

049

70.

0002

444

348

761

8.1

TMB

B_0

071

BB

_007

1pr

edic

ted

codi

ng re

gion

BB

0071

4.

0811

.84

7.76

1.5E

-05

20.

0001

72

0.08

721

11

11

01

2.04

1.5E

-05

11

11

01

2.04

1.5E

-05

310

103

010

5.71

0.00

024

36

63

06

8.37

1E-0

45

99

50

911

.64E

-05

490

5816

49.

3TM

BB

_033

3B

B_0

333

olig

opep

tide

AB

C tr

ansp

orte

r 20

.92

23.5

2.58

0.00

019

20.

0013

82

0.13

881

513

135

013

20.6

0.00

028

25

52

05

10.9

0.00

011

423

234

023

15.5

0.00

079

984

849

084

22.9

0.00

196

1212

512

512

012

525

.80.

0007

734

939

418

9.2

TMB

B_0

145

BB

_014

5gl

ycin

e be

tain

e 5.

025.

020

9.9E

-05

10.

0000

81

1.23

751

44

10

45.

029.

9E-0

5X

XX

XX

XX

X1

22

10

25.

028E

-05

XX

XX

XX

XX

16

61

06

5.02

4.3E

-05

299

3373

59

TMB

B_0

118

BB

_011

8zi

nc p

rote

ase

26.3

232

.27

5.95

0.00

049

20.

0012

92

0.37

664

825

258

025

19.9

0.00

042

932

329

032

21.7

0.00

055

929

299

029

25.2

0.00

079

1296

9612

096

26.5

0.00

179

1818

018

018

018

035

.70.

0008

943

749

741

9.2

TMB

B_0

170

BB

_017

0pr

edic

ted

codi

ng re

gion

BB

0170

20

.23

30.2

19.

980.

0001

72

0.00

051

20.

3432

725

257

025

18.5

0.00

027

37

73

07

6.89

7.7E

-05

1034

3410

034

23.3

0.00

069

3535

90

3522

0.00

042

1494

9414

094

32.3

0.00

0368

278

475

8.8

TMB

B_0

442

BB

_044

2in

ner m

embr

ane

prot

ein

8.27

16.1

87.

915.

5E-0

52

0.00

013

20.

4135

32

55

20

54.

786.

8E-0

51

33

10

33.

494.

1E-0

54

66

40

610

.90.

0001

33

99

30

98.

640.

0001

46

2222

60

2213

.68.

8E-0

554

464

002

8.9

TMB

B_0

157

BB

_015

7pr

edic

ted

codi

ng re

gion

BB

0157

10

.14

10.1

40

0.00

011

20.

0003

10.

3648

61

22

10

210

.10.

0001

11

22

10

210

.10.

0001

1X

XX

XX

XX

X1

55

10

510

.10.

0003

19

91

09

10.1

0.00

014

138

1559

59.

6TM

BB

_021

7B

B_0

217

phos

phat

e A

BC

tran

spor

ter

5.18

18.6

13.4

22.

3E-0

51

0.00

035

20.

0657

1X

XX

XX

XX

X1

11

10

15.

182.

3E-0

54

1111

40

1118

.60.

0004

412

124

012

18.6

0.00

034

2424

40

2418

.60.

0001

632

836

113

9.3

TMB

B_0

380

BB

_038

0M

g2+

trans

port

prot

ein

(mgt

E)

4.19

10.1

35.

944.

9E-0

51

0.00

004

21.

225

23

32

03

4.19

4.9E

-05

XX

XX

XX

XX

11

11

01

1.76

2.6E

-05

23

32

03

8.37

5.4E

-05

47

74

07

12.6

3.3E

-05

454

5074

75.

1TM

BB

_041

6B

B_0

416

pher

omon

e sh

utdo

wn

prot

ein

(traB

)39

.11

31.6

8-7

.43

0.00

067

20.

0006

62

1.01

3616

4949

160

4936

.90.

0009

824

248

024

16.8

0.00

045

814

148

014

240.

0004

110

4545

100

4521

.30.

0009

123

128

128

230

128

41.6

0.00

069

404

4567

89.

3TM

BB

_076

6B

B_0

766

colic

in V

pro

duct

ion

prot

ein

8.64

8.64

00.

0003

71

0.00

011

3.61

386

18

81

08

8.64

0.00

036

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

8.64

0.00

011

1010

10

108.

640.

0001

316

218

716

9.1

TMB

B_0

453

BB

_045

3co

nser

ved

hypo

thet

ical

pro

tein

0

25.3

625

.36

00

0.00

044

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

4.29

4.3E

-05

829

298

029

25.4

0.00

085

830

308

030

25.4

0.00

023

280

3230

28.

6TM

BB

_059

5B

B_0

595

pred

icte

d co

ding

regi

on B

B05

95

011

.06

11.0

60

00.

0001

21

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X3

33

30

311

.10.

0001

23

33

30

311

.13.

1E-0

520

824

003

9.8

TMB

B_A

01B

B_A

01co

nser

ved

hypo

thet

ical

pro

tein

7.

450

-7.4

54.

6E-0

52

00∞

11

11

01

7.45

4.6E

-05

11

11

01

6.21

4.7E

-05

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

7.45

2.7E

-05

161

1788

79.

5TM

BB

_007

5B

B_0

075

pred

icte

d co

ding

regi

on B

B00

75

19.4

26.8

77.

470.

0002

72

0.00

028

20.

9712

26

1818

60

1815

.40.

0002

84

1616

40

169.

170.

0002

61

22

10

22.

995.

1E-0

513

2929

130

2926

.90.

0005

1663

6316

063

33.5

0.00

029

469

5463

89.

2TM

BB

_013

4B

B_0

134

pred

icte

d co

ding

regi

on B

B01

34

4.71

3.93

-0.7

81.

9E-0

51

3.1E

-05

10.

6129

11

11

01

4.71

1.9E

-05

XX

XX

XX

XX

11

11

01

3.93

3.1E

-05

XX

XX

XX

XX

22

22

02

8.64

1.1E

-05

382

4432

59.

3TM

BB

_013

7B

B_0

137

long

-cha

in-fa

tty-a

cid

CoA

liga

se

32.8

650

.79

17.9

30.

0004

62

0.00

143

20.

3200

815

6464

150

6429

.80.

0007

56

1414

60

1413

.70.

0001

725

7474

250

7442

.50.

0014

2311

311

323

011

344

.60.

0014

629

261

261

290

261

470.

0009

630

7076

38.

8TM

BB

_029

1B

B_0

291

flage

llar b

asal

-bod

y ro

d pr

otei

n (fl

iF30

.440

.42

10.0

20.

0003

92

0.00

067

20.

5780

814

4040

140

4026

.20.

0005

26

1919

60

1919

.70.

0002

515

3232

150

3235

.20.

0006

719

4646

190

4629

.70.

0006

627

135

135

270

135

410.

0005

156

965

134

5.5

TMB

B_0

596

BB

_059

6m

ethy

l-acc

eptin

g ch

emot

axis

pro

tei

8.67

29.5

120

.84

6.2E

-05

10.

0003

82

0.16

234

66

40

68.

676.

2E-0

5X

XX

XX

XX

X6

1717

60

1713

.20.

0002

813

4242

130

4228

.40.

0004

814

6464

140

6428

.30.

0001

971

580

470

7.6

TMB

B_0

752

BB

_075

2pr

edic

ted

codi

ng re

gion

BB

0752

35

.26

48.8

13.5

40.

0003

52

0.00

153

20.

2279

1128

2811

028

30.9

0.00

041

419

194

019

15.9

0.00

028

1260

6012

060

36.9

0.00

143

1910

010

019

010

039

.20.

0016

328

207

207

280

207

540.

0008

950

257

435

8.7

TMB

B_E

19B

B_E

19co

nser

ved

hypo

thet

ical

pro

tein

0

15.8

715

.87

00

0.00

013

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

24

42

04

15.9

0.00

013

24

42

04

15.9

3.4E

-05

252

2928

28.

6TM

BB

_U09

BB

_U09

cons

erve

d hy

poth

etic

al p

rote

in

11.3

226

.42

15.1

0.00

014

20.

0004

72

0.29

747

12

21

02

11.3

0.00

014

12

21

02

11.3

0.00

014

35

53

05

26.4

0.00

056

15

51

05

10.4

0.00

038

211

112

011

21.7

0.00

022

106

1213

68.

7TM

BB

_006

7B

B_0

067

pept

idas

e 5.

0713

.01

7.94

3.8E

-05

20.

0002

52

0.15

139

24

42

04

5.07

5E-0

51

22

10

22.

032.

5E-0

51

11

10

13.

042E

-05

635

356

035

130.

0004

86

4242

60

4213

0.00

015

592

6762

76.

4TM

BB

_017

4B

B_0

174

pred

icte

d co

ding

regi

on B

B01

74

5.65

5.65

02.

5E-0

51

9.4E

-05

20.

2659

61

11

10

15.

652.

5E-0

5X

XX

XX

XX

X1

22

10

25.

657.

9E-0

51

44

10

45.

650.

0001

11

77

10

75.

655E

-05

301

3448

89

TMB

B_0

260

BB

_026

0pr

edic

ted

codi

ng re

gion

BB

0260

51

.63

57.8

66.

230.

0008

42

0.00

265

20.

3157

113

5959

130

5951

.60.

0012

95

1717

50

1723

.40.

0003

813

3636

130

3641

.80.

0012

828

166

166

280

166

55.5

0.00

402

2425

225

224

025

260

.20.

0016

233

739

145

4.4

TMB

B_0

326

BB

_032

6pr

edic

ted

codi

ng re

gion

BB

0326

1.

8311

.69.

771.

6E-0

51

4.1E

-05

20.

3902

41

22

10

21.

831.

6E-0

5X

XX

XX

XX

X3

33

30

34.

943.

9E-0

53

65

31

56.

664.

4E-0

55

1010

50

108.

272.

3E-0

593

110

7524

5TM

BB

_034

5B

B_0

345

pred

icte

d co

ding

regi

on B

B03

45

50.2

550

.75

0.5

0.00

072

20.

0015

42

0.46

662

1744

4317

143

50.3

0.00

084

3434

40

3412

.60.

0006

48

4242

80

4225

.90.

0012

617

8989

170

8946

0.00

182

2720

920

827

120

863

.80.

0011

339

846

456

5.8

TMB

B_0

593

BB

_059

3lo

ng-c

hain

-fatty

-aci

d C

oA li

gase

51

.94

58.6

6.66

0.00

161

20.

0048

52

0.33

141

2818

918

928

018

950

.90.

0021

614

9090

140

9029

.90.

0010

531

341

341

310

341

52.6

0.00

632

2926

726

729

026

749

.60.

0033

843

881

881

430

881

64.2

0.00

296

645

7288

79

TMB

B_0

665

BB

_066

5pr

edic

ted

codi

ng re

gion

BB

0665

8.

7817

.55

8.77

2.3E

-05

10.

0001

12

0.21

698

11

11

01

8.78

2.3E

-05

XX

XX

XX

XX

35

53

05

17.6

0.00

019

11

11

01

8.78

2.6E

-05

26

62

06

12.5

4.1E

-05

319

3738

18.

6TM

BB

_075

7B

B_0

757

ATP

-dep

ende

nt C

lp p

rote

ase

prot

e14

.08

40.2

926

.21

0.00

014

10.

0003

12

0.45

981

24

42

04

14.1

0.00

014

XX

XX

XX

XX

48

84

08

23.8

0.00

046

34

43

04

21.8

0.00

016

515

155

015

340.

0001

620

623

206

7.9

TMB

B_G

33B

B_G

33co

nser

ved

hypo

thet

ical

pro

tein

14

.29

21.4

37.

142.

8E-0

51

0.00

035

20.

0797

77

530

053

114

.32.

8E-0

54

280

028

08.

65X

727

22

2510

.321

.40.

0004

611

103

21

101

7.77

14.7

0.00

024

1119

14

218

730

.724

.40.

0002

526

630

587

5.5

TMB

B_H

13B

B_H

13co

nser

ved

hypo

thet

ical

pro

tein

17

.12

23.4

26.

30.

0018

61

0.00

12

1.87

048

756

51

5156

17.1

0.00

186

428

00

280

10.4

X6

261

125

5.17

19.8

0.00

028

1211

312

210

146

.623

.40.

0017

110

203

182

185

133

230.

0012

922

225

840

5.6

TMB

B_K

40B

B_K

40co

nser

ved

hypo

thet

ical

pro

tein

35

.87

38.5

92.

720.

0016

82

0.00

696

20.

2408

36

5959

60

5928

.80.

0023

73

2424

30

2427

.20.

0009

85

109

109

50

109

33.2

0.00

708

1015

415

410

015

438

.60.

0068

38

338

338

80

338

35.9

0.00

397

184

2156

46.

2TM

BB

_L27

BB

_L27

bdrP

38

.66

47.9

49.

280.

0007

22

4.5E

-05

216

.022

210

630

063

330

.40.

0001

18

381

137

34.2

31.4

0.00

133

1148

00

480.

3335

.12.

1E-0

522

180

00

180

1.67

47.9

7E-0

515

226

11

225

12.3

55.2

0.00

014

194

2242

15.

2TM

BB

_L35

BB

_L35

bdrO

16

.67

32.8

116

.14

0.00

014

20.

0003

21

0.44

582

412

21

106.

816

.70.

0002

62

60

06

0.67

8.33

2.6E

-05

677

00

770

26X

715

61

115

57.

628

.70.

0003

25

383

235

5.9

31.8

6.7E

-05

192

2205

06.

6TM

BB

_M34

BB

_M34

bdrK

14

.86

30.1

815

.32

5.6E

-05

20.

0004

72

0.11

915

25

11

42.

3311

.77.

8E-0

52

40

04

16.

763.

4E-0

55

182

116

11.5

22.1

0.00

062

720

42

168.

727

0.00

032

644

203

2440

.530

.20.

0003

922

225

444

5.3

TMB

B_N

27B

B_N

27bd

rR

27.3

236

.08

8.76

3.2E

-05

12.

4E-0

52

1.33

333

853

00

530.

8327

.33.

2E-0

54

280

028

011

.9X

1046

00

460.

3330

.92.

1E-0

519

164

00

164

0.67

36.1

2.8E

-05

1118

80

018

80.

8343

.89.

3E-0

619

422

294

5.2

TMB

B_N

34B

B_N

34bd

rQ

12.8

522

.91

10.0

64.

2E-0

51

9.5E

-05

10.

4421

12

50

05

08.

94X

24

00

41

8.38

4.2E

-05

26

00

60

8.38

X4

91

18

2.07

22.9

9.5E

-05

323

00

230

12.9

X17

920

714

5.5

TMB

B_O

27B

B_O

27bd

rN

27.8

41.4

613

.66

1.2E

-05

22.

3E-0

52

0.52

174

856

00

560.

3324

.41.

2E-0

56

340

034

0.33

18.5

1.2E

-05

1250

00

500.

3336

.61.

9E-0

521

174

00

174

0.67

41.5

2.7E

-05

1221

10

021

10.

3343

.43.

5E-0

620

523

698

5.4

TMB

B_O

34B

B_O

34bd

rM

18.9

528

.95

104.

7E-0

52

9.4E

-05

20.

53

61

15

2.07

15.3

8E-0

52

60

06

0.33

7.89

1.3E

-05

35

11

41.

8312

.10.

0001

24

131

112

1.67

24.7

7.2E

-05

529

22

273.

2619

3.7E

-05

190

2197

45.

2TM

BB

_P34

BB

_P34

bdrA

23

.81

20.4

8-3

.33

5.3E

-05

20.

0001

92

0.28

495

48

00

80.

518

.11.

8E-0

52

62

14

2.47

9.52

8.9E

-05

34

11

32.

1711

0.00

012

414

42

106.

416

.70.

0002

56

327

225

12.7

27.1

0.00

013

210

2411

85.

4TM

BB

_Q34

BB

_Q34

bdrW

22

.27

58.4

36.1

35.

2E-0

52

0.00

283

10.

0183

78

590

059

319

.39.

3E-0

55

300

030

0.33

12.6

1.1E

-05

1150

00

500

28.2

X23

177

43

173

82.5

58.4

0.00

283

1321

23

120

929

.428

.60.

0002

723

827

307

5.2

TMB

B_R

27B

B_R

27bd

rH

34.0

942

.61

8.52

2.5E

-05

20.

0031

61

0.00

791

853

00

530.

8330

.13.

5E-0

55

300

030

0.33

17.1

1.4E

-05

627

00

270

21.6

X16

121

174

104

68.1

42.6

0.00

316

1119

30

019

30.

8334

.11E

-05

176

2035

05.

3TM

BB

_S29

BB

_S29

bdrF

23

.92

38.7

614

.84

8.8E

-05

10.

0010

42

0.08

502

858

00

582.

521

.58.

8E-0

56

330

033

020

.1X

1048

31

4535

.531

.60.

0020

319

170

00

170

135

.93.

9E-0

512

208

31

205

33.3

26.8

0.00

034

209

2410

95.

2TM

BB

_S37

BB

_S37

bdrE

37

.76

49.4

911

.73

0.00

146

20.

0059

22

0.24

645

660

565

459

.833

.20.

0022

56

1814

54

17.3

34.2

0.00

066

1082

106

7280

.540

.80.

0049

111

175

246

151

166

45.9

0.00

693

931

029

28

1830

940

.80.

0034

119

622

652

6.1

CYT

BB

_000

2B

B_0

002

beta

-N-a

cety

lhex

osam

inid

ase

013

.45

13.4

50

06.

4E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X2

33

20

37.

60.

0001

11

11

01

5.85

2.4E

-05

12

21

02

3.51

1.3E

-05

342

3846

58.

7C

YTB

B_0

003

BB

_000

3pr

edic

ted

codi

ng re

gion

BB

0003

2.

6414

.76

12.1

22.

5E-0

52

0.00

026

20.

0972

81

22

10

22.

643.

3E-0

51

11

10

12.

641.

7E-0

56

1010

60

1014

.50.

0002

65

1414

50

1413

0.00

025

727

277

027

14.8

0.00

013

454

5201

26.

8C

YTB

B_0

005

BB

_000

5try

ptop

hany

l-tR

NA

syn

thet

ase

(trsA

23.5

123

.51

08.

4E-0

52

0.00

049

20.

1714

34

66

40

623

.50.

0001

32

22

20

210

.24.

3E-0

56

1818

60

1819

.30.

0006

16

1616

60

1621

.50.

0003

78

4040

80

4032

0.00

025

353

4041

99.

1C

YTB

B_0

007

BB

_000

7pr

edic

ted

codi

ng re

gion

BB

0007

0

6.32

6.32

00

5.7E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

6.32

5.7E

-05

12

21

02

6.32

1.5E

-05

285

3353

87.

3C

YTB

B_0

009

BB

_000

9pr

edic

ted

codi

ng re

gion

BB

0009

20

.96

41.0

220

.06

0.00

027

20.

0008

20.

3354

35

1717

50

1721

0.00

038

37

73

07

12.6

0.00

016

59

95

09

13.5

0.00

032

1252

5212

052

380.

0012

712

8383

120

8341

0.00

054

334

3854

39.

3C

YTB

B_0

011

BB

_001

1pr

edic

ted

codi

ng re

gion

BB

0011

5.

3812

.54

7.16

2.6E

-05

10.

0001

72

0.15

029

11

11

01

5.38

2.6E

-05

XX

XX

XX

XX

24

42

04

12.5

0.00

017

26

62

06

5.38

0.00

018

311

113

011

12.5

8.5E

-05

279

3282

09.

3C

YTB

B_0

015

BB

_001

5ur

idin

e ki

nase

(udk

) 19

.32

27.0

57.

730.

0001

62

0.00

033

20.

4984

62

55

20

519

.30.

0001

81

44

10

49.

180.

0001

51

11

10

17.

735.

8E-0

53

1515

30

1527

.10.

0005

93

2525

30

2527

.10.

0002

620

724

006

7.6

CYT

BB

_002

0B

B_0

020

pyro

phos

phat

e--fr

ucto

se 6

-pho

spha

40.7

251

.17

10.4

50.

0005

20.

0010

42

0.48

456

1355

5513

055

34.8

0.00

073

720

207

020

23.2

0.00

027

2158

5821

058

51.2

0.00

125

1156

5611

056

28.1

0.00

082

2518

618

625

018

657

.50.

0007

355

562

477

6.6

CYT

BB

_002

2B

B_0

022

Hol

liday

junc

tion

DN

A h

elic

ase

(ruv

05.

485.

480

04.

7E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X1

22

10

25.

484.

7E-0

51

22

10

25.

481.

2E-0

534

739

006

5.3

CYT

BB

_002

3B

B_0

023

Hol

liday

junc

tion

DN

A h

elic

ase

(ruv

029

.95

29.9

50

00.

0002

12

0X

XX

XX

XX

XX

XX

XX

XX

X2

55

20

512

.70.

0003

23

32

03

25.9

0.00

012

23

32

03

10.2

3.3E

-05

197

2268

88.

1C

YTB

B_0

025

BB

_002

5co

nser

ved

hypo

thet

ical

pro

tein

0

19.7

519

.75

00

0.00

013

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

8.64

4.9E

-05

36

63

06

19.8

0.00

022

55

20

514

.84.

5E-0

524

327

034

5.5

CYT

BB

_002

6B

B_0

026

met

hyle

nete

trahy

drof

olat

e de

hydr

og36

.04

32.7

9-3

.25

0.00

038

10.

0002

21.

9009

98

1616

80

1636

0.00

038

XX

XX

XX

XX

57

75

07

27.3

0.00

027

25

52

05

9.42

0.00

013

1026

2610

026

46.8

0.00

018

308

3403

28.

9C

YTB

B_0

035

BB

_003

5D

NA

topo

isom

eras

e IV

(par

C)

06.

236.

230

02.

6E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

22.

243.

8E-0

51

11

10

13.

991.

3E-0

51

22

10

22.

246.

9E-0

662

672

042

8.5

CYT

BB

_004

2B

B_0

042

phos

phat

e tra

nspo

rt sy

stem

regu

lat

52.0

254

.71

2.69

0.00

063

20.

0008

72

0.73

064

1028

2810

028

48.4

0.00

093

610

106

010

39.9

0.00

034

820

208

020

54.7

0.00

107

818

188

018

43.5

0.00

066

1475

7514

075

58.3

0.00

073

223

2598

05.

1C

YTB

B_0

045

BB

_004

5P

115

prot

ein

04.

524.

520

00.

0000

31

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X2

33

20

34.

523E

-05

12

21

02

2.2

5.3E

-06

819

9585

75.

7C

YTB

B_0

049

BB

_004

9pr

edic

ted

codi

ng re

gion

BB

0049

33

.33

0-3

3.33

0.00

171

20

0∞

214

142

014

33.3

0.00

265

14

41

04

33.3

0.00

077

XX

XX

XX

XX

XX

XX

XX

XX

218

182

018

33.3

0.00

139

4343

9C

YTB

B_0

055

BB

_005

5tri

osep

hosp

hate

isom

eras

e 50

.248

.62

-1.5

80.

0009

20.

0010

32

0.87

317

1046

4610

046

50.2

0.00

134

515

155

015

26.9

0.00

045

927

279

027

48.6

0.00

128

724

247

024

43.1

0.00

077

1311

111

113

011

160

.10.

0009

525

327

759

6.2

CYT

BB

_005

6B

B_0

056

phos

phog

lyce

rate

kin

ase

(pgk

) 76

.59

77.8

61.

270.

0013

12

0.00

256

20.

5133

2310

410

423

010

467

.90.

0019

515

3535

150

3550

.10.

0006

724

9595

240

9574

.10.

0028

921

107

107

210

107

59.8

0.00

222

3434

134

134

034

184

.20.

0018

839

342

346

6.8

CYT

BB

_005

7B

B_0

057

glyc

eral

dehy

de 3

-pho

spha

te d

ehyd

73.4

377

.91

4.48

0.00

255

20.

0045

62

0.56

009

2214

314

322

014

370

.50.

0031

519

8787

190

8766

.90.

0019

516

8787

160

8758

.20.

0031

2624

724

726

024

772

.80.

0060

230

562

562

300

562

80.3

0.00

363

335

3625

58

CYT

BB

_005

9B

B_0

059

hem

olys

in (t

lyC

) 16

.99

18.5

31.

540.

0001

62

0.00

062

20.

2552

83

1010

30

1017

0.00

029

11

11

01

8.88

2.9E

-05

313

133

013

14.7

0.00

063

2020

30

2017

0.00

063

542

425

042

25.1

0.00

035

259

2976

95.

4C

YTB

B_0

061

BB

_006

1th

iore

doxi

n (tr

xA)

70.9

471

.79

0.85

0.00

041

20.

0004

52

0.92

601

59

95

09

70.9

0.00

057

24

42

04

350.

0002

64

66

40

659

0.00

061

34

43

04

350.

0002

88

2222

80

2275

.20.

0004

111

713

467

4.8

CYT

BB

_006

4B

B_0

064

met

hion

yl-tR

NA

form

yltra

nsfe

rase

(f17

.95

30.1

312

.18

0.00

023

20.

0004

12

0.55

774

411

114

011

17.3

0.00

026

38

83

08

14.1

0.00

019

511

115

011

20.2

0.00

042

715

157

015

260.

0003

910

4545

100

4535

.30.

0003

131

235

107

8.9

CYT

BB

_006

5B

B_0

065

poly

pept

ide

defo

rmyl

ase

(def

) 22

.09

40.7

18.6

10.

0003

91

0.00

034

21.

1382

42

99

20

922

.10.

0003

9X

XX

XX

XX

X3

55

30

530

.80.

0003

52

77

20

716

.90.

0003

33

1818

30

1833

.70.

0002

317

219

922

7.4

CYT

BB

_006

8B

B_0

068

cons

erve

d hy

poth

etic

al p

rote

in

33.1

144

.03

10.9

20.

0002

32

0.00

062

0.37

967

1616

70

1628

.70.

0004

22

22

02

9.22

5.1E

-05

515

155

015

28.7

0.00

061

621

216

021

23.6

0.00

058

1252

5212

052

54.3

0.00

038

293

3327

87.

1C

YTB

B_0

070

BB

_007

0co

nser

ved

hypo

thet

ical

pro

tein

14

.38

14.3

80

7.3E

-05

20.

0002

20.

3705

61

22

10

214

.49.

7E-0

51

11

10

114

.44.

9E-0

51

33

10

314

.40.

0002

31

33

10

314

.40.

0001

61

99

10

914

.40.

0001

315

316

765

9.7

CYT

BB

_007

4B

B_0

074

pept

ide

chai

n re

leas

e fa

ctor

2 (p

rfB9.

776.

61-3

.16

6.4E

-05

16.

9E-0

51

0.92

754

23

32

03

9.77

6.4E

-05

XX

XX

XX

XX

12

21

02

6.61

6.9E

-05

XX

XX

XX

XX

25

52

05

9.77

3.1E

-05

348

4026

98.

2C

YTB

B_0

084

BB

_008

4am

inot

rans

fera

se (n

ifS)

41.4

755

.45

13.9

80.

0001

92

0.00

052

20.

3747

610

2121

100

2141

.50.

0003

71

11

10

16.

161.

8E-0

510

2222

100

2244

.80.

0006

29

2121

90

2140

.80.

0004

117

6565

170

6560

0.00

033

422

4812

58.

5C

YTB

B_0

086

BB

_008

6co

nser

ved

hypo

thet

ical

pro

tein

0

6.65

6.65

00

3.2E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

6.65

3.2E

-05

22

22

02

6.65

8.5E

-06

511

5723

89.

1C

YTB

B_0

088

BB

_008

8G

TP-b

indi

ng m

embr

ane

prot

ein

(le18

.78

17.8

9-0

.89

3.3E

-05

20.

0001

12

0.31

132

12

21

02

5.01

2.6E

-05

33

33

03

13.8

4E-0

51

11

10

12.

682.

1E-0

56

1313

60

1317

.90.

0001

98

1919

80

1925

7.4E

-05

559

6290

15.

8C

YTB

B_0

089

BB

_008

9pr

edic

ted

codi

ng re

gion

BB

0089

11

.42

12.9

61.

549.

1E-0

52

0.00

022

20.

4062

52

77

20

711

.40.

0001

61

11

10

14.

942.

3E-0

53

66

30

613

0.00

022

39

93

09

11.4

0.00

023

321

213

021

11.4

0.00

014

324

3810

09.

2C

YTB

B_0

092

BB

_009

2V

-type

ATP

ase

7.35

0-7

.35

7.2E

-05

10

0∞

12

21

02

7.35

7.2E

-05

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

7.35

2.1E

-05

204

2402

69.

9C

YTB

B_0

093

BB

_009

3V

-type

ATP

ase

13.1

335

.02

21.8

96.

8E-0

52

0.00

046

20.

1488

36

63

06

13.1

0.00

012

22

20

27.

833.

5E-0

55

1212

50

1212

.70.

0003

311

3131

110

3135

0.00

058

1349

4913

049

300.

0002

443

448

026

5.9

CYT

BB

_009

4B

B_0

094

V-ty

pe A

TPas

e 17

.06

37.9

320

.87

0.00

022

0.00

107

20.

1844

63

1111

30

116.

720.

0001

56

1818

60

1816

.90.

0002

510

3535

100

3527

.40.

0007

618

9393

180

9336

.30.

0013

816

154

154

160

154

370.

0006

551

6162

05.

3C

YTB

B_0

095

BB

_009

5pr

edic

ted

codi

ng re

gion

BB

0095

17

.13

33.7

16.5

70.

0003

31

0.00

075

20.

436

38

83

08

17.1

0.00

033

XX

XX

XX

XX

47

74

07

19.9

0.00

046

623

236

023

33.7

0.00

104

638

386

038

33.7

0.00

045

181

2166

26.

1C

YTB

B_0

096

BB

_009

6V

-type

ATP

ase

28.5

4213

.50.

0005

62

0.00

588

20.

0948

13

2222

30

2228

.50.

0008

12

88

20

822

.50.

0003

712

912

97

012

940

0.00

771

899

998

099

36.5

0.00

404

825

625

68

025

642

0.00

277

200

2285

17.

3C

YTB

B_0

101

BB

_010

1as

para

giny

l-tR

NA

syn

thet

ase

(asn

S11

.37

8.37

-30.

0001

31

7.7E

-05

11.

6493

53

88

30

811

.40.

0001

3X

XX

XX

XX

X2

33

20

38.

377.

7E-0

5X

XX

XX

XX

X5

1111

50

1119

.75.

1E-0

546

653

600

8C

YTB

B_0

103

BB

_010

3pr

edic

ted

codi

ng re

gion

BB

0103

55

.33

62.9

47.

610.

0010

42

0.00

138

20.

7527

38

4444

80

4455

.30.

0016

54

1111

40

1136

.60.

0004

26

1818

60

1846

.70.

0010

99

4040

90

4062

.90.

0016

610

113

113

100

113

67.5

0.00

124

197

2327

76.

4C

YTB

B_0

105

BB

_010

5m

ethi

onin

e am

inop

eptid

ase

(map

) 5.

985.

980

5.9E

-05

13.

3E-0

51

1.78

788

12

21

02

5.98

5.9E

-05

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

5.98

3.3E

-05

13

31

03

5.98

2.6E

-05

251

2771

18

CYT

BB

_010

7B

B_0

107

N-u

tiliz

atio

n su

bsta

nce

prot

ein

B (n

7.59

38.6

231

.03

0.00

021

0.00

022

20.

9148

14

41

04

7.59

0.00

02X

XX

XX

XX

X1

22

10

27.

590.

0001

63

55

30

538

.60.

0002

83

1111

30

1138

.60.

0001

614

516

808

5C

YTB

B_0

109

BB

_010

9ac

etyl

-CoA

C-a

cety

ltran

sfer

ase

(fad

47.7

450

.25

2.51

0.00

043

20.

0009

22

0.46

514

1546

4315

343

47.7

0.00

082

33

20

312

.85.

7E-0

512

5555

120

5533

.70.

0016

57

99

70

932

.40.

0001

819

110

104

196

104

60.3

0.00

057

398

4294

07.

3C

YTB

B_0

110

BB

_011

0pr

edic

ted

codi

ng re

gion

BB

0110

11

.89

25.7

713

.88

0.00

026

20.

0004

20.

6658

24

1313

40

1311

.90.

0002

12

1919

20

197.

270.

0003

12

22

20

28.

595.

3E-0

59

4141

90

4125

.80.

0007

49

7272

90

7223

.80.

0003

445

453

411

9C

YTB

B_0

111

BB

_011

1re

plic

ativ

e D

NA

hel

icas

e (d

naB

) 6.

819.

893.

083.

2E-0

51

0.00

011

20.

3018

92

22

20

26.

813.

2E-0

5X

XX

XX

XX

X2

44

20

46.

810.

0001

13

66

30

69.

890.

0001

13

1212

30

129.

895.

7E-0

545

551

662

6.7

CYT

BB

_011

2B

B_0

112

ribos

omal

pro

tein

L9

(rplI)

14

.45

32.9

518

.50.

0001

72

0.00

056

20.

3059

17

71

07

5.2

0.00

031

11

10

19.

254.

3E-0

55

88

50

827

.80.

0005

55

1212

50

1226

.60.

0005

77

2727

70

2731

.80.

0003

417

319

959

9.5

CYT

BB

_011

3B

B_0

113

ribos

omal

pro

tein

S18

(rps

R)

012

.512

.50

00.

0002

12

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

212

.50.

0002

51

22

10

212

.50.

0001

71

44

10

412

.59E

-05

9611

614

10.2

CYT

BB

_011

5B

B_0

115

ribos

omal

pro

tein

S6

(rpsF

) 0

23.7

423

.74

00

0.00

027

20

XX

XX

XX

XX

XX

XX

XX

XX

25

52

05

23.7

0.00

043

12

21

02

130.

0001

22

77

20

723

.70.

0001

113

916

437

9.5

CYT

BB

_012

1B

B_0

121

ribos

ome

rele

asin

g fa

ctor

(frr)

20

.11

20.1

10

8.1E

-05

20.

0003

62

0.22

51

11

10

114

.74E

-05

33

33

03

20.1

0.00

012

47

74

07

14.7

0.00

045

36

63

06

17.4

0.00

027

617

176

017

25.5

0.00

0218

421

539

8.6

CYT

BB

_012

2B

B_0

122

trans

latio

n el

onga

tion

fact

or T

S (t

sf)

41.2

240

.5-0

.72

0.00

054

20.

0012

92

0.42

203

936

369

036

36.6

0.00

095

45

54

05

22.9

0.00

013

1139

3911

039

36.2

0.00

167

1033

3110

231

32.3

0.00

091

1711

311

317

011

346

.20.

0008

827

931

304

8.2

CYT

BB

_012

3B

B_0

123

ribos

omal

pro

tein

S2

(rpsB

) 80

.38

75-5

.38

0.00

533

20.

0072

12

0.73

8728

260

260

280

260

73.5

0.00

739

1911

311

319

011

366

.20.

0032

723

165

165

230

165

60.4

0.00

759

3121

821

831

021

867

.30.

0068

440

747

747

400

747

80.4

0.00

622

260

2967

67.

4C

YTB

B_0

125

BB

_012

5pr

edic

ted

codi

ng re

gion

BB

0125

58

.33

42.9

2-1

5.41

0.00

127

20.

0010

12

1.25

893

1057

5710

057

50.4

0.00

175

925

259

025

51.3

0.00

078

520

205

020

30.4

0.00

18

3030

80

3042

.90.

0010

215

132

132

150

132

61.7

0.00

119

240

2712

98.

4C

YTB

B_0

128

BB

_012

8cy

tidyl

ate

kina

se (c

mk-

1)

10.4

130

.32

19.9

16.

7E-0

51

0.00

012

0.67

22

22

02

10.4

6.7E

-05

XX

XX

XX

XX

33

33

03

25.3

0.00

016

11

11

01

4.98

3.7E

-05

45

54

05

20.4

4.9E

-05

221

2560

29

CYT

BB

_013

0B

B_0

130

pred

icte

d co

ding

regi

on B

B01

30

3.53

3.53

00.

0000

31

3.2E

-05

10.

9375

XX

XX

XX

XX

11

11

01

3.53

3E-0

5X

XX

XX

XX

X1

11

10

13.

533.

2E-0

51

22

10

23.

531.

7E-0

525

529

972

9.2

CYT

BB

_013

1B

B_0

131

recA

pro

tein

(rec

A)

34.2

538

.08

3.83

0.00

022

20.

0006

20.

3758

47

1515

70

1534

.30.

0003

37

73

07

18.1

0.00

014

720

207

020

27.7

0.00

065

724

247

024

32.3

0.00

054

1166

6611

066

460.

0003

936

539

949

7.4

CYT

BB

_013

2B

B_0

132

trans

crip

tion

elon

gatio

n fa

ctor

(gre

A39

.96

52.8

312

.87

0.00

061

20.

0020

62

0.29

669

3110

510

531

010

539

.10.

0008

613

4343

130

4320

.90.

0003

635

168

168

350

168

40.4

0.00

223

4620

820

846

020

847

.60.

0018

857

517

517

570

517

54.4

0.00

124

901

1053

156.

4C

YTB

B_0

133

BB

_013

3pr

edic

ted

codi

ng re

gion

BB

0133

23

.89

49.0

425

.15

0.00

021

20.

0007

32

0.29

019

514

145

014

16.2

0.00

033

24

42

04

7.64

9.6E

-05

814

148

014

31.5

0.00

053

1236

3612

036

46.2

0.00

094

1468

6814

068

490.

0004

731

437

176

6.1

CYT

BB

_013

5B

B_0

135

hist

idyl

-tRN

A s

ynth

etas

e (h

isS

) 17

.51

23.1

95.

680.

0001

12

0.00

018

20.

66

1212

60

1217

.50.

0001

91

11

10

12.

841.

6E-0

56

1010

60

1020

.80.

0002

63

55

30

55.

258.

9E-0

512

2828

120

2829

.50.

0001

345

752

849

8.5

CYT

BB

_014

6B

B_0

146

glyc

ine

beta

ine

20.1

626

.34

6.18

0.00

015

20.

0006

22

0.24

071

512

125

012

20.2

0.00

024

13

31

03

6.45

6.1E

-05

616

166

016

15.1

0.00

051

633

336

033

23.9

0.00

072

1063

6310

063

31.5

0.00

037

372

4248

18.

7

3

Page 137: Dowdell Dissertation FINAL

131

Dowde

ll_TableS2

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

CYT

BB

_014

7B

B_0

147

flage

llar f

ilam

ent 4

1 kD

a co

re p

rote

i35

.12

48.2

113

.09

0.00

041

20.

001

20.

408

833

338

033

35.1

0.00

073

34

43

04

12.5

9E-0

515

4848

150

4848

.20.

0017

15

1212

50

1222

.60.

0002

914

8888

140

8847

0.00

057

336

3576

55.

7C

YTB

B_0

149

BB

_014

9fla

gella

r hoo

k-as

soci

ated

pro

tein

2 (

3.46

8.57

5.11

1.7E

-05

22.

7E-0

52

0.62

963

11

11

01

1.8

1.1E

-05

12

21

02

1.65

2.3E

-05

11

11

01

3.16

1.8E

-05

23

32

03

5.41

3.7E

-05

35

53

05

6.02

1.6E

-05

665

7471

85.

5C

YTB

B_0

151

BB

_015

1N

-ace

tylg

luco

sam

ine-

6-ph

osph

ate

d45

.14

52.6

27.

480.

0008

52

0.00

182

0.47

339

1151

5111

051

41.2

0.00

094

741

417

041

30.2

0.00

077

1391

9113

091

43.1

0.00

271

1344

4413

044

37.7

0.00

0920

222

222

200

222

55.1

0.00

1240

144

203

7C

YTB

B_0

153

BB

_015

3su

pero

xide

dis

mut

ase

(sod

A)

42.5

252

.34

9.82

0.00

032

0.00

069

20.

4350

42

33

20

38.

410.

0001

514

145

014

34.1

0.00

049

22

22

02

12.6

0.00

011

933

339

033

52.3

0.00

126

1148

4811

048

69.2

0.00

049

214

2492

96.

7C

YTB

B_0

154

BB

_015

4pr

epro

tein

tran

sloc

ase

subu

nit (

sec

9.9

17.0

27.

129.

9E-0

51

0.00

033

10.

2981

97

1212

70

129.

99.

9E-0

5X

XX

XX

XX

X11

2525

110

2517

0.00

033

XX

XX

XX

XX

1536

3615

036

21.8

8.7E

-05

899

1020

867.

8C

YTB

B_0

163

BB

_016

3pr

edic

ted

codi

ng re

gion

BB

0163

12

.218

.73

6.53

0.00

007

20.

0001

52

0.46

667

48

84

08

9.45

0.00

012

33

20

34.

473.

9E-0

52

33

20

37.

396.

2E-0

57

1717

70

1715

.30.

0002

49

3131

90

3120

.60.

0001

258

267

952

8.8

CYT

BB

_016

8B

B_0

168

dnaK

sup

pres

sor

45.6

482.

40.

0024

82

0.00

277

20.

8961

780

807

080

45.6

0.00

473

24

42

04

27.2

0.00

024

1045

4510

045

480.

0043

519

195

019

400.

0012

411

148

148

110

148

58.4

0.00

256

125

1454

78.

4C

YTB

B_0

176

BB

_017

6m

etha

nol d

ehyd

roge

nase

regu

lato

r 52

.52

56.6

84.

160.

0005

42

0.00

142

0.38

7111

3636

110

3651

.30.

0007

95

1313

50

1335

.90.

0002

912

3737

120

3737

.10.

0013

118

6161

180

6155

.50.

0014

823

144

144

230

144

64.4

0.00

092

337

3777

97.

5C

YTB

B_0

178

BB

_017

8gl

ucos

e in

hibi

ted

divi

sion

pro

tein

A

15.7

929

.98

14.1

90.

0001

20.

0002

72

0.37

975

1111

50

1115

.80.

0001

31

66

10

65.

97.

2E-0

55

1919

50

1916

.30.

0003

66

1313

60

1320

.90.

0001

711

4949

110

4932

.10.

0001

762

770

821

8.4

CYT

BB

_017

9B

B_0

179

thio

phen

e an

d fu

ran

oxid

atio

n pr

ote

4.31

10.1

35.

820.

0000

42

6.1E

-05

20.

6557

41

22

10

24.

313.

2E-0

51

33

10

34.

314.

9E-0

52

22

20

25.

825.

2E-0

51

44

10

44.

317E

-05

311

113

011

10.1

5.1E

-05

464

5160

65.

6C

YTB

B_0

180

BB

_018

0fla

gella

r pro

tein

8.

5428

.66

20.1

20.

0002

31

0.00

055

20.

4061

41

55

10

58.

540.

0002

3X

XX

XX

XX

X1

77

10

78.

540.

0005

14

1212

40

1228

.70.

0006

424

244

024

28.7

0.00

032

164

1943

78.

8C

YTB

B_0

181

BB

_018

1fla

gella

r hoo

k-as

soci

ated

pro

tein

(flg

9.73

13.7

23.

993.

5E-0

52

8.3E

-05

20.

4216

93

55

30

59.

735.

9E-0

51

11

10

13.

351.

2E-0

54

88

40

810

.40.

0001

51

11

10

13.

351.

3E-0

57

1515

70

1520

.15.

2E-0

562

770

575

5.8

CYT

BB

_018

2B

B_0

182

flage

llar h

ook-

asso

ciat

ed p

rote

in 3

(17

.69

21.4

63.

770.

0001

91

0.00

017

21.

1034

54

1111

40

1117

.70.

0001

9X

XX

XX

XX

X6

1111

60

1121

.50.

0003

12

22

20

25.

423.

8E-0

58

2424

80

2429

.30.

0001

242

447

226

5.9

CYT

BB

_018

3B

B_0

183

cons

erve

d hy

poth

etic

al p

rote

in

42.3

151

.54

9.23

0.00

028

10.

0005

42

0.52

206

35

53

05

42.3

0.00

028

XX

XX

XX

XX

45

54

05

37.7

0.00

046

310

103

010

42.3

0.00

063

520

205

020

51.5

0.00

033

130

1520

37.

4C

YTB

B_0

185

BB

_018

5co

nser

ved

hypo

thet

ical

pro

tein

17

.51

5.99

-11.

520.

0001

13.

8E-0

51

2.68

421

23

32

03

17.5

0.00

01X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

15.

993.

8E-0

52

44

20

417

.54E

-05

217

2432

38.

6C

YTB

B_0

187

BB

_018

7pr

edic

ted

codi

ng re

gion

BB

0187

18

.618

.60

8.6E

-05

19.

5E-0

51

0.90

526

11

11

01

18.6

8.6E

-05

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

18.6

9.5E

-05

12

21

02

18.6

5E-0

586

1022

48.

9C

YTB

B_0

188

BB

_018

8rib

osom

al p

rote

in L

20 (r

plT)

6.

9613

.91

6.95

6.4E

-05

10.

0002

82

0.22

776

11

11

01

6.96

6.4E

-05

XX

XX

XX

XX

12

21

02

13.9

0.00

021

25

52

05

13.9

0.00

035

38

83

08

20.9

0.00

015

115

1346

911

.4C

YTB

B_0

190

BB

_019

0tra

nsla

tion

initi

atio

n fa

ctor

3 (i

nfC

) 9.

6826

.88

17.2

0.00

004

10.

0003

21

0.12

461

11

11

01

9.68

4E-0

5X

XX

XX

XX

X3

55

30

526

.90.

0003

2X

XX

XX

XX

X3

66

30

626

.97E

-05

186

2153

49.

8C

YTB

B_0

194

BB

_019

4co

nser

ved

hypo

thet

ical

pro

tein

7.

8111

.94.

095.

5E-0

51

5.3E

-05

21.

0377

41

22

10

27.

815.

5E-0

5X

XX

XX

XX

X1

11

10

14.

094.

4E-0

51

22

10

27.

816.

1E-0

52

55

20

511

.94E

-05

269

3098

67

CYT

BB

_019

5B

B_0

195

cell

divi

sion

con

trol p

rote

in 2

7 53

.359

.37

6.07

0.00

195

20.

0035

32

0.55

212

2214

514

522

014

552

.20.

0028

315

5454

150

5443

.50.

0010

714

142

116

1426

116

470.

0036

618

158

158

180

158

45.9

0.00

3426

489

489

260

489

61.7

0.00

279

379

4412

47.

1C

YTB

B_0

198

BB

_019

8gu

anos

ine-

3'

1.8

4.05

2.25

1.1E

-05

17.

2E-0

51

0.15

278

11

11

01

1.8

1.1E

-05

XX

XX

XX

XX

24

42

04

4.05

7.2E

-05

XX

XX

XX

XX

35

53

05

4.05

1.6E

-05

667

7776

38.

6C

YTB

B_0

200

BB

_020

0D

-ala

nine

--D-a

lani

ne li

gase

(ddl

A)

33.4

353

.93

20.5

0.00

072

0.00

191

20.

3663

840

408

040

33.4

0.00

083

727

277

027

29.8

0.00

057

1051

5110

051

410.

0017

110

9292

100

9237

.60.

0021

115

210

210

150

210

57.6

0.00

128

356

4022

35.

3C

YTB

B_0

201

BB

_020

1U

DP

-N-a

cety

lmur

amoy

lala

nyl-D

-glu

16.3

45.

91-1

0.43

5.1E

-05

25.

1E-0

52

14

66

40

612

8.7E

-05

11

11

01

4.33

1.5E

-05

13

31

03

3.35

7.1E

-05

12

21

02

2.56

3.2E

-05

512

125

012

16.3

5.1E

-05

508

5714

96.

7C

YTB

B_0

207

BB

_020

7U

TP--g

luco

se-1

-pho

spha

te u

ridyl

ylt

019

.42

19.4

20

08.

8E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X1

10

11

05.

76X

23

32

03

13.7

8.8E

-05

34

43

04

19.4

3.1E

-05

278

3222

19.

1C

YTB

B_0

218

BB

_021

8ph

osph

ate

AB

C tr

ansp

orte

r 38

.46

456.

540.

0002

42

0.00

072

0.34

914

612

126

012

29.2

0.00

034

25

52

05

22.3

0.00

014

718

187

018

25.8

0.00

083

818

188

018

38.9

0.00

056

1353

5313

053

50.4

0.00

044

260

2943

16.

8C

YTB

B_0

220

BB

_022

0al

anyl

-tRN

A s

ynth

etas

e (a

laS

) 13

.319

.87

6.57

6.3E

-05

20.

0001

42

0.44

056

11

11

01

2.69

1.2E

-05

59

95

09

13.3

0.00

011

34

43

04

5.89

8E-0

55

1515

50

1515

.50.

0002

19

2929

90

2919

.90.

0001

159

467

774

6.7

CYT

BB

_022

2B

B_0

222

gluc

ose-

6-ph

osph

ate

1-de

hydr

ogen

010

.64

10.6

40

00.

0001

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

10.6

0.00

012

33

20

310

.62.

8E-0

523

527

198

6.4

CYT

BB

_022

6B

B_0

226

sery

l-tR

NA

syn

thet

ase

(ser

S)

23.2

917

.65

-5.6

40.

0001

42

0.00

032

0.47

458

710

107

010

23.3

0.00

017

26

62

06

9.41

0.00

011

38

83

08

7.06

0.00

023

519

195

019

15.5

0.00

036

1143

4311

043

29.9

0.00

022

425

4878

76.

7C

YTB

B_0

228

BB

_022

8co

nser

ved

hypo

thet

ical

pro

tein

1.

654.

843.

192.

3E-0

51

2.9E

-05

20.

7931

13

31

03

1.65

2.3E

-05

XX

XX

XX

XX

22

22

02

2.88

2.5E

-05

34

43

04

3.6

3.4E

-05

38

83

08

3.6

1.8E

-05

971

1129

598

CYT

BB

_022

9B

B_0

229

ribos

omal

pro

tein

L31

(rpm

E)

025

.93

25.9

30

00.

0003

10

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

25.9

0.00

03X

XX

XX

XX

X2

22

20

225

.95.

3E-0

581

9301

9.9

CYT

BB

_023

0B

B_0

230

trans

crip

tion

term

inat

ion

fact

or R

ho33

.244

.47

11.2

70.

0003

20.

0004

92

0.61

807

1340

4013

040

31.5

0.00

057

22

22

02

6.99

2.9E

-05

1329

2913

029

36.1

0.00

067

1119

1911

019

24.5

0.00

0325

8989

250

8950

.10.

0003

751

557

625

8.3

CYT

BB

_023

1B

B_0

231

cons

erve

d hy

poth

etic

al p

rote

in

014

.81

14.8

10

00.

0004

41

0X

XX

XX

XX

XX

XX

XX

XX

X1

55

10

514

.80.

0004

4X

XX

XX

XX

X1

55

10

514

.88E

-05

135

1496

37.

7C

YTB

B_0

232

BB

_023

2hb

bU p

rote

in

10.1

910

.19

06.

8E-0

51

0.00

011

10.

6126

11

11

10

110

.26.

8E-0

5X

XX

XX

XX

X1

11

10

110

.20.

0001

1X

XX

XX

XX

X1

22

10

210

.24E

-05

108

1268

610

.1C

YTB

B_0

233

BB

_023

3rib

osom

al p

rote

in S

20 (r

psT)

11

.21

0-1

1.21

0.00

021

10

0∞

23

32

03

11.2

0.00

021

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

11.2

6.1E

-05

107

1259

510

.9C

YTB

B_0

235

BB

_023

5co

nser

ved

hypo

thet

ical

pro

tein

11

.96

18.2

16.

250.

0001

32

0.00

032

20.

4177

24

77

40

712

0.00

014

26

62

06

4.62

0.00

012

514

145

014

160.

0004

53

88

30

86.

790.

0001

88

3535

80

3521

.20.

0002

136

841

488

6.9

CYT

BB

_023

9B

B_0

239

deox

ygua

nosi

ne/d

eoxy

aden

osin

e k

46.8

360

13.1

70.

0012

72

0.00

409

20.

3100

88

5454

80

5438

.50.

0019

56

1616

60

1638

.10.

0005

95

9191

50

9142

.40.

0053

17

7272

70

7244

.90.

0028

713

233

233

130

233

73.7

0.00

246

205

2411

75.

5C

YTB

B_0

241

BB

_024

1gl

ycer

ol k

inas

e (g

lpK

) 39

.92

42.3

22.

40.

0005

20.

0005

72

0.86

865

1150

5011

050

36.7

0.00

074

817

178

017

31.5

0.00

026

1024

2410

024

37.1

0.00

057

1135

3511

035

35.9

0.00

057

1712

412

417

012

444

.90.

0005

450

155

606

7.4

CYT

BB

_024

3B

B_0

243

glyc

erol

-3-p

hosp

hate

deh

ydro

gena

s66

.22

56.5

5-9

.67

0.00

304

20.

0061

62

0.49

294

2914

814

829

014

853

.90.

0020

737

280

280

370

280

61.1

0.00

421

8585

210

8545

.50.

0019

345

671

671

450

671

55.6

0.01

039

5211

5211

5252

011

5267

.20.

0047

352

760

251

8.8

CYT

BB

_024

8B

B_0

248

olig

oend

opep

tidas

e F

(pep

F)

12.0

323

.911

.87

7.5E

-05

10.

0001

32

0.59

055

46

64

06

127.

5E-0

5X

XX

XX

XX

X5

55

50

513

.70.

0001

611

116

011

17.3

0.00

015

1021

2110

021

22.9

7.7E

-05

590

6972

37.

3C

YTB

B_0

251

BB

_025

1le

ucyl

-tRN

A s

ynth

etas

e (le

uS)

38.2

135

.12

-3.0

90.

0003

82

0.00

042

0.93

7522

6464

220

6431

.40.

0005

68

2121

80

2119

.10.

0001

916

3333

160

3332

0.00

047

1134

3411

034

22.3

0.00

033

3114

714

731

014

744

.80.

0003

884

098

158

9C

YTB

B_0

253

BB

_025

3A

TP-d

epen

dent

pro

teas

e LA

(lon

-10

6.7

6.7

00

0.00

004

20

XX

XX

XX

XX

XX

XX

XX

XX

34

43

04

6.7

5.9E

-05

12

21

02

2.48

2E-0

51

22

10

22.

985.

4E-0

680

690

710

9.3

CYT

BB

_026

4B

B_0

264

heat

sho

ck p

rote

in 7

0 (d

naK

-1)

8.15

39.5

131

.36

0.00

003

10.

0002

92

0.10

453

22

22

02

8.15

3E-0

5X

XX

XX

XX

X9

1414

90

1431

.40.

0003

45

1414

50

1418

.90.

0002

310

2727

100

2735

.20.

0001

249

154

945

5.2

CYT

BB

_026

7B

B_0

267

cons

erve

d hy

poth

etic

al p

rote

in

17.1

935

.33

18.1

40.

0001

51

0.00

022

0.75

57

1313

70

1317

.20.

0001

5X

XX

XX

XX

X8

1111

80

1121

.80.

0002

19

1515

90

1523

.50.

0001

916

3939

160

3940

.40.

0001

363

470

753

5.7

CYT

BB

_026

9B

B_0

269

ATP

-bin

ding

pro

tein

(ylx

H-1

) 7.

1221

.02

13.9

2.5E

-05

10.

0004

72

0.05

285

11

11

01

7.12

2.5E

-05

XX

XX

XX

XX

422

224

022

13.9

0.00

089

22

22

02

7.12

5.5E

-05

625

256

025

210.

0001

829

532

783

8C

YTB

B_0

270

BB

_027

0fla

gella

r-ass

ocia

ted

GTP

-bin

ding

pr

25.7

748

.97

23.2

0.00

016

20.

0007

82

0.20

871

59

95

09

23.2

0.00

017

38

83

08

9.79

0.00

016

825

228

322

36.3

0.00

068

1242

4212

042

41.5

0.00

088

1884

8418

084

54.1

0.00

047

388

4436

98.

3C

YTB

B_0

278

BB

_027

8fla

gella

r mot

or s

witc

h pr

otei

n (fl

iM)

38.0

755

.11

17.0

40.

0004

62

0.00

055

20.

8405

811

3333

110

3333

0.00

069

411

114

011

17.1

0.00

024

610

106

010

31.3

0.00

034

1333

3313

033

53.1

0.00

077

1681

8116

081

480.

0005

352

3928

45.

4C

YTB

B_0

288

BB

_028

8fla

gellu

m-s

peci

fic A

TP s

ynth

ase

(fliI

39.4

532

.11

-7.3

40.

0002

72

0.00

042

20.

6453

912

2222

120

2239

.50.

0003

74

1010

40

1013

.30.

0001

73

99

30

98.

260.

0002

511

3232

110

3232

.10.

0006

1668

6816

068

43.8

0.00

034

436

4838

25.

3C

YTB

B_0

289

BB

_028

9fla

gella

r ass

embl

y pr

otei

n (fl

iH)

12.7

521

.24

8.49

9.7E

-05

20.

0003

52

0.27

557

26

62

06

7.19

0.00

014

12

21

02

5.56

4.9E

-05

23

32

03

9.48

0.00

012

622

226

022

21.2

0.00

059

531

315

031

19.6

0.00

022

306

3519

05

CYT

BB

_029

0B

B_0

290

flage

llar m

otor

sw

itch

prot

ein

(fliG

-20

6.1

6.1

00

4.7E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

6.1

4.7E

-05

12

21

02

6.1

1.3E

-05

344

3900

74.

9C

YTB

B_0

295

BB

_029

5he

at s

hock

pro

tein

(hsl

U)

26.3

748

.35

21.9

80.

0003

92

0.00

114

20.

3429

612

3131

120

3125

.90.

0005

817

178

017

21.5

0.00

028

1557

5715

057

29.7

0.00

1520

4444

200

4440

0.00

079

2714

714

727

014

746

.60.

0007

455

5188

37.

9C

YTB

B_0

296

BB

_029

6he

at s

hock

pro

tein

(hsl

V)

9.34

19.2

39.

894.

1E-0

51

0.00

018

20.

2303

41

11

10

19.

344.

1E-0

5X

XX

XX

XX

X1

22

10

29.

890.

0001

32

55

20

519

.20.

0002

22

88

20

819

.29.

5E-0

518

219

637

8.1

CYT

BB

_029

9B

B_0

299

cell

divi

sion

pro

tein

(fts

Z)

65.3

562

.62

-2.7

30.

0006

12

0.00

102

20.

5918

1749

4917

049

59.4

0.00

096

1717

60

1730

0.00

032

1131

3111

031

44.6

0.00

092

1956

5619

056

56.7

0.00

113

2114

014

021

014

065

.40.

0007

540

442

972

4.9

CYT

BB

_030

0B

B_0

300

cell

divi

sion

pro

tein

(fts

A)

24.7

27.1

22.

420.

0001

42

0.00

042

20.

3396

26

1313

60

1317

.20.

0002

32

33

20

311

.95.

5E-0

57

1717

70

1717

.90.

0004

99

1818

90

1824

.50.

0003

611

4242

110

4234

.10.

0002

241

345

036

6.6

CYT

BB

_030

4B

B_0

304

UD

P-N

-ace

tylm

uram

oyla

lany

l-D-g

lu3.

6615

.73

12.0

71.

6E-0

51

6.1E

-05

20.

2623

11

11

01

3.66

1.6E

-05

XX

XX

XX

XX

12

21

02

3.66

5.2E

-05

34

43

04

15.7

7E-0

52

66

20

68.

192.

8E-0

546

453

446

7.9

CYT

BB

_030

6B

B_0

306

cons

erve

d hy

poth

etic

al p

rote

in

4.05

18.2

414

.19

2.5E

-05

15.

4E-0

52

0.46

296

XX

XX

XX

XX

11

11

01

4.05

2.5E

-05

22

22

02

9.8

8.1E

-05

11

11

01

8.45

2.8E

-05

44

44

04

18.2

2.9E

-05

296

3438

29

CYT

BB

_030

9B

B_0

309

pred

icte

d co

ding

regi

on B

B03

09

6.18

6.18

02.

9E-0

51

0.00

014

10.

2101

41

11

10

16.

182.

9E-0

5X

XX

XX

XX

X2

33

20

36.

180.

0001

4X

XX

XX

XX

X3

44

30

412

.43.

3E-0

525

929

977

9.2

CYT

BB

_031

2B

B_0

312

purin

e-bi

ndin

g ch

emot

axis

pro

tein

(34

.09

34.0

90

0.00

034

20.

0011

72

0.28

779

312

123

012

31.8

0.00

052

44

20

426

.10.

0001

72

1414

20

1423

.90.

0009

53

3030

30

3034

.10.

0013

95

6060

50

6044

.30.

0007

417

620

020

5.1

CYT

BB

_031

4B

B_0

314

octa

pren

yl-d

ipho

spha

te s

ynth

ase

(is5.

199.

224.

032.

2E-0

51

7.1E

-05

10.

3098

6X

XX

XX

XX

X1

11

10

15.

192.

2E-0

5X

XX

XX

XX

X2

33

20

39.

227.

1E-0

51

33

10

35.

191.

9E-0

534

739

992

9.6

CYT

BB

_031

8B

B_0

318

met

hylg

alac

tosi

de A

BC

tran

spor

ter

05.

145.

140

00.

0000

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X1

33

10

35.

145E

-05

13

31

03

5.14

1.3E

-05

486

5653

29

CYT

BB

_032

5B

B_0

325

pred

icte

d co

ding

regi

on B

B03

25

2.71

14.9

112

.20.

0000

21

0.00

011

20.

1834

91

11

10

12.

712E

-05

XX

XX

XX

XX

24

42

04

8.4

0.00

013

24

42

04

6.5

8.8E

-05

59

95

09

17.6

5.3E

-05

369

4278

26

CYT

BB

_032

7B

B_0

327

glyc

erol

-3-p

hosp

hate

O-a

cyltr

ansf

er0

9.4

9.4

00

0.00

012

0X

XX

XX

XX

XX

XX

XX

XX

X2

33

20

35.

70.

0001

22

33

20

39.

48.

2E-0

53

66

30

69.

44.

4E-0

529

834

764

8.4

CYT

BB

_033

4B

B_0

334

olig

opep

tide

AB

C tr

ansp

orte

r 35

.86

42.7

66.

90.

0011

32

0.00

277

20.

4078

811

5555

110

5529

.30.

0014

733

337

033

23.8

0.00

086

1479

7914

079

42.8

0.00

326

1281

8112

081

34.1

0.00

228

1724

724

717

024

746

.20.

0018

429

032

665

7.6

CYT

BB

_033

5B

B_0

335

olig

opep

tide

AB

C tr

ansp

orte

r 27

.24

38.7

11.4

60.

0002

12

0.00

065

20.

3199

46

1111

60

1127

.20.

0002

54

77

40

718

.60.

0001

66

2222

60

2218

0.00

081

1119

1911

019

38.7

0.00

048

1158

5811

058

38.7

0.00

039

323

3710

09.

3C

YTB

B_0

337

BB

_033

7en

olas

e (e

no)

19.4

42.2

622

.86

8.6E

-05

20.

0005

20.

1730

44

55

40

514

.68.

5E-0

52

55

20

54.

858.

7E-0

54

88

40

816

.90.

0002

213

4141

130

4142

.30.

0007

716

5959

160

5946

.40.

0002

943

347

290

5.5

CYT

BB

_033

8B

B_0

338

ribos

omal

pro

tein

S9

(rpsI

) 0

19.1

219

.12

00

0.00

024

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

24

42

04

19.1

0.00

024

24

42

04

19.1

6.4E

-05

136

1541

710

.9C

YTB

B_0

339

BB

_033

9rib

osom

al p

rote

in L

13 (r

plM

) 6.

857.

530.

685.

1E-0

51

0.00

029

20.

1764

71

11

10

16.

855.

1E-0

5X

XX

XX

XX

X1

55

10

57.

530.

0004

11

33

10

37.

530.

0001

72

99

20

914

.40.

0001

314

616

694

10.1

CYT

BB

_034

1B

B_0

341

glu-

tRN

A a

mid

otra

nsfe

rase

23

.92

31.5

57.

630.

0002

20.

0005

72

0.34

974

718

187

018

23.9

0.00

027

38

83

08

120.

0001

28

2525

80

2522

.70.

0006

29

3131

90

3126

.40.

0005

211

7979

110

7934

.60.

0003

548

554

521

6.6

CYT

BB

_034

2B

B_0

342

glu-

tRN

A a

mid

otra

nsfe

rase

44

.96

48.5

93.

630.

0006

52

0.00

102

20.

6413

814

6666

140

6633

.50.

0009

88

2121

80

2122

.60.

0003

213

4646

130

4634

.70.

0011

118

5656

180

5639

.10.

0009

227

188

188

270

188

53.8

0.00

082

496

5554

55.

7C

YTB

B_0

348

BB

_034

8py

ruva

te k

inas

e (p

yk)

10.9

17.8

26.

924.

6E-0

51

0.00

012

20.

3739

83

33

30

310

.94.

6E-0

5X

XX

XX

XX

X3

55

30

514

.70.

0001

34

77

40

712

.60.

0001

29

1515

90

1523

.16.

8E-0

547

753

032

7.2

CYT

BB

_035

0B

B_0

350

ribos

omal

pro

tein

L28

(rpm

B)

09.

789.

780

00.

0001

72

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

29.

780.

0002

61

11

10

19.

788.

9E-0

51

33

10

39.

787.

1E-0

592

1017

611

CYT

BB

_035

1B

B_0

351

pred

icte

d co

ding

regi

on B

B03

51

34.2

946

.74

12.4

50.

0003

82

0.00

272

0.14

005

931

319

031

21.5

0.00

044

722

227

022

19.2

0.00

032

1314

914

913

014

928

.20.

0034

120

127

127

200

127

43.3

0.00

199

2231

831

822

031

851

.30.

0013

252

260

867

8.4

CYT

BB

_035

5B

B_0

355

trans

crip

tion

fact

or

12.3

524

.07

11.7

26.

9E-0

52

0.00

044

20.

1582

61

22

10

212

.49.

1E-0

51

11

10

112

.44.

6E-0

52

55

20

524

.10.

0003

72

1010

20

1024

.10.

0005

113

131

013

12.4

0.00

017

162

1902

06.

6C

YTB

B_0

361

BB

_036

1A

TP-b

indi

ng p

rote

in (y

lxH

-2)

5.79

16.5

810

.79

1.9E

-05

10.

0001

22

0.15

574

11

11

01

5.79

1.9E

-05

XX

XX

XX

XX

45

54

05

16.6

0.00

016

24

42

04

6.58

8.6E

-05

510

105

010

22.4

5.7E

-05

380

4291

19.

2C

YTB

B_0

364

BB

_036

4co

nser

ved

hypo

thet

ical

pro

tein

17

.46

21.4

33.

970.

0001

22

0.00

022

20.

5267

91

22

10

26.

350.

0001

21

22

10

211

.10.

0001

21

22

10

27.

940.

0001

92

44

20

421

.40.

0002

64

1010

40

1038

.90.

0001

712

613

974

8.6

CYT

BB

_036

6B

B_0

366

amin

opep

tidas

e I (

yscI

) 24

.67

34.9

310

.26

0.00

013

20.

0002

52

0.51

984

24

42

04

11.8

6.5E

-05

512

125

012

20.3

0.00

023

55

30

516

.20.

0001

37

2121

70

2126

.20.

0003

710

4242

100

4235

.20.

0002

458

5150

06

CYT

BB

_036

7B

B_0

367

pred

icte

d co

ding

regi

on B

B03

67

60.8

751

.09

-9.7

80.

0016

22

0.00

182

0.89

839

524

245

024

52.2

0.00

193

616

166

016

60.9

0.00

131

225

252

025

370.

0032

52

44

20

435

.90.

0003

56

6969

60

6960

.90.

0016

292

1063

65.

6C

YTB

B_0

369

BB

_036

9A

TP-d

epen

dent

Clp

pro

teas

e 3.

675.

241.

571.

9E-0

52

5.3E

-05

20.

3584

92

33

20

33.

672.

9E-0

51

11

10

12.

239.

9E-0

61

22

10

22.

233.

1E-0

52

77

20

75.

247.

5E-0

53

1313

30

136.

683.

7E-0

576

388

906

8C

YTB

B_0

370

BB

_037

0ty

rosy

l-tR

NA

syn

thet

ase

(tyrS

) 16

.317

.78

1.48

0.00

013

20.

0001

52

0.85

333

412

124

012

16.3

0.00

022

12

21

02

4.94

3.7E

-05

24

42

04

6.17

0.00

012

59

95

09

15.3

0.00

018

623

236

023

21.2

0.00

012

405

4636

38.

9C

YTB

B_0

371

BB

_037

1gl

ycyl

-tRN

A s

ynth

etas

e (g

lyS

) 16

.18

30.1

113

.93

7.6E

-05

20.

0002

32

0.32

618

11

11

01

2.25

1.7E

-05

48

84

08

13.9

0.00

014

11

11

01

2.25

2.7E

-05

1024

2410

024

30.1

0.00

044

1334

3413

034

34.2

0.00

017

445

5221

07.

1C

YTB

B_0

372

BB

_037

2gl

utam

yl-tR

NA

syn

thet

ase

(gltX

) 52

.65

47.3

5-5

.30.

0006

42

0.00

082

0.79

551

1848

4818

048

46.5

0.00

072

1336

3613

036

33.9

0.00

055

1435

3514

035

30.2

0.00

085

1445

4514

045

32.7

0.00

075

3016

316

330

016

357

.40.

0007

249

056

752

8.8

CYT

BB

_037

4B

B_0

374

pred

icte

d co

ding

regi

on B

B03

74

10.8

218

.21

7.39

3.9E

-05

20.

0001

42

0.27

273

12

21

02

5.8

3.9E

-05

12

21

02

5.01

4E-0

53

77

30

718

.20.

0002

21

33

10

36.

66.

5E-0

55

1414

50

1429

8E-0

537

943

457

8.6

CYT

BB

_037

5B

B_0

375

pfs

prot

ein

(pfs

-1)

013

.08

13.0

80

06.

9E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X2

22

20

213

.16.

9E-0

52

22

20

213

.11.

8E-0

523

726

586

7.6

CYT

BB

_037

6B

B_0

376

S-a

deno

sylm

ethi

onin

e sy

nthe

tase

(45

.66

54.5

98.

930.

0005

62

0.00

103

20.

5443

913

4848

130

4845

.40.

0009

511

115

011

24.7

0.00

021

1029

2910

029

45.7

0.00

088

1556

5615

056

46.4

0.00

117

2214

414

422

014

456

.90.

0007

939

243

070

8.6

CYT

BB

_038

1B

B_0

381

cons

erve

d hy

poth

etic

al p

rote

in

12.2

132

.21

200.

0001

62

0.00

036

20.

4568

23

1414

30

149.

260.

0002

22

77

20

79.

680.

0001

18

1919

80

1923

.40.

0004

86

1414

60

1418

.50.

0002

411

5454

110

5432

.20.

0002

547

555

786

7.3

CYT

BB

_038

6B

B_0

386

ribos

omal

pro

tein

S7

(rpsG

) 22

.29

49.0

426

.75

0.00

028

10.

0008

92

0.31

579

26

62

06

22.3

0.00

028

XX

XX

XX

XX

518

185

018

41.4

0.00

137

28

82

08

22.3

0.00

042

632

326

032

490.

0004

415

718

252

10.1

CYT

BB

_038

8B

B_0

388

DN

A-d

irect

ed R

NA

pol

ymer

ase

(rpo

0.94

14.8

913

.95

1.1E

-05

10.

0001

22

0.09

091

12

21

02

0.94

1.1E

-05

XX

XX

XX

XX

1117

1711

017

11.8

0.00

015

816

168

016

8.5

9.5E

-05

1535

3515

035

15.8

5.5E

-05

1377

1546

578

CYT

BB

_038

9B

B_0

389

DN

A-d

irect

ed R

NA

pol

ymer

ase

(rpo

31.3

439

.39

8.05

0.00

018

20.

0008

42

0.21

445

1427

2714

027

190.

0001

712

2929

120

2921

.10.

0001

921

5858

210

5823

.70.

0006

3115

415

431

015

434

.40.

0010

940

263

263

400

263

41.7

0.00

049

1155

1296

246.

1C

YTB

B_0

390

BB

_039

0rib

osom

al p

rote

in L

7/L1

2 (rp

lL)

58.0

689

.52

31.4

60.

0078

82

0.01

273

20.

6190

511

183

183

110

183

54.8

0.01

0911

8080

110

8058

.10.

0048

57

9292

70

9245

.20.

0088

710

252

252

100

252

89.5

0.01

658

1454

054

014

054

058

.10.

0094

212

412

904

4.7

CYT

BB

_039

1B

B_0

391

ribos

omal

pro

tein

L10

(rpl

J)

59.5

249

.4-1

0.12

0.00

372

20.

0070

12

0.53

126

1015

215

210

015

254

.80.

0066

86

1717

60

1737

.50.

0007

64

115

115

40

115

36.3

0.00

818

812

012

08

012

048

.80.

0058

313

404

404

130

404

64.9

0.00

5216

818

679

9.6

CYT

BB

_039

2B

B_0

392

ribos

omal

pro

tein

L1

(rplA

) 37

.17

50.4

413

.27

0.00

044

20.

0012

12

0.36

469

623

236

023

30.5

0.00

075

24

42

04

6.64

0.00

013

1239

3912

039

50.4

0.00

206

310

103

010

15.5

0.00

036

1476

7614

076

55.3

0.00

073

226

2566

89.

6C

YTB

B_0

394

BB

_039

4tra

nscr

iptio

n an

titer

min

atio

n fa

ctor

(50

.54

39.6

7-1

0.87

0.00

075

20.

0015

62

0.47

848

832

328

032

50.5

0.00

128

25

52

05

10.9

0.00

023

2222

30

2219

.60.

0014

39

3838

90

3839

.70.

0016

912

9797

120

9756

.50.

0011

418

421

216

8.2

CYT

BB

_039

7B

B_0

397

pred

icte

d co

ding

regi

on B

B03

97

7.45

0-7

.45

7.9E

-05

10

0∞

13

31

03

7.45

7.9E

-05

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

13

31

03

7.45

2.3E

-05

282

3298

38

CYT

BB

_040

2B

B_0

402

prol

yl-tR

NA

syn

thet

ase

(pro

S)

44.2

646

.11

1.85

0.00

053

20.

0009

72

0.54

892

1748

4817

048

43.7

0.00

073

922

229

022

28.5

0.00

034

1026

2610

026

27.1

0.00

064

1678

7816

078

38.1

0.00

1325

172

172

250

172

52.9

0.00

076

488

5631

18.

2C

YTB

B_0

404

BB

_040

4pr

edic

ted

codi

ng re

gion

BB

0404

0

22.4

622

.46

00

0.00

012

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

22.5

0.00

012

12

21

02

22.5

3.1E

-05

138

1625

710

.4C

YTB

B_0

407

BB

_040

7m

anno

se-6

-pho

spha

te is

omer

ase

(25

.54

30.3

84.

840.

0003

12

0.00

044

20.

7077

65

1919

50

1921

.20.

0003

85

1212

50

1225

.50.

0002

46

1515

60

1528

.20.

0004

87

1818

70

1824

.20.

0003

911

6464

110

6434

.70.

0003

737

242

840

5.6

CYT

BB

_041

7B

B_0

417

aden

ylat

e ki

nase

(adk

) 21

.33

16.5

9-4

.74

0.00

042

10.

0002

12

24

1212

40

1221

.30.

0004

2X

XX

XX

XX

X2

44

20

411

.40.

0002

32

55

20

55.

210.

0001

95

1919

50

1921

.30.

0001

921

124

099

9.2

CYT

BB

_041

9B

B_0

419

resp

onse

regu

lato

ry p

rote

in (r

rp-1

) 8.

1420

.52

12.3

82.

4E-0

51

9.9E

-05

20.

2424

21

11

10

18.

142.

4E-0

5X

XX

XX

XX

X1

11

10

17.

173.

9E-0

53

66

30

620

.50.

0001

63

88

30

820

.55.

6E-0

530

735

074

7C

YTB

B_0

421

BB

_042

1hy

drol

ase

14.3

422

.22

7.88

0.00

025

20.

0002

22

1.17

133

1414

30

1414

.30.

0003

72

55

20

514

.30.

0001

33

66

30

612

.50.

0002

63

66

30

614

.30.

0001

85

3131

50

3122

.20.

0002

427

932

154

5.6

CYT

BB

_042

6B

B_0

426

pred

icte

d co

ding

regi

on B

B04

26

33.1

650

.27

17.1

10.

0003

62

0.00

098

20.

3641

94

1111

40

1133

.20.

0004

32

77

20

723

.50.

0002

82

1313

20

1321

.90.

0008

38

2626

80

2650

.30.

0011

39

5757

90

5750

.30.

0006

618

721

918

7.3

CYT

BB

_042

9B

B_0

429

pred

icte

d co

ding

regi

on B

B04

29

23.2

623

.26

00.

0003

22

0.00

038

10.

8342

12

77

20

723

.30.

0004

14

41

04

10.9

0.00

023

XX

XX

XX

XX

26

62

06

23.3

0.00

038

217

172

017

23.3

0.00

029

129

1469

69

CYT

BB

_043

5B

B_0

435

DN

A g

yras

e 4.

4422

.84

18.4

4.6E

-05

20.

0002

42

0.19

247

27

72

07

4.44

6.4E

-05

23

32

03

4.44

2.8E

-05

816

168

016

13.7

0.00

024

824

248

024

16.9

0.00

024

1250

5012

050

22.8

0.00

013

810

9137

97.

3C

YTB

B_0

436

BB

_043

6D

NA

gyr

ase

37.0

950

.55

13.4

60.

0007

42

0.00

128

20.

5739

921

100

100

210

100

35.4

0.00

116

1027

2710

027

19.4

0.00

032

2169

6921

069

41.3

0.00

129

2310

010

023

010

039

.60.

0012

833

293

293

330

293

47.3

0.00

099

639

7205

77

CYT

BB

_043

8B

B_0

438

DN

A p

olym

eras

e III

5.

198.

313.

121.

9E-0

51

0.00

016

10.

1225

81

11

10

15.

191.

9E-0

5X

XX

XX

XX

X3

55

30

58.

310.

0001

6X

XX

XX

XX

X4

66

40

613

.53.

4E-0

538

544

614

5.6

CYT

BB

_043

9B

B_0

439

cons

erve

d hy

poth

etic

al p

rote

in

019

.19

19.1

90

00.

0002

41

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

219

.20.

0002

4X

XX

XX

XX

X1

22

10

219

.24.

4E-0

599

1122

99

CYT

BB

_044

3B

B_0

443

spoI

IIJ-a

ssoc

itate

d pr

otei

n (ja

g)

3.72

8.26

4.54

6.2E

-05

10.

0001

12

0.57

407

XX

XX

XX

XX

12

21

02

3.72

6.2E

-05

13

31

03

4.55

0.00

015

22

22

02

8.26

6.7E

-05

37

73

07

126.

3E-0

524

228

267

9.4

CYT

BB

_044

4B

B_0

444

nucl

eotid

e su

gar e

pim

eras

e 63

.94

65.0

71.

130.

0014

12

0.00

306

20.

4615

623

100

100

230

100

55.2

0.00

208

1135

3511

035

39.2

0.00

074

1899

9918

099

49.3

0.00

333

2212

112

122

012

162

.80.

0027

833

345

345

330

345

75.2

0.00

2135

540

183

7.8

CYT

BB

_044

5B

B_0

445

fruct

ose-

bisp

hosp

hate

ald

olas

e (fb

a31

.244

.01

12.8

10.

0002

20.

0004

32

0.46

154

38

83

08

18.4

0.00

016

411

114

011

26.5

0.00

023

78

87

08

35.9

0.00

027

1126

2611

026

440.

0005

913

5353

130

5349

0.00

032

359

3998

16.

5C

YTB

B_0

449

BB

_044

9co

nser

ved

hypo

thet

ical

pro

tein

0

12.3

712

.37

00

0.00

017

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

12.4

0.00

017

12

21

02

12.4

4.5E

-05

9711

591

9.6

CYT

BB

_045

9B

B_0

459

pred

icte

d co

ding

regi

on B

B04

59

6.65

11.4

74.

825.

1E-0

51

0.00

011

20.

4766

42

33

20

36.

655.

1E-0

5X

XX

XX

XX

X2

33

20

39.

178.

2E-0

52

77

20

76.

650.

0001

33

1313

30

1311

.56.

5E-0

543

651

774

5.4

CYT

BB

_046

2B

B_0

462

cons

erve

d hy

poth

etic

al p

rote

in

43.6

438

.18

-5.4

60.

0007

42

0.00

402

20.

1851

25

1313

50

1343

.60.

0008

74

99

40

920

0.00

062

661

616

061

38.2

0.00

663

619

196

019

38.2

0.00

141

1010

210

210

010

243

.60.

0020

111

012

479

6.7

CYT

BB

_046

6B

B_0

466

AB

C tr

ansp

orte

r 0

14.8

14.8

00

6.6E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

5.05

4.3E

-05

13

31

03

9.75

8.8E

-05

24

42

04

14.8

3.1E

-05

277

3147

69.

1C

YTB

B_0

467

BB

_046

7co

nser

ved

hypo

thet

ical

pro

tein

10

.04

14.8

54.

819.

7E-0

51

0.00

014

20.

6879

42

33

20

310

9.7E

-05

XX

XX

XX

XX

22

22

02

100.

0001

35

53

05

10.9

0.00

018

39

93

09

10.9

8.5E

-05

229

2694

88.

8C

YTB

B_0

472

BB

_047

2U

DP

-N-a

cety

lglu

cosa

min

e 1-

carb

ox3.

397.

694.

33.

3E-0

51

6.3E

-05

20.

5238

11

22

10

23.

393.

3E-0

5X

XX

XX

XX

X2

44

20

44.

980.

0001

11

11

10

12.

711.

8E-0

52

55

20

56.

112.

4E-0

544

248

497

8.6

CYT

BB

_047

6B

B_0

476

trans

latio

n el

onga

tion

fact

or T

U (t

uf71

.32

66.8

3-4

.49

0.00

686

20.

015

20.

4572

3366

166

133

066

167

.30.

0121

813

8282

130

8239

.70.

0015

430

874

874

300

874

61.6

0.02

605

2119

419

421

019

461

.90.

0039

539

1804

1804

390

1804

73.1

0.00

973

401

4433

06.

1C

YTB

B_0

477

BB

_047

7rib

osom

al p

rote

in S

10 (r

psJ)

52

.43

40.7

8-1

1.65

0.00

134

20.

0029

72

0.45

295

512

125

012

40.8

0.00

086

525

255

025

51.5

0.00

183

947

479

047

40.8

0.00

545

26

62

06

29.1

0.00

048

1088

8810

088

52.4

0.00

185

103

1176

610

CYT

BB

_047

8B

B_0

478

ribos

omal

pro

tein

L3

(rplC

) 27

.67

29.6

11.

947.

2E-0

52

0.00

066

20.

1094

23

33

30

321

.40.

0001

11

11

10

16.

313.

7E-0

54

2222

40

2229

.60.

0012

81

11

10

19.

714E

-05

627

276

027

42.2

0.00

028

206

2221

210

CYT

BB

_047

9B

B_0

479

ribos

omal

pro

tein

L4

(rplD

) 0

21.0

521

.05

00

0.00

019

20

XX

XX

XX

XX

XX

XX

XX

XX

24

42

04

16.3

0.00

023

24

42

04

12.4

0.00

016

38

83

08

21.1

8.3E

-05

209

2349

210

.2

4

Page 138: Dowdell Dissertation FINAL

132

Dowde

ll_TableS2

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

CYT

BB

_048

1B

B_0

481

ribos

omal

pro

tein

L2

(rplB

) 5.

0513

.72

8.67

5.3E

-05

10.

0001

71

0.30

636

12

21

02

5.05

5.3E

-05

XX

XX

XX

XX

34

43

04

13.7

0.00

017

XX

XX

XX

XX

35

53

05

14.4

3.9E

-05

277

3059

110

.5C

YTB

B_0

482

BB

_048

2rib

osom

al p

rote

in S

19 (r

psS

) 16

.336

.96

20.6

60.

0000

81

0.00

078

10.

1025

61

11

10

116

.38E

-05

XX

XX

XX

XX

26

62

06

370.

0007

8X

XX

XX

XX

X2

77

20

737

0.00

016

9210

410

10.2

CYT

BB

_048

4B

B_0

484

ribos

omal

pro

tein

S3

(rpsC

) 3.

0719

.11

16.0

40.

0000

51

8.9E

-05

20.

5618

12

21

02

3.07

5E-0

5X

XX

XX

XX

X2

33

20

310

.20.

0001

22

22

20

28.

875.

6E-0

54

66

40

617

.14.

4E-0

529

333

142

10C

YTB

B_0

485

BB

_048

5rib

osom

al p

rote

in L

16 (r

plP

) 9.

4218

.84

9.42

5.5E

-05

10.

0003

22

0.17

241

XX

XX

XX

XX

11

11

01

9.42

5.5E

-05

26

62

06

18.8

0.00

052

12

21

02

18.8

0.00

012

39

93

09

28.3

0.00

014

138

1556

810

.6C

YTB

B_0

487

BB

_048

7rib

osom

al p

rote

in S

17 (r

psQ

) 8.

3311

.93.

570.

0001

81

0.00

014

11.

2605

6X

XX

XX

XX

X1

22

10

28.

330.

0001

81

11

10

111

.90.

0001

4X

XX

XX

XX

X2

33

20

320

.27.

7E-0

584

9852

10C

YTB

B_0

488

BB

_048

8rib

osom

al p

rote

in L

14 (r

plN

) 0

12.9

12.9

00

0.00

031

20

XX

XX

XX

XX

XX

XX

XX

XX

13

31

03

12.9

0.00

029

15

51

05

12.9

0.00

033

18

81

08

12.9

0.00

014

124

1365

610

.1C

YTB

B_0

490

BB

_049

0rib

osom

al p

rote

in L

5 (rp

lE)

39.5

662

.64

23.0

80.

001

20.

0022

42

0.44

519

637

376

037

35.2

0.00

153

1212

30

1213

.70.

0005

754

547

054

62.1

0.00

355

421

214

021

26.4

0.00

094

912

412

49

012

467

0.00

147

182

2041

69.

5C

YTB

B_0

492

BB

_049

2rib

osom

al p

rote

in S

8 (rp

sH)

15.9

128

.03

12.1

20.

0001

12

0.00

048

20.

2314

13

31

03

15.2

0.00

017

11

11

01

15.9

5.7E

-05

510

105

010

280.

0009

11

11

10

115

.26.

2E-0

56

1515

60

1528

0.00

025

132

1481

49.

9C

YTB

B_0

493

BB

_049

3rib

osom

al p

rote

in L

6 (rp

lF)

5.56

26.6

721

.11

4.2E

-05

10.

0003

82

0.11

082

XX

XX

XX

XX

11

11

01

5.56

4.2E

-05

58

85

08

24.4

0.00

053

55

55

05

22.8

0.00

023

714

147

014

32.2

0.00

017

180

1993

89.

8C

YTB

B_0

494

BB

_049

4rib

osom

al p

rote

in L

18 (r

plR

) 19

.33

40.3

421

.01

0.00

012

10.

0005

22

0.23

81

22

10

219

.30.

0001

2X

XX

XX

XX

X2

99

20

930

.30.

0009

22

22

02

210.

0001

42

1212

20

1230

.30.

0002

211

913

722

10.4

CYT

BB

_049

5B

B_0

495

ribos

omal

pro

tein

S5

(rpsE

) 14

.55

16.9

72.

420.

0001

31

0.00

021

20.

6442

32

33

20

314

.60.

0001

3X

XX

XX

XX

X2

33

20

317

0.00

022

34

43

04

170.

0002

36

63

06

14.6

7.9E

-05

165

1777

910

.4C

YTB

B_0

496

BB

_049

6rib

osom

al p

rote

in L

30 (r

pmD

) 0

36.6

336

.63

00

0.00

058

20

XX

XX

XX

XX

XX

XX

XX

XX

37

73

07

36.6

0.00

083

14

41

04

9.9

0.00

032

311

113

011

36.6

0.00

024

101

1176

511

.4C

YTB

B_0

497

BB

_049

7rib

osom

al p

rote

in L

15 (r

plO

) 21

.38

21.3

80

0.00

013

20.

0003

52

0.36

888

13

31

03

15.9

0.00

015

22

22

02

21.4

0.00

012

55

20

521

.40.

0004

13

55

30

521

.40.

0002

83

1515

30

1521

.40.

0002

214

516

039

10.5

CYT

BB

_050

0B

B_0

500

ribos

omal

pro

tein

S13

(rps

M)

022

.422

.40

00.

0003

91

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X2

66

20

622

.40.

0003

92

66

20

622

.40.

0001

125

1407

810

.8C

YTB

B_0

501

BB

_050

1rib

osom

al p

rote

in S

11 (r

psK

) 0

38.0

638

.06

00

0.00

054

20

XX

XX

XX

XX

XX

XX

XX

XX

310

103

010

38.1

0.00

089

13

31

03

8.96

0.00

018

313

133

013

38.1

0.00

021

134

1430

710

.3C

YTB

B_0

502

BB

_050

2D

NA

-dire

cted

RN

A p

olym

eras

e (rp

o43

.48

46.9

63.

480.

0014

22

0.00

442

0.32

213

1210

910

912

010

943

.50.

0023

33

2323

30

2316

.80.

0005

1219

219

212

019

243

.20.

0066

514

9191

140

9140

.90.

0021

518

407

407

180

407

51.9

0.00

255

345

3868

55.

4C

YTB

B_0

503

BB

_050

3rib

osom

al p

rote

in L

17 (r

plQ

) 7.

3226

.02

18.7

0.00

006

10.

0003

32

0.18

462

11

11

01

7.32

6E-0

5X

XX

XX

XX

X4

66

40

626

0.00

058

11

11

01

17.1

6.6E

-05

58

85

08

33.3

0.00

014

123

1450

011

CYT

BB

_050

5B

B_0

505

cons

erve

d hy

poth

etic

al p

rote

in

08.

028.

020

03.

8E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

12.

674.

6E-0

51

11

10

15.

733.

1E-0

52

22

20

28.

021.

7E-0

526

229

138

8.3

CYT

BB

_050

9B

B_0

509

pred

icte

d co

ding

regi

on B

B05

09

14.5

617

.18

2.62

0.00

013

20.

0002

12

0.64

563

511

115

011

14.1

0.00

019

24

42

04

7.4

7.2E

-05

59

95

09

14.8

0.00

026

48

84

08

100.

0001

69

3232

90

3222

.20.

0001

741

948

742

9.2

CYT

BB

_051

3B

B_0

513

phen

ylal

anyl

-tRN

A s

ynth

etas

e 5.

34.

17-1

.13

4.2E

-05

14.

6E-0

51

0.91

304

23

32

03

5.3

4.2E

-05

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

4.17

4.6E

-05

36

63

06

7.2

2.5E

-05

528

5995

27

CYT

BB

_051

4B

B_0

514

phen

ylal

anyl

-tRN

A s

ynth

etas

e 26

.68

33.5

76.

899.

9E-0

52

0.00

043

20.

2323

95

99

50

919

.40.

0001

23

66

30

612

8E-0

54

1313

40

1312

.40.

0002

710

4040

100

4031

.50.

0005

812

6868

120

6834

.30.

0002

656

665

174

5.2

CYT

BB

_051

8B

B_0

518

heat

sho

ck p

rote

in 7

0 (d

naK

-2)

49.1

343

.78

-5.3

50.

0012

62

0.00

122

1.04

829

1884

8418

084

38.3

0.00

098

1713

013

017

013

037

0.00

154

1475

7514

075

26.5

0.00

141

1777

7717

077

370.

0009

936

366

366

360

366

600.

0012

563

569

276

5.3

CYT

BB

_051

9B

B_0

519

grpE

pro

tein

(grp

E)

57.2

250

.27

-6.9

50.

0009

42

0.00

187

20.

5016

19

2323

90

2345

.50.

0009

110

2424

100

2456

.20.

0009

76

2525

60

2533

.70.

0016

1349

4913

049

50.3

0.00

214

1912

112

119

012

163

.60.

0014

187

2193

98.

7C

YTB

B_0

521

BB

_052

1pr

edic

ted

codi

ng re

gion

BB

0521

35

.33

36.6

71.

340.

0002

22

0.00

084

20.

2642

23

66

30

624

.70.

0003

23

32

03

22.7

0.00

015

313

133

013

30.7

0.00

104

512

125

012

36.7

0.00

065

634

346

034

41.3

0.00

049

150

1720

97.

9C

YTB

B_0

522

BB

_052

2N

H(3

)-dep

ende

nt N

AD

+ sy

nthe

tase

18.4

740

.09

21.6

20.

0004

72

0.00

088

20.

5328

14

1212

40

1218

.50.

0004

216

162

016

13.5

0.00

054

311

113

011

19.4

0.00

059

932

329

032

34.2

0.00

118

1171

7111

071

45.1

0.00

069

222

2509

45.

8C

YTB

B_0

527

BB

_052

7co

nser

ved

hypo

thet

ical

pro

tein

4.

9615

.65

10.6

92.

9E-0

51

0.00

011

20.

2685

2X

XX

XX

XX

X1

11

10

14.

962.

9E-0

51

22

10

210

.79.

1E-0

52

44

20

415

.70.

0001

22

77

20

715

.75.

8E-0

526

229

823

5.5

CYT

BB

_052

8B

B_0

528

aldo

se re

duct

ase

30.1

637

.14

6.98

0.00

023

20.

0003

92

0.57

252

411

114

011

260.

0002

63

88

30

816

.50.

0001

93

55

30

513

0.00

019

823

238

023

33.3

0.00

0610

4747

100

4742

.50.

0003

231

536

754

9C

YTB

B_0

533

BB

_053

3ph

nP p

rote

in (p

hnP

) 0

12.6

512

.65

00

6.5E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

22

22

02

12.7

6.5E

-05

22

22

02

12.7

1.7E

-05

253

2896

57.

8C

YTB

B_0

534

BB

_053

4ex

odeo

xyrib

onuc

leas

e III

(exo

A)

7.45

17.2

59.

82.

9E-0

51

0.00

021

20.

1361

51

11

10

17.

452.

9E-0

5X

XX

XX

XX

X3

55

30

517

.30.

0002

31

66

10

67.

450.

0001

93

1212

30

1217

.30.

0001

255

2975

65.

3C

YTB

B_0

538

BB

_053

8co

nser

ved

hypo

thet

ical

pro

tein

0

14.3

914

.39

00

0.00

012

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

14.4

0.00

012

12

21

02

14.4

3.3E

-05

132

1492

95.

9C

YTB

B_0

540

BB

_054

0tra

nsla

tion

elon

gatio

n fa

ctor

G (f

us-

35.7

924

.24

-11.

550.

0003

12

0.00

024

21.

2892

614

3131

140

3127

.40.

0003

312

2727

120

2728

.10.

0002

97

1313

70

1314

0.00

022

822

228

022

16.9

0.00

026

2091

9120

091

35.8

0.00

028

693

7757

35.

6C

YTB

B_0

541

BB

_054

1pr

edic

ted

codi

ng re

gion

BB

0541

9.

7225

15.2

80.

0001

10.

0005

10.

2068

31

11

10

19.

720.

0001

XX

XX

XX

XX

13

31

03

250.

0005

XX

XX

XX

XX

24

42

04

34.7

0.00

012

7283

856.

1C

YTB

B_0

544

BB

_054

4ph

osph

orib

osyl

pyr

opho

spha

te s

ynt

6.4

7.88

1.48

0.00

016

12.

5E-0

52

6.56

29

92

09

6.4

0.00

016

XX

XX

XX

XX

11

11

01

4.19

2.9E

-05

11

11

01

3.69

2E-0

53

1111

30

1110

.65.

9E-0

540

645

749

7.7

CYT

BB

_054

5B

B_0

545

xylu

loki

nase

(xyl

B)

06.

616.

610

05.

4E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X2

33

20

36.

615.

4E-0

52

33

20

36.

611.

4E-0

545

451

364

8.1

CYT

BB

_055

0B

B_0

550

flage

llar p

rote

in (f

laJ)

8.

9737

.93

28.9

65.

2E-0

51

0.00

038

20.

1386

7X

XX

XX

XX

X1

11

10

18.

975.

2E-0

51

55

10

513

.10.

0004

14

66

40

637

.90.

0003

44

1212

40

1237

.90.

0001

814

516

655

9.2

CYT

BB

_055

1B

B_0

551

chem

otax

is re

spon

se re

gula

tor (

che

15.0

418

.05

3.01

8.4E

-05

20.

0001

21

0.68

293

11

11

01

8.27

5.6E

-05

12

21

02

6.77

0.00

011

XX

XX

XX

XX

12

21

02

18.1

0.00

012

35

53

05

33.1

8.1E

-05

133

1517

78.

8C

YTB

B_0

556

BB

_055

6pr

edic

ted

codi

ng re

gion

BB

0556

0

5.54

5.54

00

0.00

012

10

XX

XX

XX

XX

XX

XX

XX

XX

13

31

03

5.54

0.00

012

XX

XX

XX

XX

13

31

03

5.54

2.2E

-05

289

3446

39

CYT

BB

_055

7B

B_0

557

phos

phoc

arrie

r pro

tein

HP

r (pt

sH-2

17.4

430

.23

12.7

90.

0001

81

0.00

029

10.

6140

4X

XX

XX

XX

X1

22

10

217

.40.

0001

7X

XX

XX

XX

X1

33

10

330

.20.

0002

82

55

20

547

.70.

0001

386

9386

5.5

CYT

BB

_055

8B

B_0

558

phos

phoe

nolp

yruv

ate-

prot

ein

phos

p0

7.5

7.5

00

7.1E

-05

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

35

53

05

7.5

7.1E

-05

35

53

05

7.5

1.9E

-05

573

6459

65.

2C

YTB

B_0

559

BB

_055

9P

TS s

yste

m

70.9

56.0

8-1

4.82

0.00

113

20.

0014

62

0.77

266

626

266

026

54.5

0.00

102

931

319

031

40.7

0.00

123

516

165

016

41.8

0.00

101

844

448

044

53.4

0.00

1913

113

113

130

113

71.4

0.00

129

189

2078

15.

4C

YTB

B_0

560

BB

_056

0he

at s

hock

pro

tein

90

(htp

G)

3841

.38

3.38

0.00

052

20.

0008

12

0.64

118

2063

6320

063

35.1

0.00

072

1128

2811

028

22.9

0.00

032

1437

3714

037

23.4

0.00

068

2475

7524

075

34.9

0.00

094

3720

320

337

020

348

.30.

0006

865

075

424

6.9

CYT

BB

_056

1B

B_0

561

phos

phog

luco

nate

deh

ydro

gena

se

31.9

21.3

4-1

0.56

0.00

023

20.

0002

42

0.95

851

1026

2610

026

300.

0004

11

33

10

31.

944.

9E-0

59

1818

90

1821

.30.

0004

61

11

10

11.

511.

8E-0

515

4848

150

4836

0.00

022

464

5255

87

CYT

BB

_056

2B

B_0

562

pred

icte

d co

ding

regi

on B

B05

62

12.2

218

.33

6.11

0.00

042

20.

0003

62

1.14

958

29

92

09

12.2

0.00

037

211

112

011

12.2

0.00

046

12

21

02

6.67

0.00

013

513

135

013

18.3

0.00

059

434

344

034

18.3

0.00

041

180

1977

39.

1C

YTB

B_0

566

BB

_056

6pr

edic

ted

codi

ng re

gion

BB

0566

26

.21

15.5

3-1

0.68

0.00

011

20.

0003

51

0.31

034

12

21

02

15.5

0.00

014

11

11

01

10.7

7.3E

-05

23

32

03

15.5

0.00

035

XX

XX

XX

XX

36

63

06

26.2

0.00

013

103

1183

74.

8C

YTB

B_0

567

BB

_056

7ch

emot

axis

his

tidin

e ki

nase

(che

A-

28.9

922

.41

-6.5

80.

0001

22

0.00

022

0.61

692

1122

2211

022

26.5

0.00

023

22

22

02

3.92

2.1E

-05

411

114

011

10.9

0.00

018

919

199

019

20.3

0.00

022

1553

5315

053

35.3

0.00

016

714

7939

05.

1C

YTB

B_0

568

BB

_056

8pr

otei

n-gl

utam

ate

met

hyle

ster

ase

(c4.

4211

.43

7.01

3.9E

-05

10.

0002

20.

1911

8X

XX

XX

XX

X1

22

10

24.

423.

9E-0

53

77

30

711

.40.

0002

24

99

40

911

.40.

0001

93

1616

30

167.

799E

-05

385

4269

19.

3C

YTB

B_0

569

BB

_056

9pr

edic

ted

codi

ng re

gion

BB

0569

11

.36

23.5

612

.29.

4E-0

52

0.00

041

20.

2287

15

1111

50

1111

.40.

0001

41

44

10

42.

715.

1E-0

58

1818

80

1814

.80.

0003

69

3333

90

3318

.80.

0004

612

6666

120

6623

.60.

0002

459

068

054

5.1

CYT

BB

_057

0B

B_0

570

chem

otax

is re

spon

se re

gula

tor (

che

54.8

445

.16

-9.6

80.

0004

91

0.00

086

10.

5665

9X

XX

XX

XX

X3

88

30

854

.80.

0004

9X

XX

XX

XX

X3

1313

30

1345

.20.

0008

65

2121

50

2161

.30.

0003

712

413

726

5.6

CYT

BB

_057

2B

B_0

572

glyc

osyl

tran

sfer

ase

(lgtD

) 24

.86

22.3

5-2

.51

0.00

018

20.

0002

72

0.65

185

715

157

015

21.8

0.00

031

22

22

02

9.22

4.2E

-05

38

83

08

11.5

0.00

027

512

125

012

18.4

0.00

027

1237

3712

037

31.6

0.00

022

358

4210

68.

9C

YTB

B_0

573

BB

_057

3A

BC

tran

spor

ter

36.6

740

.37

3.7

0.00

077

20.

0009

62

0.80

249

634

346

034

29.6

0.00

093

322

223

022

20.4

0.00

061

623

236

023

300.

0010

26

3030

60

3032

.60.

0009

18

109

109

80

109

40.4

0.00

087

270

3069

98.

6C

YTB

B_0

578

BB

_057

8m

ethy

l-acc

eptin

g ch

emot

axis

pro

tei

21.8

520

.31

-1.5

40.

0001

31

0.00

022

20.

6129

67

76

07

21.9

0.00

013

XX

XX

XX

XX

58

85

08

17.2

0.00

025

59

95

09

180.

0001

99

2323

90

2323

.90.

0001

338

944

575

5.7

CYT

BB

_057

9B

B_0

579

DN

A p

olym

eras

e III

13

.725

.06

11.3

68.

6E-0

52

0.00

025

20.

3412

79

2020

90

209.

040.

0001

34

77

40

76.

124.

5E-0

511

2525

110

2515

.30.

0002

613

3535

130

3518

0.00

025

2581

8125

081

27.6

0.00

015

1161

1323

676.

7C

YTB

B_0

581

BB

_058

1D

NA

reco

mbi

nase

(rec

G)

6.27

15.0

18.

744.

3E-0

51

9.1E

-05

20.

4725

33

54

31

46.

274.

3E-0

5X

XX

XX

XX

X5

77

50

713

.40.

0001

23

55

30

53.

795.

9E-0

58

1514

81

1416

.24.

4E-0

568

679

044

7.3

CYT

BB

_058

2B

B_0

582

carb

oxyp

eptid

ase

5.34

12.9

87.

645.

6E-0

51

9.1E

-05

10.

6153

81

22

10

25.

345.

6E-0

5X

XX

XX

XX

X2

22

20

213

9.1E

-05

XX

XX

XX

XX

13

31

03

5.34

2.5E

-05

262

3067

69.

2C

YTB

B_0

585

BB

_058

5U

DP

-N-a

cety

lmur

amoy

lala

nine

--D-g

10.8

611

.09

0.23

3.3E

-05

10.

0001

12

0.29

464

XX

XX

XX

XX

22

22

02

10.9

3.3E

-05

13

31

03

2.66

8E-0

52

88

20

88.

430.

0001

44

1313

40

1316

.26.

2E-0

545

151

069

8.7

CYT

BB

_058

7B

B_0

587

met

hion

yl-tR

NA

syn

thet

ase

(met

G)

24.5

228

.47

3.95

0.00

017

20.

0003

52

0.47

309

1023

2310

023

19.2

0.00

023

410

104

010

8.31

0.00

0110

2727

100

2720

.30.

0004

49

2424

90

2416

.60.

0002

717

8080

170

8029

.20.

0002

473

485

214

8.8

CYT

BB

_059

4B

B_0

594

argi

nyl-t

RN

A s

ynth

etas

e (a

rgS

) 38

.41

37.0

6-1

.35

0.00

027

20.

0004

32

0.63

3814

3131

140

3131

.10.

0003

95

1212

50

1211

.50.

0001

511

2323

110

2326

.90.

0004

710

2828

100

2823

.40.

0003

925

9393

250

9349

.90.

0003

459

167

637

9.1

CYT

BB

_060

1B

B_0

601

serin

e hy

drox

ymet

hyltr

ansf

eras

e (g

l7.

914.

32-3

.59

0.00

016

10.

0000

21

7.95

29

92

09

7.91

0.00

016

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

4.32

2E-0

52

1010

20

107.

915.

2E-0

541

745

881

7.6

CYT

BB

_060

6B

B_0

606

cons

erve

d hy

poth

etic

al p

rote

in

37.4

229

.45

-7.9

70.

0002

32

0.00

076

20.

2971

25

99

50

937

.40.

0004

11

11

10

112

.34.

6E-0

54

1414

40

1418

.40.

0010

34

1010

40

1029

.50.

0005

833

338

033

48.5

0.00

044

163

1814

19.

3C

YTB

B_0

608

BB

_060

8am

inoa

cyl-h

istid

ine

dipe

ptid

ase

(pe

21.8

524

.58

2.73

0.00

017

20.

0002

52

0.65

737

38

83

08

9.87

0.00

012

413

134

013

17.4

0.00

021

35

53

05

11.3

0.00

013

622

226

022

24.6

0.00

038

748

487

048

26.5

0.00

022

476

5357

75.

5C

YTB

B_0

610

BB

_061

0tri

gger

fact

or (t

ig)

20.0

426

.65

6.61

0.00

012

20.

0001

72

0.72

781

47

74

07

16.7

0.00

011

28

82

08

7.71

0.00

013

24

42

04

6.83

0.00

011

513

135

013

19.8

0.00

023

1032

3210

032

32.4

0.00

015

454

5290

65.

1C

YTB

B_0

612

BB

_061

2A

TP-d

epen

dent

Clp

pro

teas

e 46

.28

41.4

-4.8

80.

0008

52

0.00

105

20.

8072

516

6969

160

6944

.70.

0011

95

2929

50

2918

.80.

0005

119

5959

190

5941

.40.

0016

47

2424

70

2418

.60.

0004

622

181

181

220

181

48.8

0.00

091

430

4760

17.

9C

YTB

B_0

613

BB

_061

3A

TP-d

epen

dent

pro

teas

e LA

(lon

-217

.59

23.2

55.

660.

0000

52

0.00

035

20.

1416

46

99

60

912

.48.

2E-0

52

22

20

25.

171.

9E-0

59

3131

90

3114

0.00

046

1125

2511

025

19.7

0.00

025

2067

6720

067

30.1

0.00

018

813

9231

26.

6C

YTB

B_0

615

BB

_061

5rib

osom

al p

rote

in S

4 (rp

sD)

1128

.71

17.7

13.

6E-0

51

0.00

058

20.

0623

9X

XX

XX

XX

X1

11

10

111

3.6E

-05

512

125

012

28.7

0.00

069

512

125

012

230.

0004

76

2323

60

2328

.70.

0002

420

924

084

10.3

CYT

BB

_061

7B

B_0

617

pred

icte

d co

ding

regi

on B

B06

17

017

.21

17.2

10

00.

0002

32

0X

XX

XX

XX

XX

XX

XX

XX

X2

22

20

217

.20.

0002

14

41

04

14.8

0.00

027

26

62

06

17.2

0.00

011

122

1461

35.

5C

YTB

B_0

618

BB

_061

8cy

tidin

e de

amin

ase

(cdd

) 33

.12

9.74

-23.

389.

6E-0

52

5.3E

-05

11.

8113

22

33

20

320

.80.

0001

41

11

10

112

.34.

9E-0

5X

XX

XX

XX

X1

11

10

19.

745.

3E-0

54

55

40

533

.17E

-05

154

1754

88.

2C

YTB

B_0

619

BB

_061

9co

nser

ved

hypo

thet

ical

pro

tein

5.

7610

.34.

542.

2E-0

51

5.5E

-05

20.

41

11

10

15.

762.

2E-0

5X

XX

XX

XX

X1

11

10

13.

033.

6E-0

52

33

20

39.

77.

4E-0

51

33

10

35.

762E

-05

330

3737

75.

5C

YTB

B_0

621

BB

_062

14-

met

hyl-5

(b-h

ydro

xyet

hyl)-

thia

zole

15

.22

17.9

32.

710.

0001

61

0.00

019

20.

8655

92

44

20

415

.20.

0001

6X

XX

XX

XX

X2

33

20

316

.30.

0001

92

44

20

417

.90.

0001

83

99

30

923

.90.

0001

118

419

884

5.2

CYT

BB

_062

2B

B_0

622

acet

ate

kina

se (a

ckA

) 11

.86

15.0

13.

150.

0001

81

0.00

011

21.

6729

310

103

010

11.9

0.00

018

XX

XX

XX

XX

36

63

06

150.

0001

71

22

10

25.

334E

-05

418

184

018

17.2

9.4E

-05

413

4621

19.

2C

YTB

B_0

627

BB

_062

7va

cuol

ar X

-pro

lyl d

ipep

tidyl

am

inop

e5.

226

.71

21.5

11.

7E-0

51

0.00

022

20.

0783

41

11

10

15.

21.

7E-0

5X

XX

XX

XX

X1

11

10

13.

072.

8E-0

55

2121

50

2123

.60.

0004

15

2222

50

2223

.60.

0001

142

347

384

7.6

CYT

BB

_063

0B

B_0

630

1-ph

osph

ofru

ctok

inas

e (fr

uK)

51.4

758

.63

7.16

0.00

059

20.

0008

22

0.71

255

616

166

016

37.1

0.00

039

632

326

032

35.8

0.00

078

921

219

021

47.2

0.00

082

1331

3113

031

58.3

0.00

082

1387

8713

087

580.

0006

130

733

595

6.9

CYT

BB

_063

6B

B_0

636

gluc

ose-

6-ph

osph

ate

1-de

hydr

ogen

11.3

30.3

319

.03

0.00

007

20.

0003

52

0.2

48

84

08

11.3

0.00

012

11

11

01

2.72

1.6E

-05

615

156

015

21.1

0.00

038

919

199

019

26.8

0.00

032

1143

4311

043

30.3

0.00

019

478

5611

38.

1C

YTB

B_0

642

BB

_064

2sp

erm

idin

e/pu

tresc

ine

AB

C tr

ansp

o17

.58

17-0

.58

0.00

019

20.

0001

12

1.73

874

513

135

013

17.6

0.00

028

15

51

05

4.03

0.00

011

11

11

01

2.31

3.4E

-05

48

84

08

170.

0001

97

2626

70

2625

.90.

0001

634

739

580

6.7

CYT

BB

_064

4B

B_0

644

cons

erve

d hy

poth

etic

al p

rote

in

24.5

728

.45

3.88

0.00

037

20.

0003

22

1.13

584

1818

40

1824

.60.

0005

71

55

10

57.

330.

0001

63

33

30

314

.20.

0001

54

1414

40

1422

0.00

049

740

407

040

37.9

0.00

037

232

2564

47

CYT

BB

_064

7B

B_0

647

ferri

c up

take

regu

latio

n pr

otei

n (fu

r)10

.85.

11-5

.69

8.4E

-05

15.

7E-0

52

1.47

368

12

21

02

10.8

8.4E

-05

XX

XX

XX

XX

11

11

01

5.11

6.8E

-05

11

11

01

5.11

4.6E

-05

12

21

02

10.8

2.5E

-05

176

2020

68.

1C

YTB

B_0

649

BB

_064

9he

at s

hock

pro

tein

(gro

EL)

36

.51

51.0

114

.50.

0002

72

0.00

112

0.24

292

1029

2910

029

27.7

0.00

039

610

106

010

19.5

0.00

014

1565

6515

065

360.

0014

318

5151

180

5143

.30.

0007

627

151

151

270

151

62.4

0.00

0654

558

952

5.2

CYT

BB

_065

0B

B_0

650

pred

icte

d co

ding

regi

on B

B06

50

37.5

25-1

2.5

0.00

023

20.

0003

82

0.61

436

36

63

06

26.8

0.00

041

11

10

124

.16.

7E-0

52

55

20

525

0.00

053

13

31

03

13.4

0.00

022

415

154

015

37.5

0.00

029

112

1302

46.

8C

YTB

B_0

654

BB

_065

4pr

edic

ted

codi

ng re

gion

BB

0654

12

.11

25.2

613

.15

7.8E

-05

10.

0003

20.

2617

43

44

30

412

.17.

8E-0

5X

XX

XX

XX

X4

88

40

814

.70.

0002

57

1616

70

1622

.10.

0003

47

2727

70

2725

.30.

0001

538

045

402

6.8

CYT

BB

_065

5B

B_0

655

heat

sho

ck p

rote

in (d

naJ-

2)

016

.67

16.6

70

00.

0002

21

0X

XX

XX

XX

XX

XX

XX

XX

X3

55

30

516

.70.

0002

2X

XX

XX

XX

X2

44

20

49.

783.

1E-0

527

631

404

9.5

CYT

BB

_065

8B

B_0

658

phos

phog

lyce

rate

mut

ase

(gpm

A)

17.7

921

.74

3.95

0.00

018

10.

0002

52

0.71

429

36

63

06

17.8

0.00

018

XX

XX

XX

XX

49

94

09

21.7

0.00

043

12

21

02

4.74

6.5E

-05

517

175

017

26.1

0.00

015

253

2894

36.

8C

YTB

B_0

659

BB

_065

9ly

syl-t

RN

A s

ynth

etas

e 6.

1410

.17

4.03

7.1E

-05

18.

4E-0

52

0.84

524

25

52

05

6.14

7.1E

-05

XX

XX

XX

XX

37

63

16

10.2

0.00

014

12

21

02

4.03

3.1E

-05

313

133

013

8.06

5.4E

-05

521

6093

88.

4C

YTB

B_0

669

BB

_066

9ch

emot

axis

his

tidin

e ki

nase

(che

A-2

23.6

126

.39

2.78

0.00

012

20.

0004

52

0.25

664

1020

2010

020

16.8

0.00

017

57

75

07

10.9

6.1E

-05

934

349

034

17.5

0.00

047

1746

4617

046

25.9

0.00

043

2210

710

722

010

730

.20.

0002

786

498

353

5C

YTB

B_0

670

BB

_067

0pu

rine-

bind

ing

chem

otax

is p

rote

in (

21.8

956

.65

34.7

60.

0001

22

0.00

045

20.

2662

25

1111

50

1117

.20.

0001

73

44

30

414

6.5E

-05

813

138

013

32.8

0.00

033

1132

3211

032

43.4

0.00

056

1659

5916

059

500.

0002

746

653

061

4.9

CYT

BB

_067

1B

B_0

671

chem

otax

is o

pero

n pr

otei

n (c

heX

) 68

.94

72.0

53.

110.

0025

20.

0049

20.

5108

211

4848

110

4859

.60.

0022

960

609

060

66.5

0.00

2812

6161

120

6166

.50.

0045

315

104

104

150

104

72.1

0.00

527

1627

227

216

027

274

.50.

0036

616

117

614

4.5

CYT

BB

_067

3B

B_0

673

cons

erve

d hy

poth

etic

al p

rote

in

07.

67.

60

00.

0001

41

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

27.

60.

0001

4X

XX

XX

XX

X1

22

10

27.

62.

5E-0

517

120

537

9.3

CYT

BB

_067

5B

B_0

675

pred

icte

d co

ding

regi

on B

B06

75

013

.94

13.9

40

00.

0001

11

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X3

44

30

413

.90.

0001

11

22

10

24.

181.

5E-0

528

733

637

9C

YTB

B_0

676

BB

_067

6ph

osph

ogly

cola

te p

hosp

hata

se (g

p17

.73

47.2

729

.54

0.00

015

20.

0007

92

0.19

314

25

52

05

11.4

0.00

017

24

42

04

12.7

0.00

014

616

166

016

36.4

0.00

087

619

196

019

35.5

0.00

078

4343

80

4346

.80.

0004

222

024

984

5.9

CYT

BB

_067

7B

B_0

677

ribos

e/ga

lact

ose

AB

C tr

ansp

orte

r 7.

8410

.26

2.42

4.9E

-05

27.

9E-0

52

0.62

025

23

32

03

7.84

4.1E

-05

14

41

04

2.99

5.6E

-05

23

32

03

7.84

6.7E

-05

36

63

06

10.3

9.1E

-05

316

163

016

10.3

6.5E

-05

536

6039

09.

2C

YTB

B_0

683

BB

_068

33-

hydr

oxy-

3-m

ethy

lglu

tary

l-CoA

syn

42.0

144

.96

2.95

0.00

101

20.

0017

22

0.58

765

1799

9917

099

39.6

0.00

185

1212

50

1218

.90.

0002

217

9393

170

9338

.80.

0027

312

3535

120

3531

.50.

0007

2523

923

925

023

945

0.00

127

407

4602

96.

3C

YTB

B_0

685

BB

_068

53-

hydr

oxy-

3-m

ethy

lglu

tary

l-CoA

red

03.

253.

250

05.

5E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

23.

255.

5E-0

5X

XX

XX

XX

X1

22

10

23.

251E

-05

431

4892

28.

6C

YTB

B_0

687

BB

_068

7ph

osph

omev

alon

ate

kina

se

7.26

13.8

86.

620.

0001

21

0.00

013

20.

8731

31

55

10

57.

260.

0001

2X

XX

XX

XX

X2

33

20

310

.70.

0001

12

66

20

610

.40.

0001

53

1414

30

1413

.99.

6E-0

531

735

260

7.2

CYT

BB

_069

0B

B_0

690

neut

roph

il ac

tivat

ing

prot

ein

(nap

A)

39.6

868

.78

29.1

0.00

155

20.

0092

82

0.16

674

1515

40

1531

.20.

0005

910

6363

100

6339

.70.

0025

113

4747

130

4752

.90.

0029

724

361

361

240

361

68.8

0.01

559

2247

547

522

047

568

.80.

0054

418

922

414

5.5

CYT

BB

_069

1B

B_0

691

trans

latio

n el

onga

tion

fact

or G

(fus

-11

.51

14.0

52.

540.

0000

52

0.00

015

20.

3333

33

66

30

66.

586.

6E-0

52

33

20

38.

073.

4E-0

53

1010

30

107.

620.

0001

85

1010

50

1011

.10.

0001

27

2828

70

2818

.89.

1E-0

566

975

057

5.8

CYT

BB

_069

3B

B_0

693

xylo

se o

pero

n re

gula

tory

pro

tein

(xy

8.71

2.99

-5.7

27.

3E-0

51

0.00

002

13.

652

44

20

48.

717.

4E-0

5X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

12.

992E

-05

35

53

05

11.7

2.7E

-05

402

4608

27

CYT

BB

_069

4B

B_0

694

sign

al re

cogn

ition

par

ticle

pro

tein

(ff

46.9

835

.57

-11.

410.

0003

32

0.00

046

20.

7155

211

2929

110

2932

0.00

048

711

117

011

26.6

0.00

019

919

199

019

20.8

0.00

051

1223

2312

023

32.9

0.00

042

2281

8122

081

50.3

0.00

039

447

4969

59.

5C

YTB

B_0

696

BB

_069

6co

nser

ved

hypo

thet

ical

pro

tein

50

41.4

6-8

.54

0.00

128

20.

001

21.

2699

24

1212

40

1241

.50.

0010

85

1616

50

1650

0.00

147

39

93

09

19.5

0.00

131

27

72

07

390.

0007

544

445

044

500.

0011

682

9253

8.1

CYT

BB

_069

8B

B_0

698

tRN

A (g

uani

ne-N

1)-m

ethy

ltran

sfer

a0

6.69

6.69

00

0.00

011

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

26.

690.

0001

XX

XX

XX

XX

12

21

02

6.69

1.8E

-05

239

2717

97.

9C

YTB

B_0

702

BB

_070

2lip

opol

ysac

char

ide

bios

ynth

esis

-rela

34.9

733

.74

-1.2

30.

0001

82

0.00

032

0.61

279

46

64

06

350.

0002

71

22

10

29.

29.

2E-0

53

44

30

433

.70.

0002

93

66

30

633

.70.

0003

518

185

018

47.2

0.00

024

163

1901

69.

1C

YTB

B_0

704

BB

_070

4ac

yl c

arrie

r pro

tein

48

.75

35-1

3.75

0.00

028

20.

0006

12

0.46

053

23

32

03

48.8

0.00

028

13

31

03

23.8

0.00

028

12

21

02

11.3

0.00

033

99

30

935

0.00

092

314

143

014

600.

0003

880

9334

4.3

CYT

BB

_070

5B

B_0

705

ribon

ucle

ase

III (r

nc)

46.3

447

.56

1.22

0.00

291

20.

0075

12

0.38

735

897

978

097

41.5

0.00

291

595

955

095

32.5

0.00

291

820

420

48

020

447

.20.

0099

18

154

154

80

154

44.7

0.00

511

1155

055

011

055

052

0.00

484

246

2794

26.

1C

YTB

B_0

707

BB

_070

7pr

edic

ted

codi

ng re

gion

BB

0707

13

.16

14.6

41.

480.

0001

31

0.00

015

20.

8758

25

1111

50

1113

.20.

0001

3X

XX

XX

XX

X4

66

40

66.

090.

0001

26

1414

60

1411

.50.

0001

910

3131

100

3120

.90.

0001

160

871

684

6.4

CYT

BB

_071

2B

B_0

712

RN

A p

olym

eras

e si

gma-

70 fa

ctor

(r16

.819

.65

2.85

8.8E

-05

20.

0001

52

0.60

274

511

115

011

14.9

0.00

013

24

42

04

4.44

4.8E

-05

710

107

010

14.1

0.00

019

48

84

08

7.61

0.00

0114

3333

140

3329

.50.

0001

163

173

643

5.3

CYT

BB

_071

3B

B_0

713

cons

erve

d hy

poth

etic

al p

rote

in

8.7

8.3

-0.4

8.8E

-05

10.

0002

20.

4422

12

33

20

38.

78.

8E-0

5X

XX

XX

XX

X2

55

20

58.

30.

0002

42

55

20

55.

140.

0001

64

1313

40

1311

.90.

0001

125

329

838

5.6

CYT

BB

_071

5B

B_0

715

rod

shap

e-de

term

inin

g pr

otei

n (m

re53

.74

57.8

94.

150.

0011

20.

0038

12

0.28

849

1689

8916

089

53.7

0.00

182

418

184

018

18.6

0.00

038

1749

4917

049

49.9

0.00

162

2026

526

520

026

557

.90.

0059

921

408

408

210

408

53.7

0.00

245

361

3975

57.

8C

YTB

B_0

720

BB

_072

0th

reon

yl-tR

NA

syn

thet

ase

(thrZ

) 8.

2614

.46

6.2

6.4E

-05

10.

0001

20.

642

55

20

58.

266.

4E-0

5X

XX

XX

XX

X6

99

60

914

.50.

0001

91

11

10

11.

891.

4E-0

56

1313

60

1316

.94.

8E-0

558

168

172

6.9

CYT

BB

_072

5B

B_0

725

cons

erve

d hy

poth

etic

al p

rote

in

15.2

133

.84

18.6

38.

5E-0

52

0.00

021

20.

3972

24

42

04

15.2

0.00

011

12

21

02

7.22

5.7E

-05

46

64

06

21.3

0.00

027

25

52

05

12.6

0.00

016

617

176

017

33.8

0.00

014

263

2988

35.

3C

YTB

B_0

726

BB

_072

6A

TP-b

indi

ng p

rote

in (y

lxH

-3)

22.6

17.6

5-4

.95

0.00

021

10.

0004

12

0.50

244

59

95

09

22.6

0.00

021

XX

XX

XX

XX

516

165

016

17.7

0.00

059

29

92

09

11.8

0.00

023

834

348

034

28.2

0.00

023

323

3606

79.

1C

YTB

B_0

727

BB

_072

7py

roph

osph

ate-

-fruc

tose

6-p

hosp

h a70

.98

68.3

-2.6

80.

0019

22

0.00

246

20.

7799

930

142

142

300

142

68.3

0.00

234

1889

8918

089

53.6

0.00

149

1871

7118

071

51.1

0.00

189

2716

616

627

016

665

0.00

302

3945

945

939

045

972

.50.

0022

244

849

887

7.5

CYT

BB

_073

3B

B_0

733

pred

icte

d co

ding

regi

on B

B07

33

7.97

10.8

72.

90.

0000

81

0.00

014

20.

5755

42

33

20

37.

978E

-05

XX

XX

XX

XX

23

32

03

10.9

0.00

013

15

51

05

7.25

0.00

015

311

113

011

15.2

8.6E

-05

276

3138

69.

1C

YTB

B_0

734

BB

_073

4co

nser

ved

hypo

thet

ical

pro

tein

3.

565.

642.

082.

2E-0

51

7.3E

-05

10.

3013

7X

XX

XX

XX

X1

11

10

13.

562.

2E-0

5X

XX

XX

XX

X1

33

10

35.

647.

3E-0

52

44

20

49.

22.

6E-0

533

738

280

9.7

CYT

BB

_073

7B

B_0

737

hist

idin

e ph

osph

okin

ase/

phop

hata

s0

8.06

8.06

00

5.4E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

3.88

3.6E

-05

23

32

03

8.06

7.3E

-05

12

21

02

3.88

1.3E

-05

335

3866

78.

5C

YTB

B_0

738

BB

_073

8va

lyl-t

RN

A s

ynth

etas

e (v

alS

) 23

.31

21.2

6-2

.05

0.00

017

20.

0001

92

0.90

374

1134

3411

034

18.7

0.00

029

46

64

06

8.23

5.2E

-05

713

137

013

15.7

0.00

018

721

217

021

12.1

0.00

0217

7474

170

7428

0.00

018

875

1018

657

CYT

BB

_074

1B

B_0

741

chap

eron

in (g

roE

S)

32.2

652

.69

20.4

30.

0001

62

0.00

039

20.

4081

62

33

20

319

.40.

0002

41

11

10

112

.98.

1E-0

51

22

10

28.

60.

0002

64

66

40

652

.70.

0005

34

1212

40

1252

.70.

0002

893

1031

37.

2C

YTB

B_0

742

BB

_074

2A

BC

tran

spor

ter

09.

739.

730

00.

0000

52

0X

XX

XX

XX

XX

XX

XX

XX

X3

44

30

46.

558.

5E-0

51

11

10

13.

191.

4E-0

53

44

30

46.

551.

5E-0

556

564

391

6.1

CYT

BB

_074

9B

B_0

749

pred

icte

d co

ding

regi

on B

B07

49

36.2

862

.79

26.5

10.

0004

10.

0004

42

0.89

367

823

238

023

36.3

0.00

04X

XX

XX

XX

X6

1212

60

1226

.10.

0003

316

2929

160

2953

.30.

0005

518

6060

180

6065

.60.

0003

430

4935

24.

7C

YTB

B_0

754

BB

_075

4A

BC

tran

spor

ter

50.4

949

.51

-0.9

80.

0009

52

0.00

126

20.

7531

613

4646

130

4650

.50.

0011

1133

3311

033

31.1

0.00

0810

2323

100

2336

.30.

0008

916

6262

160

6248

.90.

0016

424

164

164

240

164

64.1

0.00

115

309

3518

39

CYT

BB

_076

0B

B_0

760

pred

icte

d co

ding

regi

on B

B07

60

31.4

541

.13

9.68

0.00

072

20.

0020

52

0.35

251

210

102

010

29.8

0.00

062

1414

20

1420

.20.

0008

54

55

40

528

.20.

0004

87

5555

70

5538

.70.

0036

26

7979

60

7931

.50.

0013

812

414

129

6.2

5

Page 139: Dowdell Dissertation FINAL

133

Dowde

ll_TableS2

Kno

wn

(Tab

le 1

) an

d/or

pr

edic

ated

su

bcel

lula

r lo

catio

nLo

cus

Prot

eins

In

Gro

upD

escr

iptio

n

B31A

3_C

ontr

ol_

mer

ged-

SeqC

ov

(%)

B31A

3_Pr

oK_m

erge

d-Se

qCov

(%

)

Diff

SeqC

ov

(Con

trol

- Pr

oK) (

%)

B31A

3_C

ntl-T

i dN

SAF

AVG

B31A

3_C

ntl-T

i D

etec

ted

# O

ut o

f 2

B31A

3_P

K-T

i dN

SAF

AVG

B31A

3_P

K-T

i D

etec

ted

# O

ut o

f 2

B31A

3_C

ntl-T

i:B3

1A3_

PK-T

i

B31A

3_C

ont

rol

_1_P

B31A

3_C

ont

rol

_1_S

B31A

3_C

ont

rol

_1_u

S

B31A

3_C

ont

rol

_1_u

DP

B31A

3_C

ont

rol

_1_s

S

B31A

3_C

ont

rol

_1_d

S

B31A

3_C

ont

rol

_1_S

C

B31A

3_C

ontr

ol_1

_dN

SAF

B31A

3_C

ont

rol

_2_P

B31A

3_C

ont

rol

_2_S

B31A

3_C

ont

rol

_2_u

S

B31A

3_C

ont

rol

_2_u

DP

B31A

3_C

ont

rol

_2_s

S

B31A

3_C

ont

rol

_2_d

S

B31A

3_C

ont

rol

_2_S

C

B31A

3_C

ontr

ol_2

_dN

SAF

B31A

3_Pr

oK_1

_P

B31A

3_Pr

oK_1

_S

B31A

3_Pr

oK_1

_uS

B31A

3_Pr

oK_1

_uD

P

B31A

3_Pr

oK_1

_sS

B31A

3_Pr

oK_1

_dS

B31A

3_Pr

oK_1

_SC

B31A

3_P

roK

_1_d

NSA

F

B31A

3_Pr

oK_2

_P

B31A

3_Pr

oK_2

_S

B31A

3_Pr

oK_2

_uS

B31A

3_Pr

oK_2

_uD

P

B31A

3_Pr

oK_2

_sS

B31A

3_Pr

oK_2

_dS

B31A

3_Pr

oK_2

_SC

B31A

3_P

roK

_2_d

NSA

FAL

L_y2

_PAL

L_y2

_S

ALL_

y2_u

S

ALL_

y2_u

DP

ALL_

y2_s

S

ALL_

y2_d

S

ALL_

y2_S

CAL

L_y2

_dN

SAF

Leng

thM

WpI

CY

TB

B_0

763

BB

_076

3re

spon

se re

gula

tory

pro

tein

(rrp

-2)

7.06

3.53

-3.5

36.

5E-0

51

3.6E

-05

11.

8055

62

44

20

47.

066.

5E-0

5X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

23.

533.

6E-0

53

66

30

610

.62.

9E-0

545

351

529

7C

YT

BB

_076

7B

B_0

767

UD

P-N

-ace

tylg

luco

sam

ine-

-N-a

cety

06.

346.

340

02.

8E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

13.

583.

3E-0

51

11

10

12.

752.

2E-0

52

22

20

26.

341.

2E-0

536

341

118

9.8

CY

TB

B_0

768

BB

_076

8py

ridox

al k

inas

e (p

dxK

) 7.

587.

580

5.6E

-05

19.

1E-0

51

0.61

538

12

21

02

7.58

5.6E

-05

XX

XX

XX

XX

12

21

02

7.58

9.1E

-05

XX

XX

XX

XX

14

41

04

7.58

3.3E

-05

264

3012

17.

4C

YT

BB

_076

9B

B_0

769

sial

ogly

copr

otea

se (g

cp)

13.8

717

.34

3.47

0.00

013

10.

0001

92

0.66

321

46

64

06

13.9

0.00

013

XX

XX

XX

XX

23

32

03

6.94

0.00

014

1212

40

1213

.90.

0002

88

2121

80

2127

.80.

0001

334

638

486

8.5

CY

TB

B_0

777

BB

_077

7ad

enin

e ph

osph

orib

osyl

trans

fera

se

56.2

554

.55

-1.7

0.00

126

20.

0026

20.

4859

610

5050

100

5056

.30.

0021

210

102

010

15.9

0.00

043

854

548

054

47.7

0.00

367

733

337

033

38.1

0.00

153

1214

714

712

014

765

.90.

0018

117

620

173

7.1

CY

TB

B_0

778

BB

_077

8rib

osom

al p

rote

in L

21 (r

plU

) 11

.65

30.1

18.4

57.

3E-0

51

0.00

033

20.

2192

2X

XX

XX

XX

X1

11

10

111

.77.

3E-0

52

33

20

327

.20.

0003

52

44

20

424

.30.

0003

24

88

40

830

.10.

0001

710

312

180

9.5

CY

TB

B_0

782

BB

_078

2co

nser

ved

hypo

thet

ical

pro

tein

0

14.0

814

.08

00

0.00

052

10

XX

XX

XX

XX

XX

XX

XX

XX

29

92

09

14.1

0.00

052

XX

XX

XX

XX

29

92

09

14.1

9.5E

-05

206

2376

88.

5C

YT

BB

_078

4B

B_0

784

cons

erve

d hy

poth

etic

al p

rote

in

05.

885.

880

00.

0003

10

XX

XX

XX

XX

XX

XX

XX

XX

13

31

03

5.88

0.00

03X

XX

XX

XX

X1

33

10

35.

885.

5E-0

511

913

754

5.2

CY

TB

B_0

785

BB

_078

5st

age

V s

poru

latio

n pr

otei

n G

47

.42

40.2

1-7

.21

0.00

211

20.

0022

52

0.93

434

639

396

039

45.4

0.00

297

316

163

016

320.

0012

45

1212

50

1240

.20.

0014

84

3636

40

3629

.90.

0030

38

103

103

80

103

47.4

0.00

2397

1119

69.

1C

YT

BB

_078

6B

B_0

786

gene

ral s

tress

pro

tein

(ctc

) 45

.79

45.3

3-0

.46

0.00

072

20.

0009

12

0.78

831

719

197

019

40.2

0.00

066

522

225

022

29.4

0.00

077

412

124

012

26.2

0.00

067

730

307

030

45.3

0.00

114

1183

8311

083

59.4

0.00

084

214

2404

18.

3C

YT

BB

_079

7B

B_0

797

DN

A m

ism

atch

repa

ir pr

otei

n (m

utS

02.

672.

670

01.

9E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X1

22

10

20.

932.

8E-0

51

11

10

11.

749.

5E-0

62

33

20

32.

677.

5E-0

686

299

749

6.4

CY

TB

B_0

800

BB

_080

0N

-util

izat

ion

subs

tanc

e pr

otei

n A

(n25

.31

30.5

5.19

0.00

038

20.

0007

20.

5391

210

2222

100

2225

.30.

0003

44

2727

40

2715

.60.

0004

25

2828

50

2816

.80.

0006

97

4242

70

4219

.50.

0007

114

103

103

140

103

39.8

0.00

046

482

5481

74.

9C

YT

BB

_080

1B

B_0

801

trans

latio

n in

itiat

ion

fact

or 2

(inf

B)

06.

466.

460

03.

7E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X3

44

30

46.

463.

7E-0

51

22

10

21.

254.

9E-0

688

297

796

9.2

CY

TB

B_0

802

BB

_080

2rib

osom

e-bi

ndin

g fa

ctor

A (r

bfA

) 0

7.87

7.87

00

0.00

038

10

XX

XX

XX

XX

XX

XX

XX

XX

14

41

04

7.87

0.00

038

XX

XX

XX

XX

14

41

04

7.87

6.8E

-05

127

1444

19.

9C

YT

BB

_080

4B

B_0

804

ribos

omal

pro

tein

S15

(rps

O)

029

.55

29.5

50

00.

0002

52

0X

XX

XX

XX

XX

XX

XX

XX

X2

33

20

310

.20.

0004

11

11

10

119

.39.

3E-0

52

33

20

310

.27.

4E-0

588

1021

710

.3C

YT

BB

_080

5B

B_0

805

poly

ribon

ucle

otid

e nu

cleo

tidyl

trans

f1.

398.

316.

920.

0000

11

0.00

003

20.

3333

3X

XX

XX

XX

X1

11

10

11.

391E

-05

33

33

03

5.96

5E-0

51

11

10

12.

351.

1E-0

53

33

30

37.

349E

-06

722

8006

36

CY

TB

B_0

817

BB

_081

7U

DP

-N-a

cety

lmur

amat

e--a

lani

ne li

g11

.11

23.0

811

.97

0.00

012

0.00

032

0.35

017

23

32

03

6.41

4.7E

-05

310

103

010

11.1

0.00

016

511

115

011

13.3

0.00

028

818

188

018

23.1

0.00

031

842

428

042

23.1

0.00

019

468

5348

06.

5C

YT

BB

_081

8B

B_0

818

cons

erve

d hy

poth

etic

al p

rote

in

22.2

219

.79

-2.4

30.

0001

82

0.00

022

0.91

837

411

114

011

15.3

0.00

028

23

32

03

11.1

7.8E

-05

34

43

04

11.1

0.00

017

38

83

08

13.5

0.00

023

826

268

026

330.

0002

288

3332

45.

3C

YT

BB

_081

9B

B_0

819

cytid

ylat

e ki

nase

(cm

k-2)

8.

8915

.56

6.67

0.00

017

15.

6E-0

52

2.98

214

XX

XX

XX

XX

14

41

04

8.89

0.00

017

11

11

01

8.89

6.6E

-05

11

11

01

6.67

4.5E

-05

26

62

06

15.6

7.2E

-05

180

2106

66.

4C

YT

BB

_082

0B

B_0

820

pred

icte

d co

ding

regi

on B

B08

20

75.7

675

.76

00.

0007

42

0.00

412

0.17

938

25

52

05

56.1

0.00

056

38

83

08

75.8

0.00

091

518

185

018

75.8

0.00

326

640

406

040

75.8

0.00

495

570

705

070

75.8

0.00

229

6675

795.

3C

YT

BB

_083

1B

B_0

831

xylo

se o

pero

n re

gula

tory

pro

tein

(xy

6.03

16.8

310

.82.

3E-0

51

0.00

019

20.

1197

91

11

10

16.

032.

3E-0

5X

XX

XX

XX

X3

66

30

616

.80.

0002

32

66

20

610

.80.

0001

63

1313

30

1316

.88.

9E-0

531

534

455

5.7

CY

TB

B_0

833

BB

_083

3is

oleu

cyl-t

RN

A s

ynth

etas

e (il

eS)

28.0

235

.22

7.2

0.00

029

20.

0006

20.

4891

121

5757

210

5726

.20.

0004

825

258

025

13.1

0.00

018

1855

5518

055

20.7

0.00

063

2372

7223

072

27.4

0.00

056

3520

620

635

020

637

.90.

0004

310

4212

2332

8.6

CY

TB

B_0

835

BB

_083

5ph

osph

oman

nom

utas

e (c

psG

) 0

10.5

310

.53

00

4.6E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

4.04

6.3E

-05

22

22

02

6.49

2.9E

-05

45

54

05

10.5

1.9E

-05

570

6600

99.

2C

YT

BB

_083

6B

B_0

836

exci

nucl

ease

AB

C

04.

314.

310

03.

6E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X2

22

20

24.

313.

6E-0

5X

XX

XX

XX

X2

22

20

24.

316.

4E-0

667

377

567

6.9

CY

TB

B_0

837

BB

_083

7ex

cinu

clea

se A

BC

3.

793.

37-0

.42

2.3E

-05

13.

8E-0

51

0.60

526

33

33

03

3.79

2.3E

-05

XX

XX

XX

XX

23

32

03

3.37

3.8E

-05

XX

XX

XX

XX

56

65

06

7.16

1.4E

-05

950

1057

968.

2C

YT

BB

_084

1B

B_0

841

argi

nine

dei

min

ase

(arc

A)

4.15

7.07

2.92

3.6E

-05

20.

0000

21

1.8

12

21

02

4.15

3.6E

-05

12

21

02

4.15

3.7E

-05

XX

XX

XX

XX

11

11

01

7.07

2E-0

51

44

10

44.

152.

1E-0

541

046

844

5.8

CY

TB

B_0

842

BB

_084

2or

nith

ine

carb

amoy

ltran

sfer

ase

11.8

927

.13

15.2

44.

5E-0

51

7.4E

-05

20.

6081

11

22

10

211

.94.

5E-0

5X

XX

XX

XX

X2

22

20

28.

847.

3E-0

52

33

20

318

.37.

5E-0

54

77

40

727

.14.

6E-0

532

836

583

6.7

CY

TB

B_0

852

BB

_085

2pr

edic

ted

codi

ng re

gion

BB

0852

9.

3926

.917

.51

1.9E

-05

20.

0001

91

0.10

215

11

11

01

3.55

1.9E

-05

11

11

01

5.84

1.9E

-05

XX

XX

XX

XX

79

97

09

26.9

0.00

019

711

117

011

26.9

6E-0

539

446

241

7C

YT

BB

_A13

BB

_A13

cons

erve

d hy

poth

etic

al p

rote

in

29.7

912

.77

-17.

020.

0004

82

0.00

093

10.

5112

53

77

30

721

.30.

0003

72

1111

20

1129

.80.

0005

92

1111

20

1112

.80.

0009

3X

XX

XX

XX

X4

2929

40

2929

.80.

0004

514

116

104

5.4

CY

TB

B_A

20B

B_A

20co

nser

ved

hypo

thet

ical

pro

tein

14

.421

.67.

20.

0001

62

0.00

029

20.

5659

72

1010

20

1011

.20.

0003

11

11

01

9.6

3E-0

52

1010

20

109.

60.

0004

83

33

30

318

.49.

8E-0

53

2323

30

2314

.40.

0002

250

2894

68.

7C

YT

BB

_A21

BB

_A21

cons

erve

d hy

poth

etic

al p

rote

in

024

.31

24.3

10

00.

0001

81

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X3

44

30

424

.30.

0001

82

33

20

316

.63.

6E-0

518

121

816

9.5

CY

TB

B_A

39B

B_A

39pr

edic

ted

codi

ng re

gion

BB

A39

0

6.15

6.15

00

0.00

012

10

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

6.15

0.00

012

XX

XX

XX

XX

12

21

02

6.15

2.2E

-05

195

2269

68

CY

TB

B_A

43B

B_A

43co

nser

ved

hypo

thet

ical

pro

tein

10

.48

0-1

0.48

0.00

012

10

0∞

12

21

02

10.5

0.00

012

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

10.5

3.5E

-05

124

1435

64.

8C

YT

BB

_A45

BB

_A45

cons

erve

d hy

poth

etic

al p

rote

in

013

.97

13.9

70

00.

0001

81

0X

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X2

44

20

414

0.00

018

24

42

04

144.

8E-0

517

921

338

7.4

CY

TB

B_A

76B

B_A

76th

ymid

ylat

e sy

ntha

se-c

ompl

emen

tin12

.08

18.4

96.

418.

4E-0

51

0.00

023

20.

3652

22

33

20

312

.18.

4E-0

5X

XX

XX

XX

X1

22

10

26.

429E

-05

312

123

012

18.5

0.00

037

417

174

017

18.5

0.00

014

265

3127

78.

3C

YT

BB

_B03

BB

_B03

pred

icte

d co

ding

regi

on B

BB

03

09.

589.

580

05.

8E-0

52

0X

XX

XX

XX

XX

XX

XX

XX

X2

33

20

39.

588E

-05

12

21

02

5.35

3.6E

-05

35

53

05

9.58

2.4E

-05

449

5429

59.

6C

YT

BB

_B05

BB

_B05

PTS

sys

tem

0

20.8

720

.87

00

8.7E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

20.9

0.00

011

11

10

19.

577.

1E-0

52

22

20

220

.93.

8E-0

511

513

188

6.7

CY

TB

B_B

07B

B_B

07ou

ter s

urfa

ce p

rote

in

46.0

339

.73

-6.3

0.00

089

10.

0009

32

0.95

601

1444

4414

044

460.

0008

9X

XX

XX

XX

X14

4646

140

4634

.50.

0015

17

1616

70

1620

.30.

0003

622

105

105

220

105

52.3

0.00

062

365

4191

68.

1C

YT

BB

_B12

BB

_B12

cons

erve

d hy

poth

etic

al p

rote

in

5.93

23.7

217

.79

2.9E

-05

10.

0010

72

0.02

703

11

11

01

5.93

2.9E

-05

XX

XX

XX

XX

414

144

014

17.4

0.00

066

446

464

046

19.4

0.00

148

424

244

024

20.6

0.00

021

253

2947

48.

7C

YT

BB

_B17

BB

_B17

IMP

deh

ydro

gena

se (g

uaB

) 0

3.71

3.71

00

2.5E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

3.71

3E-0

51

11

10

13.

712E

-05

12

21

02

3.71

1.1E

-05

404

4376

88.

3C

YT

BB

_B18

BB

_B18

GM

P s

ynth

ase

(gua

A)

36.9

336

.74

-0.1

90.

0004

62

0.00

069

20.

6613

614

5050

140

5034

.90.

0007

515

155

015

15.7

0.00

021

1329

2913

029

29.4

0.00

066

1447

4714

047

34.1

0.00

073

2614

114

126

014

148

.30.

0005

852

860

206

8.6

CY

TB

B_D

18B

B_D

18co

nser

ved

hypo

thet

ical

pro

tein

23

.64

4.55

-19.

090.

0001

31

0.00

011

11.

2293

63

44

30

423

.60.

0001

3X

XX

XX

XX

X1

22

10

24.

550.

0001

1X

XX

XX

XX

X3

66

30

623

.65.

9E-0

522

025

729

9.4

CY

TB

B_D

22B

B_D

22co

nser

ved

hypo

thet

ical

pro

tein

22

.47

22.4

70

0.00

025

20.

0002

52

11

33

10

318

0.00

025

23

32

03

22.5

0.00

025

11

11

01

22.5

0.00

013

14

41

04

180.

0003

72

1111

20

1122

.50.

0002

789

1033

19.

5C

YT

BB

_E02

BB

_E02

pred

icte

d co

ding

regi

on B

BE

02

1.88

6.34

4.46

1.2E

-05

15.

6E-0

52

0.21

429

12

21

02

1.88

1.2E

-05

XX

XX

XX

XX

310

103

010

4.23

9.4E

-05

23

32

03

2.11

1.9E

-05

413

134

013

4.93

2.2E

-05

1277

1509

797.

1C

YT

BB

_E17

BB

_E17

pred

icte

d co

ding

regi

on B

BE

17

020

.12

20.1

20

00.

0001

12

0X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

110

.77.

1E-0

52

33

20

320

.10.

0001

42

44

20

420

.15.

1E-0

516

920

092

6.7

CY

TB

B_E

22B

B_E

22py

razi

nam

idas

e/ni

cotin

amid

ase

(pn

25.2

828

.65

3.37

0.00

019

20.

0002

62

0.71

648

48

84

08

25.3

0.00

033

11

11

01

10.1

4.2E

-05

23

32

03

15.7

0.00

025

77

50

728

.70.

0003

27

1919

70

1935

.40.

0002

317

820

480

8.5

CY

TB

B_G

07B

B_G

07co

nser

ved

hypo

thet

ical

pro

tein

15

.26

20.5

35.

270.

0000

41

0.00

013

10.

3174

6X

XX

XX

XX

X1

11

10

115

.34E

-05

22

22

02

20.5

0.00

013

XX

XX

XX

XX

23

32

03

20.5

3.4E

-05

190

2299

09.

9C

YT

BB

_G08

BB

_G08

stag

e 0

spor

ulat

ion

prot

ein

J (s

poO

19.6

117

.65

-1.9

60.

0001

72

0.00

012

1.70

588

210

102

010

14.5

0.00

029

12

21

02

5.1

5.9E

-05

13

31

03

5.49

0.00

014

22

22

02

12.2

6.4E

-05

417

174

017

22.8

0.00

014

255

2926

08.

9C

YT

BB

_H28

BB

_H28

cons

erve

d hy

poth

etic

al p

rote

in

26.6

929

.48

2.79

0.00

034

20.

0004

52

0.76

563

516

144

215

.226

.30.

0004

52

88

20

813

.90.

0002

44

97

32

8.56

21.1

0.00

041

515

155

015

22.3

0.00

049

848

447

446

.133

.90.

0004

251

2936

08

CY

TB

B_H

29B

B_H

29co

nser

ved

hypo

thet

ical

pro

tein

7.

1820

.112

.92

7.2E

-05

10.

0002

62

0.27

376

XX

XX

XX

XX

12

21

02

7.18

7.2E

-05

11

11

01

6.7

5.7E

-05

412

124

012

13.4

0.00

047

515

155

015

20.1

0.00

016

209

2503

49.

5C

YT

BB

_I21

BB

_I21

cons

erve

d hy

poth

etic

al p

rote

in

5.2

3.6

-1.6

0.00

003

19.

6E-0

51

0.31

251

11

10

15.

23E

-05

XX

XX

XX

XX

12

21

02

3.6

9.6E

-05

XX

XX

XX

XX

23

32

03

8.8

2.6E

-05

250

2869

48.

9C

YT

BB

_J17

BB

_J17

cons

erve

d hy

poth

etic

al p

rote

in

37.9

639

.18

1.22

0.00

026

20.

0003

82

0.67

632

616

166

016

26.5

0.00

048

11

11

01

11.4

3.1E

-05

36

63

06

180.

0002

93

1414

30

1421

.20.

0004

79

3737

90

3750

.60.

0003

324

528

606

8.9

CY

TB

B_J

45B

B_J

45pr

edic

ted

codi

ng re

gion

BB

J45

013

.33

13.3

30

00.

0001

10

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

23

32

03

13.3

0.00

012

33

20

313

.32.

7E-0

524

025

946

7C

YT

BB

_K21

BB

_K21

cons

erve

d hy

poth

etic

al p

rote

in

23.6

939

.36

15.6

70.

0003

21

0.00

053

20.

6011

24

1210

32

10.8

23.7

0.00

032

XX

XX

XX

XX

24

21

22.

449.

640.

0001

26

2929

60

2936

.10.

0009

57

4541

64

42.9

39.4

0.00

037

249

2909

18.

8C

YT

BB

_L32

BB

_L32

plas

mid

par

titio

n pr

otei

n 4.

8820

.33

15.4

50.

0000

61

8.6E

-05

20.

6976

71

22

10

24.

886E

-05

XX

XX

XX

XX

24

21

22.

6715

.50.

0001

32

41

13

1.27

8.13

4.2E

-05

310

103

010

20.3

8.8E

-05

246

2859

47.

9C

YT

BB

_M02

BB

_M02

;BB

_O02

hypo

thet

ical

pro

tein

8.

76.

96-1

.74

6.4E

-05

13.

5E-0

51

1.82

857

12

21

02

8.7

6.4E

-05

XX

XX

XX

XX

XX

XX

XX

XX

11

11

01

6.96

3.5E

-05

12

21

02

8.7

1.9E

-05

230

2669

28.

2C

YT

BB

_M22

BB

_M22

cons

erve

d hy

poth

etic

al p

rote

in

020

.37

20.3

70

09.

1E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X1

10

01

06.

3X

23

21

13

14.1

9.1E

-05

23

21

12.

6714

.12.

1E-0

527

030

679

5.2

CY

TB

B_M

24B

B_M

24;B

B_N

24bl

yB

8.7

16.5

27.

820.

0001

31

7.1E

-05

11.

8028

21

22

10

28.

70.

0001

3X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

116

.57.

1E-0

52

33

20

325

.25.

6E-0

511

513

189

5.3

CY

TB

B_O

25B

B_O

25co

nser

ved

hypo

thet

ical

pro

tein

29

.73

29.7

30

0.00

021

0.00

039

20.

5178

61

20

02

013

.5X

13

31

03

16.2

0.00

021

22

10

216

.20.

0002

22

97

12

7.74

29.7

0.00

057

216

121

413

.329

.70.

0002

611

112

994

9.3

CY

TB

B_O

32B

B_O

32pl

asm

id p

artit

ion

prot

ein

4.42

21.2

916

.87

5.9E

-05

10.

0002

52

0.23

61

22

10

24.

425.

9E-0

5X

XX

XX

XX

X3

77

30

721

.30.

0003

41

55

10

510

.80.

0001

63

1414

30

1421

.30.

0001

224

928

693

8.6

CY

TB

B_P

03B

B_P

03;B

B_S

03hy

poth

etic

al p

rote

in

8.65

9.19

0.54

0.00

004

16.

5E-0

51

0.61

538

11

11

01

8.65

4E-0

5X

XX

XX

XX

X1

11

10

19.

196.

5E-0

5X

XX

XX

XX

X2

22

20

217

.82.

3E-0

518

520

003

5.6

CY

TB

B_P

06B

B_P

06co

nser

ved

hypo

thet

ical

pro

tein

29

.32

19.4

4-9

.88

0.00

012

28.

1E-0

52

1.44

444

59

63

38.

2529

.30.

0001

91

22

10

26.

794.

6E-0

52

33

20

312

.40.

0001

12

22

20

213

.95E

-05

616

134

314

.836

.49.

9E-0

532

436

721

6C

YT

BB

_P22

BB

_P22

cons

erve

d hy

poth

etic

al p

rote

in

021

.421

.40

08.

8E-0

51

0X

XX

XX

XX

XX

XX

XX

XX

X2

21

11

212

.28.

8E-0

51

10

01

09.

23X

22

11

11.

3315

.11.

1E-0

527

130

647

5.2

CY

TB

B_P

25B

B_P

25co

nser

ved

hypo

thet

ical

pro

tein

32

.43

32.4

30

0.00

021

0.00

108

20.

1851

92

31

12

332

.40.

0002

XX

XX

XX

XX

211

112

011

18.9

0.00

118

314

122

213

.332

.40.

0009

83

2824

24

26.7

32.4

0.00

052

111

1290

89.

4C

YT

BB

_P32

BB

_P32

plas

mid

par

titio

n pr

otei

n 34

.15

24.8

-9.3

57.

6E-0

52

8.5E

-05

20.

8941

22

33

20

324

.49E

-05

12

21

02

9.76

6.1E

-05

12

21

02

4.88

9.7E

-05

23

21

12.

1719

.97.

2E-0

55

109

41

9.26

44.3

8.1E

-05

246

2863

99

CY

TB

B_P

33B

B_P

33co

nser

ved

hypo

thet

ical

pro

tein

14

.36

9.41

-4.9

53.

7E-0

51

5.9E

-05

10.

6271

21

11

10

19.

413.

7E-0

51

20

02

04.

95X

11

11

01

9.41

5.9E

-05

XX

XX

XX

XX

24

21

23

14.4

3.2E

-05

202

2420

79.

5C

YT

BB

_Q08

BB

_Q08

plas

mid

par

titio

n pr

otei

n 4.

359.

885.

535.

8E-0

51

9.4E

-05

10.

6170

21

22

10

24.

355.

8E-0

5X

XX

XX

XX

X1

22

10

29.

889.

4E-0

5X

XX

XX

XX

X2

44

20

414

.23.

4E-0

525

329

610

6.4

CY

TB

B_Q

13B

B_Q

13co

nser

ved

hypo

thet

ical

pro

tein

24

.38

11.1

1-1

3.27

4.3E

-05

20.

0001

12

0.40

952

35

21

32.

7517

.66.

3E-0

51

11

10

16.

792.

3E-0

52

55

20

511

.10.

0001

81

11

10

14.

322.

5E-0

54

129

23

10.2

24.4

6.8E

-05

324

3680

66.

3C

YT

BB

_Q40

BB

_Q40

plas

mid

par

titio

n pr

otei

n 3.

9810

.36

6.38

5.9E

-05

10.

0003

32

0.17

665

12

21

02

3.98

5.9E

-05

XX

XX

XX

XX

26

41

25.

333.

980.

0002

53

1310

23

12.7

10.4

0.00

041

216

162

016

10.4

0.00

014

251

2920

69

CY

TB

B_Q

41B

B_Q

41co

nser

ved

hypo

thet

ical

pro

tein

15

.59

8.06

-7.5

30.

0001

21

6.4E

-05

11.

8906

3X

XX

XX

XX

X2

31

12

315

.60.

0001

21

11

10

18.

066.

4E-0

5X

XX

XX

XX

X2

31

12

1.5

15.6

1.7E

-05

186

2209

19.

3C

YT

BB

_R33

BB

_R33

plas

mid

par

titio

n pr

otei

n 44

.62

38.6

5-5

.97

0.00

038

10.

0003

92

0.97

704

914

139

113

44.6

0.00

038

XX

XX

XX

XX

411

114

011

27.5

0.00

052

38

83

08

22.3

0.00

026

1033

3310

033

49.8

0.00

028

251

2966

68

CY

TB

B_R

34B

B_R

34co

nser

ved

hypo

thet

ical

pro

tein

5.

5216

.57

11.0

50

00.

0000

91

0X

XX

XX

XX

X1

20

02

05.

52X

XX

XX

XX

XX

22

22

02

16.6

9E-0

52

31

12

1.5

12.7

1.8E

-05

181

2194

89.

6C

YT

BB

_S35

BB

_S35

plas

mid

par

titio

n pr

otei

n 10

.57

21.5

410

.97

0.00

022

0.00

037

20.

5267

43

66

30

610

.60.

0001

82

77

20

710

.60.

0002

12

88

20

810

.60.

0003

95

1110

41

10.8

21.5

0.00

036

427

263

126

.715

.90.

0002

424

628

658

8C

YT

BB

_U05

BB

_U05

plas

mid

par

titio

n pr

otei

n 0

4.2

4.2

00

7.7E

-05

20

XX

XX

XX

XX

XX

XX

XX

XX

12

21

02

4.2

9.1E

-05

12

21

02

4.2

6.2E

-05

14

41

04

4.2

3.3E

-05

262

3053

68.

8C

YT

BB

_U06

BB

_U06

cons

erve

d hy

poth

etic

al p

rote

in

1212

03.

7E-0

52

0.00

012

10.

3083

31

11

10

112

3.7E

-05

11

11

01

93.

8E-0

51

22

10

212

0.00

012

XX

XX

XX

XX

24

42

04

124.

3E-0

520

024

239

9.6

255

Con

tam

ina

Con

tam

inan

t_IN

T-B

SA

27

.68

4.94

0.00

018

25.

4E-0

51

3.38

889

1224

2412

024

25.2

0.00

029

36

63

06

7.41

7.4E

-05

XX

XX

XX

XX

24

42

04

4.94

5.4E

-05

1333

3313

033

27.7

0.00

012

607

6927

16.

130

2C

onta

min

aC

onta

min

ant_

gi|7

4lysy

l end

opep

tidas

e (E

C 3

.4.2

1.50

)32

.71

32.3

40.

0001

42

0.00

026

20.

5305

32

33

20

316

.48.

2E-0

54

77

40

716

.40.

0002

37

73

07

25.7

0.00

031

37

73

07

23.1

0.00

021

621

216

021

32.7

0.00

017

269

2796

16.

738

6C

onta

min

aC

onta

min

ant_

KE

Rno

desc

riptio

n6.

537.

317.

8E-0

51

0.00

012

20.

6724

13

76

21

6.75

6.53

7.8E

-05

XX

XX

XX

XX

37

73

07

5.44

0.00

013

28

82

08

4.35

0.00

016

2221

51

21.6

9.49

7.3E

-05

643

6549

46.

640

2C

onta

min

aC

onta

min

ant_

KE

Rno

desc

riptio

n16

.86

27.8

26.

9E-0

52

0.00

038

20.

1811

57

75

07

12.3

8.7E

-05

24

42

04

9.11

5.1E

-05

833

338

033

25.5

0.00

067

57

75

07

17.4

9.6E

-05

1050

5010

050

28.3

0.00

018

593

5951

95.

247

9C

onta

min

aC

onta

min

ant_

NR

Low

l|| Im

mun

oglo

bulin

g1

(igg1

) (m

c1.

878.

183.

5E-0

51

3.7E

-05

20.

9459

51

22

10

21.

873.

5E-0

5X

XX

XX

XX

X1

22

10

23.

55.

6E-0

51

11

10

14.

671.

9E-0

51

22

10

21.

871E

-05

428

4685

28.

948

0C

onta

min

aC

onta

min

ant_

KE

Rno

desc

riptio

n1.

635.

593.

4E-0

51

1.9E

-05

11.

7894

71

22

10

21.

633.

4E-0

5X

XX

XX

XX

XX

XX

XX

XX

X1

11

10

15.

591.

9E-0

51

22

10

21.

631E

-05

429

4792

75.

549

0C

onta

min

aC

onta

min

ant_

KE

Rno

desc

riptio

n10

.85

9.92

0.00

003

29.

9E-0

52

0.30

303

33

22

12.

256.

512.

6E-0

52

33

20

34.

343.

5E-0

55

1010

50

109.

920.

0001

91

11

10

11.

861.

3E-0

57

1716

61

16.4

14.6

5.5E

-05

645

6586

58

533

Con

tam

ina

Con

tam

inan

t_K

ERn

o de

scrip

tion

3.7

11.0

91.

2E-0

51

3.2E

-05

20.

375

11

11

01

3.7

1.2E

-05

XX

XX

XX

XX

22

22

02

7.07

3.8E

-05

12

21

02

4.02

2.6E

-05

34

43

04

12.4

1.4E

-05

622

6198

75.

2To

tal D

istri

bute

d S

pC##

####

####

####

####

##To

tal P

eptid

es36

5527

6332

2742

1166

46To

tal P

rote

ins

500

396

535

548

628

Tota

l Con

tam

inan

t Pro

tein

Dis

tribu

ted

SpC

4820

6131

150

Tota

l Con

tam

inan

t Pep

tides

2711

2216

46To

tal C

onta

min

ant P

rote

ins

84

68

8AV

GSD

VSp

ectr

a FD

R (%

)0.

150.

100.

070.

10.

150.

290.

13Pe

ptid

es F

DR

(%)

0.26

0.08

0.16

0.29

0.34

0.24

0.29

Prot

eins

FD

R (%

)1.

520.

331.

1858

1.98

021.

4733

1.43

882.

4845

SH

UFF

LED

_SpC

1320

2058

94S

HU

FFLE

D_P

ep6

811

1019

SH

UFF

LED

_Pro

tein

68

88

16S

HU

FFLE

D_B

B_0

342

FALS

E P

OS

ITIV

E

12

2X

02

2.42

X1

99

X0

92.

42X

14

4X

04

2.42

X1

3939

X0

392.

42X

154

54X

054

2.42

X49

655

545

5.7

SH

UFF

LED

_BB

_051

2FA

LSE

PO

SIT

IVE

X

XX

XX

XX

X1

11

X0

11.

39X

26

6X

06

1.48

X3

77

X0

72.

54X

22

2X

02

2.72

X21

6625

4243

4.8

SH

UFF

LED

_BB

_012

8FA

LSE

PO

SIT

IVE

1

11

X0

18.

14X

12

2X

02

8.14

XX

XX

XX

XX

XX

XX

XX

XX

X1

33

X0

38.

14X

221

2560

29

SH

UFF

LED

_BB

_039

9FA

LSE

PO

SIT

IVE

1

33

X0

35.

94X

11

1X

01

5.94

XX

XX

XX

XX

XX

XX

XX

XX

X1

44

X0

45.

94X

219

2554

49.

3S

HU

FFLE

D_B

B_D

14FA

LSE

PO

SIT

IVE

1

22

X0

24.

32X

12

2X

02

4.32

XX

XX

XX

XX

XX

XX

XX

XX

X1

44

X0

44.

32X

370

4419

810

SH

UFF

LED

_BB

_084

9FA

LSE

PO

SIT

IVE

1

33

X0

351

.5X

XX

XX

XX

XX

11

1X

01

51.5

XX

XX

XX

XX

X2

44

X0

451

.5X

3340

509.

8S

HU

FFLE

D_B

B_G

10FA

LSE

PO

SIT

IVE

X

XX

XX

XX

X1

11

X0

11.

28X

11

1X

01

2.09

XX

XX

XX

XX

X2

22

X0

23.

37X

1098

1238

628.

4S

HU

FFLE

D_B

B_0

395

FALS

E P

OS

ITIV

E

XX

XX

XX

XX

XX

XX

XX

XX

12

2X

02

25X

12

2X

02

25X

14

4X

04

25X

5666

959.

2S

HU

FFLE

D_B

B_0

787

FALS

E P

OS

ITIV

E

XX

XX

XX

XX

XX

XX

XX

XX

11

1X

01

10.1

X1

22

X0

29.

04X

12

2X

02

9.04

X18

821

250

9.5

SH

UFF

LED

_BB

_062

5FA

LSE

PO

SIT

IVE

X

XX

XX

XX

XX

XX

XX

XX

X3

44

X0

48.

75X

11

1X

01

3.01

X1

22

X0

22.

3X

697

7933

59.

4S

HU

FFLE

D_B

B_H

09FA

LSE

PO

SIT

IVE

X

XX

XX

XX

XX

XX

XX

XX

X1

11

X0

10.

78X

12

2X

02

1.49

X1

22

X0

21.

49X

1278

1508

728.

1S

HU

FFLE

D_B

B_0

757

FALS

E P

OS

ITIV

E

12

2X

02

7.28

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X1

22

X0

27.

28X

206

2320

67.

9S

HU

FFLE

D_B

B_S

23FA

LSE

PO

SIT

IVE

X

XX

XX

XX

X1

22

X0

237

.3X

XX

XX

XX

XX

XX

XX

XX

XX

12

2X

02

37.3

X67

7478

9.9

SH

UFF

LED

_BB

_004

3FA

LSE

PO

SIT

IVE

X

XX

XX

XX

X1

22

X0

25.

78X

XX

XX

XX

XX

XX

XX

XX

XX

12

2X

02

5.78

X34

640

531

6.6

SH

UFF

LED

_BB

_J08

FALS

E P

OS

ITIV

E

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

13

3X

03

7.52

X1

33

X0

37.

52X

306

3464

08.

9S

HU

FFLE

D_B

B_0

028

FALS

E P

OS

ITIV

E

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

12

2X

02

4.3

X1

22

X0

24.

3X

349

3970

58.

8

6

Page 140: Dowdell Dissertation FINAL

134

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

tC

YT

-0.2

0091

0.12

0.11

0o

0.17

433

0.32

125

0.88

217

0.73

40.

515

N0.

57S

igna

lP-n

oTM

S2

SS

10.3

447

2727

S2

44

+C

YT

-0.2

0091

0.2

0.2

0o

0.18

320

0.33

120

0.84

13

0.65

40.

483

N0.

57S

igna

lP-n

oTM

SS

1.21

429

2626

low

dN

SA

F ra

tio fo

r S–

CY

T-0

.200

911.

7744

41.

261.

260

o0.

149

190.

316

190.

802

130.

672

0.48

3N

0.57

Sig

nalP

-noT

MS

S19

.867

9S

1636

8984

1817

++§

SpI

I2.

4943

82.

6952

914

-15

N0.

160.

020

o0.

143

220.

229

220.

735

10.

377

0.29

8N

0.57

Sig

nalP

-noT

MS

2 S

S∞

3233

S2

44

++

+S

pII

2.91

333

3.11

424

19-2

0K

2.79

2.79

0o

0.13

260.

192

110.

466

20.

384

0.26

3N

0.51

Sig

nalP

-TM

Chp

AI

SS

∞S

2042

1380

1821

++

+S

pII

5.73

099

3.27

118

19-2

0S

23.8

323

.76

0o

0.33

625

0.52

825

0.90

75

0.84

90.

679

Y0.

57S

igna

lP-n

oTM

SS

†0.

6262

614

14O

rfD

143

low

dN

SA

F ra

tio fo

r S, d

ue to

pK

resi

stan

ce+

+S

pII

19.6

863

17.8

708

16-1

7K

0.1

0.1

0o

0.16

424

0.33

619

0.80

718

0.72

50.

518

N0.

57S

igna

lP-n

oTM

Osp

AS

S65

.422

1S

6192

088

2931

Osp

AB

53

++

+–

SpI

I18

.478

813

.505

515

-16

A0.

040.

040

o0.

187

220.

373

200.

854

100.

784

0.56

6N

0.57

Sig

nalP

-noT

MO

spB

SS

185.

842

S67

3547

432

34O

spA

B

53+

++

++

SpI

I3.

2863

93.

4873

24-2

5G

15.8

515

.85

1i1

2-31

o0.

155

310.

239

310.

681

130.

483

0.32

9N

0.51

Sig

nalP

-TM

Dbp

AS

S5.

9526

1S

9573

101

2121

++

+S

pII

10.8

267.

2885

22-2

3N

0.65

0.65

0o

0.51

628

0.66

280.

947

190.

852

0.75

Y0.

57S

igna

lP-n

oTM

SS

0.62

069

S23

3038

1147

56+

++

SpI

I7.

6346

37.

8355

416

-17

S20

.28

20.2

81

i7-2

6o0.

147

200.

232

200.

635

20.

439

0.30

9N

0.51

Sig

nalP

-TM

SS

2.93

378

918

++

++

SpI

I9.

1370

59.

3379

627

-28

S19

.44

19.4

1o1

0-32

i0.

151

350.

219

330.

411

260.

256

0.23

3N

0.51

Sig

nalP

-TM

P35

S

S6.

2307

7S

1636

8984

3432

P35

54

++

SpI

7.09

235

0.72

531

29-3

013

.86

13.8

61

i7-2

9o0.

248

380.

441

270.

934

210.

873

0.64

4Y

0.57

Sig

nalP

-noT

MC

RA

SP

-1S

S24

.356

6S

1460

7842

2927

P35

54

+S

pII

3.20

834

1.30

831

24-2

5A

15.6

115

.61

1i7

-29o

0.13

536

0.26

127

0.62

919

0.48

50.

344

N0.

51S

igna

lP-T

MS

S∞

S16

3689

8430

31P

35

54+

+S

pII

3.71

991

3.92

082

17-1

8N

22.5

122

.27

1i5

-27o

0.11

956

0.21

715

0.61

60.

483

0.31

5N

0.51

Sig

nalP

-TM

SS

0.60

523

2527

low

dN

SA

F ra

tio fo

r S, i

s pr

otei

n pK

resi

stan

t?+

SpI

I20

.635

312

.942

418

-19

N0.

60.

60

o0.

364

240.

532

240.

946

20.

804

0.66

Y0.

57S

igna

lP-n

oTM

Osp

CS

S7.

8628

8S

1560

779

2222

++

+S

pII

1.06

071.

2616

113

-14

S4.

371.

660

o0.

176

230.

348

230.

887

30.

734

0.52

9N

0.57

Sig

nalP

-noT

MS

S†

0.52

4119

18lo

w d

NS

AF

ratio

for S

, due

to p

K re

sist

ance

++

SpI

I3.

9209

34.

1218

418

-19

Q15

.18

15.0

61

i5-2

4o0.

232

260.

3126

0.59

15

0.44

90.

361

N0.

51S

igna

lP-T

MS

S1.

8347

123

21lo

w d

NS

AF

ratio

for S

+S

pII

6.13

534

6.33

625

17-1

8N

0.43

0.42

0o

0.23

318

0.40

818

0.84

416

0.71

30.

552

N0.

57S

igna

lP-n

oTM

P35

S

S∞

S21

6952

4428

27P

35

60+

–S

pII

13.7

282

5.76

274

21-2

2D

17.8

17.8

0o

0.33

730

0.48

930

0.93

919

0.83

40.

651

Y0.

57S

igna

lP-n

oTM

SS

1.83

562

1114

+S

pII

10.9

176.

3739

317

-18

N0.

050.

050

o0.

1623

0.32

723

0.88

316

0.7

0.50

2N

0.57

Sig

nalP

-noT

MS

S73

.485

335

31B

B_0

844

12

++

SpI

I4.

2452

24.

4461

318

-19

D0.

710.

710

o0.

284

190.

448

190.

872

20.

748

0.58

9Y

0.57

Sig

nalP

-noT

MC

RA

SP

-2S

S0.

7432

7S

1692

5556

2726

CR

AS

P-2

lo

w d

NS

AF

ratio

for S

++

+S

pII

7.60

727.

8081

124

-25

D18

.61

18.6

11

i12-

30o

0.11

290.

144

130.

248

90.

217

0.17

1N

0.51

Sig

nalP

-TM

SS

5.93

7543

43+

SpI

I8.

9121

79.

1130

817

-18

N1.

871.

620

o0.

268

240.

372

240.

829

20.

582

0.47

N0.

57S

igna

lP-n

oTM

P35

S

S8.

3561

629

22P

35

60+

SpI

I4.

9518

3.14

9326

-27

N0.

620.

620

o0.

173

320.

336

320.

815

250.

611

0.46

5N

0.57

Sig

nalP

-noT

MS

S62

.203

933

37B

B_0

844

12

++

SpI

I2.

1485

42.

3494

516

-17

R0.

30.

180

o0.

233

230.

319

230.

741

20.

467

0.38

9N

0.57

Sig

nalP

-noT

MV

raA

SS

∞S

1117

9306

5475

P35

60

naS

pII

10.0

931

8.21

577

17-1

8T

0.25

0.25

0o

0.48

230.

612

230.

929

190.

789

0.69

5Y

0.57

Sig

nalP

-noT

MS

S8.

9386

526

27P

35

60+

++

naS

pI5.

9947

22.

1095

429

-30

18.0

418

.04

1i9

-31o

0.21

227

0.43

527

0.95

225

0.86

90.

639

Y0.

57S

igna

lP-n

oTM

P35

S

S85

.930

232

37P

35

54na

SpI

5.79

867

1.77

267

29-3

018

.04

18.0

41

i9-3

1o0.

212

270.

434

270.

952

250.

867

0.63

8Y

0.57

Sig

nalP

-noT

MS

S0

3238

P35

54

+na

SpI

7.64

303

1.76

749

33-3

45.

635.

630

o0.

196

270.

415

270.

925

250.

855

0.62

2Y

0.57

Sig

nalP

-noT

MS

S56

.209

633

37P

35

54+

naS

pII

18.2

273

9.15

461

19-2

0V

0.57

0.57

0o

0.44

524

0.62

624

0.96

316

0.89

90.

754

Y0.

57S

igna

lP-n

oTM

Osp

DS

S22

.893

4S

1398

980

2829

++

SpI

I10

.153

17.

1011

218

-19

K3.

333.

220

o0.

228

240.

363

240.

778

40.

596

0.47

2N

0.57

Sig

nalP

-noT

MS

S14

2.69

640

41C

RA

SP

-2

92+

+S

pII

19.2

032

12.8

461

19-2

0K

9.27

9.25

0o

0.16

625

0.35

525

0.92

75

0.82

70.

577

Y0.

57S

igna

lP-n

oTM

SS

∞40

35C

RA

SP

-2

92+

SpI

I12

.283

48.

0396

217

-18

N0.

090.

090

o0.

186

230.

365

230.

911

160.

747

0.54

4N

0.57

Sig

nalP

-noT

MS

S97

.290

934

38B

B_0

844

12

++

SpI

I10

.884

311

.085

215

-16

K0.

020.

020

o0.

211

210.

373

210.

756

130.

595

0.47

8N

0.57

Sig

nalP

-noT

MS

S∞

S19

7761

9228

31B

B_K

07

59+

+S

pI5.

6438

22.

3932

221

-22

6.08

60

o0.

445

220.

5922

0.94

61

0.82

60.

701

Y0.

57S

igna

lP-n

oTM

SS

39.9

1524

30+

+S

pII

13.8

444

14.0

453

19-2

0K

0.07

0.06

0o

0.15

825

0.29

210.

857

20.

679

0.47

3N

0.57

Sig

nalP

-noT

MP

37

SS

10.4

182

3746

P37

75

+S

pII

17.6

345

17.8

354

17-1

8N

0.17

0.17

0o

0.28

721

0.48

921

0.91

114

0.83

0.64

9Y

0.57

Sig

nalP

-noT

MM

lpH

SS

∞17

19M

lp

113

–S

pII

9.64

826

9.84

917

23-2

4K

11.3

911

.39

0o

0.11

630

0.25

727

0.76

321

0.51

10.

351

N0.

51S

igna

lP-T

ME

rpN

SS

10.8

69S

1128

3278

2019

Erp

A

162

iden

tical

to B

B_P

38/E

rpA

++

SpI

I9.

0972

63.

8077

919

-20

K1.

691.

670

o0.

371

250.

467

250.

893

40.

680.

567

N0.

57S

igna

lP-n

oTM

Rev

AS

S0.

928

S11

5003

9718

ndR

ev

63lo

w d

NS

AF

ratio

for S

; nat

ive

prot

ein

is re

sita

nt to

pK

!++

+S

pII

12.6

696

12.1

3219

-20

K7.

397.

390

o0.

139

260.

314

260.

892

150.

777

0.53

2N

0.57

Sig

nalP

-noT

ME

rpP

SS

38.4

773

S11

2832

7821

20E

rpA

16

2+

+S

pII

12.5

726

6.71

201

17-1

8K

4.54

4.54

0o

0.51

323

0.61

323

0.84

30.

750.

677

Y0.

57S

igna

lP-n

oTM

Erp

QS

S∞

S11

2832

7839

55E

rpB

16

3+

–S

pII

16.0

992

12.6

387

17-1

8K

13.9

13.9

1i5

-24o

0.58

723

0.62

723

0.81

33

0.69

30.

658

Y0.

57S

igna

lP-n

oTM

Erp

MS

S0.

6119

4S

1128

3278

4240

Erp

B

163

low

dN

SA

F ra

tio fo

r S+

+S

pII

15.7

7914

.423

817

-18

N0.

130.

130

o0.

377

230.

547

230.

926

140.

825

0.67

8Y

0.57

Sig

nalP

-noT

MM

lpA

SS

3.16

049

1619

Mlp

11

3+

–S

pII

9.72

242

9.92

333

17-1

8K

2.97

2.97

0o

0.30

423

0.44

623

0.84

320

0.66

40.

548

N0.

57S

igna

lP-n

oTM

Erp

BS

S1.

0315

8S

1128

3278

4461

Erp

B

163

low

dN

SA

F ra

tio fo

r S+

+–

SpI

I11

.956

912

.157

815

-16

N0.

030.

030

o0.

219

220.

383

220.

852

120.

705

0.53

4N

0.57

Sig

nalP

-noT

MP

35

SS

1.22

449

2930

P35

60

low

dN

SA

F ra

tio fo

r S+

naS

pII

13.9

058

12.6

473

17-1

8N

0.02

0.02

0o

0.29

230.

461

230.

893

140.

761

0.60

2Y

0.57

Sig

nalP

-noT

MM

lpJ

SS

1.82

857

2421

Mlp

11

3+

naS

pII

16.0

924

16.2

933

17-1

8N

0.42

0.42

0o

0.28

721

0.49

221

0.91

114

0.84

70.

659

Y0.

57S

igna

lP-n

oTM

Mlp

DS

S1.

0643

316

16M

lp

113

low

dN

SA

F ra

tio fo

r S+

+S

pII

15.3

2515

.525

919

-20

K0.

110.

110

o0.

166

240.

339

230.

832

50.

737

0.52

6N

0.57

Sig

nalP

-noT

ME

rpY

SS

∞S

1128

3278

2527

Erp

G

164

++

+S

pII

16.4

935

16.6

944

17-1

8N

0.17

0.17

0o

0.28

721

0.48

921

0.91

214

0.83

10.

65Y

0.57

Sig

nalP

-noT

MM

lpC

SS

6.54

545

1716

Mlp

11

3+

+S

pII

13.7

184

9.54

449

19-2

0K

2.04

2.04

0o

0.22

270.

405

250.

885

210.

784

0.58

4Y

0.57

Sig

nalP

-noT

ME

rpG

SS

∞S

2586

4455

2223

Erp

G

164

++

+S

pII

5.96

399

2.81

488

24-2

5S

21.2

321

.11

1i1

3-35

o0.

202

330.

269

330.

588

110.

383

0.31

1N

0.51

Sig

nalP

-TM

P-O

MS

0.69

645

P-O

M

2251

9960

4038

Mul

tiple

OM

toTA

TPV

TV

P–

CY

T-0

.200

910.

430.

30

o0.

172

190.

3119

0.70

911

0.55

10.

423

N0.

57S

igna

lP-n

oTM

P-O

MP

-OM

0.68

888

P-O

M22

5199

6014

16+

SpI

I3.

5156

73.

0706

516

-17

S0.

240.

240

o0.

225

280.

364

240.

869

150.

706

0.52

5N

0.57

Sig

nalP

-noT

MP

-OM

P-O

M2.

0174

228

29dN

SA

F ra

tio c

lose

to 2

.0 b

ut P

-OM

++

+S

pII

10.5

911

7.66

563

17-1

8E

2.62

2.62

0o

0.12

520

0.32

320

0.91

160.

835

0.56

3N

0.57

Sig

nalP

-noT

MLp

6.6

P-O

MP

-OM

0.59

354

P-O

M90

0929

08

13+

++

+S

pII

7.64

539

7.84

6325

-26

V10

.71

10.6

90

o0.

143

280.

254

280.

624

0.32

70.

281

N0.

51S

igna

lP-T

MB

esA

P-IM

P-IM

0.58

876

3539

+S

pII

5.79

043

5.99

134

15-1

6D

0.02

0.01

0o

0.11

241

0.19

511

0.45

31

0.39

30.

268

N0.

51S

igna

lP-T

MP

roX

P-IM

P-IM

0.79

348

3332

+§S

pII

3.75

044

3.95

135

19-2

0K

0.38

0.25

0o

0.13

822

0.23

922

0.59

11

0.40

40.

316

N0.

57S

igna

lP-n

oTM

P-IM

P-IM

2.21

951

2928

dNS

AF

ratio

clo

se to

2.0

but

P-IM

–S

pII

10.8

726

11.0

735

19-2

0K

0.09

0.09

0o

0.17

921

0.36

821

0.88

11

0.77

30.

558

N0.

57S

igna

lP-n

oTM

Pst

SP

-IMP

-IM1.

0419

931

30+

–S

pII

3.91

814

4.11

905

22-2

3T

1.03

0.98

0o

0.11

829

0.25

111

0.75

73

0.63

70.

432

N0.

57S

igna

lP-n

oTM

P-IM

P-IM

0.56

713

P-O

M20

3982

1127

26lik

ely

mis

loca

lized

pre

viou

sly

(Shi

yong

)–

CY

T-0

.200

910.

150.

010

o0.

142

220.

185

110.

442

0.35

70.

249

N0.

51S

igna

lP-T

MP

-IMP

-IM0.

3662

3P

1636

8984

2626

–S

pII

12.3

3612

.536

920

-21

K4.

274.

270

o0.

259

230.

418

230.

874

190.

719

0.55

9N

0.57

Sig

nalP

-noT

MP

-IMP

-IM0.

4732

6P

-OM

1975

4308

4414

+–

SpI

I11

.537

58.

8060

823

-24

I17

.25

17.2

31

i9-2

6o0.

281

290.

2529

0.38

38

0.23

90.

246

N0.

51S

igna

lP-T

MO

ppA

-1P

-IMP

-IM0.

5718

9S

9393

787

6059

Opp

A

37+

+S

pII

6.23

056.

4314

118

-19

N0.

090.

060

o0.

174

250.

219

250.

558

30.

359

0.27

1N

0.51

Sig

nalP

-TM

Opp

A-2

P-IM

P-IM

0.93

968

S92

9610

8; 9

7161

60O

ppA

37

++

SpI

I18

.289

513

.896

527

-28

N3.

673.

620

o0.

245

300.

457

300.

935

210.

818

0.62

7Y

0.57

Sig

nalP

-noT

MO

ppA

-3P

-IMP

-IM0.

9202

762

57O

ppA

37

+S

pII

14.3

539

14.5

548

21-2

2T

2.83

2.76

0o

0.16

622

0.36

722

0.91

24

0.83

0.58

5Y

0.57

Sig

nalP

-noT

MIp

LA7

P-IM

P-IM

0.56

775

P-IM

1746

4050

2221

++

++

SpI

I2.

5401

42.

7410

514

-15

F0.

620.

490

o0.

151

200.

201

200.

384

10.

30.

237

N0.

51S

igna

lP-T

MB

mpB

P-IM

P-IM

1.16

411

S18

1665

8538

34B

mp

36lik

ely

mis

loca

lized

pre

viou

sly;

onl

y do

ne b

y IF

A w

ithou

t pro

per s

ubsu

rface

c–

SpI

I11

.072

28.

9455

816

-17

F0.

90.

180

o0.

172

170.

354

170.

927

10.

764

0.54

7N

0.57

Sig

nalP

-noT

MB

mpC

P-IM

P-IM

0.44

538

4039

Bm

p 36

+C

YT

-0.2

0091

0.75

525

2.78

2.64

0o

0.21

347

0.20

647

0.37

538

0.15

80.

188

N0.

51S

igna

lP-T

MB

mpD

P-IM

P-IM

0.88

881

3738

Bm

p 36

+–

SpI

I4.

4218

54.

6227

619

-20

N0.

070.

070

o0.

199

260.

3526

0.87

21

0.67

20.

501

N0.

57S

igna

lP-n

oTM

P-IM

P-IM

041

36–

SpI

1.61

81.

5340

523

-24

0.01

0.01

0o

0.48

524

0.47

624

0.75

21

0.50

50.

49N

0.57

Sig

nalP

-noT

MP

-IMP

-IM0.

1245

824

23+

CY

T-0

.200

9121

.06

20.7

21

i13-

35o

0.13

537

0.14

237

0.20

935

0.11

90.

134

N0.

51S

igna

lP-T

MP

-IMP

-IM1.

2589

922

19+

+§S

pII

9.14

224

7.49

9316

-17

S0.

960.

960

o0.

3322

0.52

422

0.93

61

0.85

70.

68Y

0.57

Sig

nalP

-noT

MP

-IMP

-IM0

2726

–S

pII

3.72

874

2.90

054

17-1

8L

131.

5222

.36

i7-2

9o41

3 -0.

133

270.

1811

0.48

61

0.32

0.23

2N

0.51

Sig

nalP

-TM

Sec

DP

-IMnd

0.17

768

65nd

not d

etec

ted

by H

is-ta

g bu

t see

ms

to b

e P

by

Mud

PIT

; sup

porte

+–

CY

T-0

.200

912.

1559

522

.27

22.2

71

i7-2

9o0.

105

370.

139

110.

295

10.

185

0.15

6N

0.51

Sig

nalP

-TM

P-IM

P-IM

0.69

831

2628

–S

pII

2.28

024

2.48

115

21-2

2L

3.86

3.32

0o

0.14

928

0.30

128

0.88

80.

715

0.49

6N

0.57

Sig

nalP

-noT

MP

-IMP

-IM1.

2171

758

53–

SpI

I3.

2302

13.

4311

217

-18

A3.

243.

210

o0.

157

300.

286

230.

819

20.

711

0.48

6N

0.57

Sig

nalP

-noT

MP

-IMP

-IM0.

7297

331

27–

SpI

I7.

6784

77.

8793

816

-17

K0.

030.

030

o0.

218

240.

345

240.

766

170.

579

0.45

5N

0.57

Sig

nalP

-noT

MP

-IMP

-IM0.

7027

8S

2285

1744

1917

likel

y m

islo

caliz

ed p

revi

ousl

y by

IFA

, but

look

s lik

e it'

s re

sist

ant t

o++

SpI

I10

.296

410

.497

317

-18

K0.

040.

040

o0.

115

210.

196

210.

442

0.35

0.25

3N

0.51

Sig

nalP

-TM

S1

P-IM

P-IM

1.83

333

P19

8226

4849

52+

SpI

I9.

1865

30.

8659

418

-19

S1.

481.

470

o0.

454

240.

558

240.

827

190.

705

0.62

7Y

0.57

Sig

nalP

-noT

MO

ppA

VP

-IMP

-IM0.

7413

8P

2162

8523

6159

Opp

A

37+

++

SpI

I8.

2284

28.

4293

321

-22

V0.

440.

390

o0.

156

260.

199

260.

453

60.

305

0.23

8N

0.51

Sig

nalP

-TM

Opp

AIV

P-IM

P-IM

0.61

077

P-IM

16

4689

8961

58O

ppA

37

++

SpI

I1.

0281

61.

2290

715

-16

S15

.65

14.0

11

i5-2

2o0.

156

230.

213

230.

496

20.

321

0.25

3N

0.51

Sig

nalP

-TM

P-IM

P-IM

1.24

615

P-O

M20

3982

1122

21hi

gh d

NS

AF

for P

pro

tein

; lik

ely

mis

loca

lized

pre

viou

sly

+

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

7

Page 141: Dowdell Dissertation FINAL

135

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

t

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

SpI

I8.

1069

38.

3078

422

-23

V6.

296.

080

o0.

1427

0.30

827

0.93

60.

769

0.52

5N

0.57

Sig

nalP

-noT

MP

nd0.

6733

510

8nd

not d

etec

ted

by H

is-ta

g bu

t see

ms

to b

e P

by

Mud

PIT

+

SpI

I8.

9954

29.

1963

317

-18

S0.

090.

080

o0.

117

210.

1811

0.37

61

0.33

50.

237

N0.

51S

igna

lP-T

MS

pII

3.06

746

3.26

837

15-1

6T

1.32

1.29

0o

0.15

190.

324

190.

854

150.

682

0.49

2N

0.57

Sig

nalP

-noT

MS

pII

4.22

313.

4612

420

-21

A15

.07

14.1

61

i7-2

6o0.

294

260.

374

260.

667

160.

471

0.41

N0.

51S

igna

lP-T

MS

pII

9.30

329

9.50

4220

-21

S14

.73

14.6

61

i7-2

6o0.

325

320.

316

320.

555

160.

354

0.33

N0.

51S

igna

lP-T

MS

pII

4.50

329

4.70

4216

-17

D0.

180.

180

o0.

129

230.

269

230.

733

130.

515

0.38

4N

0.57

Sig

nalP

-noT

MS

pII

5.82

374.

7136

718

-19

T0.

050.

050

o0.

365

240.

534

240.

894

50.

815

0.66

6Y

0.57

Sig

nalP

-noT

MS

pII

8.21

198

4.46

474

20-2

1S

0.1

0.04

0o

0.22

128

0.38

928

0.89

78

0.78

0.57

3Y

0.57

Sig

nalP

-noT

MS

pII

1.09

791.

2988

113

-14

N0

00

o0.

135

190.

2319

0.51

312

0.35

60.

289

N0.

57S

igna

lP-n

oTM

SpI

I2.

8963

23.

0972

324

-25

S4.

494.

490

o0.

111

410.

211

180.

535

70.

412

0.28

6N

0.51

Sig

nalP

-TM

SpI

I2.

8963

23.

0972

324

-25

S4.

494.

490

o0.

111

410.

211

180.

535

70.

412

0.28

6N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

0.79

1120

.14

20.1

41

i5-2

4o0.

101

220.

104

110.

219

10.

094

0.10

1N

0.51

Sig

nalP

-TM

SpI

4.37

766

4.57

857

19-2

047

.81

6.09

2o1

01-1

23i

0.18

118

0.25

218

0.60

91

0.39

80.

306

N0.

51S

igna

lP-T

MC

YT-0

.200

911.

1379

244

.36

20.4

71

i5-2

7o0.

168

260.

271

260.

518

190.

342

0.29

8N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

22.4

720

.44

1i4

1-63

o0.

111

660.

182

430.

465

350.

180.

181

N0.

51S

igna

lP-T

MC

YT-0

.200

9121

.58

21.5

31

i26-

48o

0.10

752

0.09

466

0.09

862

0.06

90.

085

N0.

51S

igna

lP-T

MS

pI15

.942

515

.744

621

-22

80.2

630

.03

4i5

-22o

48-6

0.81

522

0.79

622

0.88

318

0.79

60.

796

Y0.

51S

igna

lP-T

MC

YT-0

.200

9118

.29

17.8

11

i20-

37o

0.15

837

0.13

911

0.26

10.

191

0.15

8N

0.51

Sig

nalP

-TM

TMH

1.64

252

1.84

343

4.87

4.4

0o

0.20

220

0.40

420

0.89

41

0.83

40.

606

Y0.

57S

igna

lP-n

oTM

CYT

-0.2

0091

0.88

261

21.2

721

.26

1i2

9-48

o0.

115

430.

108

190.

135

180.

116

0.11

1N

0.51

Sig

nalP

-TM

SpI

8.56

896

8.76

987

22-2

315

.16

14.1

51

i7-2

5o0.

442

230.

452

230.

695

190.

447

0.45

N0.

57S

igna

lP-n

oTM

CYT

-0.2

0091

21.8

21.7

81

i7-2

9o0.

122

300.

117

110.

219

10.

131

0.12

2N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

2.28

398

18.5

318

.06

1i2

5-42

o0.

174

480.

141

380.

172

30.

104

0.12

7N

0.51

Sig

nalP

-TM

SpI

0.58

978

0.79

0721

-22

0.04

00

o0.

217

220.

378

220.

865

160.

639

0.50

1N

0.57

Sig

nalP

-noT

MS

pI2.

3527

22.

5536

323

-24

72.8

25.3

93

o5-2

7i84

-10.

316

240.

294

240.

399

190.

243

0.27

5N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

22.8

822

.88

1i7

-29o

0.11

437

0.12

311

0.19

71

0.15

20.

134

N0.

51S

igna

lP-T

MC

YT-0

.200

9118

.72

18.6

71

i13-

30o

0.26

828

0.19

928

0.25

260.

149

0.18

1N

0.51

Sig

nalP

-TM

SpI

5.29

273

4.51

561

26-2

722

.84

22.8

41

i7-2

9o0.

177

270.

194

110.

493

50.

376

0.26

1N

0.51

Sig

nalP

-TM

SpI

2.17

122

2.37

213

19-2

07.

247.

240

o0.

397

200.

447

200.

592

110.

441

0.44

5N

0.51

Sig

nalP

-TM

SpI

2.55

115

2.75

206

19-2

015

1.14

42.5

47

i5-2

2o27

-40.

189

200.

329

200.

801

10.

618

0.43

6N

0.51

Sig

nalP

-TM

SpI

0.86

999

1.07

0926

-27

20.0

120

.01

1i1

1-33

o0.

222

270.

256

270.

395

250.

234

0.24

8N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

2.54

838

20.5

120

.51

i21-

43o

0.13

847

0.16

347

0.28

238

0.15

70.

161

N0.

51S

igna

lP-T

MC

YT-0

.200

9121

.42

21.4

1i2

-24o

0.12

270.

106

270.

191

0.08

70.

099

N0.

51S

igna

lP-T

MC

YT-0

.200

9119

.96

19.9

61

i2-2

1o0.

132

220.

099

600.

116

480.

072

0.08

9N

0.51

Sig

nalP

-TM

SpI

9.34

817

9.54

908

22-2

338

.49

16.5

72

i5-2

2o61

-80.

497

210.

616

210.

867

10.

772

0.68

9Y

0.57

Sig

nalP

-noT

MC

YT-0

.200

9119

.51

19.0

61

o4-2

6i0.

1120

0.19

816

0.49

46

0.40

10.

273

N0.

51S

igna

lP-T

MC

YT-0

.200

910.

4337

829

.19

22.0

41

i5-2

7o0.

102

360.

123

110.

242

0.14

60.

131

N0.

51S

igna

lP-T

MC

YT-0

.200

9116

.24

16.2

1i5

-27o

0.32

322

0.28

422

0.37

61

0.27

60.

281

N0.

51S

igna

lP-T

MS

pI1.

7626

51.

9635

623

-24

22.6

622

.66

1i7

-29o

0.21

329

0.25

290.

552

30.

333

0.28

1N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

21.1

417

.07

1i7

-26o

0.16

132

0.22

722

0.40

912

0.31

90.

261

N0.

51S

igna

lP-T

MS

pI0.

0249

50.

2258

719

-20

0.23

0.09

0o

0.45

520

0.52

420

0.72

616

0.61

60.

567

N0.

57S

igna

lP-n

oTM

CYT

-0.2

0091

22.8

722

.87

1i3

0-52

o0.

101

220.

092

220.

117

200.

076

0.08

6N

0.51

Sig

nalP

-TM

SpI

5.36

826

5.56

917

18-1

945

.88

20.1

70

o0.

254

200.

404

200.

792

180.

579

0.46

8N

0.51

Sig

nalP

-TM

SpI

6.89

647

7.09

738

23-2

437

.711

.87

0o

0.64

324

0.76

124

0.94

29

0.88

40.

819

Y0.

57S

igna

lP-n

oTM

SpI

0.83

733

1.03

825

20-2

10.

580

0o

0.24

421

0.44

121

0.89

314

0.78

10.

601

Y0.

57S

igna

lP-n

oTM

SpI

3.89

671

4.09

762

26-2

749

.65

20.4

42

o4-2

6i71

4-0.

152

270.

2211

0.58

81

0.49

60.

322

N0.

51S

igna

lP-T

MC

YT-0

.200

9122

.15

22.1

51

i2-2

4o0.

104

240.

096

590.

166

10.

082

0.09

1N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

0.91

0.91

0o

0.28

723

0.47

423

0.90

59

0.82

10.

637

Y0.

57S

igna

lP-n

oTM

SpI

7.06

226

7.26

317

23-2

443

.43

18.4

80

o0.

488

240.

415

240.

485

70.

373

0.4

N0.

51S

igna

lP-T

MC

YT-0

.200

9122

.93

22.9

31

i13-

35o

0.21

343

0.18

843

0.22

77

0.14

0.17

1N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

0.86

214

18.3

618

.28

1i7

-29o

0.11

529

0.16

110.

318

80.

270.

201

N0.

51S

igna

lP-T

MC

YT-0

.200

9120

.29

12.2

90

o0.

4924

0.60

724

0.93

715

0.77

90.

688

Y0.

57S

igna

lP-n

oTM

SpI

1.68

761

1.88

852

21-2

216

.83

14.6

11

i5-2

2o0.

418

220.

599

220.

941

170.

849

0.71

6Y

0.57

Sig

nalP

-noT

MC

YT-0

.200

9119

.118

.35

1i5

-23o

0.22

260.

165

260.

261

0.12

60.

151

N0.

51S

igna

lP-T

MS

pI7.

1121

97.

3131

22-2

30.

470.

310

o0.

6923

0.78

230.

945

210.

894

0.83

3Y

0.57

Sig

nalP

-noT

MC

YT-0

.200

910.

3755

541

.99

22.1

21

i7-2

9o0.

321

400.

212

400.

214

360.

083

0.16

5N

0.51

Sig

nalP

-TM

SpI

1.06

011.

2610

121

-22

1.91

1.9

0o

0.71

922

0.66

822

0.88

518

0.6

0.63

6Y

0.57

Sig

nalP

-noT

MS

pI6.

8516

77.

0525

822

-23

10.2

10.1

90

o0.

513

230.

605

230.

888

10.

776

0.68

6Y

0.57

Sig

nalP

-noT

MC

YT-0

.200

9116

.28

16.2

81

i36-

53o

0.10

860

0.10

536

0.13

635

0.09

0.1

N0.

51S

igna

lP-T

MS

pI6.

2625

36.

4634

423

-24

2.05

1.97

0o

0.39

322

0.58

822

0.94

94

0.9

0.73

5Y

0.57

Sig

nalP

-noT

MC

YT-0

.200

911.

6017

723

.01

18.7

71

i7-2

4o0.

236

230.

223

0.28

120

0.19

30.

198

N0.

51S

igna

lP-T

MC

YT-0

.200

910.

3691

221

.66

21.6

51

i7-2

9o0.

304

270.

192

270.

258

30.

138

0.17

2N

0.51

Sig

nalP

-TM

SpI

2.84

501

3.04

592

17-1

81.

351.

350

o0.

709

180.

791

180.

957

170.

851

0.81

9Y

0.57

Sig

nalP

-noT

MS

pI5.

3826

75.

5835

829

-30

20.2

719

.52

1i1

3-32

o0.

539

300.

667

300.

913

260.

787

0.72

4Y

0.57

Sig

nalP

-noT

MS

pI3.

8601

54.

0610

620

-21

18.5

218

.52

1i7

-26o

0.46

921

0.45

521

0.61

50.

474

0.46

2N

0.51

Sig

nalP

-TM

SpI

0.99

128

1.19

219

42-4

322

.77

21.8

41

i20-

42o

0.13

243

0.17

543

0.32

537

0.16

30.

171

N0.

51S

igna

lP-T

MC

YT-0

.200

9116

.48

16.4

21

i5-2

2o0.

1130

0.14

140.

263

90.

203

0.16

4N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

18.3

118

.05

1o4

-21i

0.14

125

0.13

725

0.26

71

0.14

0.13

8N

0.51

Sig

nalP

-TM

CYT

-0.2

0091

14.3

514

.31

1i9

-31o

0.15

425

0.11

425

0.11

920

0.09

20.

106

N0.

51S

igna

lP-T

MS

pI8.

3317

68.

5326

721

-22

27.9

719

.04

1i7

-26o

0.41

222

0.37

222

0.56

76

0.41

40.

387

N0.

51S

igna

lP-T

MC

YT-0

.200

912.

1015

620

.58

20.5

81

i20-

42o

0.14

149

0.15

110.

261

10.

236

0.18

2N

0.51

Sig

nalP

-TM

SpI

6.80

286

4.32

924

25-2

69.

889.

880

o0.

381

230.

604

230.

975

200.

954

0.76

8Y

0.57

Sig

nalP

-noT

MS

pI5.

7124

53.

7878

625

-26

12.7

712

.77

1i7

-24o

0.42

323

0.63

723

0.98

200.

953

0.78

6Y

0.57

Sig

nalP

-noT

MS

pI6.

7393

44.

3257

425

-26

10.2

910

.29

0o

0.38

123

0.60

423

0.97

620

0.95

40.

769

Y0.

57S

igna

lP-n

oTM

TMH

0.64

404

0.84

495

177.

4327

.39

8i3

0-52

o56-

0.13

510.

118

110.

191

20.

143

0.12

7N

0.51

Sig

nalP

-TM

TMH

2.01

493

2.21

584

22.5

622

.54

1i2

5-47

o0.

122

530.

115

110.

186

20.

131

0.12

1N

0.51

Sig

nalP

-TM

TMH

0.68

060.

8815

120

.13

20.1

31

i12-

29o

0.16

529

0.15

229

0.27

228

0.15

90.

155

N0.

51S

igna

lP-T

MTM

H16

.059

916

.260

843

.33

24.4

62

i9-3

1o57

-70.

141

310.

107

310.

147

10.

068

0.09

3N

0.51

Sig

nalP

-TM

TMH

0.66

980.

8707

223

.02

22.3

31

i13-

35o

0.24

547

0.17

447

0.26

15

0.14

90.

165

N0.

51S

igna

lP-T

MTM

H5.

6367

55.

8376

620

.04

20.0

21

i21-

40o

0.11

410.

118

200.

214

170.

135

0.12

4N

0.51

Sig

nalP

-TM

TMH

0.00

889

0.20

9828

0.52

21.7

513

i7-2

9o33

8-0.

187

300.

138

300.

254

20.

123

0.13

3N

0.51

Sig

nalP

-TM

TMH

0.47

80.

6789

123

231

i13-

35o

0.38

131

0.12

931

0.11

45

0.05

60.

102

N0.

51S

igna

lP-T

MTM

H13

.169

910

.546

613

3.02

35.4

26

i13-

35o5

0-0.

1329

0.15

741

0.26

528

0.18

50.

167

N0.

51S

igna

lP-T

MTM

H20

.602

320

.803

298

.11

43.6

94

o10-

39i4

6-0.

151

260.

149

260.

238

140.

154

0.15

N0.

51S

igna

lP-T

MTM

H1.

5431

61.

7440

722

.85

22.8

51

i12-

34o

0.11

370.

165

110.

382

0.27

0.20

4N

0.51

Sig

nalP

-TM

TMH

13.6

3913

.839

942

.92

42.8

12

i13-

35o4

0-0.

118

260.

124

110.

183

10.

159

0.13

7N

0.51

Sig

nalP

-TM

TMH

3.78

933

3.99

024

160.

537

.18

i21-

42o4

6-0.

148

430.

087

110.

101

670.

076

0.08

3N

0.51

Sig

nalP

-TM

TMH

1.51

692

1.71

783

22.6

922

.69

1o3

0-52

i0.

106

360.

101

640.

117

560.

067

0.08

8N

0.51

Sig

nalP

-TM

TMH

0.05

040.

2513

120

.29

20.1

91

o25-

44i

0.10

641

0.09

512

0.11

811

0.09

10.

094

N0.

51S

igna

lP-T

MTM

H11

.725

411

.926

385

.89

42.5

4i7

-29o

34-5

0.14

349

0.12

949

0.18

78

0.11

0.12

2N

0.51

Sig

nalP

-TM

TMH

12.5

761

12.7

7722

.74

22.7

31

i13-

35o

0.10

535

0.13

211

0.31

51

0.15

90.

142

N0.

51S

igna

lP-T

MTM

H7.

3138

55.

5074

113

3.38

21.9

76

i9-3

1o10

0-0.

123

330.

181

330.

516

280.

191

0.18

4N

0.51

Sig

nalP

-TM

TMH

20.5

694

20.7

703

139.

1734

.85

6i7

-29o

49-7

0.14

331

0.11

811

0.19

11

0.13

50.

124

N0.

51S

igna

lP-T

MTM

H7.

0338

17.

2347

214

1.82

27.2

66

i40-

62o8

4-0.

103

560.

1323

0.21

912

0.15

50.

139

N0.

51S

igna

lP-T

MTM

H1.

9546

52.

1555

613

2.01

26.1

65

o15-

34i5

5-0.

1146

0.10

946

0.14

237

0.06

60.

093

N0.

51S

igna

lP-T

MTM

H7.

1959

27.

3968

320

2.34

43.0

49

i7-2

6o36

-50.

407

330.

144

330.

224

30.

084

0.12

1N

0.51

Sig

nalP

-TM

TMH

0.72

801

0.92

892

81.2

519

.92

4i7

-24o

72-9

0.13

331

0.13

111

0.22

63

0.17

90.

149

N0.

51S

igna

lP-T

MTM

H3.

9893

64.

1902

721

1.63

21.0

810

i20-

39o7

1-0.

1170

0.10

912

0.15

27

0.12

40.

115

N0.

51S

igna

lP-T

MTM

H1.

1216

51.

3225

621

.14

21.0

91

i7-2

6o0.

105

280.

113

110.

216

20.

120.

116

N0.

51S

igna

lP-T

MTM

H7.

5965

57.

7974

614

7.63

307

i21-

38o4

8 -0.

284

390.

307

390.

464

350.

197

0.26

6N

0.51

Sig

nalP

-TM

TMH

0.67

129

0.87

2268

.86

32.2

73

o15-

32i4

4-0.

191

330.

187

330.

241

280.

169

0.18

N0.

51S

igna

lP-T

MTM

H3.

5444

63.

7453

746

.44

21.7

72

o17-

39i3

20.

145

370.

123

130.

197

90.

157

0.13

6N

0.51

Sig

nalP

-TM

TMH

8.66

899

7.79

124

45.9

122

.57

2i9

-31o

436-

0.13

827

0.12

110.

208

20.

143

0.12

9N

0.51

Sig

nalP

-TM

TMH

18.8

917

19.0

926

53.0

437

.97

3i7

-24o

28- 4

0.19

224

0.10

711

0.17

71

0.11

0.10

8N

0.51

Sig

nalP

-TM

TMH

5.91

255

6.11

346

280.

8243

.113

o4-2

3i28

-40.

118

300.

096

110.

148

30.

092

0.09

5N

0.51

Sig

nalP

-TM

TMH

11.3

557

11.5

566

232.

3827

.44

10o1

5-37

i58-

0.13

737

0.13

737

0.22

57

0.15

60.

144

N0.

51S

igna

lP-T

MTM

H0.

3093

20.

5102

320

.59

20.4

51

o20-

39i

0.12

845

0.13

811

0.24

43

0.19

70.

16N

0.51

Sig

nalP

-TM

TMH

5.30

133

5.50

224

130.

7621

.82

6i1

3-35

o13

0.12

234

0.15

110.

283

50.

242

0.18

4N

0.51

Sig

nalP

-TM

TMH

1.53

841.

7393

111

9.22

41.5

56

i5-2

2o37

- 50.

104

220.

103

110.

143

30.

107

0.10

4N

0.51

Sig

nalP

-TM

TMH

10.0

546

10.2

555

44.1

723

.36

2o1

0-32

i354

0.13

300.

106

670.

191

0.08

70.

099

N0.

51S

igna

lP-T

MTM

H10

.517

15.

6467

353

.423

.62

2o1

0-32

i322

0.15

929

0.14

711

0.33

32

0.21

40.

172

N0.

51S

igna

lP-T

MTM

H2.

5221

32.

7230

421

.97

21.7

81

i9-3

1o0.

263

330.

187

330.

246

310.

106

0.15

7N

0.51

Sig

nalP

-TM

TMH

1.99

117

2.19

208

199.

8242

.25

9o4

-26i

38-5

0.11

127

0.11

238

0.16

334

0.08

0.1

N0.

51S

igna

lP-T

MTM

H9.

6323

9.83

321

135.

7727

.49

6i2

6-48

o58 -

0.10

526

0.09

511

0.12

665

0.09

60.

096

N0.

51S

igna

lP-T

M

8

Page 142: Dowdell Dissertation FINAL

136

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

t

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

TMH

0.00747

0.20838

19.35

19.34

1i5-23o

0.127

290.102

110.194

10.092

0.098N

0.51

SignalP-TM

TMH

10.6611

6.06579

52.77

22.23

2i21-43o11

0.113

440.174

220.431

190.27

0.21

N0.51

SignalP-TM

TMH

5.96773

5.1117

47.48

21.94

1i7-29o

0.153

210.227

210.582

20.39

0.287N

0.51

SignalP-TM

TMH

5.22203

5.42294

251.25

22.65

12i13-35o83-

0.119

380.176

110.381

40.323

0.23

N0.51

SignalP-TM

TMH

1.07298

1.27389

276.04

33.75

12i23-45o50-

0.108

390.112

700.157

650.101

0.108N

0.51

SignalP-TM

TMH

3.32153

3.52244

43.66

40.6

2o5-27i40-6

0.119

280.112

400.153

300.104

0.11

N0.51

SignalP-TM

TMH

6.10431

5.07437

214.47

22.88

9o20-42i75-

0.174

430.168

430.243

160.157

0.164N

0.51

SignalP-TM

TMH

2.28605

2.48696

42.85

35.45

2o15-34i47-

0.102

640.122

110.176

20.155

0.134N

0.51

SignalP-TM

TMH

6.14452

4.95182

90.87

22.02

4i19-41o27

0.134

330.141

180.232

80.194

0.161N

0.51

SignalP-TM

TMH

2.20357

2.40448

20.11

20.1

1o15-34i

0.134

320.124

320.186

300.108

0.118N

0.51

SignalP-TM

CYT

-0.20091

256.62

20.63

12i7-29o206-

0.107

370.091

110.1

40.088

0.09

N0.51

SignalP-TM

CYT

-0.20091

168.7

09o308-325i

0.106

180.141

180.23

10.178

0.158N

0.57

SignalP-noTM

CYT

-0.20091

192.73

09o297-319i

0.109

200.102

360.12

270.098

0.1N

0.57

SignalP-noTM

CYT

-0.20091

190.93

09o298-320i

0.124

200.146

200.259

20.185

0.164N

0.57

SignalP-noTM

CYT

-0.20091

0.57107

200.29

22.49

9i33-55o79-

0.102

640.103

110.132

10.109

0.106N

0.51

SignalP-TM

CYT

-0.20091

157.63

1.36

7i145-167o

0.191

230.31

230.667

170.502

0.4N

0.57

SignalP-noTM

CYT

-0.20091

138.65

22.06

7i28-50o15

0.106

440.107

170.139

90.112

0.109N

0.51

SignalP-TM

CYT

-0.20091

131.13

19.83

6i42-64o68-

0.112

250.086

250.107

700.07

0.08

N0.51

SignalP-TM

CYT

-0.20091

0.00782

117.61

22.62

5i7-29o102-

0.122

300.097

610.108

10.066

0.085N

0.51

SignalP-TM

CYT

-0.20091

109.89

21.45

5i16-38o40

0.113

300.13

110.289

290.177

0.147N

0.51

SignalP-TM

CYT

-0.20091

1.46371

124.08

20.91

5i7-24o339-

0.116

300.167

110.355

20.284

0.21

N0.51

SignalP-TM

CYT

-0.20091

2.00927

81.11

33.92

4o4-26i47-6

0.113

210.109

110.178

30.119

0.112N

0.51

SignalP-TM

CYT

-0.20091

101.37

04i122-144o

0.102

700.105

150.139

60.108

0.106N

0.57

SignalP-noTM

CYT

-0.20091

94.05

04i282-299o

0.11

560.104

560.127

520.083

0.094N

0.57

SignalP-noTM

CYT

-0.20091

87.85

04o265-287i2

0.121

450.11

450.128

350.098

0.105N

0.57

SignalP-noTM

CYT

-0.20091

81.76

37.33

4i7-24o29-5

0.106

260.096

690.111

60.061

0.083N

0.51

SignalP-TM

CYT

-0.20091

63.48

22.4

3o15-36i78-

0.099

450.092

620.092

560.056

0.078N

0.51

SignalP-TM

CYT

-0.20091

2.58781

93.47

23.15

3o28-50i62-

0.164

270.164

270.239

160.169

0.166N

0.51

SignalP-TM

CYT

-0.20091

0.75566

76.09

28.39

3i45-62o67-

0.157

200.271

200.578

150.446

0.336N

0.51

SignalP-TM

CYT

-0.20091

44.73

0.06

2i381-403o4

0.147

270.253

230.605

200.438

0.34

N0.57

SignalP-noTM

CYT

-0.20091

36.01

12.27

2o43-60i15

0.133

640.123

640.181

10.115

0.119N

0.57

SignalP-noTM

CYT

-0.20091

79.82

02o331-352i

0.122

550.111

410.142

310.094

0.103N

0.57

SignalP-noTM

CYT

-0.20091

1.14429

44.59

20.81

2i25-44o472

0.128

510.139

130.199

100.183

0.155N

0.51

SignalP-TM

CYT

-0.20091

1.26635

44.01

21.41

2o15-33i30

0.128

210.138

210.245

20.166

0.148N

0.51

SignalP-TM

CYT

-0.20091

1.08125

43.44

21.58

2i7-29o473-

0.113

540.141

110.264

10.2

0.163N

0.51

SignalP-TM

CYT

-0.20091

40.22

0.4

2i85-102o12

0.127

240.148

240.288

230.166

0.156N

0.57

SignalP-noTM

CYT

-0.20091

41.59

9.35

2i52-71o76-

0.106

690.124

510.187

420.124

0.124N

0.51

SignalP-TM

CYT

-0.20091

13.91

10.34

1i44-66o

0.124

220.105

430.138

610.094

0.101N

0.51

SignalP-TM

CYT

-0.20091

2.42188

42.7

5.15

1i138-160o

0.168

190.304

190.796

10.546

0.418N

0.57

SignalP-noTM

CYT

-0.20091

22.2

01o285-307i

0.111

480.106

210.134

150.104

0.105N

0.57

SignalP-noTM

CYT

-0.20091

23.03

01i329-351o

0.101

430.102

660.115

570.089

0.096N

0.57

SignalP-noTM

CYT

-0.20091

22.6

01i121-143o

0.167

560.121

560.142

80.098

0.11

N0.57

SignalP-noTM

CYT

-0.20091

27.68

01i330-352o

0.104

260.102

300.143

20.094

0.098N

0.57

SignalP-noTM

CYT

-0.20091

19.72

01o246-268i

0.105

390.138

220.235

110.162

0.149N

0.57

SignalP-noTM

CYT

-0.20091

19.95

01i92-111o

0.143

380.117

380.13

350.094

0.106N

0.57

SignalP-noTM

CYT

-0.20091

22.64

01i239-261o

0.139

300.12

300.164

70.111

0.116N

0.57

SignalP-noTM

CYT

-0.20091

23.15

01o193-215i

0.155

300.127

300.134

70.102

0.115N

0.57

SignalP-noTM

CYT

-0.20091

22.32

01o160-182i

0.115

430.11

590.143

510.101

0.105N

0.57

SignalP-noTM

CYT

-0.20091

22.69

01o171-193i

0.122

410.121

200.195

10.132

0.126N

0.57

SignalP-noTM

CYT

-0.20091

21.55

01o165-184i

0.101

270.106

110.143

50.11

0.108N

0.57

SignalP-noTM

CYT

-0.20091

20.25

01i197-216o

0.104

280.118

110.171

10.137

0.127N

0.57

SignalP-noTM

CYT

-0.20091

22.69

01o171-193i

0.122

410.121

200.195

10.132

0.126N

0.57

SignalP-noTM

CYT

-0.20091

19.78

01i154-173o

0.102

280.106

400.127

20.098

0.102N

0.57

SignalP-noTM

CYT

-0.20091

22.69

01o182-204i

0.122

410.121

200.195

10.132

0.126N

0.57

SignalP-noTM

CYT

-0.20091

20.18

01i165-184o

0.103

280.12

110.181

50.141

0.13

N0.57

SignalP-noTM

CYT

-0.20091

21.58

01i183-205o

0.105

400.118

110.171

20.136

0.126N

0.57

SignalP-noTM

CYT

-0.20091

22.68

01o215-237i

0.124

380.112

380.131

120.101

0.107N

0.57

SignalP-noTM

CYT

-0.20091

22.7

01o153-175i

0.128

200.124

200.191

10.129

0.126N

0.57

SignalP-noTM

CYT

-0.20091

22.68

01o186-208i

0.124

380.113

380.133

120.103

0.108N

0.57

SignalP-noTM

CYT

-0.20091

21.17

01i169-188o

0.101

280.131

110.217

10.167

0.148N

0.57

SignalP-noTM

CYT

-0.20091

10.57

9.24

0o

0.162

220.225

220.479

210.302

0.253N

0.51

SignalP-TM

CYT

-0.20091

3.46

0.59

0o

0.109

690.11

110.159

20.12

0.114N

0.57

SignalP-noTM

CYT

-0.20091

0.39

00o

0.107

300.136

110.227

20.185

0.159N

0.57

SignalP-noTM

CYT

-0.20091

0.09

0.05

0o

0.121

290.111

510.134

390.1

0.106N

0.57

SignalP-noTM

CYT

-0.20091

13.16

13.15

0o

0.111

370.107

460.142

360.085

0.099N

0.51

SignalP-TM

CYT

-0.20091

0.66

0.12

0o

0.114

360.122

110.208

10.145

0.133N

0.57

SignalP-noTM

CYT

-0.20091

3.55

00o

0.103

220.123

150.204

120.144

0.133N

0.57

SignalP-noTM

CYT

-0.20091

0.92

00o

0.104

340.123

170.176

110.152

0.137N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.108

180.107

300.129

270.101

0.104N

0.57

SignalP-noTM

CYT

-0.20091

2.22

2.22

0o

0.314

370.263

370.351

320.178

0.223N

0.57

SignalP-noTM

CYT

-0.20091

0.09

00o

0.101

540.114

110.164

10.13

0.121N

0.57

SignalP-noTM

CYT

-0.20091

3.01

0.01

0o

0.122

210.123

210.156

120.117

0.121N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.11

210.111

210.141

140.11

0.111N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.101

370.103

680.117

620.088

0.096N

0.57

SignalP-noTM

CYT

-0.20091

2.68

00o

0.117

220.183

220.426

180.282

0.23

N0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.139

390.125

110.201

20.155

0.139N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.26

200.219

200.263

30.205

0.212N

0.57

SignalP-noTM

CYT

-0.20091

0.1

00o

0.102

200.133

110.223

10.176

0.153N

0.57

SignalP-noTM

CYT

-0.20091

0.07

00o

0.12

400.111

110.164

30.129

0.12

N0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.13

600.116

600.115

520.091

0.104N

0.57

SignalP-noTM

CYT

-0.20091

0.05

0.01

0o

0.107

460.101

590.113

500.09

0.096N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.13

130.153

130.289

120.18

0.166N

0.57

SignalP-noTM

CYT

-0.20091

2.76

2.17

0o

0.107

530.106

530.143

510.104

0.105N

0.57

SignalP-noTM

CYT

-0.20091

0.42

0.42

0o

0.141

250.15

250.214

220.152

0.151N

0.57

SignalP-noTM

CYT

-0.20091

33.83

7.17

0o

0.207

220.294

220.708

40.489

0.386N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.1

390.103

390.12

340.091

0.097N

0.57

SignalP-noTM

CYT

-0.20091

0.4

00o

0.1

580.12

110.178

30.146

0.132N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.101

380.108

510.129

440.094

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.102

200.104

200.135

100.1

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.75089

3.03

1.81

0o

0.179

200.347

200.868

10.705

0.515N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.102

400.102

580.117

100.094

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.06

0.05

0o

0.171

410.144

110.271

30.203

0.172N

0.57

SignalP-noTM

CYT

-0.20091

0.79

00o

0.11

290.106

120.132

60.113

0.109N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.11

250.119

250.147

140.127

0.123N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

590.097

700.108

440.088

0.093N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.111

210.126

110.214

60.167

0.146N

0.57

SignalP-noTM

CYT

-0.20091

0.84

0.83

0o

0.125

620.128

110.225

20.156

0.141N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.01

0o

0.106

240.196

200.519

120.324

0.256N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.118

250.107

250.132

240.08

0.094N

0.57

SignalP-noTM

CYT

-0.20091

8.56

0.02

0o

0.131

200.121

200.171

60.126

0.123N

0.57

SignalP-noTM

CYT

-0.20091

1.6882

22.99

11.46

0o

0.179

210.211

210.345

180.244

0.223N

0.51

SignalP-TM

CYT

-0.20091

0.21

00o

0.128

210.174

130.405

90.281

0.224N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.104

450.102

250.12

420.091

0.097N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.101

580.121

180.172

90.139

0.129N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.104

430.104

240.127

130.093

0.099N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.101

210.116

530.174

430.104

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.3

00o

0.1

590.099

210.127

110.095

0.097N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.135

180.127

180.165

120.112

0.12

N0.57

SignalP-noTM

CYT

-0.20091

1.3

0.08

0o

0.275

430.18

430.238

420.108

0.146N

0.57

SignalP-noTM

CYT

-0.20091

0.06

0.05

0o

0.108

450.136

500.259

440.117

0.127N

0.57

SignalP-noTM

CYT

-0.20091

0.55

0.16

0o

0.107

320.111

320.128

210.105

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.1

00o

0.101

370.099

110.114

10.097

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.06

00o

0.118

310.106

310.117

490.089

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.11

550.103

680.116

90.092

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.114

370.125

370.187

330.114

0.12

N0.57

SignalP-noTM

CYT

-0.20091

0.14

0.04

0o

0.107

220.111

220.134

10.114

0.112N

0.57

SignalP-noTM

9

Page 143: Dowdell Dissertation FINAL

137

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

t

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

CYT

-0.20091

0.03

00o

0.209

550.134

110.231

40.182

0.157N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.125

630.106

630.127

90.092

0.1N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.113

150.108

150.139

10.108

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.16

00o

0.11

240.102

240.157

10.089

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.106

360.106

250.14

180.1

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.111

310.106

310.138

220.097

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.1

680.101

390.117

230.091

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.02

0o

0.113

220.111

220.123

200.101

0.107N

0.57

SignalP-noTM

CYT

-0.20091

0.27

0.24

0o

0.199

200.132

200.157

390.081

0.108N

0.57

SignalP-noTM

CYT

-0.20091

2.45359

1.23

1.19

0o

0.131

320.162

320.321

300.203

0.181N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.105

310.104

420.118

380.096

0.1N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.107

330.107

480.14

10.101

0.104N

0.57

SignalP-noTM

CYT

-0.20091

0.12

00o

0.114

530.11

200.145

120.108

0.109N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.103

580.122

460.225

400.098

0.111N

0.57

SignalP-noTM

CYT

-0.20091

1.34

0.02

0o

0.14

290.184

290.353

230.216

0.199N

0.57

SignalP-noTM

CYT

-0.20091

0.05

0.03

0o

0.114

240.108

240.124

230.095

0.102N

0.57

SignalP-noTM

CYT

-0.20091

2.61

0.13

0i

0.152

360.158

620.366

40.156

0.157N

0.57

SignalP-noTM

CYT

-0.20091

0.12

00i

0.1

570.114

110.148

10.132

0.123N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.106

250.099

690.12

490.088

0.094N

0.57

SignalP-noTM

CYT

-0.20091

0.56

00o

0.102

200.104

590.121

480.087

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.104

200.101

290.116

240.089

0.095N

0.57

SignalP-noTM

CYT

-0.20091

0.14

0.01

0o

0.116

390.124

390.173

320.115

0.12

N0.57

SignalP-noTM

CYT

-0.20091

0.29

0.04

0o

0.121

350.123

530.223

450.103

0.114N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.105

200.119

200.167

100.135

0.127N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.16

0o

0.106

310.122

460.174

500.131

0.126N

0.57

SignalP-noTM

CYT

-0.20091

0.15

0.02

0o

0.104

250.114

120.149

20.133

0.123N

0.57

SignalP-noTM

CYT

-0.20091

3.33

3.26

0o

0.103

490.115

540.162

480.111

0.113N

0.57

SignalP-noTM

CYT

-0.20091

0.06

00o

0.103

210.098

670.113

80.092

0.095N

0.57

SignalP-noTM

CYT

-0.20091

3.25

00o

0.123

460.107

200.166

10.11

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.111

320.131

110.21

20.171

0.15

N0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.105

500.108

280.133

230.101

0.105N

0.57

SignalP-noTM

CYT

-0.20091

0.05

0.01

0o

0.103

590.11

110.159

50.128

0.119N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

520.117

120.15

90.136

0.126N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.116

210.117

210.143

270.108

0.113N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.208

310.196

310.277

70.205

0.2N

0.57

SignalP-noTM

CYT

-0.20091

0.35

0.35

0o

0.112

570.106

220.122

250.1

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.59

00o

0.158

190.141

190.181

20.137

0.139N

0.57

SignalP-noTM

CYT

-0.20091

3.37

2.45

0o

0.098

450.101

130.124

30.107

0.103N

0.51

SignalP-TM

CYT

-0.20091

5.46

00o

0.104

210.103

320.141

30.095

0.099N

0.57

SignalP-noTM

CYT

-0.20091

0.35

00o

0.113

490.106

280.125

210.103

0.104N

0.57

SignalP-noTM

CYT

-0.20091

4.21

2.59

0o

0.133

440.131

440.167

500.111

0.122N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.01

0o

0.129

210.149

210.235

180.185

0.166N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

250.101

340.112

270.083

0.092N

0.57

SignalP-noTM

CYT

-0.20091

1.46

0.09

0o

0.107

490.104

110.145

10.108

0.106N

0.57

SignalP-noTM

CYT

-0.20091

0.26

0.01

0o

0.107

390.12

390.183

40.134

0.126N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

100.108

430.124

370.085

0.097N

0.57

SignalP-noTM

CYT

-0.20091

0.08

0.01

0o

0.11

430.112

220.181

390.118

0.115N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.127

240.105

240.12

570.087

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.128

390.126

390.158

290.103

0.115N

0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.107

360.102

570.129

530.09

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.2

0.18

0o

0.261

210.203

210.342

480.173

0.189N

0.57

SignalP-noTM

CYT

-0.20091

1.59468

2.42

0.04

0o

0.133

410.129

260.2

210.153

0.14

N0.57

SignalP-noTM

CYT

-0.20091

0.8

00o

0.199

640.137

640.187

190.115

0.127N

0.57

SignalP-noTM

CYT

-0.20091

2.91

00o

0.101

410.106

410.139

10.105

0.105N

0.57

SignalP-noTM

CYT

-0.20091

0.51

00o

0.119

270.115

110.229

10.119

0.117N

0.57

SignalP-noTM

CYT

-0.20091

1.94

0.49

0o

0.156

350.146

350.186

340.131

0.139N

0.57

SignalP-noTM

CYT

-0.20091

0.16

0.07

0o

0.137

470.121

470.148

20.099

0.11

N0.57

SignalP-noTM

CYT

-0.20091

1.24

0.01

0o

0.103

290.134

120.247

80.186

0.158N

0.57

SignalP-noTM

CYT

-0.20091

0.69

00o

0.103

470.1

690.107

610.092

0.096N

0.57

SignalP-noTM

CYT

-0.20091

0.11

0.11

0o

0.119

170.197

170.409

30.341

0.25

N0.51

SignalP-TM

CYT

-0.20091

1.63

00o

0.131

400.122

400.133

390.097

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.137

560.121

110.163

10.148

0.134N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.115

360.126

220.186

70.148

0.136N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.12

500.107

250.114

220.097

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.15

0.02

0i

0.113

240.155

110.334

20.239

0.195N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.117

490.118

110.192

30.136

0.126N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.139

240.132

530.199

370.139

0.135N

0.57

SignalP-noTM

CYT

-0.20091

0.17

00o

0.102

250.101

700.139

240.097

0.099N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.129

230.113

230.156

10.101

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0i

0.106

670.128

140.189

520.165

0.145N

0.57

SignalP-noTM

CYT

-0.20091

1.33

00o

0.128

180.165

180.367

170.21

0.186N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.105

160.12

160.162

100.135

0.127N

0.57

SignalP-noTM

CYT

-0.20091

12.28

0.02

0o

0.136

280.14

280.264

70.162

0.151N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.122

470.123

470.159

340.104

0.114N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.122

430.111

430.144

120.105

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.102

470.105

380.142

270.092

0.099N

0.57

SignalP-noTM

CYT

-0.20091

5.7

5.59

0o

0.129

250.204

110.595

10.388

0.29

N0.57

SignalP-noTM

CYT

-0.20091

0.75

0.74

0o

0.112

360.127

110.222

50.17

0.147N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.135

260.111

260.146

320.101

0.106N

0.57

SignalP-noTM

CYT

-0.20091

0.5

0.49

0o

0.125

310.163

110.312

60.277

0.216N

0.57

SignalP-noTM

CYT

-0.20091

0.82

00o

0.161

320.126

320.137

20.101

0.114N

0.57

SignalP-noTM

CYT

-0.20091

0.14

0.01

0o

0.143

590.117

590.161

70.102

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.02

0.01

0o

0.128

600.112

600.113

530.085

0.099N

0.57

SignalP-noTM

CYT

-0.20091

17.32

00o

0.108

280.105

140.122

110.111

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.115

520.165

160.342

80.272

0.215N

0.57

SignalP-noTM

CYT

-0.20091

0.12

00o

0.103

270.11

350.136

260.102

0.106N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

290.1

340.112

320.084

0.092N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.17

0o

0.161

390.159

510.276

460.109

0.136N

0.57

SignalP-noTM

CYT

-0.20091

0.11

00o

0.11

440.105

110.125

60.113

0.109N

0.57

SignalP-noTM

CYT

-0.20091

0.21

00o

0.138

370.113

370.121

360.093

0.104N

0.57

SignalP-noTM

CYT

-0.20091

0.03

0.01

0o

0.116

330.12

180.159

110.129

0.124N

0.57

SignalP-noTM

CYT

-0.20091

0.04

0.04

0o

0.271

220.403

220.722

110.582

0.487N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.06

0o

0.11

340.112

510.142

410.093

0.103N

0.57

SignalP-noTM

CYT

-0.20091

13.97

0.56

0o

0.117

480.194

130.456

90.375

0.279N

0.57

SignalP-noTM

CYT

-0.20091

3.35

00o

0.103

210.095

310.103

700.086

0.091N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.113

470.109

470.113

400.093

0.101N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.106

370.096

680.105

440.081

0.089N

0.57

SignalP-noTM

CYT

-0.20091

0.12

0.04

0o

0.11

390.155

110.365

10.226

0.189N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.137

170.13

170.205

100.116

0.124N

0.57

SignalP-noTM

CYT

-0.20091

0.08

0.03

0o

0.107

230.102

230.132

10.096

0.099N

0.57

SignalP-noTM

CYT

-0.20091

0.06

0.02

0o

0.105

360.11

410.132

350.105

0.108N

0.57

SignalP-noTM

CYT

-0.20091

2.38

0.02

0o

0.111

560.136

110.259

20.185

0.159N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.105

390.105

260.127

200.101

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.1

0.02

0o

0.111

460.099

460.104

150.09

0.095N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.107

560.1

320.13

60.095

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.22

0.01

0o

0.139

180.144

180.244

10.155

0.149N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.137

450.131

450.189

430.102

0.117N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.101

550.111

140.156

60.123

0.117N

0.57

SignalP-noTM

CYT

-0.20091

13.02

2.05

0o

0.109

630.1

630.117

490.087

0.094N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.105

290.122

110.187

40.152

0.136N

0.57

SignalP-noTM

CYT

-0.20091

0.18

0.01

0o

0.102

420.121

110.219

10.135

0.128N

0.57

SignalP-noTM

CYT

-0.20091

9.03

00o

0.1

340.106

260.131

120.103

0.105N

0.57

SignalP-noTM

CYT

-0.20091

0.59

0.33

0o

0.185

240.193

240.417

450.214

0.203N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.01

0o

0.113

100.135

130.227

90.183

0.158N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.113

300.115

110.201

30.131

0.123N

0.57

SignalP-noTM

CYT

-0.20091

0.04

0.03

0o

0.105

200.126

170.177

160.151

0.138N

0.57

SignalP-noTM

CYT

-0.20091

0.07

00o

0.104

310.11

570.139

480.108

0.109N

0.57

SignalP-noTM

10

Page 144: Dowdell Dissertation FINAL

138

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

t

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

CYT

-0.20091

0.05

00o

0.103

210.163

110.346

10.258

0.208N

0.57

SignalP-noTM

CYT

-0.20091

0.37

0.34

0o

0.109

550.12

550.164

470.12

0.12

N0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.103

460.101

230.127

190.104

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.119

500.151

110.334

10.218

0.183N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.124

480.107

480.117

290.097

0.102N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.254

360.167

360.198

90.126

0.148N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.103

460.111

110.172

30.127

0.119N

0.57

SignalP-noTM

CYT

-0.20091

0.2

00o

0.106

180.114

110.16

20.132

0.123N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.106

180.104

500.122

400.095

0.1N

0.57

SignalP-noTM

CYT

-0.20091

0.09

00i

0.121

440.139

120.222

20.196

0.166N

0.57

SignalP-noTM

CYT

-0.20091

0.28

0.21

0o

0.123

340.149

340.247

220.162

0.155N

0.57

SignalP-noTM

CYT

-0.20091

0.08

0.08

0o

0.104

600.159

110.331

10.248

0.201N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

350.135

120.205

60.182

0.157N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.217

460.157

460.201

290.12

0.14

N0.57

SignalP-noTM

CYT

-0.20091

0.11

0.1

0o

0.117

490.13

490.206

480.126

0.128N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

610.109

610.132

430.096

0.103N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.116

330.192

160.544

120.361

0.271N

0.57

SignalP-noTM

CYT

-0.20091

0.63

0.02

0o

0.109

520.111

520.146

10.106

0.109N

0.57

SignalP-noTM

CYT

-0.20091

2.45

2.28

0o

0.331

180.349

180.429

140.361

0.354N

0.51

SignalP-TM

CYT

-0.20091

0.05

00o

0.108

280.12

190.186

180.142

0.13

N0.57

SignalP-noTM

CYT

-0.20091

2.43

00o

0.102

250.104

140.121

90.109

0.106N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.118

180.116

180.146

20.12

0.118N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.099

310.122

180.191

130.133

0.127N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.15

0o

0.109

90.112

510.144

430.103

0.107N

0.57

SignalP-noTM

CYT

-0.20091

0.2

00o

0.102

530.103

530.137

380.089

0.096N

0.57

SignalP-noTM

CYT

-0.20091

5.88

1.75

0o

0.446

220.285

220.392

190.169

0.231N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.02

0o

0.108

290.153

110.298

10.227

0.188N

0.57

SignalP-noTM

CYT

-0.20091

0.1

0.02

0o

0.124

300.166

300.386

250.202

0.183N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.101

620.134

110.248

30.178

0.155N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.104

240.121

220.188

140.133

0.127N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.15

360.115

360.144

10.099

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.108

420.104

420.107

350.089

0.097N

0.57

SignalP-noTM

CYT

-0.20091

0.12

00o

0.127

220.136

110.273

200.181

0.157N

0.57

SignalP-noTM

CYT

-0.20091

13.78

0.03

0o

0.113

270.138

160.239

140.182

0.159N

0.57

SignalP-noTM

CYT

-0.20091

0.04

0.03

0o

0.131

300.145

150.274

90.203

0.172N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.126

430.12

430.16

400.085

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.19

0.01

0o

0.109

260.145

110.324

20.202

0.172N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.127

220.121

120.165

30.146

0.133N

0.57

SignalP-noTM

CYT

-0.20091

0.34

00o

0.103

260.105

110.14

10.11

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.169

260.148

260.163

10.128

0.139N

0.57

SignalP-noTM

CYT

-0.20091

6.5

5.42

0o

0.113

590.104

400.139

10.082

0.096N

0.51

SignalP-TM

CYT

-0.20091

0.77

0.12

0o

0.141

200.176

200.332

150.196

0.185N

0.57

SignalP-noTM

CYT

-0.20091

1.51431

41.49

20.78

0o

0.222

210.327

210.736

110.52

0.418N

0.57

SignalP-noTM

CYT

-0.20091

0.05

0.03

0o

0.222

600.15

600.128

50.09

0.122N

0.57

SignalP-noTM

CYT

-0.20091

0.07

00o

0.107

700.101

370.111

330.087

0.095N

0.57

SignalP-noTM

CYT

-0.20091

0.94

0.01

0o

0.139

220.134

220.189

170.131

0.132N

0.57

SignalP-noTM

CYT

-0.20091

0.06

00o

0.122

260.098

320.128

10.075

0.087N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.156

330.128

200.16

20.123

0.126N

0.57

SignalP-noTM

CYT

-0.20091

12.98

0.02

0o

0.237

260.23

260.392

190.192

0.212N

0.57

SignalP-noTM

CYT

-0.20091

0.46

00o

0.118

330.117

330.14

200.113

0.115N

0.57

SignalP-noTM

CYT

-0.20091

0.12

00o

0.108

360.18

110.444

40.346

0.258N

0.57

SignalP-noTM

CYT

-0.20091

4.96

00o

0.127

290.163

210.321

180.267

0.212N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.107

440.104

230.122

140.095

0.1N

0.57

SignalP-noTM

CYT

-0.20091

2.83

2.83

0o

0.361

190.365

190.522

20.393

0.375N

0.51

SignalP-TM

CYT

-0.20091

14.06

11.82

0o

0.116

250.111

110.175

10.122

0.115N

0.51

SignalP-TM

CYT

-0.20091

0.48

0.47

0o

0.207

340.202

210.471

90.373

0.282N

0.57

SignalP-noTM

CYT

-0.20091

0.11

0.02

0o

0.103

300.161

200.351

120.228

0.193N

0.57

SignalP-noTM

CYT

-0.20091

0.49

00o

0.117

480.109

480.116

460.095

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.09

0o

0.119

240.149

430.349

370.155

0.152N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.101

330.105

200.122

110.107

0.106N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.104

280.104

350.145

270.101

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.92

0.81

0o

0.113

340.161

210.361

20.244

0.2N

0.57

SignalP-noTM

CYT

-0.20091

0.08

0.05

0o

0.106

570.12

110.196

30.141

0.13

N0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.104

280.158

110.37

10.235

0.194N

0.57

SignalP-noTM

CYT

-0.20091

0.22

0.02

0o

0.109

290.121

110.207

20.145

0.132N

0.57

SignalP-noTM

CYT

-0.20091

0.05

00o

0.103

310.113

420.166

400.107

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.109

520.124

130.174

10.155

0.138N

0.57

SignalP-noTM

CYT

-0.20091

6.48

0.01

0o

0.119

310.117

310.167

80.101

0.11

N0.57

SignalP-noTM

CYT

-0.20091

8.04

0.06

0o

0.14

250.203

250.457

10.332

0.263N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.12

400.114

400.156

10.103

0.108N

0.57

SignalP-noTM

CYT

-0.20091

1.31

0.02

0o

0.133

580.114

110.149

20.13

0.121N

0.57

SignalP-noTM

CYT

-0.20091

0.27

0.06

0o

0.109

400.125

220.202

30.155

0.139N

0.57

SignalP-noTM

CYT

-0.20091

1.31

1.28

0o

0.102

460.111

280.134

180.108

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.04

0.03

0o

0.168

360.177

180.36

150.241

0.207N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.109

390.106

570.115

530.089

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.108

30.107

290.174

20.11

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.117

170.131

170.234

10.155

0.143N

0.57

SignalP-noTM

CYT

-0.20091

0.03

0.02

0o

0.107

350.125

400.172

330.124

0.125N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.105

430.105

680.117

560.097

0.101N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.124

670.106

220.134

130.1

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.21

0.21

0o

0.188

390.137

390.113

360.09

0.115N

0.57

SignalP-noTM

CYT

-0.20091

0.8

00o

0.115

200.106

410.121

350.087

0.097N

0.57

SignalP-noTM

CYT

-0.20091

0.07

00o

0.111

210.114

210.13

150.107

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.43

0.27

0o

0.117

300.115

300.231

490.1

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.2

0.2

0o

0.265

200.259

200.382

190.261

0.259N

0.51

SignalP-TM

CYT

-0.20091

0.56

00o

0.123

250.125

110.195

10.155

0.139N

0.57

SignalP-noTM

CYT

-0.20091

0.75

0.64

0o

0.124

310.157

180.322

150.217

0.186N

0.57

SignalP-noTM

CYT

-0.20091

0.23

00o

0.157

360.115

360.112

110.089

0.103N

0.57

SignalP-noTM

CYT

-0.20091

4.16

0.08

0o

0.121

300.151

170.34

160.224

0.185N

0.57

SignalP-noTM

CYT

-0.20091

11.68

0.52

0o

0.149

450.117

450.113

180.093

0.105N

0.57

SignalP-noTM

CYT

-0.20091

18.5

1.03

0o

0.113

220.11

220.146

10.108

0.109N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.02

0o

0.105

460.112

110.194

10.117

0.115N

0.57

SignalP-noTM

CYT

-0.20091

2.61

00o

0.109

330.108

120.141

120.117

0.112N

0.57

SignalP-noTM

CYT

-0.20091

0.83

0.03

0o

0.137

330.189

330.384

290.209

0.199N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.136

450.118

130.16

80.132

0.124N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

220.107

320.145

690.095

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.01

0o

0.119

260.179

110.396

10.316

0.243N

0.57

SignalP-noTM

CYT

-0.20091

0.23

0.04

0o

0.112

390.106

390.127

10.099

0.103N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

530.107

690.122

650.095

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.36

00o

0.109

490.127

220.197

180.152

0.139N

0.57

SignalP-noTM

CYT

-0.20091

0.57

0.25

0o

0.115

220.188

180.432

100.32

0.237N

0.51

SignalP-TM

CYT

-0.20091

00

0o

0.101

270.102

110.121

20.105

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.099

390.104

370.127

300.095

0.1N

0.57

SignalP-noTM

CYT

-0.20091

1.71

0.39

0o

0.135

510.131

120.212

40.171

0.15

N0.57

SignalP-noTM

CYT

-0.20091

1.35

0.03

0o

0.155

370.13

370.144

330.103

0.117N

0.57

SignalP-noTM

CYT

-0.20091

0.16

0.05

0o

0.113

210.174

110.409

10.292

0.229N

0.57

SignalP-noTM

CYT

-0.20091

0.48

0.03

0o

0.123

240.133

110.212

10.175

0.153N

0.57

SignalP-noTM

CYT

-0.20091

0.08

00o

0.106

420.107

690.138

20.101

0.104N

0.57

SignalP-noTM

CYT

-0.20091

0.51

0.18

0o

0.103

620.158

110.311

20.249

0.201N

0.57

SignalP-noTM

CYT

-0.20091

0.21

0.19

0o

0.13

400.138

400.171

280.131

0.135N

0.57

SignalP-noTM

CYT

-0.20091

0.06

0.05

0o

0.119

440.252

200.669

180.569

0.401N

0.57

SignalP-noTM

CYT

-0.20091

1.74

0.1

0o

0.107

490.111

420.144

150.105

0.108N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.135

360.121

360.165

20.104

0.113N

0.57

SignalP-noTM

CYT

-0.20091

0.05

0.02

0o

0.172

210.244

210.468

170.317

0.278N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.106

240.099

430.107

410.09

0.095N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.122

270.158

110.355

20.248

0.2N

0.57

SignalP-noTM

CYT

-0.20091

0.04

00o

0.104

470.113

310.177

450.107

0.11

N0.57

SignalP-noTM

11

Page 145: Dowdell Dissertation FINAL

139

Dowde

ll_TableS2

Loca

tion

Scor

eM

argi

nC

leav

age

Pos+

2Ex

pAA

Firs

t60

Pred

Hel

Topo

log

yC

max

pos

Ymax

pos

Smax

pos

Smea

nD

Sign

alP4

.1 C

onse

nsu

sD

max

cut

Net

wor

ks-

used

Prot

ein

Nam

eC

onse

ns. L

oc.

His

-tag

Loc.

dNSA

F-pK

/ dN

SAF+

pKPr

evio

us

Loca

tion

Ref

eren

ces

for P

rev.

Lo

c. (P

MID

)

Pred

icte

d M

W

(kD

a)

Obs

erve

d M

.W.

(kD

a)

Para

logo

us

Fam

ily

(Cas

jens

20

00)

Num

ber

of

Para

logs

Com

men

tsIm

mun

oge

nici

tyTn

m

utan

t

Lipo

P1.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/Lip

oP/)

TMH

MM

2.0

(http

://w

ww

.cbs

.dtu

.dk/

serv

ices

/TM

HM

M-2

.0/)

Sign

alP4

.1 g

ram

- pre

dict

ions

(h

ttp://

ww

w.c

bs.d

tu.d

k/se

rvic

es/S

igna

lP/)

in v

ivo

Diff

eren

tial E

xpre

ssio

n

Tabl

e 1

CYT

-0.20091

0.08

00o

0.107

100.107

400.125

350.09

0.099N

0.57

SignalP-noTM

CYT

-0.20091

20.09

4.89

0o

0.121

210.111

110.171

10.119

0.115N

0.57

SignalP-noTM

CYT

-0.20091

7.65

7.65

0o

0.202

390.275

390.577

290.35

0.31

N0.57

SignalP-noTM

CYT

-0.20091

0.39

00o

0.111

320.116

320.158

290.099

0.108N

0.57

SignalP-noTM

CYT

-0.20091

0.25

0.08

0i

0.117

400.135

110.207

80.183

0.158N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

310.101

650.11

50.094

0.098N

0.57

SignalP-noTM

CYT

-0.20091

3.03

2.72

0o

0.122

580.135

110.236

10.183

0.158N

0.57

SignalP-noTM

CYT

-0.20091

0.77

0.61

0o

0.111

530.103

590.116

520.088

0.096N

0.57

SignalP-noTM

CYT

-0.20091

4.13

4.13

0i

0.113

360.138

200.282

150.17

0.153N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.02

0o

0.111

370.144

110.301

10.198

0.17

N0.57

SignalP-noTM

CYT

-0.20091

1.3

0.25

0o

0.125

360.136

360.263

320.159

0.146N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.107

450.104

310.121

560.101

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.94

00o

0.109

540.112

160.156

310.124

0.118N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.105

330.157

110.303

30.25

0.201N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0i

0.105

430.108

430.139

390.095

0.102N

0.57

SignalP-noTM

CYT

-0.20091

0.34

0.06

0o

0.143

320.148

410.342

390.146

0.147N

0.57

SignalP-noTM

CYT

-0.20091

6.73

0.34

0o

0.12

260.137

350.251

100.153

0.145N

0.57

SignalP-noTM

CYT

-0.20091

0.07

0.06

0o

0.107

260.129

110.194

80.173

0.15

N0.57

SignalP-noTM

CYT

-0.20091

0.03

0.01

0o

0.122

380.117

120.162

10.134

0.125N

0.57

SignalP-noTM

CYT

-0.20091

00

0i

0.119

380.106

380.106

640.093

0.1N

0.57

SignalP-noTM

CYT

-0.20091

13.23

00o

0.112

420.126

110.249

10.154

0.139N

0.57

SignalP-noTM

CYT

-0.20091

2.89

00o

0.104

510.111

110.159

30.124

0.117N

0.57

SignalP-noTM

CYT

-0.20091

0.3

0.15

0o

0.107

660.103

350.141

20.102

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.11

00o

0.162

190.158

190.198

110.134

0.146N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.128

470.107

110.145

20.112

0.11

N0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.101

300.125

110.2

20.153

0.138N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.137

380.144

110.349

10.185

0.163N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.104

520.104

110.125

10.11

0.107N

0.57

SignalP-noTM

CYT

-0.20091

0.03

0.03

0o

0.105

290.108

600.149

10.098

0.103N

0.57

SignalP-noTM

CYT

-0.20091

16.35

1.55

0o

0.153

470.205

470.43

350.223

0.214N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

660.107

240.129

170.105

0.106N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.105

550.107

440.121

150.099

0.103N

0.57

SignalP-noTM

CYT

-0.20091

0.17

0.17

0o

0.114

320.132

200.185

10.162

0.146N

0.57

SignalP-noTM

CYT

-0.20091

0.25

00o

0.106

460.114

460.146

390.11

0.112N

0.57

SignalP-noTM

CYT

-0.20091

0.06

00o

0.122

290.108

290.155

10.09

0.099N

0.57

SignalP-noTM

CYT

-0.20091

0.1

00o

0.101

320.101

320.121

30.097

0.099N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00i

0.387

220.206

220.136

200.104

0.158N

0.57

SignalP-noTM

CYT

-0.20091

0.19

0.19

0o

0.108

360.121

280.193

230.14

0.13

N0.57

SignalP-noTM

CYT

-0.20091

0.5

0.33

0o

0.104

210.151

210.257

90.215

0.181N

0.57

SignalP-noTM

CYT

-0.20091

0.1

0.01

0o

0.122

500.131

500.27

490.118

0.124N

0.57

SignalP-noTM

CYT

-0.20091

6.73

2.55

0o

0.185

230.33

230.668

150.533

0.425N

0.57

SignalP-noTM

CYT

-0.20091

0.04

0.04

0o

0.105

290.137

110.247

30.194

0.164N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.112

240.104

240.131

100.1

0.102N

0.57

SignalP-noTM

CYT

-0.20091

3.35

00o

0.103

550.126

110.21

40.155

0.14

N0.57

SignalP-noTM

CYT

-0.20091

0.34

0.34

0o

0.133

210.186

190.325

170.253

0.211N

0.51

SignalP-TM

CYT

-0.20091

0.1

00o

0.102

210.11

210.149

240.117

0.113N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.102

180.123

110.228

20.156

0.138N

0.57

SignalP-noTM

CYT

-0.20091

2.82

2.81

0o

0.116

440.182

110.397

30.325

0.249N

0.57

SignalP-noTM

CYT

-0.20091

5.84

4.86

0o

0.113

330.132

210.199

280.151

0.141N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00i

0.101

440.134

110.215

30.187

0.159N

0.57

SignalP-noTM

CYT

-0.20091

0.47

0.38

0o

0.127

470.176

210.392

120.279

0.225N

0.57

SignalP-noTM

CYT

-0.20091

3.44

3.39

0o

0.118

330.159

170.309

130.248

0.201N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.108

300.104

110.147

30.111

0.108N

0.57

SignalP-noTM

CYT

-0.20091

3.89

3.89

0o

0.111

330.156

210.274

130.221

0.186N

0.57

SignalP-noTM

CYT

-0.20091

1.22

1.2

0o

0.146

290.178

290.311

130.22

0.198N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.1

430.109

450.135

130.096

0.103N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.121

450.107

220.134

140.094

0.101N

0.57

SignalP-noTM

CYT

-0.20091

0.02

0.02

0o

0.106

260.118

260.23

180.129

0.123N

0.57

SignalP-noTM

CYT

-0.20091

0.01

0.01

0o

0.252

210.26

210.483

190.258

0.259N

0.57

SignalP-noTM

CYT

-0.20091

0.96

0.78

0o

0.134

470.167

240.343

230.219

0.191N

0.57

SignalP-noTM

CYT

-0.20091

0.03

00o

0.101

540.104

690.112

610.092

0.098N

0.57

SignalP-noTM

CYT

-0.20091

0.01

00o

0.111

660.105

660.127

400.093

0.099N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.121

450.107

220.134

140.094

0.101N

0.57

SignalP-noTM

CYT

-0.20091

1.474

0.02

0.02

0o

0.277

210.3

210.575

190.324

0.311N

0.57

SignalP-noTM

CYT

-0.20091

1.14

1.14

0o

0.125

400.18

240.331

120.241

0.208N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

550.114

110.212

10.123

0.118N

0.57

SignalP-noTM

CYT

-0.20091

1.48

1.47

0o

0.106

510.12

140.169

80.144

0.131N

0.57

SignalP-noTM

CYT

-0.20091

0.02

00o

0.109

660.105

660.13

400.094

0.1N

0.57

SignalP-noTM

CYT

-0.20091

1.52

1.5

0o

0.132

330.178

240.346

230.242

0.208N

0.57

SignalP-noTM

CYT

-0.20091

00

0o

0.1

320.101

320.111

220.09

0.096N

0.57

SignalP-noTM

CYT

-0.20091

6.8

6.69

0o

0.101

330.107

110.142

10.115

0.11

N0.51

SignalP-TM

CYT

-0.20091

00

0o

0.1

210.115

350.146

290.113

0.114N

0.57

SignalP-noTM

CYT

-0.20091

4.43

1.66

0o

0.134

400.189

240.384

230.263

0.224N

0.57

SignalP-noTM

CYT

-0.20091

8.38

8.36

0o

0.106

320.182

130.415

90.332

0.252N

0.57

SignalP-noTM

CYT

-0.20091

0.15

00o

0.102

700.114

110.21

10.121

0.117N

0.57

SignalP-noTM

12

Page 146: Dowdell Dissertation FINAL

140

References 1. Benach JL, Garcia-Monco JC. 2010. The Worldwide Saga of Lyme Borreliosis. In

Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

2. Wormser GP, Wormser V. 2016. Did Garin and Bujadoux Actually Report a Case of Lyme Radiculoneuritis? Open Forum Infect Dis 3:ofw085.

3. Garin C, Bujadoux A. 1993. Paralysis by ticks. 1922. Clin Infect Dis 16:168-169. 4. Askani H. 1936. Zur Ätiologie des Erythema chronicum migrans Dermatol Wochenschr

102:125-131. 5. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P,

Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O'Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A. 2012. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698.

6. Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, Steele FM. 1977. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis Rheum 20:7-17.

7. Steere AC, Batsford WP, Weinberg M, Alexander J, Berger HJ, Wolfson S, Malawista SE. 1980. Lyme carditis: cardiac abnormalities of Lyme disease. Ann Intern Med 93:8-16.

8. Steere AC, Malawista SE, Newman JH, Spieler PN, Bartenhagen NH. 1980. Antibiotic therapy in Lyme disease. Ann Intern Med 93:1-8.

9. Steere AC, Broderick TF, Malawista SE. 1978. Erythema chronicum migrans and Lyme arthritis: epidemiologic evidence for a tick vector. Am J Epidemiol 108:312-321.

10. Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis JP. 1982. Lyme disease-a tick-borne spirochetosis? Science 216:1317-1319.

11. Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF, Cameron DJ, Ziegler JL, Barbour AG, Burgdorfer W, Edelman R, Kaslow RA. 1983. Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308:740-742.

12. Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE. 1983. The spirochetal etiology of Lyme disease. N Engl J Med 308:733-740.

13. Johnson RC, Schmid GP, Hyde FW, Steigerwalt AG, Brenner DJ. 1984. Borrelia burgdorferi sp. nov.: Etiologic Agent of Lyme Disease. International Journal of Systematic and Evolutionary Microbiology 34:496-497.

14. CDC. December 14, 2016. Lyme Disease Frequently Asked Questions (FAQ). https://www.cdc.gov/lyme/faq/index.html. Accessed February 7, 2017.

15. NIAID. October 26, 2016. NIAID Emerging Infectious Diseases/Pathogens. https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens. Accessed February 7, 2017.

16. Pal U, Fikrig E. 2010. Tick Interactions. In Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

Page 147: Dowdell Dissertation FINAL

141

17. Radolf JD, Caimano MJ, Stevenson B, Hu LT. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87-99.

18. Barthold SW, Cadavid D, Philipp MT. 2010. Animal Models of Borreliosis. In Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

19. Iyer R, Caimano MJ, Luthra A, Axline D, Jr., Corona A, Iacobas DA, Radolf JD, Schwartz I. 2015. Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 95:509-538.

20. Francis E. 1938. Longevity of the Tick Ornithodoros turicata and of Spirochaeta recurrentis within This Tick. Public Health Reports (1896-1970) 53:2220-2241.

21. Ribeiro JM, Alarcon-Chaidez F, Francischetti IM, Mans BJ, Mather TN, Valenzuela JG, Wikel SK. 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36:111-129.

22. Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E. 2004. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220-230.

23. Setubal JC, Reis M, Matsunaga J, Haake DA. 2006. Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152:113-121.

24. Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu WG, Dunn JJ, Mongodin EF, Luft BJ. 2011. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193:1018-1020.

25. Zuckert WR. 2014. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509-1516.

26. Narita SI, Tokuda H. 2016. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta doi:10.1016/j.bbalip.2016.11.009.

27. Dowdell AS, Murphy MD, Azodi C, Swanson SK, Florens L, Chen S, Zuckert WR. 2017. Comprehensive Spatial Analysis of the Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward the Bacterial Surface. J Bacteriol 199.

28. Kumru OS, Schulze RJ, Rodnin MV, Ladokhin AS, Zuckert WR. 2011. Surface localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol 193:2814-2825.

29. Schulze RJ, Chen S, Kumru OS, Zuckert WR. 2010. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 76:1266-1278.

30. Schulze RJ, Zuckert WR. 2006. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol 59:1473-1484.

31. Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490-516.

32. Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J,

Page 148: Dowdell Dissertation FINAL

142

Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580-586.

33. Tam R, Saier MH, Jr. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320-346.

34. Bono JL, Tilly K, Stevenson B, Hogan D, Rosa P. 1998. Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology 144 ( Pt 4):1033-1044.

35. Kornacki JA, Oliver DB. 1998. Lyme disease-causing Borrelia species encode multiple lipoproteins homologous to peptide-binding proteins of ABC-type transporters. Infect Immun 66:4115-4122.

36. Wang XG, Kidder JM, Scagliotti JP, Klempner MS, Noring R, Hu LT. 2004. Analysis of differences in the functional properties of the substrate binding proteins of the Borrelia burgdorferi oligopeptide permease (Opp) operon. J Bacteriol 186:51-60.

37. Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, Chaconas G, Philipp MT, Norris SJ. 2012. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One 7:e47532.

38. Lin B, Short SA, Eskildsen M, Klempner MS, Hu LT. 2001. Functional testing of putative oligopeptide permease (Opp) proteins of Borrelia burgdorferi: a complementation model in opp(-) Escherichia coli. Biochim Biophys Acta 1499:222-231.

39. Medrano MS, Ding Y, Wang XG, Lu P, Coburn J, Hu LT. 2007. Regulators of expression of the oligopeptide permease A proteins of Borrelia burgdorferi. J Bacteriol 189:2653-2659.

40. Wang XG, Lin B, Kidder JM, Telford S, Hu LT. 2002. Effects of environmental changes on expression of the oligopeptide permease (opp) genes of Borrelia burgdorferi. J Bacteriol 184:6198-6206.

41. Ouyang Z, Kumar M, Kariu T, Haq S, Goldberg M, Pal U, Norgard MV. 2009. BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74:1331-1343.

42. Raju BV, Esteve-Gassent MD, Karna SL, Miller CL, Van Laar TA, Seshu J. 2011. Oligopeptide permease A5 modulates vertebrate host-specific adaptation of Borrelia burgdorferi. Infect Immun 79:3407-3420.

43. Brautigam CA, Ouyang Z, Deka RK, Norgard MV. 2014. Sequence, biophysical, and structural analyses of the PstS lipoprotein (BB0215) from Borrelia burgdorferi reveal a likely binding component of an ABC-type phosphate transporter. Protein Sci 23:200-212.

44. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R. 2008. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241-250.

45. Barbour AG, Tessier SL, Todd WJ. 1983. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41:795-804.

46. Brandt ME, Riley BS, Radolf JD, Norgard MV. 1990. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect Immun 58:983-991.

Page 149: Dowdell Dissertation FINAL

143

47. Erdile LF, Brandt MA, Warakomski DJ, Westrack GJ, Sadziene A, Barbour AG, Mays JP. 1993. Role of attached lipid in immunogenicity of Borrelia burgdorferi OspA. Infect Immun 61:81-90.

48. Centers for Disease C, Prevention. 1999. Availability of Lyme disease vaccine. MMWR Morb Mortal Wkly Rep 48:35-36, 43.

49. Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA. 1995. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909-2913.

50. Pal U, de Silva AM, Montgomery RR, Fish D, Anguita J, Anderson JF, Lobet Y, Fikrig E. 2000. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein A. J Clin Invest 106:561-569.

51. Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, Bao F, Yang X, Pypaert M, Pradhan D, Kantor FS, Telford S, Anderson JF, Fikrig E. 2004. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457-468.

52. Yang XF, Pal U, Alani SM, Fikrig E, Norgard MV. 2004. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641-648.

53. Becker M, Bunikis J, Lade BD, Dunn JJ, Barbour AG, Lawson CL. 2005. Structural investigation of Borrelia burgdorferi OspB, a bactericidal Fab target. J Biol Chem 280:17363-17370.

54. Bergstrom S, Bundoc VG, Barbour AG. 1989. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol Microbiol 3:479-486.

55. Li H, Dunn JJ, Luft BJ, Lawson CL. 1997. Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab. Proc Natl Acad Sci U S A 94:3584-3589.

56. Tilly K, Bestor A, Rosa PA. 2016. Functional Equivalence of OspA and OspB, but Not OspC, in Tick Colonization by Borrelia burgdorferi. Infect Immun 84:1565-1573.

57. Probert WS, Johnson BJ. 1998. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003-1015.

58. Li X, Liu X, Beck DS, Kantor FS, Fikrig E. 2006. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun 74:3305-3313.

59. Guo BP, Norris SJ, Rosenberg LC, Hook M. 1995. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 63:3467-3472.

60. Blevins JS, Hagman KE, Norgard MV. 2008. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. BMC Microbiol 8:82.

61. Brissette CA, Verma A, Bowman A, Cooley AE, Stevenson B. 2009. The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiology 155:863-872.

62. Stevenson B, Bono JL, Schwan TG, Rosa P. 1998. Borrelia burgdorferi erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 66:2648-2654.

63. Carroll JA, Garon CF, Schwan TG. 1999. Effects of environmental pH on membrane proteins in Borrelia burgdorferi. Infect Immun 67:3181-3187.

64. Schwan TG, Piesman J. 2000. Temporal changes in outer surface proteins A and C of the lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38:382-388.

Page 150: Dowdell Dissertation FINAL

144

65. Hovius JW, de Jong MA, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TB. 2008. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4:e31.

66. Garg R, Juncadella IJ, Ramamoorthi N, Ashish, Ananthanarayanan SK, Thomas V, Rincon M, Krueger JK, Fikrig E, Yengo CM, Anguita J. 2006. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J Immunol 177:6579-6583.

67. Anguita J, Ramamoorthi N, Hovius JW, Das S, Thomas V, Persinski R, Conze D, Askenase PW, Rincon M, Kantor FS, Fikrig E. 2002. Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16:849-859.

68. Schuijt TJ, Hovius JW, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP. 2008. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun 76:2888-2894.

69. Onder O, Humphrey PT, McOmber B, Korobova F, Francella N, Greenbaum DC, Brisson D. 2012. OspC is potent plasminogen receptor on surface of Borrelia burgdorferi. J Biol Chem 287:16860-16868.

70. Coleman JL, Sellati TJ, Testa JE, Kew RR, Furie MB, Benach JL. 1995. Borrelia burgdorferi binds plasminogen, resulting in enhanced penetration of endothelial monolayers. Infect Immun 63:2478-2484.

71. Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM, Schwan TG, Policastro PF, Elias AF, Rosa PA. 2004. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101:3142-3147.

72. Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, Seppala IJ, Meri S. 2001. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427-8435.

73. Kraiczy P, Skerka C, Kirschfink M, Brade V, Zipfel PF. 2001. Immune evasion of Borrelia burgdorferi by acquisition of human complement regulators FHL-1/reconectin and Factor H. Eur J Immunol 31:1674-1684.

74. Brooks CS, Vuppala SR, Jett AM, Alitalo A, Meri S, Akins DR. 2005. Complement regulator-acquiring surface protein 1 imparts resistance to human serum in Borrelia burgdorferi. J Immunol 175:3299-3308.

75. von Lackum K, Miller JC, Bykowski T, Riley SP, Woodman ME, Brade V, Kraiczy P, Stevenson B, Wallich R. 2005. Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle. Infect Immun 73:7398-7405.

76. Hartmann K, Corvey C, Skerka C, Kirschfink M, Karas M, Brade V, Miller JC, Stevenson B, Wallich R, Zipfel PF, Kraiczy P. 2006. Functional characterization of BbCRASP-2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL-1. Mol Microbiol 61:1220-1236.

77. Siegel C, Hallstrom T, Skerka C, Eberhardt H, Uzonyi B, Beckhaus T, Karas M, Wallich R, Stevenson B, Zipfel PF, Kraiczy P. 2010. Complement factor H-related proteins CFHR2 and CFHR5 represent novel ligands for the infection-associated CRASP proteins of Borrelia burgdorferi. PLoS One 5:e13519.

78. Hallstrom T, Siegel C, Morgelin M, Kraiczy P, Skerka C, Zipfel PF. 2013. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. MBio 4.

Page 151: Dowdell Dissertation FINAL

145

79. Coleman AS, Yang X, Kumar M, Zhang X, Promnares K, Shroder D, Kenedy MR, Anderson JF, Akins DR, Pal U. 2008. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PLoS One 3:3010e.

80. Woodman ME, Cooley AE, Miller JC, Lazarus JJ, Tucker K, Bykowski T, Botto M, Hellwage J, Wooten RM, Stevenson B. 2007. Borrelia burgdorferi binding of host complement regulator factor H is not required for efficient mammalian infection. Infect Immun 75:3131-3139.

81. Zhang JR, Hardham JM, Barbour AG, Norris SJ. 1997. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275-285.

82. Bankhead T, Chaconas G. 2007. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol 65:1547-1558.

83. Zhang JR, Norris SJ. 1998. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun 66:3689-3697.

84. Indest KJ, Howell JK, Jacobs MB, Scholl-Meeker D, Norris SJ, Philipp MT. 2001. Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Infect Immun 69:7083-7090.

85. Coutte L, Botkin DJ, Gao L, Norris SJ. 2009. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 5:e1000293.

86. Katona LI, Beck G, Habicht GS. 1992. Purification and immunological characterization of a major low-molecular-weight lipoprotein from Borrelia burgdorferi. Infect Immun 60:4995-5003.

87. Lahdenne P, Porcella SF, Hagman KE, Akins DR, Popova TG, Cox DL, Katona LI, Radolf JD, Norgard MV. 1997. Molecular characterization of a 6.6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect Immun 65:412-421.

88. Promnares K, Kumar M, Shroder DY, Zhang X, Anderson JF, Pal U. 2009. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Mol Microbiol 74:112-125.

89. Yang X, Promnares K, Qin J, He M, Shroder DY, Kariu T, Wang Y, Pal U. 2011. Characterization of multiprotein complexes of the Borrelia burgdorferi outer membrane vesicles. J Proteome Res 10:4556-4566.

90. Freeman D, Kumru O, Middaugh C, Joshi S, Zückert W. 2014. Low resolution structural determination of lipoprotein6.6: a membrane component of Borrelia burgdorferi (753.2). The FASEB Journal 28.

91. Lam TT, Nguyen TP, Fikrig E, Flavell RA. 1994. A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease. J Clin Microbiol 32:876-883.

92. Wallich R, Simon MM, Hofmann H, Moter SE, Schaible UE, Kramer MD. 1993. Molecular and immunological characterization of a novel polymorphic lipoprotein of Borrelia burgdorferi. Infect Immun 61:4158-4166.

Page 152: Dowdell Dissertation FINAL

146

93. von Lackum K, Ollison KM, Bykowski T, Nowalk AJ, Hughes JL, Carroll JA, Zuckert WR, Stevenson B. 2007. Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochaete's mammal-tick infectious cycle. Microbiology 153:1361-1371.

94. Babb K, Bykowski T, Riley SP, Miller MC, Demoll E, Stevenson B. 2006. Borrelia burgdorferi EbfC, a novel, chromosomally encoded protein, binds specific DNA sequences adjacent to erp loci on the spirochete's resident cp32 prophages. J Bacteriol 188:4331-4339.

95. Babb K, McAlister JD, Miller JC, Stevenson B. 2004. Molecular characterization of Borrelia burgdorferi erp promoter/operator elements. J Bacteriol 186:2745-2756.

96. Pal U, Dai J, Li X, Neelakanta G, Luo P, Kumar M, Wang P, Yang X, Anderson JF, Fikrig E. 2008. A differential role for BB0365 in the persistence of Borrelia burgdorferi in mice and ticks. J Infect Dis 197:148-155.

97. Yang X, Hegde S, Shroder DY, Smith AA, Promnares K, Neelakanta G, Anderson JF, Fikrig E, Pal U. 2013. The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naive hosts. Microbes Infect 15:729-737.

98. Hubner A, Revel AT, Nolen DM, Hagman KE, Norgard MV. 2003. Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71:2892-2896.

99. Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere AC, Baldi P, Felgner PL. 2008. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun 76:3374-3389.

100. Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS. 2001. Transduction by phiBB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol 183:4771-4778.

101. Marconi RT, Earnhart CG. 2010. Lyme Disease Vaccines. In Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

102. Terekhova D, Iyer R, Wormser GP, Schwartz I. 2006. Comparative genome hybridization reveals substantial variation among clinical isolates of Borrelia burgdorferi sensu stricto with different pathogenic properties. J Bacteriol 188:6124-6134.

103. de Silva AM, Telford SR, 3rd, Brunet LR, Barthold SW, Fikrig E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271-275.

104. de Silva AM, Zeidner NS, Zhang Y, Dolan MC, Piesman J, Fikrig E. 1999. Influence of outer surface protein A antibody on Borrelia burgdorferi within feeding ticks. Infect Immun 67:30-35.

105. Sigal LH, Zahradnik JM, Lavin P, Patella SJ, Bryant G, Haselby R, Hilton E, Kunkel M, Adler-Klein D, Doherty T, Evans J, Molloy PJ, Seidner AL, Sabetta JR, Simon HJ, Klempner MS, Mays J, Marks D, Malawista SE. 1998. A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant Outer-Surface Protein A Lyme Disease Vaccine Study Consortium. N Engl J Med 339:216-222.

106. Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, Nowakowski J, Schmid CH, Laukamp S, Buscarino C, Krause DS. 1998. Vaccination against Lyme

Page 153: Dowdell Dissertation FINAL

147

disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N Engl J Med 339:209-215.

107. Wilske B, Busch U, Fingerle V, Jauris-Heipke S, Preac Mursic V, Rossler D, Will G. 1996. Immunological and molecular variability of OspA and OspC. Implications for Borrelia vaccine development. Infection 24:208-212.

108. Lathrop SL, Ball R, Haber P, Mootrey GT, Braun MM, Shadomy SV, Ellenberg SS, Chen RT, Hayes EB. 2002. Adverse event reports following vaccination for Lyme disease: December 1998-July 2000. Vaccine 20:1603-1608.

109. Nigrovic LE, Thompson KM. 2007. The Lyme vaccine: a cautionary tale. Epidemiol Infect 135:1-8.

110. Trollmo C, Meyer AL, Steere AC, Hafler DA, Huber BT. 2001. Molecular mimicry in Lyme arthritis demonstrated at the single cell level: LFA-1 alpha L is a partial agonist for outer surface protein A-reactive T cells. J Immunol 166:5286-5291.

111. Kalish RA, Leong JM, Steere AC. 1993. Association of treatment-resistant chronic Lyme arthritis with HLA-DR4 and antibody reactivity to OspA and OspB of Borrelia burgdorferi. Infect Immun 61:2774-2779.

112. Willett TA, Meyer AL, Brown EL, Huber BT. 2004. An effective second-generation outer surface protein A-derived Lyme vaccine that eliminates a potentially autoreactive T cell epitope. Proc Natl Acad Sci U S A 101:1303-1308.

113. Livey I, O'Rourke M, Traweger A, Savidis-Dacho H, Crowe BA, Barrett PN, Yang X, Dunn JJ, Luft BJ. 2011. A new approach to a Lyme disease vaccine. Clin Infect Dis 52 Suppl 3:s266-270.

114. Earnhart CG, Buckles EL, Dumler JS, Marconi RT. 2005. Demonstration of OspC type diversity in invasive human lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect Immun 73:7869-7877.

115. Wang G, van Dam AP, Dankert J. 1999. Evidence for frequent OspC gene transfer between Borrelia valaisiana sp. nov. and other Lyme disease spirochetes. FEMS Microbiol Lett 177:289-296.

116. Theisen M, Frederiksen B, Lebech AM, Vuust J, Hansen K. 1993. Polymorphism in ospC gene of Borrelia burgdorferi and immunoreactivity of OspC protein: implications for taxonomy and for use of OspC protein as a diagnostic antigen. J Clin Microbiol 31:2570-2576.

117. Earnhart CG, Buckles EL, Marconi RT. 2007. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine 25:466-480.

118. Earnhart CG, Marconi RT. 2007. An octavalent lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Hum Vaccin 3:281-289.

119. LaFleur RL, Callister SM, Dant JC, Wasmoen TL, Jobe DA, Lovrich SD. 2015. Vaccination with the ospA- and ospB-Negative Borrelia burgdorferi Strain 50772 Provides Significant Protection against Canine Lyme Disease. Clin Vaccine Immunol 22:836-839.

120. Kolb P, Wallich R, Nassal M. 2015. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential. PLoS One 10:e0136180.

Page 154: Dowdell Dissertation FINAL

148

121. Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414.

122. Cowles CE, Li Y, Semmelhack MF, Cristea IM, Silhavy TJ. 2011. The free and bound forms of Lpp occupy distinct subcellular locations in Escherichia coli. Mol Microbiol 79:1168-1181.

123. Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. 2014. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of beta-barrel proteins. Proc Natl Acad Sci U S A 111:E4350-4358.

124. Michel LV, Shaw J, MacPherson V, Barnard D, Bettinger J, D'Arcy B, Surendran N, Hellman J, Pichichero ME. 2015. Dual orientation of the outer membrane lipoprotein Pal in Escherichia coli. Microbiology 161:1251-1259.

125. Webb CT, Selkrig J, Perry AJ, Noinaj N, Buchanan SK, Lithgow T. 2012. Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J Mol Biol 422:545-555.

126. Konovalova A, Silhavy TJ. 2015. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 370.

127. Casjens SR, Eggers CH, Schwartz I. 2010. Borrelia Genomics: Chromosome, Plasmids, Bacteriophages and Genetic Variation. In Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

128. Shruthi H, Babu MM, Sankaran K. 2010. TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 70:359-370.

129. Froderberg L, Houben EN, Baars L, Luirink J, de Gier JW. 2004. Targeting and translocation of two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway. J Biol Chem 279:31026-31032.

130. Dalbey RE, Kuhn A, Zhu L, Kiefer D. 2014. The membrane insertase YidC. Biochim Biophys Acta 1843:1489-1496.

131. van der Sluis EO, Driessen AJ. 2006. Stepwise evolution of the Sec machinery in Proteobacteria. Trends Microbiol 14:105-108.

132. Sankaran K, Wu HC. 1994. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701-19706.

133. Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M. 2016. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351:876-880.

134. Denham EL, Ward PN, Leigh JA. 2008. Lipoprotein signal peptides are processed by Lsp and Eep of Streptococcus uberis. J Bacteriol 190:4641-4647.

135. Inukai M, Takeuchi M, Shimizu K, Arai M. 1978. Mechanism of action of globomycin. J Antibiot (Tokyo) 31:1203-1205.

136. Carter CJ, Bergstrom S, Norris SJ, Barbour AG. 1994. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun 62:2792-2799.

137. Ichihara S, Beppu N, Mizushima S. 1984. Protease IV, a cytoplasmic membrane protein of Escherichia coli, has signal peptide peptidase activity. J Biol Chem 259:9853-9857.

138. Saito A, Hizukuri Y, Matsuo E, Chiba S, Mori H, Nishimura O, Ito K, Akiyama Y. 2011. Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 108:13740-13745.

Page 155: Dowdell Dissertation FINAL

149

139. Akiyama Y, Kanehara K, Ito K. 2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 23:4434-4442.

140. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008.

141. Kanehara K, Ito K, Akiyama Y. 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev 16:2147-2155.

142. Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD. 2005. Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187:7845-7852.

143. Hantke K, Braun V. 1973. Covalent binding of lipid to protein. Diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur J Biochem 34:284-296.

144. Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N. 2007. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 189:4456-4464.

145. Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller P, Grau T, Sander P. 2009. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 284:27146-27156.

146. Robichon C, Vidal-Ingigliardi D, Pugsley AP. 2005. Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 280:974-983.

147. Narita S, Tokuda H. 2011. Overexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase. J Bacteriol 193:4832-4840.

148. LoVullo ED, Wright LF, Isabella V, Huntley JF, Pavelka MS, Jr. 2015. Revisiting the Gram-negative lipoprotein paradigm. J Bacteriol 197:1705-1715.

149. Chahales P, Thanassi DG. 2015. A more flexible lipoprotein sorting pathway. J Bacteriol 197:1702-1704.

150. Yamaguchi K, Yu F, Inouye M. 1988. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423-432.

151. Seydel A, Gounon P, Pugsley AP. 1999. Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810-821.

152. Terada M, Kuroda T, Matsuyama SI, Tokuda H. 2001. Lipoprotein sorting signals evaluated as the LolA-dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli. J Biol Chem 276:47690-47694.

153. Hara T, Matsuyama S, Tokuda H. 2003. Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals. J Biol Chem 278:40408-40414.

154. Narita S, Tokuda H. 2007. Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372-13378.

155. Tanaka SY, Narita S, Tokuda H. 2007. Characterization of the Pseudomonas aeruginosa Lol system as a lipoprotein sorting mechanism. J Biol Chem 282:13379-13384.

Page 156: Dowdell Dissertation FINAL

150

156. Kumru OS, Schulze RJ, Slusser JG, Zuckert WR. 2010. Development and validation of a FACS-based lipoprotein localization screen in the Lyme disease spirochete Borrelia burgdorferi. BMC Microbiol 10:277.

157. Ito Y, Matsuzawa H, Matsuyama S, Narita S, Tokuda H. 2006. Genetic analysis of the mode of interplay between an ATPase subunit and membrane subunits of the lipoprotein-releasing ATP-binding cassette transporter LolCDE. J Bacteriol 188:2856-2864.

158. Yasuda M, Iguchi-Yokoyama A, Matsuyama S, Tokuda H, Narita S. 2009. Membrane topology and functional importance of the periplasmic region of ABC transporter LolCDE. Biosci Biotechnol Biochem 73:2310-2316.

159. Mizutani M, Mukaiyama K, Xiao J, Mori M, Satou R, Narita S, Okuda S, Tokuda H. 2013. Functional differentiation of structurally similar membrane subunits of the ABC transporter LolCDE complex. FEBS Lett 587:23-29.

160. Okuda S, Tokuda H. 2009. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci U S A 106:5877-5882.

161. Narita S, Tanaka K, Matsuyama S, Tokuda H. 2002. Disruption of lolCDE, encoding an ATP-binding cassette transporter, is lethal for Escherichia coli and prevents release of lipoproteins from the inner membrane. J Bacteriol 184:1417-1422.

162. Matsuyama S, Tajima T, Tokuda H. 1995. A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 14:3365-3372.

163. Takeda K, Miyatake H, Yokota N, Matsuyama S, Tokuda H, Miki K. 2003. Crystal structures of bacterial lipoprotein localization factors, LolA and LolB. EMBO J 22:3199-3209.

164. Remans K, Pauwels K, van Ulsen P, Buts L, Cornelis P, Tommassen J, Savvides SN, Decanniere K, Van Gelder P. 2010. Hydrophobic surface patches on LolA of Pseudomonas aeruginosa are essential for lipoprotein binding. J Mol Biol 401:921-930.

165. Matsuyama S, Yokota N, Tokuda H. 1997. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J 16:6947-6955.

166. Tajima T, Yokota N, Matsuyama S, Tokuda H. 1998. Genetic analyses of the in vivo function of LolA, a periplasmic chaperone involved in the outer membrane localization of Escherichia coli lipoproteins. FEBS Lett 439:51-54.

167. Tsukahara J, Mukaiyama K, Okuda S, Narita S, Tokuda H. 2009. Dissection of LolB function--lipoprotein binding, membrane targeting and incorporation of lipoproteins into lipid bilayers. FEBS J 276:4496-4504.

168. Taniguchi N, Matsuyama S, Tokuda H. 2005. Mechanisms underlying energy-independent transfer of lipoproteins from LolA to LolB, which have similar unclosed {beta}-barrel structures. J Biol Chem 280:34481-34488.

169. Hayashi Y, Tsurumizu R, Tsukahara J, Takeda K, Narita S, Mori M, Miki K, Tokuda H. 2014. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane. J Biol Chem 289:10530-10539.

170. Okuda S, Tokuda H. 2011. Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239-259.

Page 157: Dowdell Dissertation FINAL

151

171. Cho SH, Szewczyk J, Pesavento C, Zietek M, Banzhaf M, Roszczenko P, Asmar A, Laloux G, Hov AK, Leverrier P, Van der Henst C, Vertommen D, Typas A, Collet JF. 2014. Detecting envelope stress by monitoring beta-barrel assembly. Cell 159:1652-1664.

172. Hooda Y, Lai CC, Judd A, Buckwalter CM, Shin HE, Gray-Owen SD, Moraes TF. 2016. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria. Nat Microbiol 1:16009.

173. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.

174. Chen S, Zuckert WR. 2011. Probing the Borrelia burgdorferi surface lipoprotein secretion pathway using a conditionally folding protein domain. J Bacteriol 193:6724-6732.

175. Barbour AG. 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521-525.

176. Lukehart SA, Marra CM. 2007. Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol Chapter 12:Unit 12A 11.

177. Zuckert WR. 2007. Laboratory maintenance of Borrelia burgdorferi. Curr Protoc Microbiol Chapter 12:Unit 12C 11.

178. Samuels DS. 1995. Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol 47:253-259.

179. Stewart PE, Thalken R, Bono JL, Rosa P. 2001. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 39:714-721.

180. Bunikis J, Barbour AG. 1999. Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67:2874-2883.

181. Skare JT, Shang ES, Foley DM, Blanco DR, Champion CI, Mirzabekov T, Sokolov Y, Kagan BL, Miller JN, Lovett MA. 1995. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest 96:2380-2392.

182. Norris SJ, Coburn J, Leong JM, Hu LT, Höök M. 2010. Pathobiology of Lyme Disease Borrelia. In Radolf JD, Samuels DS (ed), Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press.

183. Stevenson B, Zuckert WR, Akins DR. 2000. Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. J Mol Microbiol Biotechnol 2:411-422.

184. Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K, Bono JL, Akins DR, Radolf JD, Schwan TG, Rosa P. 2002. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139-2150.

185. Bunikis I, Kutschan-Bunikis S, Bonde M, Bergstrom S. 2011. Multiplex PCR as a tool for validating plasmid content of Borrelia burgdorferi. J Microbiol Methods 86:243-247.

186. Carroll JA. 2010. Methods of identifying membrane proteins in spirochetes. Curr Protoc Microbiol Chapter 12:Unit12C 12.

Page 158: Dowdell Dissertation FINAL

152

187. El-Hage N, Babb K, Carroll JA, Lindstrom N, Fischer ER, Miller JC, Gilmore RD, Jr., Mbow ML, Stevenson B. 2001. Surface exposure and protease insensitivity of Borrelia burgdorferi Erp (OspEF-related) lipoproteins. Microbiology 147:821-830.

188. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H. 1974. Proteinase K from Tritirachium album Limber. Eur J Biochem 47:91-97.

189. Sweeney PJ, Walker JM. 1993. Proteinase K (EC 3.4.21.14). Methods Mol Biol 16:305-311.

190. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.

191. Barbour AG, Hayes SF, Heiland RA, Schrumpf ME, Tessier SL. 1986. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52:549-554.

192. Washburn MP, Wolters D, Yates JR, 3rd. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242-247.

193. Florens L, Washburn MP. 2006. Proteomic analysis by multidimensional protein identification technology. Methods Mol Biol 328:159-175.

194. Zhang Y, Wen Z, Washburn MP, Florens L. 2010. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem 82:2272-2281.

195. Chen S, Kumru OS, Zuckert WR. 2011. Determination of Borrelia surface lipoprotein anchor topology by surface proteolysis. J Bacteriol 193:6379-6383.

196. Zuckert WR, Lloyd JE, Stewart PE, Rosa PA, Barbour AG. 2004. Cross-species surface display of functional spirochetal lipoproteins by recombinant Borrelia burgdorferi. Infect Immun 72:1463-1469.

197. Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205-217.

198. Kumru OS, Bunikis I, Sorokina I, Bergstrom S, Zuckert WR. 2011. Specificity and role of the Borrelia burgdorferi CtpA protease in outer membrane protein processing. J Bacteriol 193:5759-5765.

199. Ostberg Y, Carroll JA, Pinne M, Krum JG, Rosa P, Bergstrom S. 2004. Pleiotropic effects of inactivating a carboxyl-terminal protease, CtpA, in Borrelia burgdorferi. J Bacteriol 186:2074-2084.

200. Lin YP, Chen Q, Ritchie JA, Dufour NP, Fischer JR, Coburn J, Leong JM. 2015. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization. Cell Microbiol 17:860-875.

201. Bunikis J, Noppa L, Ostberg Y, Barbour AG, Bergstrom S. 1996. Surface exposure and species specificity of an immunoreactive domain of a 66-kilodalton outer membrane protein (P66) of the Borrelia spp. that cause Lyme disease. Infect Immun 64:5111-5116.

202. Hughes JL, Nolder CL, Nowalk AJ, Clifton DR, Howison RR, Schmit VL, Gilmore RD, Jr., Carroll JA. 2008. Borrelia burgdorferi surface-localized proteins expressed during persistent murine infection are conserved among diverse Borrelia spp. Infect Immun 76:2498-2511.

203. Lenhart TR, Kenedy MR, Yang X, Pal U, Akins DR. 2012. BB0324 and BB0028 are constituents of the Borrelia burgdorferi beta-barrel assembly machine (BAM) complex. BMC Microbiol 12:60.

Page 159: Dowdell Dissertation FINAL

153

204. Pal U, Wang P, Bao F, Yang X, Samanta S, Schoen R, Wormser GP, Schwartz I, Fikrig E. 2008. Borrelia burgdorferi basic membrane proteins A and B participate in the genesis of Lyme arthritis. J Exp Med 205:133-141.

205. Das S, Shraga D, Gannon C, Lam TT, Feng S, Brunet LR, Telford SR, Barthold SW, Flavell RA, Fikrig E. 1996. Characterization of a 30-kDa Borrelia burgdorferi substrate-binding protein homologue. Res Microbiol 147:739-751.

206. Hu LT, Pratt SD, Perides G, Katz L, Rogers RA, Klempner MS. 1997. Isolation, cloning, and expression of a 70-kilodalton plasminogen binding protein of Borrelia burgdorferi. Infect Immun 65:4989-4995.

207. Bestor A, Rego RO, Tilly K, Rosa PA. 2012. Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host. Infect Immun 80:3501-3511.

208. Zhang X, Yang X, Kumar M, Pal U. 2009. BB0323 function is essential for Borrelia burgdorferi virulence and persistence through tick-rodent transmission cycle. J Infect Dis 200:1318-1330.

209. Kariu T, Yang X, Marks CB, Zhang X, Pal U. 2013. Proteolysis of BB0323 results in two polypeptides that impact physiologic and infectious phenotypes in Borrelia burgdorferi. Mol Microbiol 88:510-522.

210. Dunn JP, Kenedy MR, Iqbal H, Akins DR. 2015. Characterization of the beta-barrel assembly machine accessory lipoproteins from Borrelia burgdorferi. BMC Microbiol 15:70.

211. Perez-Bercoff A, Koch J, Burglin TR. 2006. LogoBar: bar graph visualization of protein logos with gaps. Bioinformatics 22:112-114.

212. Lauber F, Cornelis GR, Renzi F. 2016. Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria. MBio 7.

213. Lauber F, Cornelis GR, Renzi F. 2016. Erratum for Lauber et al., Identification of a New Lipoprotein Export Signal in Gram-Negative Bacteria. MBio 7.

214. Brokx SJ, Ellison M, Locke T, Bottorff D, Frost L, Weiner JH. 2004. Genome-wide analysis of lipoprotein expression in Escherichia coli MG1655. J Bacteriol 186:3254-3258.

215. Tokuda H, Matsuyama S, K. T-M. 2007. Structure, function, and transport of lipoproteins in Escherichia coli, p 67-69. In M. E (ed), The Periplasm. ASM Press.

216. Howe TR, Mayer LW, Barbour AG. 1985. A single recombinant plasmid expressing two major outer surface proteins of the Lyme disease spirochete. Science 227:645-646.

217. Labandeira-Rey M, Skare JT. 2001. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446-455.

218. Purser JE, Norris SJ. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:13865-13870.

219. Schwan TG, Burgdorfer W, Garon CF. 1988. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect Immun 56:1831-1836.

220. Zuckert WR, Meyer J. 1996. Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J Bacteriol 178:2287-2298.

Page 160: Dowdell Dissertation FINAL

154

221. Alva V, Nam SZ, Soding J, Lupas AN. 2016. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res 44:W410-415.

222. Revel AT, Blevins JS, Almazan C, Neil L, Kocan KM, de la Fuente J, Hagman KE, Norgard MV. 2005. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A 102:6972-6977.

223. Fikrig E, Barthold SW, Marcantonio N, Deponte K, Kantor FS, Flavell RA. 1992. Roles of OspA, OspB, and flagellin in protective immunity to Lyme borreliosis in laboratory mice. Infect Immun 60:657-661.

224. Gilmore RD, Jr., Kappel KJ, Dolan MC, Burkot TR, Johnson BJ. 1996. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 64:2234-2239.

225. Xu H, He M, He JJ, Yang XF. 2010. Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Infect Immun 78:2910-2918.

226. Wada R, Matsuyama S, Tokuda H. 2004. Targeted mutagenesis of five conserved tryptophan residues of LolB involved in membrane localization of Escherichia coli lipoproteins. Biochem Biophys Res Commun 323:1069-1074.

227. Wilson MM, Anderson DE, Bernstein HD. 2015. Analysis of the outer membrane proteome and secretome of Bacteroides fragilis reveals a multiplicity of secretion mechanisms. PLoS One 10:e0117732.

228. Yan R, Xu D, Yang J, Walker S, Zhang Y. 2013. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 3:2619.

229. Lenhart TR, Akins DR. 2010. Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins. Mol Microbiol 75:692-709.

230. Iqbal H, Kenedy MR, Lybecker M, Akins DR. 2016. The TamB ortholog of Borrelia burgdorferi interacts with the beta-barrel assembly machine (BAM) complex protein BamA. Mol Microbiol 102:757-774.

231. Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClelland M, Nakao M. 1995. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol 45:804-810.

232. Scoles GA, Papero M, Beati L, Fish D. 2001. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1:21-34.

233. Kingry LC, Batra D, Replogle A, Rowe LA, Pritt BS, Petersen JM. 2016. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii. PLoS One 11:e0168994.

234. Pritt BS, Respicio-Kingry LB, Sloan LM, Schriefer ME, Replogle AJ, Bjork J, Liu G, Kingry LC, Mead PS, Neitzel DF, Schiffman E, Hoang Johnson DK, Davis JP, Paskewitz SM, Boxrud D, Deedon A, Lee X, Miller TK, Feist MA, Steward CR, Theel ES, Patel R, Irish CL, Petersen JM. 2016. Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int J Syst Evol Microbiol 66:4878-4880.

Page 161: Dowdell Dissertation FINAL

155

235. Roche. January 2011. Pronase, Nuclease-free, isolated form Streptomyces griseus, Lyophilized powder. Accessed 11 March 2017.

236. Byram R, Stewart PE, Rosa P. 2004. The essential nature of the ubiquitous 26-kilobase circular replicon of Borrelia burgdorferi. J Bacteriol 186:3561-3569.

237. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR. 2015. HMMER web server: 2015 update. Nucleic Acids Res 43:W30-38.

238. Karpenahalli MR, Lupas AN, Soding J. 2007. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinformatics 8:2.

239. Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244-248.

240. Iyer R, Schwartz I. 2016. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi. Microarrays (Basel) 5.

241. Liang FT, Nelson FK, Fikrig E. 2002. Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 196:275-280.

242. Troy EB, Lin T, Gao L, Lazinski DW, Lundt M, Camilli A, Norris SJ, Hu LT. 2016. Global Tn-seq analysis of carbohydrate utilization and vertebrate infectivity of Borrelia burgdorferi. Mol Microbiol 101:1003-1023.

243. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztanyi Z, El-Gebali S, Fraser M, Gough J, Haft D, Holliday GL, Huang H, Huang X, Letunic I, Lopez R, Lu S, Marchler-Bauer A, Mi H, Mistry J, Natale DA, Necci M, Nuka G, Orengo CA, Park Y, Pesseat S, Piovesan D, Potter SC, Rawlings ND, Redaschi N, Richardson L, Rivoire C, Sangrador-Vegas A, Sigrist C, Sillitoe I, Smithers B, Squizzato S, Sutton G, Thanki N, Thomas PD, Tosatto SC, Wu CH, Xenarios I, Yeh LS, Young SY, Mitchell AL. 2017. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190-D199.

244. Chaudhuri I, Soding J, Lupas AN. 2008. Evolution of the beta-propeller fold. Proteins 71:795-803.

245. Chen CK, Chan NL, Wang AH. 2011. The many blades of the beta-propeller proteins: conserved but versatile. Trends Biochem Sci 36:553-561.

246. Edwards TA, Wilkinson BD, Wharton RP, Aggarwal AK. 2003. Model of the brain tumor-Pumilio translation repressor complex. Genes Dev 17:2508-2513.

247. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7-8.

248. Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C. 2007. A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 104:1009-1014.

249. Ouyang Z, Blevins JS, Norgard MV. 2008. Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi. Microbiology 154:2641-2658.

250. Yang J, Roy A, Zhang Y. 2013. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588-2595.

251. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. 1995. Evaluation of comparative protein modeling by MODELLER. Proteins 23:318-326.

252. Moremen KW, Tiemeyer M, Nairn AV. 2012. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448-462.

Page 162: Dowdell Dissertation FINAL

156

253. Kukkonen M, Raunio T, Virkola R, Lahteenmaki K, Makela PH, Klemm P, Clegg S, Korhonen TK. 1993. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 7:229-237.

254. Luthra A, Zhu G, Desrosiers DC, Eggers CH, Mulay V, Anand A, McArthur FA, Romano FB, Caimano MJ, Heuck AP, Malkowski MG, Radolf JD. 2011. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem 286:41656-41668.

255. Hazlett KR, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD. 2005. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 187:6499-6508.