Transcript
Page 1: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

1

ResearchQuestion:Whatistheactivationenergy(kJmol-1)ofthedecompositionofhydrogenperoxide(H2O2)tooxygen(O2)andwater(H2O)bycatalase(0.1%),bymeasuringthetime

takenfor10cm3ofoxygengastobeevolved(s)atdifferenttemperatures(K)?1:IntroductionWhenwe studied catalysts as part of chemical kinetics, Iwas fascinated by how enzymes function asbiological catalysts and I was drawn into the roles enzymes play in biological systems. I found that aparticularenzyme,catalase,whichisfoundinanimals,catalysesthedecompositionofhydrogenperoxide(H!O!) in the blood.H!O!is secreted by white blood cells as a defence mechanism against externalpathogens. Hence, in order to reduce the exposure of body (somatic) cells to the toxic hydrogenperoxide,catalasedecomposesH!O!.(GMOCompass,2010).

2H2O2(aq)โ†’2H2O(l)+O2(g)(inthepresenceofcatalase)

This sparkedmy curiosity about this particular reaction. I thendecided to delve further into reactionsinvolvingcatalaseandfoundthatcatalaseisalsousedtopreserveeggproductsbyproducingoxygengaswhencatalysingthedecompositionofhydrogenperoxide(GMOCompass,2010).Thisoxygenisutilisedbyglucoseoxidaseintheeggtocatalysetheacidificationofglucosetogluconicacid,reactingwithalltheavailableglucoseintheprocess.Glucose,ineggproducts,leadstobrowningbecauseofitsreactionswithamino acids present in the albumen of the eggs (Tucker, 1995). Given the importance of thedecompositionofhydrogenperoxidebycatalase,Iquestionedthevalueoftheactivationenergyofthecatalysedreaction(E!).Thisledmetomyresearchquestion;Whatistheactivationenergy(kJmol-1)ofthedecompositionofhydrogenperoxide(H2O2)tooxygen(O2)andwater(H2O)bycatalase(0.1%),bymeasuringthetimetakenfor10cm3ofoxygengastobeevolved(s)atdifferenttemperatures(K)?2:Investigation2.1:Reactionunderstudy2H2O2

(aq)โ†’2H2O(l)+O2(g)(inthepresenceofcatalase)at298.0K,300.5K,303.0K,305.5Kand308K.2.2:BackgroundInformationPrevious research has shown that the rate expression for decomposition of H!O!in the presence ofcatalase is๐‘Ÿ๐‘Ž๐‘ก๐‘’ = ๐‘˜ H!O! catalase (Tao, 2009),where k is the rate constant. The rate refers to therate of reaction,which is defined in this investigation as the change in the concentration ofH!O!persecond(moldm-3s-1).TheE!of a reaction is theminimumamountof energywithwhich reactantmoleculesneed to collidesuccessfully,formingthetransitionstateintheprocess.ItisaxiomaticthattheE! ofareactionwouldbesignificantly reduced if a catalyst was present, because a catalyst, such as the aptly named catalase,provides an alternative reaction pathway by bringing reactant molecules closer together. Through aseriesofstochasticcollisions,H!O!moleculesmoveintotheactivesiteofcatalasemolecules.Therefore,H!O! molecules are brought closer together by catalase. In the process, it provides an alternativereactionpathwaywithalowerE!.Hencecatalase,actsasabiologicalcatalyst,reducingE!,asillustratedontheMaxwell-BoltzmannDistributionandtheenthalpychangediagramonthenextpage.

Page 2: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

2

Figure1:AMaxwell-Boltzmanndistributiondisplayinghowthereareanincreasednumberofparticleswithenergies

morethanorequaltotheEAofthecatalysedreaction(Gems,2011)

Figure2:Anenthalpychangediagramillustratingthereductioninactivationenergyforanexothermicreaction

whenacatalystisused(Clark,2013)

2.3:CalculationsTheE!of the decompositionwas found through a clock reaction. A stopwatchwas startedwhen thereactionbeganandwasstoppedwhen10cm3ofoxygengaswasevolved.Thenumberofmolesofoxygenevolvedwasascertainedthroughtheuseoftheidealgaslaw,whichis๐‘ƒ๐‘‰ = ๐‘›๐‘…๐‘‡,wherePispressureinPascal,Visthevolumeofoxygenevolvedinm3,TisthetemperatureofthesurroundingairinKelvin(K),๐‘›is the number ofmoles of oxygen evolved andR is the gas constant (8.3145JK-1mol-1) (John, 2013).Usingthisequation,thenumberofmolesofoxygenevolvedateachtemperaturewasfound.Withthisinmind, thenumberofmolesofH2O2

consumedwasdetermined,using themolar ratiobetweenO2andH2O2,which is1:2, as seen from theequation:2H2O2

(aq)โ†’2H2O (l) +O2 (g). ThenumberofmolesofH2O2

consumedwassubsequentlydividedbythetimetakentoevolve10cm3ofoxygengasaswellasthevolume of the solution in dm3 to produce a value for the rate of reaction in moldm-3s-1. Using theequation๐‘… = ๐‘˜ H!O! catalase , the rate of reaction was divided by the concentrations ofH!O!andcatalasetoproduceavaluefortherateconstant(k)indm3mol-1s-1.To findtheactivationenergy, theArrheniusequation,which isshownbelow,wasused,wherek is therateconstantofthereaction,Aisthefrequencyofsuccessfulcollisions,Risthegasconstant(8.3145JK-1mol-1)andTistemperatureinKelvin.Pleasenotethatln ๐‘˜issimplythenaturallogarithmofk(log! ๐‘˜).

ln ๐‘˜ = ln๐ด โˆ’ E!๐‘…๐‘‡

Thisequationwasplottedusingthekvaluesfoundateachtemperature,withln ๐‘˜onthey-axisand!!on

the๐‘ฅ-axis.Thegraphobtainedwassimilartothatshownbelow.

Figure3:AgraphdisplayingtheshapeofanArrheniusgraph(๐‘™๐‘› ๐‘˜ = ๐‘™๐‘› ๐ด โˆ’ !!!")

(John,2013)

Page 3: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

3

UsingMicrosoftExcel,thelineofregressionforthisgraphwassketchedanditsequationwasfound,toprovideavalueforthegradientofthe line,which isequaltoโˆ’ !!

!, thecoefficientof!

!intheArrhenius

equation.Thegradientwasthenmultipliedbyโ€“๐‘…,suchthattheproductofthismultiplicationwasequaltoE!.3:VariablesIndependentVariable:Temperature(K).Thisisbecause,useoftheArrheniusequation,requiresvaluesofkatdifferenttemperatures, inordertoplotagraphofln ๐‘˜ against!

!,whosegradient isusedtofind

thevalueofEA.Therefore,theindependentvariablethatwaschosenwasrelevanttotheinvestigation,whosepurposeistofindtheEAofthecatalyseddecompositionofhydrogenperoxide.Thetemperaturevalues that were tested were 298.0K, 300.5K, 303.0K, 305.5K and 308.0K. The use of 5 differenttemperature values increased the reliability of the results, because it increased the number of datapointsonthegraph,allowingforamoreaccuraterepresentationofthelinearrelationshipbetween!

!and

ln ๐‘˜.The values chosen also do not exceed 313K, because previous studies have shown that catalasestartstodenature(undergoanirreversibleconformationchange)attemperaturesexceeding313K(410C)(Abuchowski,1977).Theconformationchangeresultsinthedeteriorationintheshapeoftheactivesite,such that fewerH!O!molecules can โ€œlockโ€ into it. Therefore, if the experiment were conducted attemperatures in excess of 313K, the investigation would yield inaccurate values for k, because theconcentrationofreactingcatalasewouldbelowerthanthevalueusedindataprocessing.DependentVariable:Thetimetaken(s)for10cm3ofoxygengastobeevolved.Thiswasselectedasthedependentvariable,sinceitallowsforthequantificationoftherateofreaction(moldm-3s-1).Byusingtheequation๐‘… = ๐‘˜ H!O! catalase , we can find the value of the rate constant at each temperature, bydividing the rate of reaction found by the product of the concentrations of hydrogen peroxide andcatalase. k is essential for use in the Arrhenius equation, whereln ๐‘˜ is used to find EA, hence thedependentvariablechosenisfullyrelevanttotheinvestigation.Itisimportanttonotethattheunitsforthe ratewerechosen tobemoldm-3s-1because theunits for the rateconstant fora secondorder rateexpression(this istheorderofthereactionunderstudy)aredm3mol-1s-1.Therefore,toensuretherateconstantfoundisfoundintermsofdm3mol-1s-1,theunitsoftherateofreactionmustbemoldm-3s-1.ControlledVariables

1. pH: The pHwas kept constant at pH 7 using a sodium hydroxide buffer solution. This was toensurethatthecatalaseineachexperimentwasoperatingat itsoptimumpH(Su),allowingforanaccuratebasisforcomparisonindataprocessing.AbufferisasolutionthatresistschangesinpHwhensmallamountsofacidorbaseareadded,therefore,itallowedthepHofthemixturetoremain constant, with neglible changes. This also ensured that the pH was not a factor thataffectedthedifferencesintherateconstantatdifferenttemperatures.

2. Concentrations of reactants: The concentration ofH!O! and catalase in the experiment todeterminetheactivationenergyofthecatalyseddecompositionwerekeptat0.01moldm-3and0.1%respectivelytoensurethatthechangesintherateofreactionwhendifferenttemperatureswere compared were only caused by temperature, and not concentration, which is anotherfactor that affects the rateof reaction. Todo so, samplesof 1.5moldm-3H!O!werediluted toreducetheirconcentrationto0.01moldm-3.

3. Volumeofreactants:ThevolumeofH!O!,thepH7bufferandcatalasewerealsokeptconstantat 10cm3, 5cm3 and 5cm3 respectively. These quantities were measured and added using agraduated pipette. A low volume and concentration of catalase was chosen because eachcatalase molecule can react with approximately 4 โ‹… 10! molecules of H!O! (RSC, 2007).Therefore,a lowvolumeand lowconcentrationofcatalasewaschosen,so theprogressof thereactionwouldbeeasilyobservable.

4. Pressure: Data collected by Singaporeโ€™s National Environmental Agency (NEA) has shown thatpressure inSingapore,both indoorsandoutdoorsundergoes small fluctuationsaround101kPa(NEA,2015).Therefore,pressurecanbeconsideredacontrolledvariable,sincepreviousstatistics

Page 4: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

4

and researchhave shown that pressure in Singapore stays relatively constant at 101kPa (NEA,2015).Thiswouldhaveaffectedthecalculationsforthenumberofmolesofoxygengasevolved,becausethevalueofPintheidealgasequationwouldfluctuate.

4:Method4.1:Apparatus

1. MemmertWaterBath(ยฑ0.1K)2. 25cm3

pipette(ยฑ0.06cm3)3. 250cm3volumetricflask4. 50cm3glassgassyringe(ยฑ0.1cm3)5. Retortstand6. 1TestTube7. 20.5cmrubbertubing8. 6.67cm3of1.5moldm-3H!O!9. 125cm3of0.1%catalasesolution10. 393.3cm3ofdistilledwater

4.2:Photographofset-up

AphotographtakenbymyselfusinganiPhone6,on26/04/2016,thatdisplaystheexperimentinprogressintheMemmertwaterbath,withthemixtureofcatalase(0.1%)andH2O2(0.01moldm-3)inthetesttube,connectedtoa

glassgassyringeheldbyaretortstand4.3:ExperimentalProcedure

1. Prepare a standard solution ofH!O!with a concentration of 0.01 moldm-3 by diluting a1.5moldm-3 sample ofH!O! in a volumetric flash. Immediately, seal the volumetric flask toreducetheriskofH!O! decomposingimmediately.TheconcentrationofH!O!waskeptconstantat0.01moldm-3

becausethedecompositionofhydrogenperoxidewithcatalasepresentisaveryfast reaction, hence a low concentration of H2O2was chosen to allow for the progress of thereactiontobemoreeasilyobserved,thereforereducingsystematicerror.

2. SettheMemmertwaterbathto298.0K(ยฑ0.1K).3. Useagraduatedpipette(ยฑ0.06cm3)tomeasureexactly5cm3ofthecatalasesolutionandplaceit

intoatest tube.Forthisandall remainingmeasurementswiththepipette, readthepipetteatthemeniscustoensurethatthevolumesofsolutionsaddedtothetesttubeareaccurate.

4. Use a graduated pipette (ยฑ0.06cm3) to transfer 5cm3 of the pH 7 buffer to the test tubecontainingthecatalasesolution.

5. Placethetesttubeholdingthecatalasesolutionintothewaterbathforexactly10minutes,withthelidclosed,toallowthetemperatureofthetesttubeanditscontentstoequalise.

6. Connecta20.5cmrubbertubetoa50cm3glassgassyringe(ยฑ0.1cm3).7. Useagraduatedpipette(ยฑ0.06cm3)totransfer10cm3ofthepreparedH!O!solutionintoatest

tubeandallowthetipofthepipettetotouchthesurfaceofthesolutiontoallowforcohesionbetweenanyH!O!thatremainsinthepipetteandthesolution,toensurethatexactly10cm3ofH!O!isaddedtothesolution.

8. Immediately,coverthetesttubewiththerubberbungconnectedtothe25-cm3gassyringeandstartadigitalstopwatch(ยฑ0.01s).

9. Recordthetimetaken(s)for10cm3ofoxygengastobeevolvedusingthestopwatch.

Page 5: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

5

10. Repeatsteps4-9 fora totalof4additional timestoreducethe impactof randomerrorontheresultsandallowforthecollectionofsufficientdata.

11. Repeatsteps3-10atthefollowingtemperatures;300.5K,303.0K,305.5Kand308.0K(ยฑ0.1K).4.4:RiskAssessmentSafetyConsiderations:H2O2(aq)isapowerfulbleachingagentandโ€œcausesskinirritationโ€ฆdiscolouration,swellingandtheformationofpapulesandvesicles(blisters).โ€(FisherScientific,2000)Therefore,toensureahighlevelofsafetyduringtheexperiment,latexglovesandgoggleswerewornthroughoutthedurationoftheinvestigation.EthicalConsiderations:Therewerenoethicalconsiderationstobetakenintoaccount.EnvironmentalConsiderations:Therewerenoenvironmentalconsiderationstobetakenintoaccount.5:RawDataTable1:Arawdatatableshowingthetimetakenbyeachreplicatetoproduce10cm3ofoxygengas(s)

ateachtemperature(K)forthecatalyseddecompositionofhydrogenperoxide(0.01moldm-3)Temperature(K)(ยฑ0.1K)

298.0 300.5 303.0 305.5 308.0

Replicate

Timetakentoproduce10cm3ofoxygengas

(s)(ยฑ0.01s)

Timetakentoproduce10cm3ofoxygengas

(s)(ยฑ0.01s)

Timetakentoproduce10cm3ofoxygengas

(s)(ยฑ0.01s)

Timetakentoproduce10cm3ofoxygengas

(s)(ยฑ0.01s)

Timetakentoproduce10cm3ofoxygengas

(s)(ยฑ0.01s)

1 52.32 51.32 49.05 48.32 45.042 50.82 49.96 47.78 47.56 42.393 51.68 50.23 50.09 47.32 46.454 52.73 49.45 50.00 45.10 41.925 50.85 48.99 48.78 43.03 42.73

Variance(s2) 0.74 0.78 0.91 4.71 3.80Standard

Deviation(s)0.86 0.88 0.95 2.17 1.95

Thecancelledvalues(indicatedbya linethroughthevalue)wereexcludedfromfurthercalculationsastheyareanomalouspoints,assubstantiatedbythefactthatthestandarddeviation(s)andvariance(s2)ofthesetsofdatatheybelongtodecreasesignificantlyfollowingtheirremoval.5.1:QualitativeObservations

1. As temperature increased, the vigour of the effervescence observed in the test tube visiblyincreased.

2. Thecolourofthesolutionremainedconstant;averylightgreencolour.3. Thegassyringeindicated5cm3ofoxygengaswithin20seconds,whereasmorethan20seconds

wasrequiredtoproducetheremaining5cm3.6:ProcessedDataTheaveragetimetakentoevolve10cm3ofoxygengaswasfoundbythefollowingformula

time taken to evolve 10cm!of oxygen gas for each replicatenumber of replicates

Page 6: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

6

Examplecalculationdisplayinghowtheaveragetimetakentoevolve10cm3ofoxygengaswascalculatedfor298K

52.32 + 50.82 + 51.68 + 52.73 + 50.85

5= 51.68s

Tocalculatethenumberofmolesofoxygenevolved,theidealgaslawequation(๐‘ƒ๐‘‰ = ๐‘›๐‘…๐‘‡)wasused.

ExampleCalculationdisplayinghowthenumberofmolesofoxygenevolvedwascalculatedfor298K

๐‘ƒ๐‘‰ = ๐‘›๐‘…๐‘‡ = 101,00010

1,000,000= ๐‘› 8.3145 298

๐‘› =1.01

8.31 โ‹… 298= 4.08 โ‹… 10!! moles

Theremainingvaluesofnwerefoundinasimilarmanner.The number of moles of H2O2 consumed was found by multiplying the number of moles of oxygenevolvedby2,becauseaccordingtotheequationforthereaction,themolarratioofO2toH2O2is1:2.

ExampleCalculationdisplayinghowthenumberofmolesofH2O2consumedwascalculatedfor298K2 4.08 โ‹… 10!! = 8.16 โ‹… 10!!moles

The rate of reaction was then calculated by dividing the number of moles of H2O2 consumed by thevolumeofthesolution(0.02dm3),andsubsequentlybytheaveragetimetakenfor10cm3ofoxygengastobeevolved.

ExampleCalculationdisplayinghowtherateofreactionwascalculatedfor298K8.16 โ‹… 10!!

(0.02 โ‹… 51.68)= 7.89 โ‹… 10!! moldm!!s!!

Table2:Aprocesseddatatableshowingtheaveragetimetakentoevolve10cm3ofoxygengas(s)

(ยฑ0.01s),numberofmolesofoxygenevolved(mol),thenumberofmolesofH2O2consumed(mol)andtherateofreaction(moldm-3s-1)foreachtemperature(K)(ยฑ0.1K)

Temperature(K)(ยฑ0.1K)

Averagetimetakentoevolve

10cm3ofoxygengas(s)

(ยฑ0.01s)

Numberofmolesof

oxygenevolved(๐Ÿ๐ŸŽ!๐Ÿ’mol)

NumberofmolesofH2O2

consumed(๐Ÿ๐ŸŽ!๐Ÿ’mol)

Rateofreaction(moldm-3s-1)

298.00 51.68 4.08 8.16 7.89 โ‹… 10!!300.50 49.99 4.04 8.08 8.08 โ‹… 10!!303.00 49.14 4.01 8.02 8.16 โ‹… 10!!305.50 47.33 3.98 7.96 8.41 โ‹… 10!!308.00 44.74 3.94 7.88 8.81 โ‹… 10!!

Pleasenote that fullvalueswereused incalculations,but thedisplayedvaluesareshown inamannerthatisconsistentwiththeuncertaintyoftheapparatusused.Temperature !!valueswereestablishedbycalculatingthereciprocalofeachtemperaturevaluethatwastested.

Examplecalculationdisplayinghow ๐‘‡๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ !!wascalculatedfor298K

Temperature !! =1

298๐พ= 3.36 โ‹… 10!!K!!

k(rateconstant)valueswerefoundusingtherateequationforthedecompositionofhydrogenperoxide( ๐‘… = ๐‘˜ H!O! catalase ). The rate of reaction at each temperature was found divided by theconcentration ofH!O!and subsequently by the concentration of catalase (3.03 โ‹… 10!!moldm-3). Theconcentration ofH!O!was assumed to remain constant at 0.01moldm-3, due to the small number ofmolesofH!O!consumedintheclockreactions(pleaseseetable2).The units for the concentration of catalase were converted to moldm-3 from % to generate the rateconstant. In the calculation of this concentration, a critical assumptionwasmade; that 100g ofwater

Page 7: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

7

(H2O)hasavolumeof0.1dm3.Hence,theconcentrationofcatalase(percentagebymass)wasdividedbythemolecularmassofcatalase(33,000)(RSC).

๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘Ž๐‘ก๐‘Ž๐‘™๐‘Ž๐‘ ๐‘’๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›

รท ๐‘…๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘™๐‘’๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘Ž๐‘ก๐‘Ž๐‘™๐‘Ž๐‘ ๐‘’

=

๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘Ž๐‘ก๐‘Ž๐‘™๐‘Ž๐‘ ๐‘’๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘š๐‘œ๐‘™๐‘’๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘๐‘Ž๐‘ก๐‘Ž๐‘™๐‘Ž๐‘ ๐‘’

๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›=๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ ๐‘œ๐‘“ ๐‘š๐‘œ๐‘™๐‘’๐‘  ๐‘œ๐‘“ ๐‘๐‘Ž๐‘ก๐‘Ž๐‘™๐‘Ž๐‘ ๐‘’

๐‘š๐‘Ž๐‘ ๐‘  ๐‘œ๐‘“ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›

Theconcentrationofcatalaseremainsunchanged,becauseasacatalyst,itissimultaneouslyregeneratedas it isbeingused toprovideanalternative reactionpathway.This is substantiatedbymyobservationthatthecolourofthesolution(alightgreen,becauseofthecatalase)remainedconstantthroughoutthereaction.

Examplecalculationdisplayinghowtheconcentrationofcatalase(moldm-3)wasfoundAssumingwehaveasampleweighing100g

0.1๐‘”100๐‘”

รท 33000๐‘”๐‘š๐‘œ๐‘™!! = 0.1๐‘”0.1dm! รท 33000๐‘”mol!! = 3.03 โ‹… 10!!๐‘š๐‘œ๐‘™๐‘‘๐‘š!!

kateachtemperaturewasthenfoundbydividingtherateofreaction(R)ateachtemperaturebytheproductoftheconcentrationsofH!O!andcatalase.

Examplecalculationdisplayinghowkat298Kwasfound

๐‘Ÿ๐‘Ž๐‘ก๐‘’ H!O! catalase

= ๐‘˜

๐‘˜ =7.89 โ‹… 10!!

(0.01)(3.03 โ‹… 10!!)= 2603.96dm!mol!!s!!

ln ๐‘˜wascalculatedbytakingthenaturallogarithmofthecalculatedkvalues.

Examplecalculationdisplayinghow๐‘™๐‘› ๐‘˜at298Kwasfoundln ๐‘˜ = log! 2603.96 = 7.86

Table3:Aprocesseddatatabledisplayingtherateconstantsofthereaction(moldm-3s-1)atdifferent

temperature(K)(ยฑ0.1K)and ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ(๐Š!๐Ÿ)Temperature(K)

(ยฑ0.1K)๐“๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ

(10-3K-1)k

(moldm-3s-1)๐ฅ๐ง๐’Œ

298.0 3.36 2600 7.86300.5 3.33 2670 7.88303.0 3.30 2690 7.90305.5 3.27 2780 7.92308.0 3.25 2910 7.98

Table4:Aprocesseddatatabledisplayinghowlnkvarieswith ๐ญ๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ(๐Š!๐Ÿ)

๐“๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ(10-3K-1)

๐ฅ๐ง๐’Œ

3.36 7.863.33 7.883.30 7.903.27 7.923.25 7.98

AnArrheniusgraphwasthenplotted,with Temperature !!onthex-axisandln ๐‘˜onthey-axis.

Page 8: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

8

Graph1:AnArrheniusgraphdisplayinghow๐ฅ๐ง๐’Œvarieswith ๐“๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ(10-3K-1)withtheequationofthelineofregressionanditsR2valueindicated

Thegradientofthelineisgivenbythecoefficientofxonthelineofregression,whichis-0.9746.ThegradientforanArrheniusgraph,whichisthetypeofgraphshownabove,isequaltoโˆ’ !!

!.

Hence,thegradientwasmultipliedbyโ€“๐‘…toprovideavalueforE!inJmol-1.E! = โˆ’0.9746 โ‹… โˆ’8.3145 = 8.10Jmol!!

Thepoint(3.25,7.98)doesnotfollowthelineofregressionascloselyastheremainingpoints,henceitwasdiscardedasananomalousdatapoint,andE!wasrecalculatedusingthegraphbelow.

Graph2:AnArrheniusgraphdisplayinghow๐ฅ๐ง๐’Œvarieswith ๐“๐ž๐ฆ๐ฉ๐ž๐ซ๐š๐ญ๐ฎ๐ซ๐ž !๐Ÿ

(10-3K-1)withtheequationofthelineofregressionaswellasitsR2valueindicatedandtheanomalousdatadiscarded

E! = โˆ’0.6667 โ‹… โˆ’8.3145 = 5.54Jmol!! = 0.00554kJmol!!

Thesystematicerroroftheexperimentisanotherfactorthatmustbetakenintoaccount,henceitwascalculatedinthesectionbelow.7:CalculationofRandomErrorTheaveragepercentageuncertaintyofthetimetakenfor10cm3ofoxygengastobeevolvedacrossallreplicateswasfoundbyfindingthepercentageuncertaintyofeachmeasurementforthetimetakenfor10cm3ofoxygengastobeevolvedforeachreplicateandsubsequentlydividingthisvalueby5(astherewere5replicatesforeachtemperature).

y=-0.6667x+10.1Rยฒ=0.99999

7.847.867.887.97.927.947.967.98

3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38

lnk

10^(-3)*1/Temperature(1/K)

Rยฒ=0.88267

y=-0.9746x+11.126

7.847.867.887.97.927.947.967.98

3.24 3.26 3.28 3.3 3.32 3.34 3.36 3.38

lnk

10^(-3)*1/Temperature(1/K)

Page 9: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

9

Examplecalculationdisplayinghowtheaveragepercentageuncertaintyofthetimetakenfor10cm3ofoxygengastobeevolvedacrossallreplicatesat298Kwascalculated

0.152.32 โ‹… 100% +โ‹ฏ+ 0.1

50.85 โ‹… 100%

5= 0.194%

Thepercentageuncertaintyofthevolumeofoxygenevolved,thetotalvolumeofsolutionaddedtothetesttubeforeachreplicateandthetemperaturethewaterbathwassettoforeachreplicatewerefoundbythefollowingformula; !"#$%&'("&) !" !""!#!$%&

!"#$%&"' !"#$% !"#$% !!! !""!#!$%&โ‹… 100%.

Examplecalculationdisplayinghowtheaveragepercentageuncertaintyofthevolumeofoxygenevolvedacrossallreplicateswascalculated

0.110

โ‹… 100% = 1%

The total uncertainty for each temperature was ascertained by performing the sum of the averagepercentageuncertaintyofthetimetakenfor10cm3ofoxygengastobeevolvedacrossallreplicates,thepercentageuncertaintyofthevolumeofoxygenevolved,thetotalvolumeofsolutionaddedtothetesttubeforeachreplicateandthetemperaturethewaterbathwassettoforeachreplicate.

Examplecalculationdisplayinghowthetotaluncertaintyat298Kwascalculated0.1940% + 1.0000% + 0.3000% + 0.0336% = 1.5276%

Next, the random error of the investigationwas calculated, by adding the total uncertainties at eachtemperatureanddividingthesumby5.

Examplecalculationdisplayinghowtherandomerroroftheinvestigationwascalculated

1.5276% + 1.5333% + 1.5371% + 1.5441% + 1.5568%5

= 1.5398%

TheuncertaintyoftheE!valuecalculatedwasfoundbymultiplyingtherandomerroroftheexperiment(%)bytheE! valuecalculatedinthemannershownbelow.

1.5398% โ‹… 0.00554Jmol!! = ยฑ0.0000853kJmol-1 Table5:Atableshowingtheerrorfromeachapparatusandthetotalrandomerrorforeachreplicate

ateachtemperature

Temperature(K)

(ยฑ0.1K)

Averagepercentageuncertaintyofthetimetakenfor10cm3ofoxygengas

tobeevolvedacrossallreplicates

(%)

Percentageuncertainty

ofthevolumeofoxygenevolved(%)

Percentageuncertaintyofthetotalvolumeofsolutionaddedtothetesttubeforeach

replicate(%)

Percentageuncertainty

ofthetemperaturethewater

bathwassettoforeachreplicate(%)

Totaluncertainty

(%)

Randomerroroftheinvestigation

(%)

298.0 0.1940 1.0000 0.3000 0.0336 1.5276 1.5398300.5 0.2000 1.0000 0.3000 0.0333 1.5333 303.0 0.2041 1.0000 0.3000 0.0330 1.5371 305.5 0.2114 1.0000 0.3000 0.0327 1.5441 308.0 0.2243 1.0000 0.3000 0.0325 1.5568

Page 10: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

10

8:Evaluation8.1:ConclusionTheE!ofthecatalyseddecompositionofH!O!(0.01moldm-3)inthepresenceofcatalase(0.1%)wassuccessfullyfoundinthecourseofthisinvestigationtobe0.00554kJmol-1ยฑ0.0000853kJmol-1.Thisvalueisingeneralagreementwithpreviousresearchconductedonthereactionunderstudy.Aliteraturevalue(0.00658kJmol-1)(Su)wasusedinordertocalculatetheexperimentโ€™stotalerror.

Total error = ๐‘™๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ โˆ’ ๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’

๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’โ‹… 100% =

0.00658 โˆ’ 0.005540.00658

โ‹… 100% = 19.9%

Thesystematicerrorcannowbefoundbysubtractingtherandomerroroftheexperimentfromthetotalerroroftheexperiment.

๐‘†๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘ ๐‘’๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘’๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š ๐‘’๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ = 19.9% โˆ’ 1.5398% = 18.3602%Despitetherelativelyhighsystematicerror,Ihavehighconfidenceinmyresultsduetotheirprecision(ascanbeseenbythelowstandarddeviationandvarianceamongstreplicates)aswellasthelowtotalerroroftheexperiment.Theexperimentisalsoisinagreementwiththecurrentscientificconsensus,suchastheincreaseintherateconstantastemperatureincreases,whichissubstantiatedbymyobservationthatathighertemperatures,theeffervescenceobservedinthereactionwasmorevigorous.Thisindicatesanincreaseintherateofreactionastemperatureincreased,whichstemmedfromanincreaseintherateconstant.Myobservationthattherateofreactionstartedtodeclineafter5cm3ofoxygengaswasproducedissupportedbytheworkofP.George,whofoundthattherateofdecompositionofH!O!slowlydeclinedoverthecourseofthereaction,butonlymarginally(George,1947).Despitetheageofthisstudy,itisreliablebecauseofthestatureoftheauthor,aProfessorattheUniversityofCambridge.Becauseofhisposition,hehadaccesstoextremelypreciseapparatusandconductedmultiplerepeats;hence,theconclusionshedrewwereoflowuncertaintyandarethereforereliable.8.2:StrengthsTheexperimenthadlowrandomerror(1.5398%)duetolowuncertaintyoftheapparatusused,increasingthecertaintyoftheconclusiondrawninthesectionabove.Inaddition,thelowstandarddeviation(s)andvariance(s2)inthetimestakenfor10cm3ofoxygentobeevolvedateachtemperatureacrossallreplicateswereverylow,afteranomalouspointshadbeenremoved.Thisdelineatesthefactthatmyresultsareextremelyprecise.Furthermore,thehighR2valueindicatedingraph1(0.99999)demonstratestheaccuracyoftheprocesseddatabecausethisR2valueindicatesastrongcorrelationbetween Temperature !!andln ๐‘˜,whichistheidealdescriptionofanArrheniusgraph.Myprocesseddataisthusconsistentwithestablishedscientifictheories.Theuseofawaterbathwasalsoastrengthoftheexperimentbecauseitallowedfortheuniformdistributionofthermalenergyinthesolution.Hencetemperature,asanindependentvariable,waseffectivelycontrolled.8.3:WeaknessesHowever,theexperimenthadanumberofweaknesses.ThedatausedtofindtheE!islimitedbecauseoftheexclusionofthevalueoftherateconstantat298.0K,decreasingthenumberofdatapointsontheArrheniusgraph(Graph2).Thishadtheeffectofincreasingthepotentialimpactofrandomerrorontheinvestigation,assubstantiatedbytherelativelyhighsystematicerrorof18.3602%.Therefore,theinvestigationislimitedbecauseoftheuseofonly4datapointsfortheArrheniusgraph,decreasingthecertaintyoftheconclusiondrawn.Thiscanberectifiedbyrepeatingtheexperimentat298.0Kand295.5Kinordertoincreasethenumberofdatapointsonthegraph,whichwoulddecreasetheimpactofrandomerrorontheresults.NewsolutionsofH!O!wereonlymadeonceeveryday,henceincreasingthepossibilitythat,beforebeingtransferredtothetesttube,asmallamountoftheH!O!hadpossiblydecomposed.ThispossiblyreducedtheconcentrationofH!O!,achangethatwasnotaccountedforinthecalculations,hence

Page 11: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

11

resultinginthevaluesoftherateconstantscalculatednotbeingaccuraterepresentationsofthetruerateconstants.ThiscouldhavepotentiallyaffectedtheaccuracyofthevalueofE!thatwascalculated.ThiscanberectifiedbypreparingstandardsolutionsofH!O!justbeforetheadditionofH!O!tothetesttube,allowingformoreaccuraterateconstantvaluestobecalculated.AmoreaccuratevalueforE!couldthenbecalculated.Futhermore,thetemperatureusedinthecalculationofthenumberofmolesofoxygenevolvedmaynothavebeenarepresentationoftheoxygenโ€™struetemperature,sinceitstemperaturewasassumedtobethesameasthatofthewaterbathfollowingequalisation.Therefore,itispossiblethatvalueforthenumberofmolesofoxygenusedinthecalculationoflnkwasunreliable,impedingthereliabilityoftheE!valuecalculatedinthisexperiment.Thiscanberectifiedbyinsertingathermometerintothegasjarfollowingthecollectionofthe10cm3ofoxygen,suchthattheactualtemperatureoftheoxygenproducedcanbemeasured.Thesmallrangeoftheindependentvariablewasalsoaweakness,becauseitlimitstheaccuracyofthegradientvaluecalculatedbyMicrosoftExcel,asaresultoffewercoordinatesonthegraph.ThisweaknesspossiblyhadaneffectonthefinalE!value,asthegradientcalculatedmaynothavebeenarepresentationofthetruegradient,consequentlyaffectingthefinalE!valuecalculated.Toreducetheimpactofthislimitation,theexperimentcouldhavebeenrepeatedat5additionaltemperatures,alllowerthan298.0Kandnonehigherthan308.0K,ascatalasewoulddenatureattemperatureshigherthan308.0K.Furthermore,itispossiblethattheratecalculateddoesnotreflecttheinitialrate,becausethefirst5cm3ofgaswasevolvedinlesstimethantheremaining5cm3inalltheexperimentsconducted,indicatingthattheratecalculatedwastheaveragerate,hencetheconcentrationvaluesemployedintherateequationtocalculatethedifferentvaluesofkwerelikelynotreflectionsofthetruevalues.However,ifthestopwatchwerestoppedat5cm3,suchthattheratecalculatedwouldbetheinitialrate,therandomerroroftheinvestigationwouldincrease,asthepercentageuncertaintyofthevolumeofgasmeasuredincreasesfrom1%to2%,therebyincreasingtherandomerroroftheinvestigation.Consideringthispossibleincreaseinuncertainty,itispellucidthatthecalculationoftheaverageratewasaccurate,asitsignificantlyreducedrandomerrorrelativetoiftheinvestigationcalculatedtheinitialrateofreaction.Inaddition,thebuffersolutionusedcouldhavepotentiallyaffectedtheaccuracyofthefinalE!valueproduced,becauseitcontainedsodiumhydroxide,whosedissacoiatedsodiumionscouldhavepotentiallycausedinaconformationchangeinthecatalase,duetoitspositivecharge,hencetherateatwhichtheH!O!decomposedwaspossiblyreduced.Conversely,researchconductedbyEysterfoundthatthepresenceofsodiumionshadaneglibleeffectontherateatwhichthecatalyseddecompositionofH!O!occursinthepresenceofcatalase(Eyster,1953),hencethislimitationhadaminoreffectontheinvestigation.8.4:ExtensionsApossibleextensiontothisinvestigationwouldbetodeducethedifferenceintheactivationenergyofthecatalysedreactions,inthepresenceofdifferentcatalysts,suchastransitionmetalionsandiodideions,tofindwhichcatalystcanreducetheactivationenergyofthereactiontothegreatestextent.Thiswoulduncoverthecatalystwouldbestsuitedinthepreservationofeggproducts.Anotherinvestigationcouldalsobecarriedouttoassessifotherchemicalreactionscanproducemoreoxygenperunittime,relativetothecatalyseddecompositionofH!O!.Thisknowledgewillbehelpfulinmaximisingtheefficiencyofthepreservationofeggproducts.8.5:LimitationsofthescopeoftheinvestigationHowever,theinvestigationislimitedbecauseitdoesnotcalculatetheE!oftheuncatalyseddecompositionofH!O!.ThislimitstheextenttowhichtheinvestigationexaminesthemagnitudeofthedifferencebetweentheactivationenergyoftheuncatalysedandcatalyseddecompositionofH!O!.This

Page 12: · PDF file · 2017-01-07Title: Microsoft Word - Chemistry IA .docx

12

limitationcanberectifiedbyextendingtheinvestigationtoconductthesameexperimentintheabsenceofcatalase,tofindtheE!oftheuncatalyseddecompositionofH!O!.9:Bibliography

1. Tucker,G.A.andWoods,L.F.J.,1995.Enzymesinfoodprocessing.SpringerScience&BusinessMedia,Retrievedfromhttps://books.google.com.sg/books?id=KKDaBwAAQBAJ&pg=PA29&lpg=PA29&dq=glucose+and+gluconic+acid+eggs&source=bl&ots=FqzSaVLc7x&sig=fmmGOPTvNEaYZUtjFibYXRo2GTs&hl=en&sa=X&ved=0ahUKEwjz05WMz6TMAhXHHY4KHbKABkIQ6AEIMDAE#v=onepage&q=glucose%20and%20gluconic%20acid%20eggs&f=false,dateofaccess14/4/2016,10:14pm

2. Tao,Z.,Raffel,R.A.,Souid,A.K.andGoodisman,J.,2009.Kineticstudiesonenzyme-catalyzedreactions:oxidationofglucose,decompositionofhydrogenperoxideandtheircombination.Biophysicaljournal,96(7),pp.2977-2988.

3. AvogadroChemistry.,MaterialSafetyDataSheetโ€“HydrogenPeroxide.ACC#11189Sections1-3.Retrievedfromhttp://avogadro.chem.iastate.edu/MSDS/H2O2_30pct.htm,dateofaccess20/4/2016,5:30pm

4. GMOCompass.,2010.Catalase.GMO.Retrievedfromhttp://www.gmo-compass.org/eng/database/enzymes/89.catalase.html,dateofaccess5/11/15,3:23pm

5. Abuchowski,A.,McCoy,J.R.,Palczuk,N.C.,vanEs,T.andDavis,F.F.,1977.Effectofcovalentattachmentofpolyethyleneglycolonimmunogenicityandcirculatinglifeofbovinelivercatalase.JournalofBiologicalChemistry,252(11),pp.3582-3586.

6. Eyster,H.,1953.Effectsofcertaininorganicionsoncornleafcatalase.TheOhioJournalofScience,53(2),pp.102-104.

7. Su.,CatalaseKinetics.MIT8. Gems.,2011.6.25-6.27.GemsChemistryBlog.Retrievedfrom

http://gemschemistry12.blogspot.sg/2011/05/625-627.html,dateofaccess27/4/2016,12:27pm9. John,D.,2013.TheArrheniuslaw:ArrheniusPlots.Chemwiki.Chemwiki.ucdavis.edu.Retrieved

fromhttp://chemwiki.ucdavis.edu/Core/Physical_Chemistry/Kinetics/Modeling_Reaction_Kinetics/Temperature_Dependence_of_Reaction_Rates/The_Arrhenius_Law/The_Arrhenius_Law%3A_Arrhenius_Plots,dateofaccess27/4/2016,6:15am

10. NationalEnvironmentAgency(NEA).,2015.LocalClimatology.NEAWeatherandClimate.Retrievedfromhttp://www.nea.gov.sg/weather-climate/climate-information/local-climatology,dateofaccess20/4/2016,5:21pm

11. George,P.,1947.Reactionbetweencatalaseandhydrogenperoxide.Nature,160,pp.41-43.12. TheRoyalChemistrySociety(RSC).,Catalase.RSC.13. RSC.,2007.InvestigatingActivationEnergies.RSC.Retrievedfrom

http://www.rsc.org/Education/EiC/issues/2007Jan/InvestigatingActivationEnergies.asp,dateofaccess1/5/2016,8:43am


Top Related