Transcript
Page 1: «  The incredible progresses of  particle physics and  cosmology »

« The incredible progresses of particle physics and cosmology »

P. Binétruy

AstroParticule et Cosmologie, Paris

XII International Workshop on « Neutrino Telescopes » Venezia, Palzzo Franchetti, 9 March 2007

Does our knowledge of the laws of microscopic physics help us to understand the universe at large?

Page 2: «  The incredible progresses of  particle physics and  cosmology »

A microscopic world almost fully explored (in as much as it is known)

Page 3: «  The incredible progresses of  particle physics and  cosmology »

All ingredients of the Standard Model as we know it have been understood and confirmed except for the Higgs

Page 4: «  The incredible progresses of  particle physics and  cosmology »

All observations on quark mixing are consistent with a single CP-violating phase

Page 5: «  The incredible progresses of  particle physics and  cosmology »

ν e

ν μ

ν τ

cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

×

cosθ13 0 sinθ13

0 1 0

sinθ13 0 cosθ13

×

1 0 0

0 1 0

0 0 e−iδ

1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23

×

ν 1

ν 2

ν 3

Atmos. neutrinosSolar neutrinos

θ13 ? ; δCP ???

Neutrinos : most of the MNSP mixing matrix is known

Page 6: «  The incredible progresses of  particle physics and  cosmology »

Remaining unexplained :

• mass hierarchies, i.e. a theory of Yukawa couplings

• strong CP-violating phase i.e. θ < 10-9

Horizontal symmetries?

Page 7: «  The incredible progresses of  particle physics and  cosmology »

A universe at large which remains largely unexplained in the context of the Standard Model :

• dark matter• acceleration of the universe• matter-antimatter antisymmetry

Page 8: «  The incredible progresses of  particle physics and  cosmology »

Dark matter

Galaxy rotation curves

Lensing

Page 9: «  The incredible progresses of  particle physics and  cosmology »

h2 ~109 GeV-1 xf

g*1/2 MP < ann v >

25

Number of deg. of freedom at time of decoupling

mass ~ MEW < ann v > ~ EW/MEW 2 h2 ~ 1

to be compared with dark h2 = 0.112 0.009

New particles may be valuable candidates

Weakly Interacting Massive Particles (absent in SM)

Page 10: «  The incredible progresses of  particle physics and  cosmology »

Supernovae (Sn Ia) :

astro-ph/0402512

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

Hubble plot : magnitude vs redshift

Recent acceleration of the Universe

Page 11: «  The incredible progresses of  particle physics and  cosmology »

Matter-antimatter asymmetry

No working astrophysical model

From the point of view of fundamental physics, 3 necessary ingredients (Sakharov) :

• CP violation • B violation • out of equilibrium first order phase transition mHiggs > 72 GeV

Page 12: «  The incredible progresses of  particle physics and  cosmology »

Will the theories of the microscopic world allow us to understandbetter the Universe at large?

Page 13: «  The incredible progresses of  particle physics and  cosmology »

NO : the vacuum energy (cosmological constant) problem

Classically, the vacuum energy is not measurable. Only differencesof energy are (e.g. Casimir effect).

Einstein equations: Rν - R gν/2 = 8G Tν

Hence geometry may provide a way to measure absolute energies e.g. vacuum energy:

geometry energy

Page 14: «  The incredible progresses of  particle physics and  cosmology »

-1/2 ~ MW -1

~ 10 -18 m electroweak scale

or -1/2 ~ mP-1 ~ 10 -34 m Planck scale

Rν - R gν/2 = 8G Tν + g ν

~ 0.7 ~ 1 -1/2 ~ H0 -1 =10 26 m

size of the presently visible universe

A very natural value for an astrophysicist !

A high energy theorist would compute the vacuum energy and find

Related questions : why now? why is our Universe so large, so old?

Page 15: «  The incredible progresses of  particle physics and  cosmology »

YES : the example of dark matter

Will the theories of the microscopic world allow us to understandbetter the Universe at large?

Page 16: «  The incredible progresses of  particle physics and  cosmology »

Connecting the naturalness of the electroweak scale with the existence of WIMPs

naturalness

mh2 = t

2 - g2 - h

23mt

2

22v2

6MW2 + 3MZ

2

8 2v2

3mh2

8 2v2

Naturalness condition : |mh2 | < mh

2

v = 250 GeV

Introduce new physics at t (supersymmetry, extra dimensions,…) or raise mh to 400 GeV range

Page 17: «  The incredible progresses of  particle physics and  cosmology »

stable particles in the MEW mass range

E

New local symmetry

Standard Modelfermions

New fields

Page 18: «  The incredible progresses of  particle physics and  cosmology »

stable particles in the MEW mass range

E

New local symmetry

New discrete symmetry

Standard Modelfermions

New fields

Lightest odd-parityparticle is stable

Page 19: «  The incredible progresses of  particle physics and  cosmology »

Example : low energy SUSY

E

R symmetry

R parity

Standard Modelfermions

Supersymmetricpartners

Stable LSP

Page 20: «  The incredible progresses of  particle physics and  cosmology »

Bullet proof

Dark matterGravitational lensing

Ordinary matterX-rays (Chandra)

astro-ph/0611496

Clowe, Randall, Markevitch

Page 21: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur Sorenson Video 3

sont requis pour visionner cette image.

Page 22: «  The incredible progresses of  particle physics and  cosmology »

Going beyond : what might the infinitely small tell us in the future about the infinitely large?

• discovery of scalar particles• discovery of WIMPs• (discovery of extra dimensions)

Page 23: «  The incredible progresses of  particle physics and  cosmology »

Fundamental scalar fields

The discovery of the Higgs would provide the first fundamental scalar particle.

Scalars are the best remedy to cure cosmological problems:

Inflation, dark energy, compactification radius stabilization…

Scalars tend to resist gravitational clustering and thus may provide a diffuse background

Speed of sound cs2 = p/ ~ c2

Page 24: «  The incredible progresses of  particle physics and  cosmology »

Can we hope to test the dark energy idea at colliders?

Most popular models based on scalar fields (quintessence) :

V

has to be very light : m ~ H0

~ 10-33 eV

exchange would provide a long range force : has to be extremely weakly coupled to matter

HOPELESS FOR COLLIDERS

Page 25: «  The incredible progresses of  particle physics and  cosmology »

Dark matter: search of WIMPs at LHC

missing energy signal

Produced in pair : difficult to reconstruct, in the absence of a specific model

Page 26: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

search through direct detection

e.g. minimal sugra model

Page 27: «  The incredible progresses of  particle physics and  cosmology »

Going beyond : what might the infinitely large tell us in the future about the infinitely small?

• cosmological data and neutrino masses• gravitational waves and the electroweak phase transition• high energy cosmic rays and extra dimensions

Page 28: «  The incredible progresses of  particle physics and  cosmology »

Testing the scale of (lepton) flavour violations

Neutrino masses Baryon asymmetry

Flavour violations

Flavor physicsMF ~ 1010 GeV ?

Cosmology

Colliders

ν =mν /(92.5eV)

mν = MEW2 / MF

Page 29: «  The incredible progresses of  particle physics and  cosmology »

Data ∑mνi

(95%CL)

WMAP 1.8 eV -

WMAP+SDSS 1.3 eV 7.1+4.1

WMAP+2dFGRS 0.88 eV 2.7 1.4

CMB+LSS+SN 0.66 eV 3.3 1.7

QuickTime™ et undécompresseur TIFF (LZW)

sont requis pour visionner cette image.

fraction of ν in dark matter

mνi

darkh2

baryonh2

WMAPSDSS

astro-ph/0310723

WMAP 3 yr: astro-ph/0603449

Page 30: «  The incredible progresses of  particle physics and  cosmology »

Electroweak phase transition and gravitational waves

If the transition is first order,nucleation of true vacuum bubblesinside the false vacuum

Collision of bubbles production of gravitational waves

Page 31: «  The incredible progresses of  particle physics and  cosmology »

• in the Standard Model, requires mh < 72 GeV (ruled out)• MSSM requires too light a stop but generic in NMSSM• possible to recover a strong 1st order transition by including H6 terms in SM potential• other symmetries than SU(2)xU(1) at the Terascale ( baryogenesis)

Pros and cons for a 1st order phase transition at the Terascale:

Page 32: «  The incredible progresses of  particle physics and  cosmology »

.

Gravitons of frequency f produced at temperature T are observed at a redshifted frequency

f = 1.65 10-7 Hz --- ( ----- ) ( ---- )1 T

1GeV

g

100

1/6

At production = H-1

Horizon lengthWavelength

g is the number of degrees of freedom

Page 33: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

Gravitational wave detection

Gravitational wave amplitude

Page 34: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

T in GeV10 3 10 6 10 9

Gravitational wave amplitude

Page 35: «  The incredible progresses of  particle physics and  cosmology »

LF band0.1 mHz - 1 Hz

VIRGO

T in GeV10 3 10 6 10 9

Electroweak breaking scale

Page 36: «  The incredible progresses of  particle physics and  cosmology »

LISAlaunch > 2015

ESA/NASA mission

Three satellites forming a triangle of 5 million km sides

QuickTime™ et undécompresseur Cinepak

sont requis pour visionner cette image.

Page 37: «  The incredible progresses of  particle physics and  cosmology »
Page 38: «  The incredible progresses of  particle physics and  cosmology »

QuickTime™ et undécompresseur Codec YUV420

sont requis pour visionner cette image.

Page 39: «  The incredible progresses of  particle physics and  cosmology »

High energy cosmic rays and extra dimensions

Extra dimensions

Black holes

Page 40: «  The incredible progresses of  particle physics and  cosmology »

More than 3 dimensions to our space?

Why ask?

Unification of gravity with the other interactions seems to require it :• unification electromagnetism-gravity (Kaluza 1921-Klein 1926)• unification of string theory (>1970)

For a theory in D=4+n dimensions with n dimensions compactifiedon a circle of radius R :

mPl2 = MD

2+n Rn

MD fundamental scale of gravity in D dimensions

Page 41: «  The incredible progresses of  particle physics and  cosmology »

If MD ~ 1 TeV, possible to produce black holes

Relevant scale for a black hole of mass MH is Schwarzschild radius:

rS ~ ----- --------1

MD

MBH

MD( )

1/1+n

Thorne: a black hole forms in a 2-particle collision if the impact parameteris smaller than rS.

~ rS2

gauge inter.gravity

matter

Page 42: «  The incredible progresses of  particle physics and  cosmology »

Hawking evaporation of the BH caracterized by the temperature

TH = _______n+1

4 rS

dE / dt TH4+n gives BH ~ ----- --------

MBH

)MD MD(3+n/1+n

1

BH decays visibly to SM particles:• large multiplicity N ~ MBH / (2TH)• large total transverse energy• characterisitic ratio of hadronic to leptonic activity of 5:1

Page 43: «  The incredible progresses of  particle physics and  cosmology »

Search for BH formation in high energy cosmic ray events

Look for BH production by neutrinos in order to overcome the QCD background:

horizontal showers

Page 44: «  The incredible progresses of  particle physics and  cosmology »

(ν N BH) for n=1 to 7 and MD = 1 TeV

SM (ν N l X)Anchordoqui, Feng, Goldberg, Shapere hep-th/0307228

n=1

ν N BH MD-2(2+n)/(1+n)

Page 45: «  The incredible progresses of  particle physics and  cosmology »

hep-ph/0206072

Page 46: «  The incredible progresses of  particle physics and  cosmology »

xmin = MBHmin/MD

MBHmin smallest BH mass for which we

trust the semi-classical approximation.

Includes inelasticity :

MBH ≠ s

hep-ph/0311365

Auger : bkgd of 2SM ν + 10 hadronic evts

n=6

Page 47: «  The incredible progresses of  particle physics and  cosmology »

Does our knowledge of the laws of microscopic physics help us to understand the universe at large?

Page 48: «  The incredible progresses of  particle physics and  cosmology »

Three and a half scenarios :

• The orthodox scenario : discovery of supersymmetry at LHC Pros : light HiggsCons : too orthodoxThis would confirm the general features of the « fundamental » universe as we understand it : role of scalars, nature of dark matter, string theory probable quantum theory of gravity…

• The standard scenario : discovery only of the HiggsPros : minimalCons : too standard, mass hierachies not addressedThis might be the end of large colliders. Only way of doing high energy physics might be through neutrinos and astroparticles

Page 49: «  The incredible progresses of  particle physics and  cosmology »

• The favourite scenario: discovery of something unexpected

• The radical scenario : discovery of large extra dimensionsPros : new ways of breaking symmetriesCons : why large? Revolutionize our perspectives on the Universe. String theory probable quantum theory of gravity. BH production may overcome any future collider signatures.

Page 50: «  The incredible progresses of  particle physics and  cosmology »

In any case, particles will provide a new way of studying the Universe

Ideally, one would like to study the same source (*) by detecting the gravitational waves, neutrinos, hadrons and photons emitted :

(*) Applies also to the primordial universe!

• gravitational waves give information on the bulk motion of matter in energetic processes (e.g. coalescence of black holes)

• neutrinos give information on the deepest zones, opaque to photons (e.g. on the origin --hadronic or electromagnetic-- of ).

• protons provide information on the cosmic accelerators that have produced them

• high energy photons trace populations of accelerated particules, as well as dark matter annihilation


Top Related