Transcript
Page 1: Ball Packings and Fat Voronoi Diagrams

Ball Packings and

Fat Voronoi Diagrams

Don Sheehy

Page 2: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Page 3: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Packing unit balls into a square:

Page 4: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Packing unit balls into a square:Packing means disjoint interiors.

Page 5: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Packing unit balls into a square:Packing means disjoint interiors.Maximal means no more will fit.

Page 6: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Packing unit balls into a square:Packing means disjoint interiors.Maximal means no more will fit.

Goal: Find a small, maximal packing.

Page 7: Ball Packings and Fat Voronoi Diagrams

Ball Packings

Packing unit balls into a square:Packing means disjoint interiors.Maximal means no more will fit.

Goal: Find a small, maximal packing.

Greedy Algorithm: - Find the biggest empty space. - Add another ball there.

Page 8: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Page 9: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound

Page 10: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound

Total volume is at most s2.

Page 11: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound

Total volume is at most s2.

s2

!

Page 12: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound

Total volume is at most s2.

(Packing Argument)s2

!

Page 13: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound Lower Bound

Total volume is at most s2.

(Packing Argument)s2

!

Page 14: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound Lower Bound

Total volume is at most s2. Each Voronoi cell is contained in a ball of radius 2.

(Packing Argument)s2

!

Page 15: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound Lower Bound

Total volume is at most s2. Each Voronoi cell is contained in a ball of radius 2.

(Packing Argument)s2

!

s2

4!

Page 16: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound Lower Bound

Total volume is at most s2. Each Voronoi cell is contained in a ball of radius 2.

(Packing Argument) (Covering Argument)s2

!

s2

4!

Page 17: Ball Packings and Fat Voronoi Diagrams

Problem:

Given n balls in a s x s box, how many total will there be after running the greedy algorithm?

Upper Bound Lower Bound

Total volume is at most s2. Each Voronoi cell is contained in a ball of radius 2.

(Packing Argument) (Covering Argument)

Why care about a factor of 4? Because 4 = 2d

.

s2

!

s2

4!

Page 18: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Page 19: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Ball Packing

r ! 1, R < 2

Page 20: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Ball Packing

r ! 1, R < 2R

r< constant

Page 21: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Ball Packing Meshing

r ! 1, R < 2R

r< constant

Page 22: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Ball Packing Meshing

r ! 1, R < 2R

r< constant

Good Aspect Ratio Voronoi Diagram

Good Quality Delaunay Triangulation

Page 23: Ball Packings and Fat Voronoi Diagrams

Voronoi Aspect Ratio

Ball Packing Meshing

r ! 1, R < 2R

r< constant

Good Aspect Ratio Voronoi Diagram

Good Quality Delaunay Triangulation

Voronoi Refinement Meshing:While any Voronoi cell has “bad” aspect ratio,add its farthest corner.

Page 24: Ball Packings and Fat Voronoi Diagrams

The Local Feature Size

f(x) = distance to second nearest point of P.

P: inputM: output

Page 25: Ball Packings and Fat Voronoi Diagrams

The Local Feature Size

f(x) = distance to second nearest point of P.

P: inputM: output

Key fact about Greedy Voronoi refinement:

for all vertices v in M.

rv ! f(v) ! krv

Page 26: Ball Packings and Fat Voronoi Diagrams

The Local Feature Size

f(x) = distance to second nearest point of P.

P: inputM: output

Key fact about Greedy Voronoi refinement:

for all vertices v in M.

rv ! f(v) ! krv

The local feature size tells us how big the ball for v is.

Page 27: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Page 28: Ball Packings and Fat Voronoi Diagrams

The Upper BoundTheorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

Page 29: Ball Packings and Fat Voronoi Diagrams

The Upper BoundTheorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Page 30: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Page 31: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Page 32: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Recall: f(v) ! krv.

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Page 33: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Recall: f(v) ! krv.

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Claim: If x ! bv,then f(x) " (k + 1)rv.

Page 34: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Recall: f(v) ! krv.

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Claim: If x ! bv,then f(x) " (k + 1)rv.

Page 35: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Recall: f(v) ! krv.

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Claim: If x ! bv,then f(x) " (k + 1)rv.

Page 36: Ball Packings and Fat Voronoi Diagrams

The Upper Bound

Recall: f(v) ! krv.

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

>"v!M

!bv

1

f(x)ddx

!"v!M

!bv

1

((k + 1)rv)ddx

="v!M

rdv!d

((k + 1)rv)d

= |M |!d

(k + 1)d.

Theorem: |M | < (k+1)d

!d

!B

1f(x)d dx.

proof.

Claim: If x ! bv,then f(x) " (k + 1)rv.

Page 37: Ball Packings and Fat Voronoi Diagrams

The Lower Bound

Page 38: Ball Packings and Fat Voronoi Diagrams

The Lower BoundTheorem: |M | > 1

kd!d

!B

1f(x)d dx.

Page 39: Ball Packings and Fat Voronoi Diagrams

The Lower BoundTheorem: |M | > 1

kd!d

!B

1f(x)d dx.

proof.

Page 40: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower BoundTheorem: |M | > 1

kd!d

!B

1f(x)d dx.

proof.

Page 41: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

proof.

Page 42: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

proof.

Page 43: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

Claim: Vor(v) ! kbv.

proof.

Page 44: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

Claim: Vor(v) ! kbv.

proof.

Page 45: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

Claim: Vor(v) ! kbv.

proof.

Page 46: Ball Packings and Fat Voronoi Diagrams

!B

1

f(x)ddx =

"v!M

!Vor(v)

1

f(x)ddx

!"v!M

!Vor(v)

1

rdvdx

<"v!M

!kbv

1

rdvdx

="v!M

kdrdv!d

rdv

= |M |kd!d.

The Lower Bound

Claim: If x ! Vor(v) then f(x) " rv.

Theorem: |M | > 1kd!d

!B

1f(x)d dx.

Claim: Vor(v) ! kbv.

proof.

Page 47: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

Page 48: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

!

q!Q

vol(bq) >!

q!Q

vol

"

bp

k

#

= |Q|$rp

k

%d

!d.

Page 49: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

!

q!Q

vol(bq) < vol(3kbp) = (3krp)d!d.

!

q!Q

vol(bq) >!

q!Q

vol

"

bp

k

#

= |Q|$rp

k

%d

!d.

Page 50: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

!

q!Q

vol(bq) < vol(3kbp) = (3krp)d!d.

!

q!Q

vol(bq) >!

q!Q

vol

"

bp

k

#

= |Q|$rp

k

%d

!d.

! |Q| < 3d

Page 51: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

!

q!Q

vol(bq) < vol(3kbp) = (3krp)d!d.

!

q!Q

vol(bq) >!

q!Q

vol

"

bp

k

#

= |Q|$rp

k

%d

!d.

! |Q| < 3d

Total Voronoi Edges < 3d|M|

Page 52: Ball Packings and Fat Voronoi Diagrams

Degree BoundsHow many neighbors can any point have?

!

q!Q

vol(bq) < vol(3kbp) = (3krp)d!d.

!

q!Q

vol(bq) >!

q!Q

vol

"

bp

k

#

= |Q|$rp

k

%d

!d.

! |Q| < 3d

Total Voronoi Edges < 3d|M|

Same tricks as before!(Packing Argument)

Page 53: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi DiagramsIdea: Let the center shift.

Page 54: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi DiagramsIdea: Let the center shift.

Good Aspect Ratio Fat

Page 55: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi DiagramsIdea: Let the center shift.

Good Aspect Ratio Fat

Fat Voronoi Conjecture:

The number of neighbors of any cell in a fat Voronoi diagram is 2O(d).

Page 56: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

Page 57: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.Here’s the trick.

Page 58: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.Here’s the trick.

Page 59: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.Here’s the trick.

Page 60: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.Here’s the trick.

Page 61: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.Here’s the trick.

Page 62: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

Here’s the trick.

Page 63: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

!q

Here’s the trick.

Page 64: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

!q

2! =

!

q!Q

"q =

!

q!Q

#q

Here’s the trick.

Page 65: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

!q

2! =

!

q!Q

"q =

!

q!Q

#q

Here’s the trick.

Is this new?

Page 66: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

!q

2! =

!

q!Q

"q =

!

q!Q

#q

Here’s the trick.

Is this new?

Punchline: Fat Voronoi Conjecture Holds in the plane.

Page 67: Ball Packings and Fat Voronoi Diagrams

Fat Voronoi diagrams in the plane.

!q

!q

2! =

!

q!Q

"q =

!

q!Q

#q

Here’s the trick.

Is this new?

Punchline: Fat Voronoi Conjecture Holds in the plane.

3D?

Page 68: Ball Packings and Fat Voronoi Diagrams

Thank you.


Top Related