Transcript
  • 4 10 10

    ()http//web1.most.gov.tw

    () (keywords)

    ()

    ()

    ()

    () I II III

    1.2.3.

    ()

    ()

    1.STRIKE

    http://ap0569.most.gov.tw/strike/homepageIndex.do

    2.

    ()()

    ()

  • ()A4 29.7 21

    () Single Space

    () Times New Roman Font

    12

  • /

    The optimization and annealing process of solidly mounted resonator

    (SMR) filters for 4G mobile communication system

    MOST 103-2221-E-237 -006 -MY2

    103 08 01 105 07 31

    _2_

    1.

    2.

    3.

    105 09 01

  • I

    ............................................................................................................ I

    ........................................................................................... II

    Abstract .............................................................................................. II

    ................................................................................ 3

    ............................................................................................ 4

    ........................................................................................ 7

    .................................................................................. 14

    .......................................................................................... 15

  • II

    LTE

    4G 4G

    c

    English Abstract

    This project entitled The optimization and annealing process of solidly mounted resonator filter for

    4G mobile communication system. The purpose of this project is to optimize SMR filters for 4G mobile

    communication system. SMR filters should be optimized in accordance with the specifications of LTE

    communication system. The key annealing technology of device for 4G communication system will be

    developed.

    In the first year, the SMR devices with high performance are accomplished. The physical properties of

    piezoelectric layer and Bragg reflector are optimized by rapid thermal annealing (RTA) and conventional

    thermal annealing (CTA), respectively. The ideal properties of SMR devices for 4G applications are uniform

    surface morphology, little acoustic loss, well adhesion, little parasitic effect and strongly c-axis orientated.

    Therefore, this project investigates various commercial considerations to optimize the high-performance

    SMR devices, including process time, procedures, cost, and efficiency. In the second year, in order to reduce

    the insertion loss, ripples, and expand bandwidth, laser annealing processes and laser trimming processes

    will be used to make the better electrical contact for 4G mobile communication system.

    KeywordSolidly mounted resonatorsFiltersAnnealingLaser trimming

  • 3

    RF MEMS

    (GPS) PDA

    (WLAN)

    2012 MEMS

    22 2018 MEMS 60 MEMS

    TriQuint Semiconductor 2010 MEMS

    iSuppli TriQuint Semiconductor MEMS

    MEMS TriQuint (RF amplifiers)

    (surface acoustic waveSAW)(bulk acoustic waveBAW)

    (4G)

    (4G)

    4G 3 GHz

    RF Filter

    (

    )

    4G SMR

    4G SMR (rapid thermal annealing, RTA)

    (conventional thermal annealing, CTA)

    c

  • 4

    4G SMR WiMAX/LTE

    4G SMR (RTA)(CTA)

    1.

    2.

    3.

    RTA CTA

    SMR

    CTA RTA 400C 500C SiO2

    350C Mo 350C

    350C 3-1

    3-1 CTA RTA

    CTA RTA

    (C/sec) 0.1 5

    (C) 400, 500 400, 500

    (min) 10 10

    Air Vacuum, Air, N2

  • 5

    SMR AlN AlN

    AlN C AlN

    AlN RTA AlN

    AlN

    AlN AlN AlN

    RTA N2 400C 500C AlN

    300C 300C

    AlN AlN 3-2

    3-2 AlN RTA

    RTA

    (C/sec) 5

    (C) 400, 500

    (min) 10

    Vacuum, N2

    (Atomic Force Microscopy, AFM)

    AlN X (X-ray diffraction, XRD)

    EDAX

  • 6

    AlN AlN

    AlN C

    (1064 nm)(532 nm)(355 nm)

    3-3

    3-3

    (nm) 1064 532 355

    (m) 41 50 16

    (kHz) 100 30 40

    (W) 0.1~0.75 0.05~0.5 0.01~0.1

    AlN X (X-ray diffraction, XRD) AlN

  • 7

    Mo ( 0.5

    ) 1 2 3 4

    4-1

    Mo Si SiO2 Mo

    SMR

    4-1

    CTA

    400C 500C

    0.1 C/sec 10 min 4-2 4-3

    CTA 400C 500C 4

    0.5

    0.5 EDAX 4-4 4-5

    4-1 4-2 CTA 400C 500C

    4-2 CTA 400C

    4-3 CTA500C

  • 8

    4-4 0.5 CTA 400C EDAX

    4-5 0.5 CTA 500C EDAX

    4-1 0.5CTA 400CEDAX

    Element Weight % Atomic %

    O K 17.27 55.59

    Mo L 82.73 44.41

    Totals 100.00 100.00

    4-2 0.5CTA 500CEDAX

    Element Weight % Atomic %

    O K 30.42 72.39

    Mo L 69.58 27.61

    Totals 100.00 100.00

    RTA

    RTA

    ()

    4

    4-6 4-7 400C 500C

    0.5 400C 500C

    4-8 4-9 EDAX

    4-3 4-4

    4-6 RTA 400C

    4-7 RTA 500C

    4-8 0.5 RTA 400C 4-9 0.5 RTA 500C

  • 9

    EDAX EDAX

    4-3 0.5 RTA 400C

    EDAX Element Weight % Atomic %

    O K 17.06 55.23

    Mo L 82.94 44.77

    Totals 100.00 100.00

    4-4 0.5 RTA 500C

    EDAX Element Weight % Atomic %

    O K 29.11 71.12

    Mo L 70.89 28.88

    Totals 100.00 100.00

    400C 500C AFM

    4-10 4-11

    4-10 RTA400C

    4-11 RTA 500C

    400C 500C AFM

    4-12 4-13 0.5~2

    3

    4-12 RTA 400C

    4-13 RTA 500C

  • 10

    0.5~2

    3~4

    RTA

    RTA AlN

    4-14 AlN 400C

    AlN 500C AlN

    AlN 400C 500C AlN

    AlN

    4-14 XRD 4-14 XRD

    CTA RTA

    AlN AlN

    4-15

    AlN (002)

    4-16 4-16 0.25 W AlN

    0.25 W AlN

    0.75 W AlN

    AlN

  • 11

    0.25 W AlN

    (a) 0.1 W (b) 0.25 W

    (c) 0.5 W (d) 0.75 W

    4-15 XRD

    4-16 AlN AlN (002)

    AlN AlN

    AlN 4-17

    AlN (002)

    4-18 4-18 0.15 W AlN

    0.15 W AlN

    AlN 0.15 W

  • 12

    (a) 0.05 W (b) 0.15 W

    (c) 0.25 W (d) 0.5 W

    4-17 XRD

    4-18 AlN AlN (002)

    AlN AlN

    AlN

    4-19 AlN (002)

    4-20 4-20 0.025 W

    AlN 0.05 W AlN

    0.025 W 0.05W

    AlN 0.025

    W

  • 13

    (a) 0.01 W (b) 0.025 W

    (c) 0.05 W (d) 0.075 W

    4-19 XRD

    4-20 AlN AlN (002)

    4-21

    112 nm SMR 1.3 W 1.4 W

    4-22

    1.3 W 1.4 W

  • 14

    4-21 Pt/Ti Si

    (a) 1.3W

    (b) 1.4W

    4-22 Pt/Ti

    CTA RTA

    (AlN ) RTA

    AlN AlN

    0.25 W AlN AlN

    0.15 W AlN AlN

    0.025 W AlN AlN AlN

    AlN

  • 15

    [1]. Susan Hong Yole2018 MEMS 60 EET

    /MEMS2013 08 01

    [2]. Judith Cheng MEMS Top10 TriQuint EET

    /MEMS2011 02 14

    [3]. K. W. Tay, Performance Characterization of thin AlN films deposited on Mo Electrode for Thin-Film

    Bulk Acoustic-Wave Resonators, Jpn. J. Appl. Phys., vol.43, No.8A, pp.5510-5515, 2004.

    [4]. R. C. Ruby, P. Bradley, Y. Oshmyansky, Thin film bulk acoustic resonators for wireless applications,

    IEEE Ultrason. Symp, pp.813-821, 2001.

    [5]. D. H. Kim, M. Yim, D. Chai, G. Yoon, Improvements of resonance characteristics due to thermal

    annealing of Bragg reflectors in ZnO-based FBAR devices, Electronics Letters, vol.39, No.13,

    pp.962-964, June 2003.

    [6]. J. Larson, Power Handling and Temperature Coefficient Studies in FBAR Duplexers for the 1900 MHz

    PCS Band, IEEE Ultrasonics Symposium, pp.869-874, 2000.

    [7]. M. Hara, J. Kuypers, M. Esashi, Surface micromachined AlN thinfilm 2 GHz resonator for CMOS

    integration, Sensors and Actuators, A117, pp.211-216, 2005.

    [8]. R. Aigner, J. Ella, H. -J. Timme, L. Elbrecht, W. Nessler, S.Marksteiner, Advancement of MEMS into

    RF-Filter Applications, IEEE IEDM, pp.897-900, 2000.

    [9]. R. B. Stokes and J. D. Crawfold. X-Band Thin-Film Acoustic Filter on GaAs, IEEE Tans. Microwave

    Theory Tech., vol.41, pp.1075-1080, July 1993.

    [10]. V. Krishnaswamy, J. F. Rosenbaum, S. S. Horwitz, and R. A. Moore Film Bulk Acoustic Wave

    Resonator and Filter Technology, IEEE Trans. MTT-S Dig., pp.153-155, 1992.

    [11]. M. Schmid, E. Benes, W. Burger, and V. Kravchenko, Motional capacitance of layered piezoelectric

    thickness-mode resonators, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.38, pp.199-206, 1991.

    [12]. K. M. Lakin and J. S. Wang, Acoustic bulk wave composite resonators, Appl. Phys. Lett., vol.38,

    pp.125, 1981.

    [13]. K. M. Lakin, Thin film resonators and filters, IEEE Ultrasonics Sympium Proc., vol.2, pp.895-906,

    1999.

    [14]. J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, Effects of bottom electrodes on the orientation of AlN

    films and the frequency responses of resonators in AlN-based FBARs, Thin Solid Films, vol.447-448,

    pp.610-614, 2004.

    [15].

    (2008)

    [16].

    (2008)

  • 16

    [17]. R.C. Lin, Y.C. Chen, W.T. Chang, C.C. Cheng, and K.S. Kao, 2008, Highly sensitive mass sensor using

    film bulk acoustic resonator, Sensors and Actuators A: Physical, 147, pp. 425429.

  • 1.

    100

    2.

    100

  • 3.

    500

    CTA RTA

    AlN

    RTA AlN AlN

    0.25 W

    0.15 W 0.025 W AlN AlN

    AlN

    AlN

    ICIAE2015ICASI 2015IEDMS2015 104

    [1] W. C. Shih, Y. C. Chen, W. T. Chang, C. C. Cheng*, K. S. Kao, K. H. Cheng, C. M. Wang, C. Y. Wen,

    J. Y. Chang and P. W. Ting, The Bragg Reflector Layer of Low Surface Roughness Based on Solidly

    Mounted Resonators, in Proc the 3rd

    International Conference on Industrial Application Engineering

    2015 (ICIAE 2015), PS-16, Kitakyushu, Japan, Mar. 28-31, 2015.

    [2] W. C. Shih, Y. C. Chen, W. T. Chang, C. Y. Wen, K. S. Kao, C. C. Cheng*, P. W. Ting and J. Y. Chang,

    Dual mode frequency response using solidly mounted resonators, in Proc 2015 International

    Conference on Applied System Innovation (ICASI 2015), ICASI-1044, Osaka, Japan, May 22-26, 2015.

    [3] W. C. Shih, Y. C. Chen, P. W. Ting, K. S. Kao, C. C. Cheng* and W. T. Chang, Development of

    dual-mode SMR using off-axis deposition AlN thin films, in Proc International Electron Devices and

    Materials Symposium 2015 (IEDMS 2015), P267, Tainan, Taiwan, Nov. 19-20, 2015.

    [4]

    104 204Nov.

    20~212015

  • 104 4 08

    2015 (The 3rd International Conference on Industrial Application

    Engineering 2015, ICIAE2015) 104 3 28 3 31

    (Kitakyushu International Conference Center, Kitakyushu, Japan)

    (Institute of Industrial Applications Engineers, IIAE) 9

    (Topics) Electrical technologyElectronic technology, Mechanical technologyControl

    technologySensing technologyInformation technology Network technologyImage processing

    Others 90 (oral

    presentations) 3 keynote speech

    27 28

    MOST 1032221E237006MY2

    -

    104 3 28

    104 3 31

    () 2015

    () The 3rd International Conference on Industrial Application

    Engineering 2015 (ICIAE2015)

    ()

    () The Bragg Reflector Layer of Low Surface Roughness Based on

    Solidly Mounted Resonators

  • ()

    (The Bragg Reflector Layer of Low Surface Roughness Based on Solidly Mounted

    Resonators)(DC)(RF) Si SiO2/Mo

    (DC) Ti Pt

    (RF)(AlN) X (XRD)

    (SEM)(AFM)

    (HP8720)(SMR) return loss

    ()

    SMR

    1. ()

    2. (Program)

    3.

  • ICIAE 2015

  • 105 7 11

    Control, IS3C2016) 105 7 4 7 6

    (Tanglong International Hotel, Xian, China) (National Chin-Yi

    University of Technology)IEEE Computer Society IEEE Industrial Electronics Society

    (Xi'an University of Science and Technology)IS3C

    110 (oral

    presentations) 5 keynote speeches

    IEEE Xplore EI

    SCI

    SensorsMaterials

    MOST 1032221E237006MY2

    --

    ( 2 )

    105 7 4 105 7 6

    ()2016

    () The Third International Symposium on Computer, Consumer and Control

    (IS3C2016)

    ()

    () Fabrication of SAW devices with dual mode frequency response using AlN and

    ZnO thin films

  • Fabrication of SAW devices with

    dual mode frequency response using AlN and ZnO thin films (

    )(RF) Si3N4/Si

    (AlN)(ZnO)(acoustic wave velocity)

    (electromechanical coupling coefficient)

    (Surface Acoustic Wave, SAW) (Interdigital transducer electrodes, IDTs)

    (DC)(Photolithography)(Al)

    IDT/ZnO/AlN/Si3N4/Si SAW 146.3

    MHz(Rayleigh mode) 265.7 MHz(Sezawa mode)(Insertion loss, IL)-14.2 dB

    (Rayleigh mode)-17.4 dB (Sezawa mode)

  • SAW

    1. ()

    2. (Program)

    3.

    4.


Top Related