Transcript
Page 1: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Chapter 22Diatomic Molecules

P. J. Grandinetti

Chem. 4300

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 2: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

The Hydrogen Molecular IonSimplest molecule to consider is H+

2 , with only 1 electron. Hamiltonian is

H+2= βˆ’ ℏ2

2mp

(βˆ‡2

A + βˆ‡2B)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟1

βˆ’ ℏ2

2meβˆ‡2

e

⏟⏞⏟⏞⏟2

βˆ’ZAq2

e4πœ‹πœ–0rA

⏟⏞⏟⏞⏟3

βˆ’ZBq2

e4πœ‹πœ–0rB

⏟⏞⏟⏞⏟4

+ZAZBq2

e4πœ‹πœ–0RAB⏟⏞⏟⏞⏟

5

1 is kinetic energy of nuclei2 is kinetic energy of eβˆ’

3 is Coulomb attraction between eβˆ’ and nucleus A4 is Coulomb attraction between eβˆ’ and nucleus B5 is Coulomb repulsion between nuclei A and B

Written in terms of atomic units

H+2= βˆ’1

2memp

(βˆ‡2

A + βˆ‡2B)βˆ’ 1

2βˆ‡2

e βˆ’ZArA

βˆ’ZBrB

+ZAZBRAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 3: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Born-Oppenheimer (B-O) ApproximationSince nuclei are much heavier than eβˆ’ we separate motion into 2 timescales:

fast time scale of eβˆ’ motion and slow time scale of nuclear motion.Born-Oppenheimer approximation assumes nuclei are fixed in place and solve for eβˆ’ wave functionin potential of 2 fixed nuclei.We then change internuclear spacing and repeat process.Not allowing nuclei to move while solving for eβˆ’ wave function has 2 effects:

1 nuclear kinetic energy terms: 1 go away2 nuclear–nuclear repulsion potential energy term 5 becomes constant and can be simply

added to energy eigenvalue.With this approximation wave equation for eβˆ’ (in atomic units) becomes[

βˆ’12βˆ‡2

e βˆ’ZArA

βˆ’ZBrB

]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

el

πœ“el(r,RAB) = E(RAB)πœ“el(r,RAB).

Solving this wave equation gives eβˆ’ wave function, πœ“el(r,RAB), and its energy for given internucleardistance, RAB.P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 4: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Born-Oppenheimer (B-O) ApproximationNext in B-O approximation we take total wave function as

πœ“(r,RAB) β‰ˆ πœ“el(r,RAB)πœ“nuc(RAB)

Next we assume that πœ“el(r,RAB) varies so slowly with RAB that

βˆ’12

memp

(βˆ‡2

A + βˆ‡2B)πœ“el(r,RAB)πœ“nuc(RAB) β‰ˆ πœ“el(r,RAB)

[βˆ’1

2memp

(βˆ‡2

A + βˆ‡2B)πœ“nuc(RAB)

]In other words we assume

(βˆ‡2

A + βˆ‡2B)πœ“el(r,RAB) β‰ˆ 0

Putting B-O wave function approximation

H+2πœ“(r,RAB) = Eπœ“(r,RAB)

into full SchrΓΆdinger equation

H+2= βˆ’1

2memp

(βˆ‡2

A + βˆ‡2B)βˆ’ 1

2βˆ‡2

e βˆ’ZArA

βˆ’ZBrB

+ZAZBRAB

we obtain...P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 5: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Born-Oppenheimer (B-O) Approximation

πœ“el(r,RAB)[βˆ’1

2memp

(βˆ‡2

A + βˆ‡2B)]πœ“nuc(RAB) +

[βˆ’1

2βˆ‡2

e βˆ’ZArA

βˆ’ZBrB

]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

el

πœ“el(r,RAB)πœ“nuc(RAB)

+ZAZBRAB

πœ“el(r,RAB)πœ“nuc(RAB) = Eπœ“el(r,RAB)πœ“nuc(RAB)

Making the replacement elπœ“el(r,RAB) = E(RAB)πœ“el(r,RAB) gives

πœ“el(r,RAB)[βˆ’1

2memp

(βˆ‡2

A + βˆ‡2B)+ E(RAB) +

ZAZBRAB

]πœ“nuc(RAB) = πœ“el(r,RAB)Eπœ“nuc(RAB)

Dividing both sides by πœ“el(r,RAB) gives...

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 6: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Born-Oppenheimer ApproximationDividing both sides by πœ“el(r,RAB) and obtain wave equation for nuclei:[

βˆ’12

memp

(βˆ‡2

A + βˆ‡2B)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟nuclear kinetic energy

+ E(RAB) +ZAZBRAB

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟nuclear effective potential

]πœ“nuc(RAB) = Eπœ“nuc(RAB)

General strategy is to

fix nuclei in position and calculate πœ“el(r,RAB) and energy, E(RAB). Do this for all possible values ofRAB, and

use E(RAB) + ZAZBβˆ•RAB as effective nuclear potential energy (Ground state looks like Morsepotential) in nuclear wave equation to obtain πœ“nuc(RAB) and energies:

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 7: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Solving one electron SchrΓΆdinger equation for the H2+ ion

With B-O approximation out of way let’s look at solutions for πœ“el(r,RAB) of H+2 , given the

electronic Hamiltonian in atomic units[βˆ’1

2βˆ‡2

e βˆ’ZArA

βˆ’ZBrB

]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

el

πœ“el(r,RAB) = E(RAB)πœ“el(r,RAB).

Problem is no longer spherically symmetric. So, what coordinate system should we use?

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 8: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Spheroidal Coordinates : πœ“el(r,RAB) to πœ“el(πœ†, πœ‡, πœ™,RAB)

We can derive exact solution for πœ“el(r,RAB) using spheroidal coordinates,where πœ† = (rA + rB)βˆ•R, πœ‡ = (rA βˆ’ rB)βˆ•R, and R is internuclear distance.Lines of constant πœ† are ellipses which share foci rA and rB.Lines of constant πœ‡ are hyperbolas with rA and rB as foci.Ellipses and hyperbolas form orthogonal system of curves.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 9: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Spheroidal Coordinates : πœ“el(r,RAB) to πœ“el(πœ†, πœ‡, πœ™,RAB)

Variable πœ† varies over range 1 ≀ πœ† ≀ ∞, and plays role analogous to r in usual polar coordinatesystem.Variable πœ‡ varies over range βˆ’1 ≀ πœ‡ ≀ 1.As πœ‡ changes point (πœ†, πœ‡) moves around origin, so πœ‡ plays role similar to quantity cos πœƒ in polarcoordinates.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 10: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Spheroidal Coordinates : πœ“el(r,RAB) to πœ“el(πœ†, πœ‡, πœ™,RAB)

Three dimensional prolate ellipsoidal coordinates are obtained by rotating figure around z axis.Ellipses generate set of confocal ellipsoidsHyperbolas generate family of hyperboloids with 2 sheets.Surface of constant πœ™ are half-planes though x axis.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 11: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Two sheet hyperboloid

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 12: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Spheroidal Coordinates : πœ“el(r,RAB) to πœ“el(πœ†, πœ‡, πœ™,RAB)

Prolate ellipsoidal coordinates in 3D space are obtained by rotating figure around z axis.Ellipses generate set of confocal ellipsoidsHyperbolas generate family of hyperboloids with 2 sheets.Surface of constant πœ™ are half-planes though x axis.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 13: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Spheroidal Coordinates : πœ“el(r,RAB) to πœ“el(πœ†, πœ‡, πœ™,RAB)

Spheroidal Coordinates allows us to separate wave function into product

πœ“(πœ†, πœ‡, πœ™) = L(πœ†)M(πœ‡)Ξ¦(πœ™)

Substituting πœ“(πœ†, πœ‡, πœ™) into electronic wave equation gives 3 ODEs.We’ll do no derivations, just look at results ...

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 14: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Solutions to Ξ¦(πœ™)Solutions to Ξ¦(πœ™) which are eigenfunctions of Lz,

Ξ¦(πœ™) = 1√2πœ‹

eimπœ™

Each value of |m| leads to different energy. States associated with Β±m are degenerate.We refer to states by their m value:

m = 0 𝜎 state,m = Β±1 πœ‹ state,m = Β±2 𝛿 state,

⎫βŽͺ⎬βŽͺ⎭these follow same lettersequence as 𝓁 usingGreek letters instead.

States are also labeled by their inversion symmetry.

when πœ“u(r) = βˆ’πœ“u(βˆ’r), odd symmetry,when πœ“g(r) = πœ“g(βˆ’r), even symmetry,

Use subscript u for odd wave functions (ungerade)Use subscript g for even wave functions (gerade).Wave functions labeled as 𝜎g, 𝜎u, πœ‹g, πœ‹u, 𝛿g, 𝛿u, and so on.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 15: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Lowest energy levels of H+2 as function of internuclear R

with internuclear repulsive energy.

Minimum in 1𝜎g energy is Re β‰ˆ 2a0, corresponding toequilibrium length of 1𝜎g ground state of H+

2 .

As R β†’ ∞ energy of 1𝜎g state approaches βˆ’0.5Eh.As expected, this is energy of electron in 1s state ofH-atom infinitely separated from isolated proton.Difference between this energy and energy at equilibriumbond length is binding energy,E1𝜎g

(Re) βˆ’ E1𝜎g(∞) = 0.1Eh.

Both equilibrium distance and binding energy from thisexact solution are in excellent agreement withexperimentally determined values of 2.00a0 and 0.102Eh,respectively.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 16: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Lowest energy levels of H+2 as function of internuclear R

without internuclear repulsive energy.

As R β†’ 0, i.e., both protons at origin form He nucleus, wefind energy of βˆ’2Eh. This is ground state energy of singleelectron bound to He nucleus.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 17: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Exact solutions for 1𝜎g and 1𝜎u of H+2 as a function of R

(A)

(D)

(E)

(F)

(B) (C)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 18: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Shape of H+2 wave functions

When R = 0 solution becomes identical to He+ wave function.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 19: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Shape of H+2 wave functions

When R = 8a0 observe 2 sharp peaks at Β±4a0 where nucleiare located.

When R β†’ ∞ two peaks correspond to 1s orbital centeredon each nucleus.

In case of H+2 only one of these 1s orbitals is occupied.

Difference between 1𝜎g and 1𝜎u is in how two 1s orbitalsare combined.

Normalization factors aside, in R β†’ ∞ limit we find (in atomic units)

1𝜎g = eβˆ’rA + eβˆ’rB , and 1𝜎u = βˆ’eβˆ’rA + eβˆ’rB .

Results suggest approximate approach to describe bonding wave functions as a linear combinationof atomic orbitals (LCAO) on each nucleus.LCAO approach more useful than exact solutionβ€”which only works for H+

2 .

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 20: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 21: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)Use variational theorem with LCAO as trial H+

2 wave function

πœ“guess(r,RAB) = cAπœ™1sA+ cBπœ™1sB

πœ™1sAand πœ™1sB

are atomic orbitals associated with eβˆ’ in 1s orbital on nuclei A and B, respectively.There are 2 adjustable parameters, cA and cB, in πœ“guess.

⟨⟩ = ∫ πœ“βˆ—guessπœ“guessd𝜏 β‰₯ E0

E0 is true ground state energy. Can’t assume trial wave function is normalized so need to minimizeenergy for

E =∫V πœ“

βˆ—guessπœ“guessd𝜏

∫V πœ“βˆ—guessπœ“guessd𝜏

β‰₯ E0

Even though atomic orbitals are normalized, LCAO wave function is not. Substituting πœ“guess(r,RAB) weobtain

E =c2

A ∫Vπœ™βˆ—

1sAπœ™1sA

d𝜏 + c2B ∫V

πœ™βˆ—1sB

πœ™1sBd𝜏 + 2cAcB ∫V

πœ™βˆ—1sA

πœ™1sBd𝜏

c2A + c2

B + 2cAcB ∫Vπœ™βˆ—

1sAπœ™1sB

d𝜏β‰₯ E0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 22: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)To simplify equations define

HAB ≑ ∫Vπœ™βˆ—

1sAπœ™1sB

d𝜏, and SAB ≑ ∫Vπœ™βˆ—

1sAπœ™1sB

d𝜏

SAB is called overlap integral. These definitions allow us to write

E =c2

AHAA + c2BHBB + 2cAcBHAB

c2A + c2

B + 2cAcBSABβ‰₯ E0

Next, find values of cA and cB where E is at minimum by taking derivative of E wrt cA and cB andsetting equal to zero,

πœ•Eπœ•cA

= 0, and πœ•Eπœ•cB

= 0

To make this easier let’s move the denominator to the left(c2

A + c2B + 2cAcBSAB

)E = c2

AHAA + c2BHBB + 2cAcBHAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 23: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)Taking the derivative of both sides

πœ•πœ•cA

(c2

A + c2B + 2cAcBSAB

)E = πœ•

πœ•cA

(c2

AHAA + c2BHBB + 2cAcBHAB

)gives

(2cA + 2cBSAB)E +(c2

A + c2B + 2cAcBSAB

) πœ•Eπœ•cA

= 2cAHAA + 2cBHAB

Doing same with πœ•βˆ•πœ•cB gives

(2cB + 2cASAB)E +(c2

A + c2B + 2cAcBSAB

) πœ•Eπœ•cB

= 2cBHBB + 2cAHAB

Setting πœ•Eβˆ•πœ•cA = πœ•Eβˆ•πœ•cB = 0 leads to two simultaneous equations

cA(HAA βˆ’ E) + cB(HAB βˆ’ ESAB) = 0

cA(HAB βˆ’ ESAB) + cB(HBB βˆ’ E) = 0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 24: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)Writing these in matrix form givesβŽ›βŽœβŽœβŽ

HAA βˆ’ E HAB βˆ’ ESAB

HAB βˆ’ ESAB HBB βˆ’ E

βŽžβŽŸβŽŸβŽ βŽ›βŽœβŽœβŽ

cA

cB

⎞⎟⎟⎠ = 0

Matrix diagonalization problem can be solved with determinant,|||||||HAA βˆ’ E HAB βˆ’ ESAB

HAB βˆ’ ESAB HBB βˆ’ E

||||||| = 0

In homonuclear example make it little easier since HAA = HBB = 𝛼.Also set HAB = 𝛽 and S = SAB|||||||

𝛼 βˆ’ E 𝛽 βˆ’ ES

𝛽 βˆ’ ES 𝛼 βˆ’ E

||||||| = 0, which gives (𝛼 βˆ’ E)2 βˆ’ (𝛽 βˆ’ ES)2 = 0

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 25: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)

(𝛼 βˆ’ E)2 βˆ’ (𝛽 βˆ’ ES)2 = 0

which leads to𝛼 βˆ’ E = Β±(𝛽 βˆ’ ES) = ±𝛽 βˆ“ ES

and we find 2 solutions for E:E+ =

𝛼 + 𝛽1 + S

and Eβˆ’ =𝛼 βˆ’ 𝛽1 βˆ’ S

Putting solution for E+ back into simultaneous Eqs one can show that cA = cB.Put solution for Eβˆ’ into 2 simultaneous equations and obtain cA = βˆ’cB.Thus, 2 solutions for wave function are

πœ“πœŽg= c

(πœ™1sA

+ πœ™1sB

), and πœ“πœŽu

= c(πœ™1sA

βˆ’ πœ™1sB

)Normalizing these two wave functions gives

πœ“πœŽg= 1√

2 + 2S

(πœ™1sA

+ πœ™1sB

)and πœ“πœŽu

= 1√2 βˆ’ 2S

(πœ™1sA

βˆ’ πœ™1sB

)P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 26: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

Linear Combination of Atomic Orbitals (LCAO)

Bring two 1s orbitals together in phase for πœ“πœŽgand out of phase for πœ“πœŽu

(A) (B)

Above is comparison of Exact (solid lines) and LCAO (dashed lines) wave functions πœ“πœŽgand

πœ“πœŽufor H+

2 with R = 2 for (A) bonding and (B) anti-bonding states.

Simple LCAO approximation is not bad, and is good starting point for refining LCAO method.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 27: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Overlap Integral STo finish derivation need to evaluate overlap integral S and energies. Starting with S we find

S = ∫Vπœ™βˆ—

1sAπœ™1sB

d𝜏 = eβˆ’RAB

(1 + RAB +

R2AB3

)

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

As expected, overlap integral goes to zero in limit that R β†’ ∞.With decreasing R overlap integral increases and reaches value of 1 at R = 0.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 28: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Coulomb Integral𝛼 integral is called Coulomb Integral

𝛼 = ∫Vπœ™βˆ—

1sAπœ™1sA

d𝜏

To evaluate 𝛼 start with electronic Hamiltonian in atomic units = βˆ’1

2βˆ‡2

e βˆ’1rA

βˆ’ 1rB

+ 1RAB

which can be written = A βˆ’ 1rB

+ 1RAB

or = B βˆ’ 1rA

+ 1RAB

A or B are Hamiltonians for eβˆ’ in H-atom alone. Thus,

𝛼 = ∫Vπœ™βˆ—

1sA

[A βˆ’ 1

rB+ 1

RAB

]πœ™1sA

d𝜏 = ∫Vπœ™βˆ—

1sAAπœ™1sA

d𝜏 βˆ’ ∫Vπœ™βˆ—

1sA

1rBπœ™1sA

d𝜏 + 1RAB

which gives 𝛼 = E1s +2E1sRAB

[1 βˆ’ eβˆ’2RAB(1 + RAB)

]+ 1

RABCoulomb Integral contains energy of eβˆ’ in 1s orbital of H-atom, attractive energy of nucleus Bfor eβˆ’, and repulsive force of nuclei B with A.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 29: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Coulomb Integral

10 2 3 4-1

0

1

2

3

4

𝛼 decreases monotonically (i.e., no minimum) from ∞ at RAB = 0 to βˆ’1βˆ•2 at RAB = ∞. In other words,𝛼, which is leading term in

E+ =𝛼 + 𝛽1 + S

and Eβˆ’ =𝛼 βˆ’ 𝛽1 βˆ’ S

does not give any stability to H+2 over 2 infinitely separated nuclei (recall H atom has energy of βˆ’Ehβˆ•2).

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 30: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Exchange Integral

Finally, examine 𝛽 integral, also called the resonance or Exchange Integral

𝛽 = ∫Vπœ™βˆ—

1sAπœ™1sB

d𝜏

which becomes

𝛽 = ∫Vπœ™βˆ—

1sA

[B βˆ’ 1

rA+ 1

RAB

]πœ™1sB

d𝜏 = ∫Vπœ™βˆ—

1sABπœ™1sB

dπœβˆ’βˆ«Vπœ™βˆ—

1sA

1rAπœ™1sB

d𝜏+∫Vπœ™βˆ—

1sA

1RAB

πœ™1sBd𝜏

to obtain𝛽 = E1sS + 2E1seβˆ’RAB(1 + RAB) +

SRAB

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 31: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Exchange Integral

10 2 3 4-1

0

1

2

3

4 𝛽 integral goes through a minimum inenergy.It is stabilization energy from allowing eβˆ’to move (exchange) between 2 nuclei.Since both 𝛼 and 𝛽 are negative, E+ willbe lowest energy,

E1𝜎g= E+ =

𝛼 + 𝛽1 + S

, (bonding)

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 32: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Energy

-1.0

-0.5

0.0

0.5

1.0

10 2 3 4

LCAO model predicts that energy of groundstate has minimum at bond length ofRe = 2.50a0 and has binding energy ofE+(Re) βˆ’ E(∞) = 0.0648Eh.

Predicted bond length is longer thanexperimentally observed Re = 2.00a0

Predicted binding energy is lower thanexperimentally observed value of 0.102Eh.

P. J. Grandinetti Chapter 22: Diatomic Molecules

Page 33: Chapter 22 - Diatomic Molecules - Grandinetti€¦ · P. J. Grandinetti Chapter 22: Diatomic Molecules Spheroidal Coordinates : πœ“ el ( βƒ—r,R AB ) to πœ“ el ( πœ†,πœ‡,πœ™,R

LCAO : Energy

Anti-bonding orbital energy is

E1𝜎u= Eβˆ’ =

𝛼 βˆ’ 𝛽1 βˆ’ S

, (anti-bonding)

This orbital gives no stability since 𝛽 raises total energy in this case.Putting lone electron into πœ“1𝜎u

would destabilize H+2 molecule and cause it to break apart.

P. J. Grandinetti Chapter 22: Diatomic Molecules


Top Related