Transcript
Page 1: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

Cornell University

“I would found an institution where any person can find instruction in any study.” − Ezra Cornell, 1868

Competing Ferroic Orders The magnetoelectric effect

Basic Training in Condensed Matter Theory 2009

Craig J. Fennie School of Applied and Engineering Physics [email protected]

Basic Training 2009– Lecture 04

Page 2: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

2 Basic Training 2009– Lecture 04

Module Outline 1.  Overview and Background

•  Ferro ordering, the magnetoelectric effect

2.  ME revisited, and basic oxide physics •  ME effect revisited: Toroidal moments •  Complex oxides basics: Types of insulators (i.e., ZSA classifications), Coordination chemistry

3.  Structure and Ferroelectricity •  Basics of space groups •  Soft mode theory, lattice dynamics, group theoretic methods •  Competing lattice instabilities •  microscopic mechanisms, improper FE •  Modern theory of polarization (Berry Phase)

4.  Magnetism •  Basics, exchange interactions, superexchange, Dzyaloshinskii-Moria •  How spins couple to the lattice! Phenomenology and microscopics (spin-phonon, spin-lattice, etc) •  Competing magnetic orders •  Systems: ZnCr2O4, EuTiO3, SeCuO4, TeCuO4

2

Page 3: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

3 Basic Training 2009– Lecture 04

Magnetism and how it couples to the lattice

 Tuning AFM ⇔FM –  The Goodenough-Kanamori rules

 Spin-phonon coupling –  ZnCr2O4 → spin-induced phonon anisotropy –  EuTiO3 → magneto-capacitance

 Spin-lattice coupling –  Weak ferromagnetism Fe2O3 –  Spin spiral Lifshitz invariant

3

Isotropic Exchange

Dzyaloshinskii-Moria Exchange

Page 4: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

4 Basic Training 2009– Lecture 04

Magnetic properties of localized systems

4

Eu2O3

Eu: 4f7 5d0 6s2 → Eu3+: 4f6 5d0 6s0

Magnetism arises from an incomplete shell

Question: is Eu2O3 magnetic? What do I mean by magnetic? For now I mean, Does a magnetic field couple to the fairly large S=3µB, NO! why? Well magnetic field couples to J=|S-L|

Hund’s Rules 1)  Max S =3 2)  Max L =3 3)  J=|S-L| =0 less than half filled (J=|S+L| if more …)

But is it magnetic? Yes!

〈0|µ|0〉 = gJµB〈0|J |0〉 = 0

χ =N

V

(2µ2

B

n

|〈0|Lz + gSz|0〉|2

En − E0− e2mu0

6me

Z∑

i=1

〈r2i 〉

)

Van Vleck Paramagnetism diamagnetism

Both terms, small and temperature independent (χVV ~ 1/Δ)

Page 5: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

5 Basic Training 2009– Lecture 04

Magnetic properties of localized systems

Currie Weiss Susceptibility

5

Temperature ΘCW = Tc

0

χ-1

TN -ΘCW

AFM PM FM

χ ∝ 1T − θCW

E = −∑

ij

JijSi · Sj + gµB

i

Si · H

kBθCW =23

n

JnznS(S + 1)

Magnetic exchange interactions Mean-field

Page 6: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

6 Basic Training 2009– Lecture 04

Properties of common Antiferromagnets

6

Page 7: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

7 Basic Training 2009– Lecture 04

Effect of strong magnetic field (AFM)

 Susceptibility below TN and Spin flop –  Hard vs easy axis

7

Page 8: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

8 Basic Training 2009– Lecture 04

Origin of easy/hard axis

 Spin-orbit interaction

1.  Single-ion anisotropy

2.  Anisotropic exchange coupling

8

λ"L · "S

1.  Crystal field couple to charge density 2.  Charge density couple to spin E-field

overlap

Different energy

Page 9: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

9 Basic Training 2009– Lecture 04

General form of spin-spin coupling

9

+kxS1xS2x + kyS1yS2y + kzS1zS2z

Isotropic symmetric exchange (l=0)

Dzyaloshinskii-Moriya Antisymmetric exchange (l=1)

Anisotropic symmetric exchange (l=2) D and K both spin-orbit effects

D ∼ λJ ≈ (∆g/g)J

k ∼ λ2J ≈ (∆g/g)2J

H = J!S1 · !S2 + !D · (!S1 × !S2)

H = !S1 · J · !S2

Page 10: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

10 Basic Training 2009– Lecture 04

10

Dzyaloshinskii-Moriya

E = |J| 〈Si⋅Sj〉 + ∑ Dij⋅〈SixSj〉

Collinear AFM Spin canting

D = 0 M

D ≠ 0

Relativistic correction to Anderson’s superexchange

•  Direction of canting determined by the sign of D

Page 11: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

11 Basic Training 2009– Lecture 04

Weak ferromagnetism vs ME effect

11

Cr2O3

!"!

#$"

#$"

%

#

!

&

4321 MMMML −+−=

'"

0≠zL

+!!Ez

++!Lz

+!+Hz

3z2xI

zzzzz HEHEL ||αλ =

()**+,-.+(/01/23-3*345+,.6/273(+

( )yyxxz HEHEL +'583-.35,(9

zL∝⊥αα ,||

:;</0-=+-/23-3*+,+-/ >? @/!ABC

m3

z

z

m 3),(3,1

3),2(3,1

±

±

point group

Cr2O3

L = M1-M2+M3-M4

Cr2O3

!"!

#$"

#$"

%

#

!

&

4321 MMMML −+−=

'"

0≠zL

+!!Ez

++!Lz

+!+Hz

3z2xI

zzzzz HEHEL ||αλ =

()**+,-.+(/01/23-3*345+,.6/273(+

( )yyxxz HEHEL +'583-.35,(9

zL∝⊥αα ,||

:;</0-=+-/23-3*+,+-/ >? @/!ABC

m3

z

z

m 3),(3,1

3),2(3,1

±

±

point group

L = M1+M2-M3-M4

Fe2O3

Neel temperature ~500K Morin temp ~260K

Page 12: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

12 Basic Training 2009– Lecture 04

Exchange: Background

12

Hund’s rule ➟ like FM

Covalent bond ➟ like AFM

bonding

Anti-bonding

Page 13: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

13 Basic Training 2009– Lecture 04

Exchange: Background

13

If they are the same orbital ➟ AFM

If they are the different orbital ➟ FM

Direct exchange

TM-d O TM-d

Superexchange 90˚ SE

90˚ Hund’s rule J_H coupling on the anion

Page 14: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

14 Basic Training 2009– Lecture 04

Exchange: Background

14

NiO

Competing interactions 1.  Strong

AFM Ni-O-Ni 180

2.  Weaker FM 90˚ SE

Page 15: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

15 Basic Training 2009– Lecture 04

Exchange: Background

15

Arbitrary angle

J =J90 sin2θ + J180 cos2θ

90˚ 180˚

Empirically 135˚

SeCuO3 FM TeCuO3 AFM

Page 16: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

16 Basic Training 2009– Lecture 04

ACr2X4: Cubic Spinel Structure

16

eg

t2g ⇒ S=3/2

Cr3+: 3d3 4s0

What is Moment? µ ~ S =3/2 Why -> orbital dof quenched

Superexchange pathways

Page 17: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

17 Basic Training 2009– Lecture 04

ACr2X4: Cubic Spinel Structure

 Network of edge sharing octahedra

17

Page 18: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

18 Basic Training 2009– Lecture 04

Background: Spinels

18

ACr2X4

•  A= Zn, Cd, Hg

• X= O, S, Se

eg

t2g ⇒ S=3/2

a (Å) Theory Exp.

CdCr2S4 10.12 10.24 CdCr2Se4 10.63 10.74

HgCr2Se4 10.65 10.74

ZnCr2O4 8.26 8.31

CdCr2O4 8.54 8.59

Ferromagnetic Insulators

Tc ~100K,

TΘ ~200K

Anti-ferromagnetic Insulators

TN ~10K,

TΘ ~ 100K

Cr3+: 3d3 4s0

Page 19: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

19 Basic Training 2009– Lecture 04

Exchange interactions   Direct Cr-Cr exchange → AFM   90° Cr-O-Cr SE → FM

19 oxygen

chromium

AFM → FM a) as lattice constant increases b) as electronegativity of anion decreases

Page 20: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

20 Basic Training 2009– Lecture 04

Huge spin-phonon coupling

20

3-fold T1u phonon mode

Singlet A2u

Doublet Eu

Temperature (K)

Tn= 12.5K

Symmetry lowering at Tn

Oh → D4h Cubic to tetragonal

Phonon splitting at Tn

T1u → A2u ⊕ Eu

AFM-ZnCr2O4

Exp: λ =6-10 cm-1

Page 21: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

21 Basic Training 2009– Lecture 04

21

Spin-phonon coupling

J(u)

J(u+δ)

Phonon modulated exchange interaction Baltensperger and Helman, Helvetica physica acta 1968.

e.g. can understand large spin-phonon coupling in ZnCr2O4 Fennie and Rabe, Phys. Rev Lett. May 2006

Eph = 1/2 ω02u2

E = E0 +Ephonon+ Espin

Esp = -∑Jij 〈Si⋅Sj〉

⇒ ω2∝ ω02 - ∂2J/∂u2 〈Si⋅Sj〉

renormalized bare magnetic contribution phonon phonon

J(u) ≈ J(0) + 1/2 ∂2J/∂u2 〈Si⋅Sj〉 u2

Page 22: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

22 Basic Training 2009– Lecture 04

22

Spin-phonon coupling

J(fu)

J(fu+δ)

Phonon modulated exchange interaction Baltensperger and Helman, Helvetica physica acta 1968.

e.g. can understand large spin-phonon coupling in ZnCr2O4 Fennie and Rabe, Phys. Rev Lett. May 2006 to lowest order in Si Sj

Page 23: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

23 Basic Training 2009– Lecture 04

Origin of large anisotropy

23

spin up

spin down

Cr ions

Direct-exchange length scale, α-1

Exp: α=8.9 Å-1

Theory: α=9.05 Å-1

f3 has significant anisotropy in force constant matrix

x y z

f3: One set of T1u Partner functions

z-mode x-mode (or equivalently y-mode)

Page 24: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

24 Basic Training 2009– Lecture 04

24

TN

Bulk Eu2+Ti4+O3: Ground state antiferromagnetic paraelectric

•  r(Eu2+) ~ r(Sr2+); Cubic perovskite •  Eu2+ → J=S=7/2; Tn ~ 5.5K, G-type AFM

Page 25: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

25 Basic Training 2009– Lecture 04

25

Perovskites and the Period Table

Substitutions on A, B or both (A1-xA’x)(B1-yB’y)O3 Random distribution or ordered

Page 26: Competing Ferroic Orders - Cornell Universitymuellergroup.lassp.cornell.edu/basictraining2009/Ferroic...Origin of easy/hard axis Spin-orbit interaction 1. Single-ion anisotropy 2

26 Basic Training 2009– Lecture 04

Phonon anomaly at Tc

FM- CdCr2S4

26

Symmetry lowering at Tc

Oh → Oh

Cubic to cubic (ignoring LS)

No phonon splitting at Tc

T1u → T1u


Top Related