Transcript

Constant coefficient homogeneous higher-order

linear ODEsLecture 9a: 2021-07-16

MAT A35 – Summer 2021 – UTSC

Prof. Yun William Yu

Recall: linear higher-order ODEs

β€’ Linear ODEs: π‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = π‘ž(π‘₯), where π‘Žπ‘– π‘₯ and π‘ž π‘₯ are all functions of π‘₯.

A: LinearB: NonlinearC: BothD: ???E: None of the above

(In)homogeneous linear ODEs

β€’ Linear ODEs: π‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = π‘ž(π‘₯), where π‘Žπ‘– π‘₯ and π‘ž π‘₯ are all functions of π‘₯.β€’ If π‘ž π‘₯ = 0, then homogeneous.

β€’ Otherwise, it is inhomogeneous.

β€’ Note, if nonlinear, then neither definition applies.

Constant coefficient linear ODEs

β€’ Linear ODEs: π‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = π‘ž(π‘₯), where π‘Žπ‘– π‘₯ and π‘ž π‘₯ are all functions of π‘₯.β€’ If π‘Žπ‘– π‘₯ = π‘Žπ‘– for some constant π‘Žπ‘–, then it has constant coefficients

β€’ Otherwise, is does not have constant coefficients

β€’ Note, if nonlinear, this terminology does not apply.

Try it out: homogeneity and coefficients?

β€’ 𝑦′ + 9𝑦 = π‘₯2

β€’ 𝑦′ βˆ’ πœ‹π‘¦ = 0

β€’ 𝑦′′ + π‘₯𝑦′ + 𝑦 = 0

β€’ 𝑦′′ + 𝑒π‘₯𝑦′ = 3

β€’ 𝑦′′ βˆ’ 2𝑦 + 𝑦2 = 5

β€’ ሷπ‘₯ + 4 ሢx = βˆ’4π‘₯

β€’ (sin π‘₯)𝑦′′ + 𝑒π‘₯𝑦′ + 𝑦 = 0

β€’ π‘₯𝑦′′ + 𝑦 = π‘₯2

β€’ 𝑦′′ + 4𝑦 + 4 = 0

A: Homogeneous, constant coefficientsB: Inhomogeneous, constant coefficientsC: Homogeneous, nonconstant coefficientsD: Inhomogeneous, nonconstant coefficientsE: None of the above

Scaling of sols to homogeneous eq

β€’ Let 𝑦1 be a sol. to the homogeneous linear ODEπ‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = 0

β€’ Then 𝑐1𝑦1 is a solution to the same ODE, where 𝑐1 is a constant.

Adding sols to homogeneous equation

β€’ Let 𝑦1(π‘₯) and 𝑦2(π‘₯) be sol. to the homogeneous linear ODEπ‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = 0

β€’ Then 𝑦1 + 𝑦2 is a solution to the same ODE.

Main Theorems

β€’ Let 𝑦1 π‘₯ , 𝑦2 π‘₯ , … , 𝑦𝑛 π‘₯ be solutions to the homogeneous linear ODE

π‘Žπ‘› π‘₯ 𝑦(𝑛) +β‹―π‘Ž1 π‘₯ 𝑦′ + π‘Ž0 π‘₯ 𝑦 = 0

β€’ Principal of Superposition: then 𝑐1𝑦1 + 𝑐2𝑦2 +β‹―+ 𝑐𝑛𝑦𝑛 is a solution to the same ODE, where 𝑐𝑖 are arbitrary constants.

β€’ General solution: If 𝑦1, … , y𝑛 are linearly independent, then allsolutions to the ODE can be written in the form

𝑐1𝑦1 + 𝑐2𝑦2 +β‹―+ 𝑐𝑛𝑦𝑛so we call that the general solution to the ODE.

Constant coefficient homogeneous sol

β€’ Consider π‘Žπ‘›π‘¦(𝑛) +β‹―+ π‘Ž1𝑦

β€² + π‘Ž0𝑦 = 0, where π‘Žπ‘– are constant.

β€’ We can write a characteristic polynomial𝑝 π‘Ÿ = π‘Žπ‘›π‘Ÿ

𝑛 +β‹―+ π‘Ž1π‘Ÿ + π‘Ž0

β€’ If πœ† is a root of the polynomial (i.e. 𝑝 πœ† = 0), then π‘’πœ†π‘₯ is a solution to the ODE.

β€’ If πœ† is a root of the polynomial with multiplicity π‘˜, then π‘₯π‘˜βˆ’1π‘’πœ†π‘₯

is a solution to the ODE.

β€’ Note, we will often call πœ† an eigenvalue of the ODE, for reasons that will become clear later.

Example

Intuitive proof idea

Try it out

β€’ Which of the following are solutions to𝑦′′′ βˆ’ 2𝑦′′ βˆ’ 𝑦′ + 2𝑦 = 0?

A: π‘’βˆ’π‘₯

B: 𝑒2π‘₯

C: π‘’βˆ’π‘₯ + 5𝑒π‘₯ βˆ’ 2𝑒2π‘₯

D: All of the aboveE: None of the above

Try it out

β€’ What is the general solution to 𝑦′′ + 4𝑦′ + 4𝑦 = 0?

β€’ What is the solution to the IVP given 𝑦′′ + 4𝑦′ + 4𝑦 = 0, 𝑦 0 = 1, 𝑦′ 0 = 2?

A: 𝑐1π‘’βˆ’2π‘₯

B: 𝑐1π‘₯π‘’βˆ’2π‘₯

C: 𝑐1π‘’βˆ’2π‘₯ + 𝑐2π‘₯𝑒

βˆ’2π‘₯

D: All of the aboveE: None of the above

A: π‘’βˆ’2π‘₯ + 2π‘₯π‘’βˆ’2π‘₯

B: βˆ’1

3π‘’βˆ’2π‘₯ +

4

3π‘₯π‘’βˆ’2π‘₯

C: βˆ’1

2π‘’βˆ’2π‘₯ + 2𝑐2π‘₯𝑒

βˆ’2π‘₯

D: All of the aboveE: None of the above

Euler’s Formula: 𝑒𝑖π‘₯ = cos π‘₯ + 𝑖 sin π‘₯

β€’ Real powers define exponential growth.β€’ 𝑒0 = 1

β€’ 𝑒1 = 𝑒 β‰ˆ 2.718

β€’ 𝑒2 β‰ˆ 7.389

β€’ Imaginary powers encode rotation around the complex origin.β€’ 𝑒0 = 1

β€’ π‘’πœ‹

4 =2

2+ 𝑖

2

2

β€’ π‘’πœ‹

2 = 𝑖

β€’ π‘’πœ‹ = βˆ’1

https://en.wikipedia.org/wiki/Euler%27s_formula#/media/File:Euler's_formula.svg

Complex roots β†’ Real solutions

β€’ Consider the equation 𝑦′′ + 𝑦 = 0

β€’ Use 𝑒𝑖π‘₯ = cos π‘₯ + 𝑖 sin π‘₯

Complex roots with real coefficients

β€’ Complex roots of a real polynomial always come in pairs π‘Ž Β± 𝑖𝑏.

β€’ If a characteristic equation of an ODE has roots π‘Ž Β± 𝑖𝑏, then has complex solutions 𝑒 π‘Ž+𝑖𝑏 π‘₯ and 𝑒 π‘Žβˆ’π‘–π‘ π‘₯.

β€’ Alternately, it has real solutions π‘’π‘Žπ‘₯ sin 𝑏π‘₯ and π‘’π‘Žπ‘₯ cos 𝑏π‘₯

Try it out

β€’ Let 𝑦′′ + 4𝑦′ + 29𝑦 = 0.

β€’ Which of the following are solutions to the ODE?

β€’ What about real solutions?A: 𝑒 βˆ’2+5𝑖 π‘₯ + 4𝑒 βˆ’2βˆ’5𝑖 π‘₯

B: βˆ’πœ‹π‘’βˆ’2π‘₯𝑒5𝑖π‘₯

C: π‘’βˆ’2π‘₯ cos 5π‘₯D: All of the aboveE: None of the above

Repeated complex eigenvalues of ODE

β€’ Like repeated real roots, if π‘Ž Β± 𝑏𝑖 have multiplicity π‘˜, then π‘₯π‘˜βˆ’1π‘’π‘Žπ‘₯ cos 𝑏π‘₯ and π‘₯π‘˜βˆ’1π‘’π‘Žπ‘₯ sin 𝑏π‘₯ are solutions.

Summary

β€’ To solve a linear nth-order homogeneous ODEπ‘Žπ‘›π‘¦

(𝑛) +β‹―+ π‘Ž2𝑦′′ + π‘Ž1𝑦

β€² + π‘Ž0𝑦 = 0

β€’ Construct the characteristic equationπ‘Žπ‘›πœ†

𝑛 +β‹―+ π‘Ž2πœ†2 + π‘Ž1πœ† + π‘Ž0 = 0

β€’ The 𝑛 roots (counting multiplicity) of the characteristic equation are either real or come in complex conjugate pairs.

β€’ If πœ† is a (real or complex) root of multiplicity π‘˜, then π‘’πœ†π‘₯ , π‘₯π‘’πœ†π‘₯ , … π‘₯π‘˜βˆ’1π‘’πœ†π‘₯ are linearly independent solutions.

β€’ If πœ† = π‘Ž Β± 𝑖𝑏 is a conjugate pair of complex roots, each of multiplicity π‘˜, then π‘’π‘Žπ‘₯ cos 𝑏π‘₯ , π‘₯π‘’π‘Žπ‘₯ cos 𝑏π‘₯ , … , π‘₯π‘˜βˆ’1π‘’π‘Žπ‘₯ cos 𝑏π‘₯and π‘’π‘Žπ‘₯ sin 𝑏π‘₯ , π‘₯π‘’π‘Žπ‘₯ sin 𝑏π‘₯ ,… , π‘₯π‘˜βˆ’1π‘’π‘Žπ‘₯ sin 𝑏π‘₯ are 2π‘˜ linearly independent solutions.


Top Related