Transcript
  • /

    23

    1 1,* 1 2

    1 2

    2011 2 24 2011 3 25 2011 7 7

    13~23 70%-4% LCD

    1.

    [1]

    [2]

    (Proton Exchange Membrane Fuel Cell, PEMFC)

    [3]

    [4]

    : [5][6]

    Journal of Kao Yuan University Vol. 17, No. 2 (2011) 23-34

    23-34

    * [email protected]

  • /

    24

    [7]

    [8-10]

    IsSpice

    DSP DSP

    [10-11] dsPIC30F4011

    16 LCD PIC16F877

    A/D LCD

    100W

    2.

    2.1

    [12]

    2H

    +H -e +H -e

    ;

    2O

    +H -e -e 0.6~0.9(V)[13]

    1

    2(a) 100W 2(b) 100W 1 Horizon 100W 2(c) 100W 100W

    1.

    PEM

    24 1.4L/min 100W 0.4-0.6 Bar 14V/7.2A

    65

    13V-23V 40%/14V

    2.2

    [14][15]

    [16]

    (Self-Discharge)

  • /

    25

    3.

    3 PWM

    13V~23V PWM MOSFET 24V

    3.1 PWM (Pulse-Width Modulation, PWM)

    PWM PWM

    PI

    PWM TL494 OP PWM LM311 PWM 3.2

    (G)(S)

    PWM TLP250

    ;

    3.3 IR IRFP460

    MOSFET 20k~25kHz MOSFET

    MOSFET

    MOSFET MOSFET MOSFET (Snubber Circuit) MOSFET MOSFET

    3.4 100W

    - 4 PWM IC MOSFET

    4.

    5 PIC 2*16 LCD Microchip PIC16F877 TL074 0~5V (A/D)

    LCD

    6 4.1

    4 IC TL074 PIC 5V

    OP PIC /

    4.2 20m

  • /

    26

    PIC /

    4.3 Analog Device

    AD590

    0 2.73V

    2.73V 2.73VOP 5V PIC PIC A/D

    4.4 PIC16F877 LCD

    PIC16F877 8bit A/D PIC ADRESH LCD PIC LCD 4.5

    100W

    LCD 7

    5.

    5.1

    13V~23V 24V

    13V~23V 100W 2(a)~(c)

    (%) 23V 0.48A

    96.32%; 13V 2.96A 66.14% 8

    (%)

    24V 24V( ) 2

    4%

    5.2

    2 YTX5L-BS 12V/4AH 24V

    8

    3 0.15% 0.84% 4

    3.44% 5.66%

    1% 4%

    5.3

    9 24V2.7V 10

    27V

    5.4 10

    ;

  • /

    27

    LCD

    6.

    7.

    NSC-98-2221-E-244-015 NSC-99-2218-E-244-001

    8.

    1. A. Jossen, J. Garche, H. Doering, M. Goetz, W. Knaupp and L. Joerissen, Hybrid Systems with Lead-Acid Battery and Proton-Exchange Membrane Fuel Cell, Journal of Power Sources, vol. 144, no. 2, pp. 395-401, Jun. 2005.

    2. Y. Guezennec, T.-Y. Choi, G. Paganelli, and G. Rizzoni, Supervisory Control of Fuel Cell Vehicles and its Link to Overall System Efficiency and Low-Level Control Requirements, Proceedings of the American Control Conference Denver, vol. 3, pp. 20552061, 4-6 June 2003, Colorado, OH, USA.

    3.

    2009

    4. 9 4 2009

    5. M. Bertoluzzo, G. Buja and L. Cavalletto, Control and Operational Management of a Fuel-Cell Supply System for Electric Bicycle, ELECTROMOTION 2009 EPE Chapter Electric Drives Joint Symposium, pp.1-6, 1-3 July 2009, Lille, France.

    6. P.-C. Chen, H.-Y. Lin, S.-B. Chang, and Y.-C. Huang, The Torque Control of Human Power Assisted Electric Bikes, International Conference on System Science and Engineering(ICSSE), pp.373-378, 1-3 July 2010, Kaohsiung, Taiwan.

    7. P.-C. Chen, Y.-C. Liu, H.-S. Chuang, and S.-B.

    Chang, Regenerative Braking Control Strategies for E-Bike Systems, The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition ,EVS-25 Shenzhen, Nov. 5-9, 2010, China.

    8. 2008

    9. 2009

    10. 2008

    11. 2009

    12. 13.

    14. P. Thounthong, S. Rael, and B. Davat, Analysis of Supercapacitor as Second Source Based on Fuel Cell Power Generation, IEEE Transactions on Energy Conversion, vol. 24, no. 1, pp.247-255, March 2009, North Bangkok (KMUTNB), Bangkok.

    15. 16. J.-W. Dixon, M.-D. Ortuzar and J.-A. Moreno,

    Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors, Electric Vehicle Symposium, EVS19, pp. 1368-1378, October 2002, Busan Corea.

  • /

    28

    2(a). 13V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    13 1.02 24.0 0.49 13.26 11.76 88.68 0

    13 4.51 23.6 1.93 58.63 45.54 77.67 -1.67

    13 8.02 23.3 2.96 104.26 68.96 66.14 -2.92

    2(b). 17V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    17 1.02 23.9 0.66 17.34 15.77 90.94 -0.42

    17 3.51 23.5 2.16 59.67 50.76 85.06 -2.08

    17 6.01 23.1 3.43 102.17 79.23 77.54 -3.75

    2(c). 21V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    21 0.51 24.0 0.42 10.71 10.08 94.11 0

    21 2.52 23.6 2.01 52.92 47.43 89.62 -1.67

    21 5.02 23.1 3.85 105.42 88.93 84.35 -3.75

    2(d). 23V

    (V)

    (A)

    (V)

    (A)

    (W)

    (W)

    (%)

    (%)

    23 0.52 24.0 0.48 11.96 11.52 96.32 0

    23 2.52 23.5 2.22 57.96 52.17 90.01 -2.08

    23 4.51 23.1 3.92 103.73 90.55 87.29 -3.75

  • /

    29

    3.

    R() (V) (V) (%)

    1 5 23.6 23.4 0.84

    2 10 24.2 24.1 0.41

    3 20 24.5 24.5 0

    4 30 24.6 24.6 0

    5 40 24.8 24.8 0

    6 50 24.8 24.8 0

    7 60 24.9 24.9 0

    8 80 25.0 25.0 0

    4.

    R() (A) (A) (%)

    1 5 4.96 5.0 0.80

    2 10 2.61 2.6 0.38

    3 20 1.27 1.2 5.51

    4 30 0.84 0.8 4.76

    5 40 0.63 0.6 4.76

    6 50 0.53 0.5 5.66

    7 60 0.41 0.4 2.43

    8 80 0.31 0.3 3.22

    1.

  • /

    30

    (a)

    (b)

    (c)

    2. 100W

  • /

    31

    3.

    (a) (b)

    4.

    5.

  • /

    32

    6.

    7.

  • /

    33

    60

    70

    80

    90

    100

    0 0.5 1 1.5 2 2.5 3 3.5 4

    (A)

    (%)

    13V

    17V

    21V

    23V

    8.

    9.

    10.

  • /

    34

    The Intelligent Power System Using PEM Fuel Cell

    for an Electric Bike Yao-Ting Chang1, Pang-Chia Chen1,*, Yow-Chyi Liu1, Shyue-Bin Chang2

    1 Department of Electronic Engineering, Kao Yuan University, Taiwan 2 Department of Mechanical and Automation Engineering, Kao Yuan University, Taiwan

    Received 24 February 2011; Revised 25 March 2011; Accepted 7 July 2010

    Abstract The purpose of the paper is to develop a PEM fuel cell power system with application for the electric bike. The main addressed

    issues include the energy converter for voltage regulation, ultra capacitor for energy buffering, and status monitoring for safety operation. The converter is implemented via analogy circuits to provide control signal with feedback loop. From the experiment result, in the full operation range of the fuel cell, the converter can achieve an energy efficiency higher than 70%, while voltage regulation maintained within -4%. The ultra capacitor for buffering of the changing power flow such that steady power can be provided for the hub motor and the driving performance as well energy efficiency can be improved. Moreover, the status parameters of the fuel cell, including the voltage, current, and temperature, are displayed in the LCD scheme, so that the operation of the fuel cell power system can be monitored in real time. Keywords: PEM fuel cell, Electric bike, Energy converter, State monitoring

    Journal of Kao Yuan University Vol. 17, No. 2 (2011) 23-34

    23-34

    * Correspondence to: P. C. Chen E-mail address: [email protected]


Top Related