Transcript

Elasticity required when studying plasticity

Youngung Jeong

Constitutive description on elasticity

Elastic constitutive law:π”Όπœ€ = 𝜎 (elastic stiffness 𝔼 = 200 [GPa] )

Elastic constitutive law:𝔼!"#$πœ€#$ = 𝜎!"

Apply it to FORTRAN, (or Python or Excel)

-Exercise 1. [3x1] = [3x3] [3x1]

-Exercise 2. [nx1] = [nxn] [nx1]- (hint): use 𝐴 ! = 𝐡 !" 𝐢 "

Kronecker delta may appear in formula

π‘Ž = πœ€#$𝛿#$ =1#

1$

πœ€#$𝛿#$ =1$

πœ€%$𝛿%$ +1$

πœ€&$𝛿&$ +1$

πœ€'$𝛿'$

= πœ€%%𝛿%% + πœ€&&𝛿&& + πœ€''𝛿'' =1#

πœ€## =1!

πœ€!! =1$

πœ€$$

= πœ€%% + πœ€&& + πœ€''

Linear isotropic elasticity

Elastic constitutive law (Hooke’s law):𝔼!"#$πœ€#$ = 𝜎!" (π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘π‘–π‘‘π‘¦)

𝔼!"#$ = πœ†π›Ώ!"𝛿#$ + πœ‡ 𝛿!#𝛿"$ + 𝛿!$𝛿"# (π‘–π‘ π‘œπ‘‘π‘Ÿπ‘œπ‘π‘–π‘ π‘’π‘™π‘Žπ‘ π‘‘π‘–π‘π‘–π‘‘π‘¦; π‘‘π‘€π‘œ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘  πœ†, πœ‡)

Replacing 𝔼!"#$ to the Hooke’s law𝜎!" = 𝔼!"#$πœ€#$ = πœ†π›Ώ!"𝛿#$πœ€#$ + πœ‡ 𝛿!#𝛿"$ + 𝛿!$𝛿"# πœ€#$= πœ†π›Ώ!"πœ€## + πœ‡ 𝛿!#𝛿"$πœ€#$ + 𝛿!$𝛿"#πœ€#$ = πœ†π›Ώ!"πœ€## + πœ‡ 𝛿!#πœ€#" + 𝛿!$πœ€"$= πœ†π›Ώ!"πœ€## + πœ‡ πœ€!" + πœ€"! = πœ†π›Ώ!"πœ€## + 2πœ‡πœ€!"

Demonstration with Excel

Examplesβ€’ In order for a material (with πœ† = 115.384 GPa, πœ‡ =76.923 GPa) to exhibit below elastic strain, what stress should be given?

πœ€ =0.002 0 00 βˆ’0.0006 00 0 βˆ’0.0006

β€’ Hint: use β€œπœŽEF = πœ†π›ΏEFπœ€GG + 2πœ‡πœ€EF”

Linear isotropic elasticity (Young, Poisson)

Elastic constitutive law (Hooke’s law):

πœ€!" =1𝐸 𝜎!" βˆ’ 𝜈 𝜎##𝛿!" βˆ’ 𝜎!"

β€’ If you apply below stress to a material (with 𝐸 = 200 GPa, 𝜈 = 0.3), in what strain tensor will the material exhibit?

𝜎 =200 0 00 0 00 0 0

, the unit of stress is MPa

Notice that a material with 𝐸 = 200 GPa, 𝜈 = 0.3 behaves equivalently with a material with πœ† = 115.384 GPa, πœ‡ = 76.923 GPa

Demonstration with Excel

Symmetries; why only two parameters?

β€’ 𝜎!" = 𝜎"! gives 𝔼!"#$ = 𝔼"!#$ thus, the required number of elastic constants reduces from 3x3x3x3 to 6x3x3.

β€’ Similarly, πœ€!" = πœ€"! gives 𝔼!"#$ = 𝔼!"$# so that we have the required of number of constants 6x6=36

The required number of constants can be further reduced. Consider the elastic energy:πœ™ = ∫ 𝜎!"π‘‘πœ€!"

𝜎!" =πœ•πœ™πœ•πœ€!"

= 𝔼!"#$πœ€#$

If we apply partial derivative once again, we have(!)

(*"#(*$%= (

(*"#𝔼!"#$πœ€#$ since 𝔼 is β€˜constant’, we have

πœ•&πœ™πœ•πœ€+,πœ•πœ€!"

= 𝔼!"#$πœ•πœ€#$πœ•πœ€+,

= 𝔼!"#$𝛿#+𝛿$, = 𝔼!"+,

Symmetries; why only two parameters?

β€’ πœ™ = ∫ 𝜎!"π‘‘πœ€!"

β€’ 𝜎!" =#$#%!"

= 𝔼!"&'πœ€&'

β€’ If we apply partial derivative once again, we haveβ€’ ##$

#%$%#%!"= #

#%$%𝔼!"&'πœ€&' since 𝔼 is β€˜constant’, we have

β€’ !!"!#"#!#$%

= 𝔼$%&'!#&'!#"#

= 𝔼$%&'𝛿&(𝛿') = 𝔼$%()

β€’ We could do the 2nd order derivative in a different way (say, instead of !!"!#"#!#$%

we could have done !!"!#$%!#"#

= !!#$%

!"!#"#

= !!#$%

!"!#"#

= 𝔼()$%β€’ The two cases (regardless of the order of derivative) should give equivalent result

so thatβ€’ 𝔼$%() = 𝔼()$%

β€’ This summarizes our finding on the symmetries in elastic tensor:

Reduction to Voigt notationβ€’ 𝜎!" = 𝔼&%%%πœ€%% + 𝔼&%%&πœ€%& + 𝔼&%%'πœ€%' + 𝔼&%&%πœ€&% + 𝔼&%&&πœ€&& + 𝔼&%&'πœ€&' +𝔼&%'%πœ€'% + 𝔼&%'&πœ€'& + 𝔼&%&'πœ€''

β€’ 𝜎!" =

𝔼&%%%𝔼&%%&𝔼&%%'𝔼&%&%𝔼&%&&𝔼&%&'𝔼&%'%𝔼&%'&𝔼&%''

πœ€%%πœ€%&πœ€%'πœ€&%πœ€&&πœ€&'πœ€'%πœ€'&πœ€''

=

𝔼&%%%2𝔼&%%&2𝔼&%%'βˆ’π”Ό&%&&2𝔼&%&'βˆ’βˆ’

𝔼&%''

πœ€%%πœ€%&πœ€%'βˆ’πœ€&&πœ€&'βˆ’βˆ’πœ€''

=

𝔼&%%%𝔼&%&&𝔼&%''2𝔼&%&'2𝔼&%%'2𝔼&%%&

πœ€%%πœ€&&πœ€''πœ€&'πœ€%'πœ€%&

β€’

π‘œπ‘Ÿ =

𝔼&%%%𝔼&%&&𝔼&%''𝔼&%&'𝔼&%%'𝔼&%%&

πœ€%%πœ€&&πœ€''𝛾&'𝛾%'𝛾%&

with 𝛾%& = 2πœ€%& and so forth𝜎() =

𝔼(),)𝔼(),(𝔼(),+𝔼(),,𝔼(),-𝔼(),.

πœ€)πœ€(πœ€+𝛾,𝛾-𝛾.

with 1,1 β†’ 1 , 2,2 β†’ 2 , 3,3 β†’ (3)2,3 β†’ 4 , 1,3 β†’ 5 , 1,2 β†’ (6)

Reduction to Voigt notation

𝜎&% =

𝔼&%,%𝔼&%,&𝔼&%,'𝔼&%,0𝔼&%,1𝔼&%,2

πœ€%πœ€&πœ€'𝛾0𝛾1𝛾2

with 1,1 β†’ 1 , 2,2 β†’ 2 , 3,3 β†’ (3)2,3 β†’ 4 , 1,3 β†’ 5 , 1,2 β†’ (6)

𝜎&% =

𝔼&%,%𝔼&%,&𝔼&%,'𝔼&%,0𝔼&%,1𝔼&%,2

πœ€%πœ€&πœ€'πœ€0πœ€1πœ€2

with 1,2 β†’ (2,1) β†’ (6)

𝜎2 =

𝔼2,%𝔼2,&𝔼2,'𝔼2,0𝔼2,1𝔼2,2

πœ€%πœ€&πœ€'πœ€0πœ€1πœ€2

with 1,2 β†’ (2,1) β†’ (6)

Reduction to Voigt notation𝜎!" = 𝔼!"#$πœ€#$

𝜎! = 𝔼!"πœ€"

𝜎%%𝜎&&𝜎''𝜎&'𝜎%'𝜎%&

=

𝔼%%%%𝔼&&%%𝔼''%%𝔼&'%%𝔼%'%%𝔼%&%%

𝔼%%&&𝔼&&&&𝔼''&&𝔼&'&&𝔼%'&&𝔼%&&&

𝔼%%''𝔼&&''𝔼''''𝔼&'''𝔼%'''𝔼%&''

𝔼%%&'𝔼&&&'𝔼''&'𝔼&'&'𝔼%'&'𝔼%&&'

𝔼%%%'𝔼&&%'𝔼''%'𝔼&'%'𝔼%'%'𝔼%&%'

𝔼%%%&𝔼&&%&𝔼''%&𝔼&'%&𝔼%'%&𝔼%&%&

πœ€%%πœ€&&πœ€''2πœ€&'2πœ€%'2πœ€%&

𝜎%𝜎&𝜎'𝜎0𝜎1𝜎2

=

𝔼%%𝔼&%𝔼'%𝔼0%𝔼1%𝔼2%

𝔼%&𝔼&&𝔼'&𝔼0&𝔼1&𝔼2&

𝔼%'𝔼&'𝔼''𝔼0'𝔼1'𝔼2'

𝔼%0𝔼&0𝔼'0𝔼00𝔼10𝔼20

𝔼%1𝔼&1𝔼'1𝔼01𝔼11𝔼21

𝔼%2𝔼&2𝔼'2𝔼02𝔼12𝔼22

πœ–%πœ–&πœ–'πœ–0πœ–1πœ–2

How many constants are required?

𝜎%%𝜎&&𝜎''𝜎&'𝜎%'𝜎%&

=

𝔼%%%%𝔼&&%%𝔼''%%𝔼&'%%𝔼%'%%𝔼%&%%

𝔼%%&&𝔼&&&&𝔼''&&𝔼&'&&𝔼%'&&𝔼%&&&

𝔼%%''𝔼&&''𝔼''''𝔼&'''𝔼%'''𝔼%&''

𝔼%%&'𝔼&&&'𝔼''&'𝔼&'&'𝔼%'&'𝔼%&&'

𝔼%%%'𝔼&&%'𝔼''%'𝔼&'%'𝔼%'%'𝔼%&%'

𝔼%%%&𝔼&&%&𝔼''%&𝔼&'%&𝔼%'%&𝔼%&%&

πœ€%%πœ€&&πœ€''2πœ€&'2πœ€%'2πœ€%&

How many constants do we need?

𝜎!!𝜎""𝜎##

=𝔼!!!! 𝔼!!""

𝔼""""𝔼!!##𝔼"""#𝔼####

πœ€!!πœ€""πœ€##

If the coordinate system happens to give strain and stress all principal values:

exampleβ€’ Fe(1-0.025)-Al(0.025) alloyμ˜νƒ„μ„±κ³„μˆ˜λŠ”λ‹€μŒκ³Όκ°™μ΄μ£Όμ–΄μ§„λ‹€.

β€’ 𝔼)) = 270.71, 𝔼%& = 128.03, 𝔼00 = 108.77

β€’ Fe-Al alloyλŠ” Body-centered cubic 결정ꡬ쑰λ₯Όκ°€μ§€κ³ , κ²°μ •λŒ€μΉ­μ„±μ—μ˜ν•΄λ‹€μŒκ³Όκ°™μ€νƒ„μ„±κ±°λ™μ„ν•œλ‹€.

β€’ λΏλ§Œμ•„λ‹ˆλΌ, cubic κ²°μ •κ΅¬μ‘°μ˜λŒ€μΉ­μ„±μœΌλ‘œμΈν•΄ 𝔼)) = 𝔼(( = 𝔼'', 𝔼00 =𝔼11 = 𝔼22, 𝔼%& = 𝔼%' = 𝔼&'

𝜎%𝜎&𝜎'𝜎0𝜎1𝜎2

=

𝔼%%𝔼&%𝔼'%000

𝔼%&𝔼&&𝔼'&000

𝔼%'𝔼&'𝔼''000

000𝔼0000

0000𝔼110

00000𝔼22

πœ–%πœ–&πœ–'πœ–0πœ–1πœ–2

Example

β€’ Fe(1-0.025)-Al(0.025) alloyμ˜λ‹¨κ²°μ •μ—λ‹€μŒκ³Όκ°™μ€νƒ„μ„±λ³€ν˜•λ₯ μ΄λ‚˜νƒ€λ‚˜κΈ°μœ„ν•΄ν•„μš”ν•œμ‘λ ₯μƒνƒœλŠ”?

0.000100

000

000

Voigt notation

Cartesian <-> Voigt (cheat sheet)

Convert from Cartesian to Voigt

β€’ 𝔼ff(ghijk) = 𝔼ffff

lmnkopimq , 𝔼rs(ghijk) = 𝔼rrss

lmnkopimq , 𝔼tf(ghijk) = 𝔼rsff

lmnkopimq

β€’ Material anisotropyβ€’ Symmetry can be represented by an orthogonal second order tensor, β€’ 𝑸 = 𝑄EF𝐞iβŠ—πžu, such that 𝑸vf = 𝑸w

β€’ The invariance of the stiffness tensor under these transformations (due to symmetry) is:β€’ 𝔼(xyz) = 𝑸 β‹… 𝑸 β‹… 𝔼 {|} β‹… 𝑸w β‹… 𝑸w due to symmetry the resulting

tensor should be equivalent with the original one: 𝔼(xyz) ≑ 𝔼 {|}

http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf

Convert from Cartesian to Voigt

β€’ 𝔼ff(ghijk) = 𝔼ffff

lmnkopimq , 𝔼rs(ghijk) = 𝔼rrss

lmnkopimq , 𝔼tf(ghijk) = 𝔼rsff

lmnkopimq

β€’ Material anisotropyβ€’ Symmetry can be represented by an orthogonal second order tensor, β€’ 𝑸 = 𝑄EF𝐞iβŠ—πžu, such that 𝑸vf = 𝑸w

β€’ The invariance of the stiffness tensor under these transformations (due to symmetry) is:

β€’ 𝔼(xyz) = 𝑸 β‹… 𝑸 β‹… 𝔼 {|} β‹… 𝑸w β‹… 𝑸w due to symmetry the resulting tensor should be equivalent with the original one: 𝔼(xyz) ≑ 𝔼 {|}

http://web.mit.edu/16.20/homepage/3_Constitutive/Constitutive_files/module_3_with_solutions.pdf

Triclinic (no symmetry)

monoclinic (one symmetry plane)

β€’ For the case of Monoclinic:

β€’ 𝑸 = 𝑄&'𝐞(βŠ—πž) =1 0 00 1 00 0 βˆ’1

β€’ Let’s take a look at the invariance due to symmetry

β€’ 𝔼(+,-) = 𝑸 β‹… 𝑸 β‹… 𝔼 /01 β‹… 𝑸2 β‹… 𝑸2 due to symmetry the resulting tensor should be equivalent with the original one: 𝔼(+,-) ≑ 𝔼 /01

β€’ In its matrix form:β€’ 𝔼#$%&

'() = 𝑄#*𝑄$'𝑄%+𝑄&,𝔼*'+,+&-

β€’ Ex: 𝔼"".+#/0 = 𝔼"""" = 𝑄"*𝑄"'𝑄"+𝑄",𝔼*'+,

+&-

β€’ If you look at the matrix form of symmetry operator Q in the above, only diagonal components are non-zero. Therefore, 𝑄&' = 0 if 𝑖 β‰  𝑗.

β€’ 𝔼(()*&+, = 𝔼(((( = 𝑄((𝑄((𝑄((𝑄((𝔼((((

*-. = 𝔼((((*-.

β€’ Therefore, 𝔼(()*&+, = 𝔼((((

β€’ Ex: 𝔼"1.+#/0 = 𝔼""!2 = 𝑄"*𝑄"'𝑄!+𝑄2,𝔼*'+,

+&- = 𝑄""𝑄""𝑄!!𝑄22𝔼""!2+&- = 1Γ—1Γ—1Γ— βˆ’1 ×𝔼""!2

+&- = βˆ’π”Ό""!2+&-

β€’ Therefore, in order to satisfy 𝔼((/0 = βˆ’π”Ό((/0, 𝔼((/0 should be zero.

monoclinic (one symmetry plane)

Cubic


Top Related