Transcript
Page 1: Evolution of DNA Methylation - Sylvain Forêt

Evolution of DNA Methylation

Sylvain ForêtEvolution, Ecology and Genetics

Research School of Biology

Page 2: Evolution of DNA Methylation - Sylvain Forêt

History

Page 3: Evolution of DNA Methylation - Sylvain Forêt

1942 1944 1953

The double helix

Watson, Crick, Wilkins

DNA is the supportof genetic information

Avery, MacLeod, McCarty

Page 4: Evolution of DNA Methylation - Sylvain Forêt

1942 1944 1953

The double helix

Watson, Crick, Wilkins

DNA is the supportof genetic information

Avery, MacLeod, McCarty

Epigenetics

Waddington

Page 5: Evolution of DNA Methylation - Sylvain Forêt
Page 6: Evolution of DNA Methylation - Sylvain Forêt

From Genomes to Cells

Page 7: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 8: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 9: Evolution of DNA Methylation - Sylvain Forêt

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

AATAATAACGCTATCGGTTATTGTATCATTATTGTATATATTCGTAGTCGGTTTCCGAACGCGAAACGAAACGGACGTGTTTCTCTCTGCTCTCCGAGTAAAGACTTTATCGCTGTGAATAAAATATTATAGTGTAAAAATTTATTAAATAAAATAAAAATATTGTAGCGTAAAGATTATTAACGAATTTTATAAGTCATATAATAAATTCCAATTCCAAGAAGAGGAAATTTTTTAATCTTTAAAATTTTGTAAACTTTGAATCGCTGTATCTCCGAAGATAATAGCGATACCTACGATTTTCTGATGTGATTGCGATCGGGAAACGTTGCTCTTTCGATTTAATCGTTATTCCACGTCGAGAACTATCGTTGAAATGAACGCTATCGTTTAAATATGAGAAGAATCTTTGGAATTAAACTTGTGCAAACTTTCGACTGCTGTATCTCCAAAGATACAGTAGCGATATGTACGATTTTTTGAGATAGTTGCGAGCGGGAAACATTGCTCTTTATAATGTGGAAAAGGAAAAATAAAAAACTTAACCAAATGTAAACGATTAGATCGATTTAAACTGATACTGATAATTGCAATGAAAATAACCGGAAAATTAAGAAGATAAACGAAAGAAATCTTTGAATCTTTTTTTACGCGTCTTATAAATTAATAATAATGAAAAAAAAATTAAAAAAAATTAATTATCGAAAATATTATCGATAAAAAAAAATTAAATCATTAAATTTTAAAGAAACGAAAAATAACGAAACGAATCTAACGGAGTAATATATTAACGAGTGATAAAATGTAAAAATAAAATGAAAATTAATAATACCTTATGAATATTATAGTGAATAAAATAGCGAACGTAAATCGTGTCGATTGGTATTGTATACGTCTCGGTTAAACGTACTCGTTTTCCAAATACGAAACGAAACACGTGTTCCTTCCATTGTATTTATATACGTATAGACTAAACGTAGTCGGTTTTCGAACACGGAACGGGACGGACGTATTCCTTTCCGCTCTCTCGATAAAAATTTTATCGATATACGATATATTAATATTAAAATATAAATAATTGTTAAATAAATAAAATATGGAAGTGTAAGAATATCGAGTGTAATCATCATTAATACGTAAATCGATAAAAAGAAGAATTAAATATTTATCGAATACGAGGATAAAATGAAGAACGAAACGAGCCGAAACGTAAAAAAAAATAATCCTTTAACCGATAAATACTTAGAAATTAAAAAAAAATAATATAATAATTAAAATCGATAAATAAAATAAAAAATTCGAATTATTCGATTCTTTTCTTTTATTTCATTTTCAATTTACATATATTTTTTCTTTTTCTCTTACATTTTAAATATTAAAATATGTATTATCGTATTAAA

Page 10: Evolution of DNA Methylation - Sylvain Forêt
Page 11: Evolution of DNA Methylation - Sylvain Forêt

From Genomes to Organisms

Page 12: Evolution of DNA Methylation - Sylvain Forêt
Page 13: Evolution of DNA Methylation - Sylvain Forêt

FixedSimple structureVegetative reproductionImmortal

MotileComplex nervous systemComplex sensory structuresSexual reproductionShort lifespan

Page 14: Evolution of DNA Methylation - Sylvain Forêt
Page 15: Evolution of DNA Methylation - Sylvain Forêt

`

One per hiveLong-livedReproductive

Thousands per hiveShort-livedNon-reproductive

Page 16: Evolution of DNA Methylation - Sylvain Forêt
Page 17: Evolution of DNA Methylation - Sylvain Forêt
Page 18: Evolution of DNA Methylation - Sylvain Forêt
Page 19: Evolution of DNA Methylation - Sylvain Forêt

● These epigenetic changes are induced by environmental clues

● link between genome and environment● Epigenetic regulations are context dependent

interpretations of the genome:● conditional phenotypes

Page 20: Evolution of DNA Methylation - Sylvain Forêt

A Wide Variety of Roles

● Cellular differentiation during development● Differentiation between morphs● Many medical implications

– Cancer● Silencing of DNA repair and apoptosis genes● Activation of “proliferation” genes

– Other complex diseases● Diabetes, obesity

Page 21: Evolution of DNA Methylation - Sylvain Forêt

Histone modifications

DNA methylation

Epigenomics

Page 22: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation

Page 23: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation

● Addition of a methyl group onto a cytosine● Typically in the CG context (CpG)● Sometimes in CHH or CHG contexts

(especially in plants)

Page 24: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylases

Some environmental / developmental signal

Cellular integration of the signal

Methylation of target sequences DNMT3 (de novo methylase)

Page 25: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Page 26: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Replication

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Hemi-methylated DNA

Page 27: Evolution of DNA Methylation - Sylvain Forêt

A T C G T C T AT A G C A G A T

Replication

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

Hemi-methylated DNA

A T C G T C T AT A G C A G A T

A T C G T C T AT A G C A G A T

Symmetricallymethylated DNA

DNMT1 (maintenance methylase)

Page 28: Evolution of DNA Methylation - Sylvain Forêt

Maintenance

RNA

De-Novo

xx

Page 29: Evolution of DNA Methylation - Sylvain Forêt

A Computational Approach

Page 30: Evolution of DNA Methylation - Sylvain Forêt

Methylation and Genome Composition

CpG CpGM

TpG

Methylation resultsin CpG under-representation

Page 31: Evolution of DNA Methylation - Sylvain Forêt

CpG Bias=GpG observedCpG expected

=nATGC×nCpGnC×nG

Page 32: Evolution of DNA Methylation - Sylvain Forêt
Page 33: Evolution of DNA Methylation - Sylvain Forêt

Microarray Meta-Analysis:Presence / Absence Calls

Page 34: Evolution of DNA Methylation - Sylvain Forêt

Presence / Absence in Body Parts

Page 35: Evolution of DNA Methylation - Sylvain Forêt
Page 36: Evolution of DNA Methylation - Sylvain Forêt
Page 37: Evolution of DNA Methylation - Sylvain Forêt

Acropora millepora

Page 38: Evolution of DNA Methylation - Sylvain Forêt

Credits: Eldon Ball

Page 39: Evolution of DNA Methylation - Sylvain Forêt

● Stage-specific libraries● Mapping onto genome● Counts per transcript● Tissue-specificity index

– N: Number of conditions– Xi: Counts in condition i– Xmax: Max count

Page 40: Evolution of DNA Methylation - Sylvain Forêt

Ubiquitous Specific

Page 41: Evolution of DNA Methylation - Sylvain Forêt

DNA Methylation:Molecular Methods

Page 42: Evolution of DNA Methylation - Sylvain Forêt

Capture-Based Methods

● MeDIP: Methylated DNA Immuno-Precipitation● MethylCap: uses Methyl-Binding Domain

(MBD) of the MeCP2 protein● Followed by

– Tiling array – Sequencing (MeDIP-seq, MethylCap-seq)

Page 43: Evolution of DNA Methylation - Sylvain Forêt
Page 44: Evolution of DNA Methylation - Sylvain Forêt

Bisulfite Convertion

Methylation

BisulfiteConversion

Page 45: Evolution of DNA Methylation - Sylvain Forêt

A T C A T C T C A C G A T C G A T

A T T A T T T T A C G A T T G A T

M

Sodium Bisulfite

Page 46: Evolution of DNA Methylation - Sylvain Forêt

Array-Based Methods

● Illumina Infinium

Page 47: Evolution of DNA Methylation - Sylvain Forêt

Array-Based Methods

● Illumina Infinium– Pros

● Cheap● “Small” data size (~ ½ million CpGs)

– Cons● Only covers a small proportion of all CpGs● Focuses mainly on CpG Islands● Only exists for Human

Page 48: Evolution of DNA Methylation - Sylvain Forêt

Bock et al, Nature Biotechnologies, 2010

Page 49: Evolution of DNA Methylation - Sylvain Forêt

Bisulfite Sequencing

Page 50: Evolution of DNA Methylation - Sylvain Forêt

A T C A T C T C A C G A T C G A T

A T T A T T T T A C G A T T G A T

M

Sodium Bisulfite

Page 51: Evolution of DNA Methylation - Sylvain Forêt

Whole Genome Bisulfite Sequencing

● Bisulfite conversion directly followed by sequencing

● Large amount of data:– Single base pair resolution– Single strand resolution

A T A C G T A AT A T G C A T T

A T A C G T A AT A T G C A T T

Methylated Hemi-methylated

Page 52: Evolution of DNA Methylation - Sylvain Forêt

Conversion Breaks Complementarity

A C A C G T G AT G T G C A C T

A T A C G T G A

T G T G C A T T

Bisulfite Conversion

Watson (+)

Crick (-)

(+)

(-)

A T A C G T G AT A T G C A C T

A C T G C A A TT G T G C A T T

(++)

(+-)

(--)

(-+)

Page 53: Evolution of DNA Methylation - Sylvain Forêt

Mapping

● Convert genome (C to T)– Genome– Reverse complement

● Convert reads– Forward reads (++ and -+ strands): C to T– Reverse reads (+- and – strands): G to A

● Map (three letter space)● Convert the alignments back to the original

sequences

Page 54: Evolution of DNA Methylation - Sylvain Forêt
Page 55: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

● Bisulfite conversion is only a partial reaction (between 99% and 99.9%)

● With large amount of data, small artifacts can become highly significant

Page 56: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

CpGs 30,000,000

mCpGs 25,000,000

Cs 1,000,000,000 (both strands)

Conversion rate 99.9%

Coverage per strand 10

Change of spurious mC 1%

Inferred mC 20,000,000

Homo sapiens

Page 57: Evolution of DNA Methylation - Sylvain Forêt

Calling Methylated Bases

CpGs 5,000,000

mCpGs 50,000

Cs 50,000,000 (both strands)

Conversion rate 99.9%5

Coverage per strand 10

Change of spurious mC 1%

Inferred mC 500,000

Apis mellifera

Page 58: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Page 59: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Bernoulli process with probability “p”

N Bernoulli trials: Binomial process (N, p)

Page 60: Evolution of DNA Methylation - Sylvain Forêt

The Null Hypothesis

C

C T

99.9%0.1%

Bernoulli process with probability “p”

N Bernoulli trials: Binomial process (N, p)

Many p-values: adjust for multiple testing

Page 61: Evolution of DNA Methylation - Sylvain Forêt

ubiquitous specific

Forêt et al, 2009

Page 62: Evolution of DNA Methylation - Sylvain Forêt

CpG depletedmethylatedubiquitous

normal CpG contentnon-methylated

condition-specific

Lyko, Forêt et al, 2010

Page 63: Evolution of DNA Methylation - Sylvain Forêt

Vertebrates

Invertebrates

Feng et al, PNAS, 2010

Page 64: Evolution of DNA Methylation - Sylvain Forêt

Position-Dependent Effect

Portela and Esteller, Nature Biotechnologies, 2010

Page 65: Evolution of DNA Methylation - Sylvain Forêt

Summary

● Probable ancestral animal methylation landscape● Gene body (introns and exons), transposons

● Dense methylation landscapes are a vertebrate innovation

● Honey bee: lack of transposon methylation and scarce intronic methylation are also apomorphic

● Despite these differences in methylation levels, the targets of gene body methylation are broadly conserved

Page 66: Evolution of DNA Methylation - Sylvain Forêt

Other Important Topics

● D ifferential methylation● Dealing with complex samples

Page 67: Evolution of DNA Methylation - Sylvain Forêt

Concluding Thoughts

Page 68: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)

Page 69: Evolution of DNA Methylation - Sylvain Forêt

1) from rep licating mo lecu les to popu lations of mo lecu les in compartments (protocells);

2) from independent genes to chromosomes;

3) from RNA as both an information carrier and enzyme to DNA as the carrier of information and proteins as the enzymes;

4) from prokaryotes to eukaryotes;

5) from asexual clones to sexual populations;

6) from single-cell eukaryotes to multicellular organisms with differentiated cells;

7) from solitary individuals to colonies with non- reproductive castes

Page 70: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)– Focussed on genetic elements

Page 71: Evolution of DNA Methylation - Sylvain Forêt

Major Transitions in Evolution

● Cavalier-Smith and Szathmary (1995)– Focussed on genetic elements

● Other non-genetic heritable changes (Jablonka (1994), Jablonka & Lamb (2006))– Membranes

– Prions

– Self-sustaining metabolic cycles– Modified DNA bases– Other molecular marks attached to DNA

Page 72: Evolution of DNA Methylation - Sylvain Forêt

Role of non-genetic heritable changes

● Emergence of cells / chromosomes.– Transmission of epigenetic memory from the parent

to the daughter cells / chromosomes to put these in a state suitable for the environment.

Page 73: Evolution of DNA Methylation - Sylvain Forêt

Role of non-genetic heritable changes

● Transition to multicellularity.– Co-option of mechanisms to transmit information

about structure, state, and activity to daughter cells.– In order to maintain a coherent organism:

● Prevent de-differentiation● Early segregation of germ line

Page 74: Evolution of DNA Methylation - Sylvain Forêt

● Transition to social / colonial systems with division of labour or polyphenism– Phenotypic differentiation at the level of the whole

organism– Co-option of epigenetic mechanisms involved in

cellular differentiation

Role of non-genetic heritable changes


Top Related