Transcript
Page 1: Evolutionary physiology topics

Evolutionary physiologytopics

1. Patterns

2. Processes

Page 2: Evolutionary physiology topics

1. Patterns

• How and why of particular transitions

How and why did endothermic vertebrates evolve from ectothermic ancestors?

Evolutionary physiologytopics

Page 3: Evolutionary physiology topics

Endothermy versus ectothermy

scala naturae

Page 4: Evolutionary physiology topics

Endothermy versus ectothermy

Page 5: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of endothermy:

• Stenothermy

• Aerobic metabolism

• Independent of environment

Page 6: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energetic requirements

Page 7: Evolutionary physiology topics

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

mammals

Passerine birds

reptiles

metabolism (Wg-1day-1)

0.1g 10g 1kg 100kg 1000kg

Page 8: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats

Page 9: Evolutionary physiology topics
Page 10: Evolutionary physiology topics
Page 11: Evolutionary physiology topics
Page 12: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats

Page 13: Evolutionary physiology topics

Mt Chappell Island

Flinders Island

Cape Barren Island

Page 14: Evolutionary physiology topics

Chappell Island tiger snake(Notechis ater serventyi)

Short-tailed shearwater(Puffinus tenuirostris)

Page 15: Evolutionary physiology topics

Gila monster (Heloderma suspectum)

Page 16: Evolutionary physiology topics

Western banded gecko (Coleonyx variegatus)

Page 17: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions

Page 18: Evolutionary physiology topics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

body length

surface/volume

Page 19: Evolutionary physiology topics

mammals: >20 g

lizards: 8% spp. < 1 g 80% spp. < 20 g

salamanders: 20% spp. < 1 g90% spp. < 20 g

Page 20: Evolutionary physiology topics

Dwarf chameleon

Monte Iberia EleuthDwarf gecko

Page 21: Evolutionary physiology topics

Kitti’s hog-nosed bat

Etruscan shrewW: 1.5-2.5 gFR: 4xW/dayHR: 835 b/minRR: 661 p/min

L: 29-33 mm

Page 22: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms

Page 23: Evolutionary physiology topics

0

5

10

0 10 20 30 40 50

height/diameter

surface/volume

diameter

height

Page 24: Evolutionary physiology topics

weasel (Mustela nivalis) wood rat (Neotoma sp.)

energy loss: x2

Page 25: Evolutionary physiology topics

Afrocaecilia taitana Desmognathus ochrophaeus

Bipes bipes Anguis fragilis

Page 26: Evolutionary physiology topics

Opheodrys aestivus

Page 27: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms Low water habitats

Page 28: Evolutionary physiology topics

Sauromalus obesus

Scaphiopus couchii

Page 29: Evolutionary physiology topics

Endothermy versus ectothermy

Advantages of ectothermy:

• Low energy requirements

Low food habitats Fluctuating food habitats Small body dimensions Elongate body forms Low water habitats Low oxygen habitats

Page 30: Evolutionary physiology topics

Amblyrhynchus cristatus

Iguana iguana

Page 31: Evolutionary physiology topics

Neoseps reynoldsi

Page 32: Evolutionary physiology topics

Scincus mitranus

Page 33: Evolutionary physiology topics

Dilong paradoxus Xu et al. 2004. Nature 431: 680-684.

Page 34: Evolutionary physiology topics

Dimetrodon (Pelycosauria)

Moschops (Therapsida)

Synapsida (mammal-like reptiles)

Page 35: Evolutionary physiology topics

Endothermy in Mammalia:

1.RM x5

2.Tb > Ta, 28°C < Tb < 40°C

3. Tcore < 1-2°C

4.Maero x5

Page 36: Evolutionary physiology topics

• Thermoregulation first physiological version

Synapsida evolve from small ectotherms

increase in size(30-100 kg)

become inertial homeotherms

evolve insulation

Tb constant,physiological benefits

decrease in size

increased metabolismimproved insulation

McNab 1978. Am. Nat. 112: 1-21.

Page 37: Evolutionary physiology topics

• Thermoregulation first brain version

Synapsida evolvefrom small ectotherms

increase in sizeincrease in size(30-100 kg)(30-100 kg)

become inertial become inertial homeotherms homeotherms

evolve evolve insulationinsulation

Tb constant,physiological benefits

evolve larger, morecomplex brains

Hulbert 1980.

Page 38: Evolutionary physiology topics

• Thermoregulation first ecological version

Synapsida evolvefrom small ectotherms

increase in sizeincrease in size(30-100 kg)(30-100 kg)

become inertial become inertial homeothermshomeotherms

evolve evolve insulationinsulation

Tb constant,physiological advantages

evolve nocturnalhabits

Crompton et al. 1978. Nature 272: 333-336.

Page 39: Evolutionary physiology topics

• Aerobic capacity first sustained ativity version

Ruben 1995 Ann. Rev. Physiol. 57: 69-95.

small change inbasal metabolic rate

minimal effect on thermoregulatory capacity

large effect onmaximal aerobic metabolic rate

Page 40: Evolutionary physiology topics

• Aerobic capacity first parental care version

Koteja 2000 Proc. R. Soc. Lond. 267: 479-484

small change in basal metabolic rate

minieme verandering inthermoregulatie-capaciteit

large effect onmaximal aerobic metabolic rate

necessary for locomotor costs related to parental care

Page 41: Evolutionary physiology topics

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive

Evolutionary physiologytopics

Page 42: Evolutionary physiology topics

Dicerandra linearifolia

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

• leaf length• leaf thickness• density of stomata

Page 43: Evolutionary physiology topics

winter summer

Leaf

leng

th (

mm

)

5

10

15

20

25

30

35

winter summer

Lea

f thi

ckne

ss (

mm

)

0.140

0.145

0.150

0.155

0.160

0.165

winter summer

Den

sity

of s

tom

ata

(m

m-2

)

76

78

80

82

84

86

88

90

92

94

96

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

Page 44: Evolutionary physiology topics

Winn A.A. 1999. J. Evol. Biol. 12: 306-313.

winter summer

Se

lect

ion

gra

dië

nt f

or

lea

ve le

ng

th

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

winter summer

Se

lect

ion

gra

dië

nt f

or

leav

e th

ickn

ess

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

winter summer

Se

lect

ion

gra

dië

nt f

or

stom

ata

de

nsity

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

Page 45: Evolutionary physiology topics

Beneficial acclimation hypothesis

Page 46: Evolutionary physiology topics

Beneficial acclimation hypothesis

Colder is better Hotter is better

Page 47: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deleterious acclimation hypothesis

Page 48: Evolutionary physiology topics

Beneficial acclimation hypothesis

Escherichia coli

Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921.

Page 49: Evolutionary physiology topics

Beneficial acclimation hypothesis

Escherichia coli

37°

32°

32°

competition

41.5°

41.5°

>

>

Leroi et al. 1994.Proc. Natl. Acad. Sci. USA 91: 1917-1921.

32°

41.5°

acclimation

Page 50: Evolutionary physiology topics

Beneficial acclimation hypothesis

Bicyclus anynana Geister T.L. & Fischer 2007. Behav. Ecol. 18: 658-664.

Page 51: Evolutionary physiology topics

Beneficial acclimation hypothesis

20°

27°

developmentlarvae

20,20°

20,27°

27,27°

27,20°

20,20°

20,27°

27,27°

27,20°

20°

27°

27°

20°

acclimation

Page 52: Evolutionary physiology topics

Beneficial acclimation hypothesis

Oribatida Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Page 54: Evolutionary physiology topics
Page 55: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

10°

acclimation7 days

15°

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

Locomotor tests -5° up to 35°

Page 56: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

deleterious acclimation

Page 57: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Page 58: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

deleterious acclimation

beneficial acclimation

Page 59: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Page 60: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti

colder is better

deleterious acclimation

beneficial acclimation

Page 61: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Page 62: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

Halozetes marinus

Halozetes marionensis

Halozetes belgicae

Halozetes fulvus

Podacarus auberti geen plasticiteit

geen plasticiteit

colder is better

deleterious acclimation

beneficial acclimation

Page 63: Evolutionary physiology topics

Beneficial acclimation hypothesis

Deere J.A. & Chown S.L. 2006. Am. Nat. 168: 630-644.

15°C10°C5°C0°C

Page 64: Evolutionary physiology topics

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability

Evolutionary physiologytopics

Page 65: Evolutionary physiology topics

Rana temporaria Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

Page 66: Evolutionary physiology topics

• 14 small islands• 10 clutches < 20-50 eggs• depth pools• variability drying / island• lab: 4 tadpoles / container• 2 regimes: Constant & Drying

• developmental time ~ regime (D<C)• developmental time ~ island• phenotypic plasticity ~ variability island

Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

Page 67: Evolutionary physiology topics

constant

drying

developmental time

28

17

island 1(homo)

plasticity=11

28

10

island 2(hetero)

plasticity=18

• devolopmental time ~ regime (D<C)• developmental time ~ island• phenotypic plasticity ~ variability island

Page 68: Evolutionary physiology topics

Lind & Johansson 2006. J. Evol. Biol. 20: 1288-1297

Page 69: Evolutionary physiology topics

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability a jack-of-all-trades is a master of none

Evolutionary physiologytopics

Page 70: Evolutionary physiology topics

0

5

10

15

20

25

30

35

40

6 8 10 14 18 22 26 30 34 38

sprint speed‘specialist’

‘generalist’

lichaamstemperatuur

sprint speed

Page 71: Evolutionary physiology topics

0

2

4

6

8

10

12

18 22 26 30 34 38 42

Laudakia stellio

lichaamstemperatuur

rank

Huey R.B. & Hertz P.E. 1984. Evolution 38:441-444.

Page 72: Evolutionary physiology topics

Huey R.B. & Hertz P.E. 1984. Evolution 38:441-444.

Amoeba

0

1

2

3

4

5

10 15 20 25 30 38lichaamstemperatuur

rank

Page 73: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

Page 74: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-active

Page 75: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeC > P in constant and fluctuating environments

Page 76: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeR > P in some fluctuating and constant environments

Page 77: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeB > P in fluctuating environments, but not in 7.8

Page 78: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

5.3

6.3

7.0

7.8

2000 generations

non-activeA > P in constant, not in fluctuating environments

Page 79: Evolutionary physiology topics

Escherichia coli

Hughes et al. 2007. Physiol. Biochem. Zool. 80: 406-421.

(1) adaptation to cycling pH, randomly changing pH and constante pH follows different patterns

(2) in variable environments generalists evolve, in constant environments specialists evolve;

(3) in variable environments the ‘cycling’ lines have a higher fitness than the ‘random changes’ lines;

(4) an acclimation benefit (BAH) was not always detected.

Page 80: Evolutionary physiology topics

Goodman et al. 2007. Evol. Ecol. Res. 9: 527-546.

• 18 Lygosominae• sprinting, jumping, clinging, climbing

Page 81: Evolutionary physiology topics

1. Patterns

• How and why of particular transitions• Testing a-priori-hypotheses

plastic responses are adaptive phenotypic plasticity ~ environmental variability a jack-of-all-traits is a master of none symmorphosis: design satisfies need

Evolutionary physiologytopics

Page 82: Evolutionary physiology topics

Evolutionary physiologytopics

Page 83: Evolutionary physiology topics

Evolutionary physiologytopics

king pin

Page 84: Evolutionary physiology topics

one half rule

Page 85: Evolutionary physiology topics

V02max

mitochondriain muscle cells

capillary design(volume, surface)

hematocrite

heartstroke volume

surface pulmonary vesiclesdiffusion capacity membrane

Weibel et al. 1991. Proc.Natl. Acad. Sci. USA 88: 10357-10361

Page 86: Evolutionary physiology topics

1. Patterns

2. Processes• natural selection

Evolutionary physiologytopics

Page 87: Evolutionary physiology topics

performancevariation

fitnessvariation

design variation

geneticvariation ???? ??

performance gradient fitness gradient

quantitativegenetics

physiologymorphologybiochemistrykinematics

biomechanics

ecologybehavioral biology

Page 88: Evolutionary physiology topics

LeGalliard et al. 2004. Nature 432: 502-505.

Zootoca vivipara

juvenile survival

initial endurance

limited food supply

abundant food supply

Page 89: Evolutionary physiology topics

1. Patterns

2. Processes• natural selection• sexual selection

• intrasexual selection (male-male combat)• intersexual selection (female choice)

Evolutionary physiologytopics

Page 90: Evolutionary physiology topics

deCarvalho et al. 2004. Anim. Behav. 68: 473-482.

Neriene litigiosa

Page 91: Evolutionary physiology topics

deCarvalho et al. 2004. Anim. Behav. 68: 473-482.Neriene litigiosa

Time (min)

Join

t m

ale

en

erg

y u

se (

EW

)

1200

1200

800

600

400

200

00 1 2 3 4 5 6 7 8

Phase 1

Phase 2

Phase 3 Locomotion

X 3.5

X 7.4

X 11.5

Page 92: Evolutionary physiology topics

Necora puber Uca lactea

Thorpe et al. 1995. Anim. Behav. 50: 1657-1666

Matsuma & Murai 1995. Anim. Behav. 69: 569-577

anaerobic respiration

Page 93: Evolutionary physiology topics

Agkistrodon contortix

Schuett & Grober 2000 Physiol & Behav 71: 335-341.

Page 94: Evolutionary physiology topics

Agkistrodon contortix

Schuett & Grober 2000 Physiol & Behav 71: 335-341.

Page 95: Evolutionary physiology topics

Anolis sagrei

Page 96: Evolutionary physiology topics
Page 97: Evolutionary physiology topics

Evolutionary physiologyimplications

Page 98: Evolutionary physiology topics

Evolutionary physiologyimplications

Page 99: Evolutionary physiology topics

Evolutionary physiologyimplications

Page 100: Evolutionary physiology topics

Evolutionary physiologyimplications

http://www.sfecologie.org/blog/2011/09/30/evolrescueonline-topic-1/


Top Related