Transcript
Page 1: Geological Mapping and Mineral Exploration

HYVISTA CORPORATION

AIRBORNE HYPERSPECTRAL REMOTE SENSING

GEOLOGICAL MAPPING and

MINERAL EXPLORATION

Page 2: Geological Mapping and Mineral Exploration

Why use HyVista for your next airborne remote sensing survey? With over a decade of experience and the bene-fits of continual product development, HyVista uses the HyMap sensor to provide the “world’s best” hyperspectral imagery. We are committed to delivering the maximum outcome for our clients.

“HyVista Delivers Every Time”

SUPERIOR SENSORS :: SUPERIOR SERVICE :: SUPERIOR PRODUCTS This is not our mission statement; this is our promise

HyVista Corporation Pty Ltd The company specialises in the supply of airborne hyper-spectral remote sensing imagery and information products for a wide range of applications including geological mapping, mineral exploration, environmental monitoring, agriculture and land use planning. The company also provides imagery to support R&D projects in areas of future satellite simulation, defence surveillance, soil degradation and vegetation species mapping. Hyperspectral remote sensing (or spectral imaging)provides a significant advantage over the more traditional multi-spectral imaging by leveraging the power of spectroscopy to make more detailed discrimination and identification of the earth’s surface materials and to be able, in many cases, to reveal details of the material’s physical and chemical state. For more than a decade, the company has been delivering survey products of the highest quality to its clients and continues to maintain a high level of product development, from equipment performance through to the most effective image processing outcomes. The company’s mission is to provide our clients with a “world best” survey service and product delivery on a worldwide basis.

Page 3: Geological Mapping and Mineral Exploration

Application in Geological Mapping and Mineral Exploration

Mineral Spectral Signatures: Effect of Spectral Resolution

Spectra recorded by the HyMap scanners show the same diagnostic informa-

tion as those measured in the laboratory by the USGS. In comparison ASTER

spectra are under-sampled and critical diagnostic information can be lost.

Mineral Spectral Signatures: Seamless Maps

The seamless mineral map (above) was produced from 27 strips of HyMap

imagery acquired in Namibia during 2005. The image is a grayscale background

overlain with the distribution of the 9 minerals derived from the HyMap data

at a spatial resolution of 5m.

High resolution spectral sensing (hyperspectral) is an advanced remote sensing technique that maps the

distribution of surface materials through their spectral signatures. This technology can be applied to

applications in mineral exploration, geological mapping and environmental monitoring.

The successful application of this technique depends on having sensors with high signal to noise ratio

and sufficient spatial and spectral resolution. HyVista Corporation utilises the HyMap airborne

hyperspectral sensor which delivers “world best” performance.

GO

LD

IRO

N O

RE

C

OP

PER

D

IAM

ON

DS

P

b/Z

n U

RA

NIU

M N

ICK

EL BA

UX

ITE RA

RE EA

RTH

S

Page 4: Geological Mapping and Mineral Exploration

Mt Whaleback is an iron ore mine in the Opthalmia Range 

and is probably the richest deposit in the great Hamersley 

Iron Province which starts at the coast north of Onslow 

and runs ESE for more than 500km.  

 

The province contains vast quantities of iron‐bearing 

material, an estimated 24,000 million tonnes at 55% iron. 

  

The Mt Newman deposits are in a mineral lease covering 

nearly 800 square km.  

 

Mt Whaleback is the prime ore body (5.5 km long and  

225 m high) and lies in the Newman area of the lease at 

the eastern edge of the Opthalmia Range and is assayed at 

68.8% iron content (with a possible maximum of 70% 

pure iron). 

 

A HyMap demonstration test survey was flown on the 

25th October 2007.    

MAPPING HEMATITE, GEOTHITE AND SURROUNDING LITHOLOGIES FROM HYMAP  

HYPERSPECTRAL IMAGERY IN THE MOUNT WHALEBACK IRON ORE MINING AREA  

LOCATION DIAGRAM

Mt Whaleback

Western Australia

IRON ORE MINERAL MAPPING airborne hyperspectral remote sensing 

Page 5: Geological Mapping and Mineral Exploration

Distribution of Goethite @>85% probability of occurrence 

>85% >99%

Left Top:  

Hematite and goethite spectra extracted from the JPL spectral library 

(over the range 0.7 to 1.0 microns—VNIR region) that have been  

convolved to the wavelength channels of the HyMap scanner used for this 

survey. Note shift in peak at ~0.7 microns and trough at >0.8 microns to 

longer wavelengths in goethite compared to hematite. 

Distribution of Hematite @ >85% probability of occurrence 

MORE INFORMATION For more information on HyMap surveys for mineral exploration or environmental assessment please contact : 

HyVista Corporation Pty Ltd ٠ phone: +61 2 8850 0262 ٠email: [email protected] ٠ www.hyvista.com 

Left Bottom:  

Hematite and goethite spectra obtained from the survey data.  

 

After flight strip data has been converted to reflectance, BRDF  

corrected and mosaicked, processing has been applied to map the  

distribution of hematite, goethite and background minerals including  

kaolinite, muscovite and chlorite. 

 

There are several ways in which the mineral mapping data can be  

presented as shown in the images  below. 

Mineral Map Classification 

Page 6: Geological Mapping and Mineral Exploration

Kimberlite Mineralogy and Weathering Products

MINERAL MAPPING IN KIMBERLITE EXPLORATION

Hyperspectral surveys, can be used in diamond exploration to

locate kimberlites that are exposed or weathered in areas of

residual soil.

Transported overburden, masking rock formations and vegetation

cover exceeding 70% preclude surveys. Surveys need to be

conducted during the dry season. Presence of other ultramafic

rocks and amphibolites produce similar spectral targets but

analysis by experienced spectral geologists and advanced data

processing reduces the number of non-kimberlite anomalies.

DIAMOND EXPLORATION

The original HyMap scanner was commissioned by De Beers for kimberlite

discovery. Over 25 kimberlites (both pipes and dykes) were discovered

between 1997 and 2005, at a relatively low cost compared to other

methodologies. Most exceeded 1 hectare and required minimal follow-up

for confirmation. In suitable areas, hyperspectral surveys are a cost-

effective kimberlite exploration technique, comparable in price to high-

resolution aeromagnetic surveys but with significantly lower follow-up

costs. The ratio of targets to kimberlite discovery is similar to that of

aeromagnetic surveys and is dependent on the geological conditions

within the survey area.

Left: True colour

composite of Pine

Creek kimberlite field

in South Australia.

Yellow boundaries are

confirmed kimberlites;

green boundaries are

probable kimberlites

and the blue boundary

is a buried kimberlite.

Right: Index image

created from spec-

trally classified images

(far left, 4 & 5). Blue

overlay maps distribu-

tion of Mg-Carbonate

and red overlay

occurrence of

Mg-Smectite. Not all

of the red anomalies

have been field

checked.

Wavelength nm

1300 1500 1700 1900 2100 2300 2500

Pine Creek, South Australia

Data Processing

The Mg rich unweathered minerals in kimberlinte (above) progressively alter during weathering

into minerals that have distinct spectral signatures (red boxes) which can be detected in hyper-

spectral data. Those highlighted in dashed boxes are not typically observed in residual regolith

derived from kimberlite, though they may be apparent in outcropping kimberlite. The spectral

signature of these minerals, apart from hematite and silica, are characterised by a strong ab-

sorption minima at ~2300nm and ~2390nm (right). Though not unique to kimberlite detection,

anomalous occurrences of these minerals can lead to the discovery of kimberlite, particularly

when combined with other exploration data in GIS analysis. Neither hematite nor silica can be

used effectively to locate kimberlite.

To detect mineral anomalies indicative of kimberlite, the hyperspectral image (1 below) is proc-

essed so that new bands are derived showing the distribution of spectrally distinct materials (2

& 3). The band (4) that maps the target spectrum (2) is then selected and further processed to

highlight anomalous occurrences of the target being sought. The spectra of the anomalous

regions of interest are then checked and those requiring follow-up selected.

airborne hyperspectral remote sensing

Page 7: Geological Mapping and Mineral Exploration

Above Right: Natural Colour HyMap Image

Above Left: RGB Talc-Saponite, Nontronite and Serpentine supervised spectral classification image mineral map

(same area as CC). Kimberlite is bright feature in centre, >6 hectares.

Index image showing distribution of Mg-OH minerals, carbonates and kaolinite in

red, green and blue. The kimberlite dyke crosses the centre of the image and is

highlighted in red due to its high Mg-OH mineral content. Other red areas indicate

amphibolite and greenstones.

Results from kimberlite

mapping in the survey sub

area. Known and discovered

kimberlites shown in red; those

located from hyperspectral

imagery shown with circles.

Right:

Simplified geological map of

HyMap survey area in West

Greenland.

Survey area indicated by

black frame, the red frame

outlines map area to the

right.

Pixel Size 5m Image 1 Km wide

Left: Index image — ultramafic

maps the kimberlite.

Right: Spectral legend the

colours of the spectra match

the coloured areas within the

image. The spectra of the

yellow area is hyrdro-carbon.

Ultramafic Chlorite-Mafic Seds. Oil and Sand White Mica-Seds.

MORE INFORMATION

For more information on HyMap surveys for mineral exploration or environmental assessment please contact :

HyVista Corporation Pty Ltd ۰ phone: +61 2 8850 0262 ۰ email: [email protected] ۰ www.hyvista.com

Page 8: Geological Mapping and Mineral Exploration

Gordon Downs 1:250,000 Map Sheet: Duffer Range Area Sub‐Scene 

Figure 1: Survey Area and Duffers Creek subscene (red box) 

Example: Kimberley Area, Western Australia 

Figure 2: Duffers Creek Subscene image overlain onto 1:250,000 topographic map. 

Figure 3a: Duffers Creek sub‐scene MNF CC Image, image extends north of geological map red polygon. 

Figure 3b: Portion of 1:250000 Geology Map covering Duffers Creek sub‐scene.  

HyMap  data was obtained from the Halls Creek mobile belt area (Figure 1) during 2004. A sub‐scene (Figure 2) covering the Duffer Range area (centred 24km 

NE of Halls Creek) has been processed to produce mineral maps of the alteration and other minerals present in this area. 

ALTERATION MAPPING airborne hyperspectral remote sensing 

Page 9: Geological Mapping and Mineral Exploration

MORE INFORMATION For more information on HyMap surveys for mineral exploration or environmental assessment please contact : 

HyVista Corporation Pty Ltd ۰ phone: +61 2 8850 0262 ۰email: [email protected] ۰ www.hyvista.com 

CLASSIFIED MINERAL MAP 

Standardised HyVista Corp processing methodology was applied to the atmospheric and geometric  corrected full‐spectral mosaic.  The mineral mapping algorithms detected and mapped the following  minerals in this sub‐scene:  Iron Oxide—Kaolinite—Calcite—Pryophyllite —  Epidote—Chlorite—Amphibole—Ammonium Alunite—White Mica/Chlorite Mixture—Muscovite— White Micas both Al rich and Al poor  There appear to be 4 main areas of argillic alteration in this area:  SE (SE) – occurs in an Al rich white mica unit that  corresponds to an granite unit and is expressed as a marker unit showing zoning within the granite.  Little Mount Isa (LMI) ‐ area associated with a ridge, mainly pyrophyllite, with zones of iron oxide which could be gossan.  Halls Creek Fault Zone (HCF) ‐ area of alteration along the Halls creek fault north of LMI.  Western Zone (WZ) – truncated by a north south trending fault.  The LMI, HCF and WZ alteration areas occur to the  east and west of a unit which is dominated by Al poor white mica but immediately bounded by muscovite white mica.  The 1:250,000 geology map only shows one mineral occurrence in this area a Cu/Pb/Zn prospect which lies lose to the Halls Creek fault where argillic alteration is weakly present. The Halls Creek gold field is located  to the SW of this area and the alteration does extend through it and beyond.   This alteration probably results from a large  hydrothermal event, possibly associated with the  Halls Creek Fault, though large hydrothermal events have occurred elsewhere in the Kimberley region (Kimberley Basin near Seppelt Creek area, NW of Wyndham). There are a number of known gold and other mineral deposits and prospects along the Hall Creek Mobile Belt and the results of this hyperspectral mineral mapping would suggest that a  more detailed assessment of the alteration in the area would be of exploration significance.  

WZ

SE

LMI

HCF

Rule classified mineral map. This image shows  

several distinct areas of argillic alteration (red).  

In the SE the argillic alteration is within and area 

of Al rich white mica (blue), the others areas  

(WZ. HCF, LMI) appear to be associated with  

longer wavelength Al poor white mica. 

Argillic Alteration — Pyrophyllite + Kaolinite + Dickite  

Ammonium Illite      

Al Poor White Mica  

Muscovite White Mica  

 

Kaolinite  

Pyrophyllite 

Al Rich White Mica 

Page 10: Geological Mapping and Mineral Exploration

UNCONFORMITY URANIUM  DEPOSITS EXAMPLE: Ranger Mine, Australia 

chemical conditions changed and cause the metals to precipitate from  

solution. Alteration mineralogy and geochemistry of unconformity  

deposits and their host rocks are among the most important exploration 

criteria in the  Athabasca Basin in Canada and the Kombolgie Basin of  

Australia. District and corridor scale high‐temperature diagenesis and 

hydrothermal alteration (producing dickite, white mica (illite), dravite, 

chlorite and possibly pyrophyllite) characterise these deposits. 

False Colour Composite HyMap Image Colour Composite masked to remove water, green and dry vegetation 

Mineral Spectra

(Ka) halloysite

white mica & calcite

white mica @2220 nm

Background non alteration minerals.

Mineral Spectra chlorite

(To) tourmaline

(Dr) dravite

Alteration Minerals

white mica @2200 nm

white mica @2212_a

white mica @2212_b

white mica @2225 nm

Alteration Minerals

Ranger Mine HyMap Survey Location 

Unconformity‐type deposits are the world’s main source of uranium. 

These deposits form at or near the contact between an overlying  

sandstone and underlying metamorphic rocks, often metamorphosed 

shales. The ore‐bodies are lens or pod shaped, and  often occur along 

fractures in sandstone or in basement rocks. The host rocks often have 

disseminated uranium minerals and show hydrothermal alteration. 

Where the fluids with dissolved uranium and other metals, moved 

through the sandstone and encountered the basement rocks,  

Ranger HyMap Survey Data Processing 

Seven lines of HyMap data were acquired 

from the Ranger mines area on the  

20 August 2006. Processing of the imagery 

was applied to a mosaic of the reflectance 

corrected and geometrically rectified 125 

channel HyMap data which had been 

masked to remove water, green and dry 

vegetation. Vegetation cover both green and 

dry is extensive in the area (Plate 1) and it is 

only around the mine site that distinct  

minerals have been mapped spectrally. 

Mineral mapping algorithms were applied to 

the visible‐near infrared and shortwave 

infrared sub‐banded data separately. This 

resulted in the minerals within their spectra 

shown in the table  below being identified 

from the data, mainly around the mine site. 

ALTERATION MINERAL MAPPING airborne hyperspectral remote sensing 

Page 11: Geological Mapping and Mineral Exploration

Mineral Colour Mineral Colour Mineral Colour Mineral Colour

Dravite White Mica 2212 White Mica 2200 White Mica 2225

Tourmaline White Mica & Calcite

White Mica 2212 Chlorite

Ka

WM&Ca WM222

The Ranger unconformity‐style uranium deposit is located in the Alligator 

Rivers uranium field, some 250 km east of Darwin in the Northern Territory, 

Australia. The Ranger deposits are located in the north‐eastern part of the 

Paleoproterozoic Pine Creek Geosyncline which overlies Achaean basement.  

In the main Ranger string of deposits, the minerals associated with the  

mineralisation that can be mapped from HyMap data are: 

Amphibole — Chert — Chlorite — Dolomite — Magnesite — Graphic schist 

(opaque mineral response) — Sericite (micaceous equivalent to white 

mica / illite) 

 

It has also been reported that tourmaline occurs within the pegmatites that 

are intruded into the U deposits. 

 

See :   ht t p : / /www.por t e r geo . com.au/ t ou r s /u r an i um2009/

uranium2009deposits.asp  

Alteration Minerals Total Area 

Conclusions Of the 7 minerals reported to be associated with the Ranger 

Uranium deposit, 4 have been identified from the hyperspectral 

imagery:    

 

Chlorite (Mg) 

Sericite (4 varieties of white mica) 

Tourmaline (dravite) 

Dolomite (white mica mixed with carbonate) 

MORE INFORMATION For more information on HyMap surveys for mineral exploration or environmental assessment please contact : 

HyVista Corporation Pty Ltd ۰ phone: +61 2 8850 0262 ۰email: [email protected] ۰ www.hyvista.com 

RANGER URANIUM MINE, NORTHERN TERRITORY

Background Minerals Total Area 

Page 12: Geological Mapping and Mineral Exploration

URANIUM EXPLORATION

airborne hyperspectral remote sensing

APPLICATIONS OF HYPERSPECTRAL IMAGERY IN URANIUM EXPLORATION

Produce images and mineral maps that improve regional and local geological maps in target areas.

Locate minerals that are associated with U deposits to:

Define alteration zones that target unconformity U deposits to assist with ranking radiometric anomalies and locate

mineralisation that does not outcrop.

Detect Reibeckite that is an indicator of metasomatic deposits.

Map carbonate dykes and pods that define carbonatites and detect the presence of earth minerals and apatite in

these rocks.

Map regolith associated with paleodrainage calcrete deposits including differentiating calcite from dolomite and

potentially locating buried dolomite calcrete from presence of Mg-Smectite.

Detecting the quartz stockworks (+/- xenotime-rare earth phosphate) and associated alteration clay signatures that

define hydrothermal deposits containing rare earths and uranium.

Mapping graphitic horizons that are associated with unconformity deposits.

—————————————————————————————————————————————————————————————————————————

CALCRETE HOSTED PALEODRAINAGE URANIUM DEPOSIT : LANGER HEINRICH, NAMIBIA The area around the current location of the Langer Heinrich mine was imaged image by the HyMap airborne hyperspectral sensor in 2006. The image below shows a surface mineralogy map as determined by spectral processing.

The boundaries of known mineralised calcrete at Langer Heinrich are shown as white polygons. The predominant mineral that

defines these calcretes is calcite (red). Residual illite partially covers some of the calcrete and in the eastern most polygon the

presence of dolomite may show a change in calcrete facies.

There are areas of calcite within drainage channels (to the south of the eastern-most polygons) that may not yet have been

mapped as calcrete; these may be of worthy of further investigation.

Page 13: Geological Mapping and Mineral Exploration

The Lake Mason uranium deposit lies 40km to the south west of Yeelirrie and developed during similar climatic conditions over a similar granitoid basement. The Lake Mason palaeodrainage system has uranium channel radiometric data anoma-lies drilling of which has indentified minerali-sation of approximately 1 million tonnes at an average grade of 170ppm uranium.

Source: Prime Minerals Ltd. Website: www.primeminerals.com.au

The HyMap hyperspectral images shown to the right are (left) a colour representation that simulates a LANDSAT-741 image. The right part shows a sur-face mineral map according to the colour legend.

MORE INFORMATION

For more information on HyMap surveys for mineral exploration or environmental assessment please contact :

HyVista Corporation Pty Ltd ۰ phone: +61 2 8850 0262 ۰ email: [email protected] ۰ www.hyvista.com

Hyperspectral Imagery Has Been Used In Uranium Exploration Programs by:

CAMECO (NT) — ATOM ENERGY (NT) AFMECO (AREVA) (WA & NT) — NORTHERN URANIUM (WA)

TERRITORY URANIUM (NT) — MEGAHINDMARSH (SA)

Hyperspectral imagery maps details in

regolith and highlights the calcretised paleodrain-

age.

The mineral maps show that the paleochannels contain

calcite, dolomite, Mg-Smectite & gyspum.

Dolomite can weather into Mg-

Smectite so the presence of this clay

may indicate unexposed dolomitic

calcrete.

CALCRETE HOSTED PALEODRAINAGE URANIUM DEPOSIT : LAKE MASON, WESTERN AUSTRALIA

X

Page 14: Geological Mapping and Mineral Exploration

Haib HyMap Hyperspectral Survey

Below: HyMap imagery was acquired with a spatial resolution of 5m in

October 2006. The area survey was 5,000 sq km. Unprocessed reflectance

data is available from the Geological Survey of Namibia.

HYMAP IMAGERY CAN BE USED TO MAP COMMON ALTERATION MINERALS AND CAN THEREFORE BE APPLIED IN EXPLORATION FOR A VARIETY OF COMMODITIES AND MINERALIZATION STYLES.

Alteration Spectral Signature And Deposit Type

Concentric and fracture

controlled zonation of

alteration minerals.

Alunite, pyrophyllite, kaolinite, dickite,

diaspore, opaline silica

Goethite, Hydrated

FeOx

High Sufidation/

Epithermal? Advanced

argillic

Au

Intersecting cells defined by

changes in mica chemistry

(gradients) and fracture

control.

White mica (Al rich to Al poor &

hydration state), pyrophyllite, Fe& Mg

chlorite, amphibole

Goethite, Hydrated

FeOx

Archaean Gold/

Hydridic Cells

Au

Strike controlled trains of

deposits, can be en-echelon.

Jarosite, white mica (Al rich to Al poor

& hydration state), chlorite, opaline

silica

Goethite, Hydrated

FeOx, jarosite,

rozenite

VMS/

Argillic

Base Metals

Zone along unconformity.Chlorite, white mica, pyrophyllite,

dickite

HematiteUnconformity/

Argillic-Propylitic

U

Amphibole, carbonate (Ca>Mg),

montmorillonite, nontronite, epidote,

Mg& Fe chlorite

White mica (Al rich to Al poor &

hydration state), illite-smectite,

kaolinite, quartz.

Biotite, phlogopite, chlorite,

vermiculites, anhydrite, gypsum

Kaolinite, halloysite, montmorillonite,

white mica, dickite, pyrophyllite, alunite,

diaspore, topaz

Alunite, jarosite, kaolinite, gypsum

Hematite

Hematite

Hematite, goethite

Porphyry Copper /

Propylitic

Phyllic (Sericitic)

Potassic

Argillic-Advanced Argillic

Supergene Leach Cap

Base Metals

Spatial SWIR MineralsVNIR MineralsDeposit Type / Alteration

Style

Commodity

See below

HyMap Spectra Of Alteration Minerals

ALTERATION MAPPING

MAPPING PORPHYRY SYSTEMS EXAMPLE: Haib Region, Namibia

The SWIR spectra shown are

a selection of the main

alteration minerals as

recorded HyMap scanners.

Top: White mica (illites)

spectra in which the main

absorption at ~2.2um shifts in

wavelength with variations in

mineral chemistry from Al rich

at 2.19um (paragonite) to Al

poor at >2.215um (phengite).

Centre: Phyllic-Argillic mineral

dominated by absorptions at

and below 2.2um.

Bottom: Propylitic minerals

dominated by absorptions

beyond 2.25um.

Alteration Spectral Signature And Deposit Type

airborne hyperspectral remote sensing

Below: A portion of the Haib hyperspectral survey covering approximately 100 sq

km over the Lower Proterozic Haib porphyry copper deposit has been analysed

to produce several mineral maps. The Haib is a deeply weathered system but still

shows the zoning of the various alteration minerals.

Page 15: Geological Mapping and Mineral Exploration

OVERVIEW COLOUR COMPOSITE (BANDS 108,,28, 3) RGB)

0Km 5Km

MNF COLOUR COMPOSITE (BANDS 5, 4, 2 RGB)

PHYLLIC ALTERATION: White Mica-Muscovite White Mica-Paragonite White Mica-Phengite

PROPYLITIC & PHYLLIC ALTERATION: Mg Chlorite Fe Chlorite Montmorillonite Calcite Amphibole

ARGILLIC ALTERATION & TOURMALINE (Pyrophyllite, White Mica, Tourmaline)

INDEX COLOUR COMPOSITE (Hematite, Goethite, Pyrophyllite) View of terrain near the Haib porphyry copper deposits)

MINERAL MAP EXAMPLES

MORE INFORMATION

For more information on HyMap surveys for mineral exploration or environmental assessment please contact :

HyVista Corporation Pty Ltd ۰ phone: +61 2 8850 0262 ۰ email: [email protected] ۰ www.hyvista.com

PROPYLITIC ALTERATION: Mg Chlorite Fe Chlorite Calcite Montmorillonite Amphibole White Mica / CO3

Page 16: Geological Mapping and Mineral Exploration

Recently HyVista Corporation acquired a Vexcel UltraCam D RGB/CIR digital camera to co‐fly with the HyMap hyperspectral 

sensor.  Some example imagery from both systems are shown below. 

A

C

B: A section of the Hymap image is overlain 

    with a single frame of the digital camera  

    (approx 360 m x 490 m). 

C: Shows the area covered by the single digital 

    camera frame. 

D: A section of the digital camera image illustrated the detail 

    revealed with a 15 cm pixel. 

E: The HyMap and UltraCam D co‐mounted in a Cessna 404 

    aircraft.  Both are mounted on stabilised platforms and 

    the camera position is determined by a Novatel SE  

    precison DGPS/IMU. 

Benefits: 

• Single aircraft deployment to acquire both hyperspectral and high resolution 

digital imagery—significant cost savings. 

• Use digital imagery to sharpen mapping results of hyperspectral. 

• Ortho‐photos and precision DEM’s from digital camera. 

B

E

D

E

Figure A is a HyMap true‐colour mosaic (4 HyMap image strips) of Mt Whaleback iron ore mine in Western Australia.   

This image is 14.5 km x 5.2 km and has a spatial resolution of 4 m.  The digital camera image was acquired simultaneously 

 at a spatial resolution of 0.15 m (15 cm). 

HYPER2 DIGITAL IMAGERY airborne hyperspectral remote sensing 

Page 17: Geological Mapping and Mineral Exploration

Top: UltraCam digital photo imagery at 15cm GSD 

Below: UltraCam digital photo imagery merged with HyMap mineral maps. 

MORE INFORMATION For more information on HyMap surveys for mineral exploration or environmental assessment please contact : 

HyVista Corporation Pty Ltd  ٠  phone: +61 2 8850 0262 ٠email: [email protected]  ٠  www.hyvista.com 

Hyper² Imagery ‐ produced from Vexcel Ultra Cam D •  Large format digital mapping camera •  High Spatial resolutions from 2.5cm to 50cm •  Cost effective imagery collection with large format frames 

  Hyper² Imagery products 

•  FastLook Ortho‐Photography •  Enhanced Orthophoto Mosaics •  Digital Surface Models (DSM) •  DSM Point Cloud data 

Hyperspectral image products from the HyMap such as mineral maps can be merged with high spatial digital imagery from the UltraCam to produce high quality information maps. An example of such fusion products are displayed below. 

Page 18: Geological Mapping and Mineral Exploration

Processing of HyMap Data for Mineral Exploration and Geological Assessment

Processing of hyperspectral data is carried out to produce various image products through a sequence as described below: LEVEL 1: Preprocessing

Level 1A: Conversion of Raw DN images to radiance imagery and derivation of geometric correction files Level 1B: Conversion of radiance to reflectance data. Level 1C: Production of geometrically, cross track and radiometrically corrected mosaic from which further products are derived

LEVEL 2: Photo Interpretation Products (images that do not map mineral uniquely)

Overview Colour composites: Landsat TM 432 equivalent, true and false colour images MNF Colour Composite Images: 2-4 colour composites are produced Mineral Class Images that map distribution of:

MgOH/CO3, FeOH, SiOH, ALOH, Argillic, Sulfate, Iron Oxides minerals but not specific minerals, produced using decorrelation stretching

LEVEL 3: Mineral Abundance and Mineral Chemistry Image Maps

SWIR and VNIR Mineral Abundance Mapping: Mineral abundance images are produced from end-member un-mixed images, Match Filtered and Logical

Operator processes and are presented as: Thresholded Greyscale Thresholded Pseudo Coloured Mineral Map RGB Colour Composite Rule Classified Multi Mineral Maps

Pseudo Coloured Absorption Minima Wavelength Shift Mapping is carried out by using a polynomial curve fitting routine to determine the wavelength position of an absorption feature of interest in each pixel and creating an image of these values. This technique can be used to determine:

Illite Al content FeOx type Carbonate and Chlorite composition

LEVEL 4: Detailed Integrated Analysis

After the customer has examined the delivery products which are the produced as ENVI images and in formats for input into GIS (ECW, GeoTiff, JPEG and if vectors shape files), further refinement of the processing can be carried out interactively with the customer.

Some Mineral Targeting examples of models are:

Mapping zoning in porphyry systems Mapping Argillic and Advanced Argillic minerals to target epithermal deposits Mapping changes in carbonate composition in Calcrete U and MVT deposits Mapping change in white mica – illite Al content associated with Archean gold deposits and unconformity

U also location of Chlorite and Dravite. Locating Mg-OH minerals – Talc, Serpentine and Saponite that highlight kimberlite etc Gibbsite mapping for Bauxite deposits

OUTPUT IMAGES that are result of Level 2 and 3 (underlined) processing are written to ENVI, ER Mapper, ECW, JPEG and GeoTiff formats. The mineral mapping and mineral chemistry images can be presented as overlays onto a grayscale background and individual areas of mineral occurrence can be output as shape files.

www.hyvista.com

Page 19: Geological Mapping and Mineral Exploration

SUPERIOR SENSORS :: SUPERIOR SERVICE :: SUPERIOR PRODUCTS This is not our mission statement; this is our promise

Products and Services

From photons-on-a-detector to maps-on-your-desk; a truly end to end integrated survey service.

Survey Planning HyVista works closely with its clients to design efficient field deployments including international airfreight of equipment and in-country permitting. The use of advanced flight planning tools provides optimum time of day and flight line orientations to maximise data acquisition efficiency and image quality.

Deployment and Data Acquisition HyVista’s operational model is to airfreight its sensors and support equipment internationally and then lease local aircraft to undertake the survey. This provides the most cost efficient deployment for our clients. HyVista is passionate about sensor calibration and thus undertakes an on-site spectral and radiometric calibration of the sensors immediately prior to aircraft integration. HyVista’s survey staff is fully trained to undertake in field pre-processing and quality assessment on a daily basis. Quick-look imagery is available immediately for client review.

Data Processing HyVista’s clients request a variety of survey products ranging from fully calibrated and corrected data through to surface component maps that are immediately GIS compatible.

For data delivery, HyVista undertakes atmospheric correction and geo-location pre-processing. Data can be delivered as seamless mosaics and corrected for directional surface scattering effects, including sun glint removal in imagery over water bodies. HyVista offers a comprehensive range of map products using proprietary value-adding software. For example, HyVista can deliver large area, seamless surface mineralogy maps to mineral exploration clients or, as an additional step, an alteration map. All such products are GIS compatible in a number of formats, ensuring rapid integration into the clients mapping database. Consulting Services To add further value for the client, HyVista’s staff are available for consultation to either assist in the interpretation of the delivered map products or to design a targeted specific mapping theme. HyVista’s airborne hyperspectral sensors and proprietary

data processing software have been designed to under-

take large area surveys rapidly and efficiently (up to

1000 sq km per day), and to generate seamless mapping

products deliverable to the client in days, not months.

Page 20: Geological Mapping and Mineral Exploration

Head Office - Sydney Australia Unit 11, 10 Gladstone Rd Castle Hill NSW 2154 Australia PO Box 437 Baulkham Hills NSW 1755 Australia Phone: +61 2 8850 0262 Fax: +61 2 9899 9366 Email: [email protected] URL: www.hyvista.com

© Copyright HyVista Corporation Pty Ltd 2011 HyMap is a trademark of Integrated Spectronics Pty Ltd

Brochure prepared for...

Booth 307

Contacts:

Peter Cocks General Manager

[email protected] ph +61 2 8850 0262

Dr Mike Hussey Principal Geologist

[email protected] mbl +61 (0)414 648 661


Top Related