Transcript
Page 1: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

HW 4,ME 240 Dynamics, Fall 2017

Nasser M. Abbasi

December 30, 2019

0.1 Problem 1

The velocity in meter per second is

𝑣 = 228 οΏ½1000π‘˜π‘š οΏ½ οΏ½

β„Ž3600οΏ½

= (228)10003600

= 63.333 m/s

In normal direction, the acceleration is π‘Žπ‘› =𝑣2

𝜌 = (63.333)2

115 = 34.879 m/s2 or in terms of 𝑔, it

becomes 34.8799.81 = 3.555 g.

Now, force balance in vertical direction gives

𝐿 βˆ’ π‘šπ‘” = π‘šπ‘Žπ‘›πΏ = π‘š �𝑔 + π‘Žπ‘›οΏ½

= 970 (9.81 + 34.879)= 43348.33 N

0.2 Problem 2

1

Page 2: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

2

For maximum speed, friction acts downwards as car assumed to be just about to slideupwards. Resolving forces in normal and tangential gives

πœ‡π‘ π‘ cosπœƒ + 𝑁 sinπœƒ = π‘šπ‘£2max𝜌

(1)

βˆ’π‘šπ‘” + 𝑁 cosπœƒ βˆ’ πœ‡π‘ π‘ sinπœƒ = 0 (2)

From (2)

𝑁 =π‘šπ‘”

cosπœƒ βˆ’ πœ‡π‘  sinπœƒFrom (1)

𝑣2max =πœŒπ‘š

οΏ½πœ‡π‘ π‘ cosπœƒ + 𝑁 sinπœƒοΏ½

=πœŒπ‘š οΏ½πœ‡π‘  οΏ½

π‘šπ‘”cosπœƒ βˆ’ πœ‡π‘  sinπœƒοΏ½

cosπœƒ + οΏ½π‘šπ‘”

cosπœƒ βˆ’ πœ‡π‘  sinπœƒοΏ½sinπœƒοΏ½

= 𝜌 οΏ½πœ‡π‘  �𝑔

cosπœƒ βˆ’ πœ‡π‘  sinπœƒοΏ½cosπœƒ + οΏ½

𝑔cosπœƒ βˆ’ πœ‡π‘  sinπœƒοΏ½

sinπœƒοΏ½

= πœŒπ‘” οΏ½πœ‡π‘ 

1 βˆ’ πœ‡π‘  tanπœƒ+

tanπœƒ1 βˆ’ πœ‡π‘  tanπœƒοΏ½

= πœŒπ‘” οΏ½πœ‡π‘  + tanπœƒ1 βˆ’ πœ‡π‘  tanπœƒοΏ½

= 324 (9.81)

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ0.2 + tan οΏ½31 πœ‹

180οΏ½

1 βˆ’ 0.2 tan οΏ½31 πœ‹180

οΏ½

⎞⎟⎟⎟⎟⎟⎠

= 2893.165 m/s

Hence

𝑣max = 53.788 m/s

= 53.788 (0.001) (3600)= 193.637 km/hr

For minimum speed, friction acts upwards as car assumed to be just about to slide down-wards. Resolving forces in normal and tangential gives

βˆ’πœ‡π‘ π‘ cosπœƒ + 𝑁 sinπœƒ = π‘šπ‘£2min𝜌

(3)

βˆ’π‘šπ‘” + 𝑁 cosπœƒ + πœ‡π‘ π‘ sinπœƒ = 0 (4)

From (4)

𝑁 =π‘šπ‘”

cosπœƒ + πœ‡π‘  sinπœƒ

Page 3: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

3

From (3)

𝑣2min =πœŒπ‘š

οΏ½βˆ’πœ‡π‘ π‘ cosπœƒ + 𝑁 sinπœƒοΏ½

=πœŒπ‘š οΏ½βˆ’πœ‡π‘  οΏ½

π‘šπ‘”cosπœƒ + πœ‡π‘  sinπœƒοΏ½

cosπœƒ + οΏ½π‘šπ‘”

cosπœƒ + πœ‡π‘  sinπœƒοΏ½sinπœƒοΏ½

= πœŒπ‘” οΏ½βˆ’πœ‡π‘  οΏ½1

cosπœƒ + πœ‡π‘  sinπœƒοΏ½cosπœƒ + οΏ½

1cosπœƒ + πœ‡π‘  sinπœƒοΏ½

sinπœƒοΏ½

= πœŒπ‘” οΏ½βˆ’πœ‡π‘ 

1 + πœ‡π‘  tanπœƒ+

tanπœƒ1 + πœ‡π‘  tanπœƒοΏ½

= πœŒπ‘” οΏ½tanπœƒ βˆ’ πœ‡π‘ 1 + πœ‡π‘  tanπœƒοΏ½

= 324 (9.81)

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ

tan οΏ½31 πœ‹180

οΏ½ βˆ’ 0.2

1 + 0.2 tan οΏ½31 πœ‹180

οΏ½

⎞⎟⎟⎟⎟⎟⎠

= 1137.425 m/s

Hence

𝑣min = 33.726 m/s

= 33.726 (0.001) (3600)= 121.414 km/hr

Hence

121.414 ≀ 𝑣 ≀ 193.637

0.3 Problem 3

Page 4: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

4

0.3.1 part (1)

Since acceleration is constant along barrel, then using

𝑣2𝑓 = 𝑣20 + 2�̈�𝐿

We will solve for �̈�. Assuming 𝑣0 = 0 then

16812 = 2�̈� (4.2)

�̈� =16812

2 (4.2)= 336400.1 m/s2

But

οΏ½Μ„οΏ½ = ��̈� βˆ’ 𝐿�̇�2οΏ½ οΏ½Μ‚οΏ½π‘Ÿ + �𝐿�̈� + 2οΏ½Μ‡οΏ½οΏ½Μ‡οΏ½οΏ½ οΏ½Μ‚οΏ½πœƒBut �̈� = 0, hence the above becomes

οΏ½Μ„οΏ½ = οΏ½336400.1 βˆ’ (4.2) (0.18)2οΏ½ οΏ½Μ‚οΏ½π‘Ÿ + (2 (1681) (0.18)) οΏ½Μ‚οΏ½πœƒ= 336400 οΏ½Μ‚οΏ½π‘Ÿ + 605.16 οΏ½Μ‚οΏ½πœƒ

0.3.2 part (2)

Free body diagram for bullet gives

𝑃 = π‘šπ‘Žπ‘Ÿ + π‘šπ‘” sinπœƒ

but π‘Žπ‘Ÿ = 336400 m/s2 and π‘š = 16.9 kg and πœƒ = 230, hence

𝑃 = (16.9) (336400) + (16.9) (9.81) sin οΏ½(23)πœ‹180

οΏ½

= 5685225 N= 5.685 Γ— 106 N

0.3.3 Part (3)

Free body diagram for bullet gives

𝑁 = π‘šπ‘Žπœƒ + π‘šπ‘” cosπœƒ

= (16.9) (605.16) + (16.9) (9.81) cos οΏ½(23) πœ‹180

οΏ½

= 10379.81 N= 10.379 Γ— 103 N

0.4 Problem 4

Page 5: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

5

The free body diagram is

A

BF0

A

BF0

FBD

WA

FA

NA

WB NA

FA

FB

NB

⇐⇒

A

B

maAx

maAy = 0

maBx

maBy = 0

For 𝐴,�𝐹π‘₯ = π‘šπ΄π‘Žπ΄π‘₯

𝐹𝐴 = π‘šπ΄π‘Žπ΄π‘₯ (2)

�𝐹𝑦 = π‘šπ΄π‘Žπ΄π‘¦

𝑁𝐴 βˆ’π‘Šπ΄ = 0 (3)

For 𝐡�𝐹π‘₯ = π‘šπ΅π‘Žπ΅π‘₯

πΉπ‘œ βˆ’ 𝐹𝐴 βˆ’ 𝐹𝐡 = π‘šπ΅π‘Žπ΅π‘₯ (4)

�𝐹𝑦 = π‘šπ΅π‘Žπ΅π‘¦π‘π΅ βˆ’π‘Šπ΅ βˆ’ 𝑁𝐴 = 0 (5)

Hence (3) becomes

𝑁𝐴 = π‘Šπ΄ (6A)

= π‘šπ΄π‘”

And (5) becomes

𝑁𝐡 = π‘Šπ΅ + 𝑁𝐴

= π‘šπ΅π‘” + π‘šπ΄π‘”= (π‘šπ΅ + π‘šπ΄) 𝑔 (6B)

But 𝐹𝐴 = π‘π΄πœ‡1 then (2) becomes

π‘π΄πœ‡1 = π‘šπ΄π‘Žπ΄π‘₯

But from (6) the above reduces to (since 𝑁𝐴 = π‘šπ΄π‘”)

π‘šπ΄π‘”πœ‡1 = π‘šπ΄π‘Žπ΄π‘₯

Page 6: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

6

Hence

π‘Žπ΄π‘₯ = π‘”πœ‡1

= (32.2) (0.26)

= 8.372 ft/s2

Similarly 𝐹𝐡 = π‘π΅πœ‡2 hence (4) becomes

πΉπ‘œ βˆ’ π‘π΄πœ‡1 βˆ’ π‘π΅πœ‡2 = π‘šπ΅π‘Žπ΅π‘₯But 𝑁𝐡 = (π‘šπ΄ + π‘šπ΅) 𝑔, then above becomes

πΉπ‘œ βˆ’ π‘šπ΄π‘”πœ‡1 βˆ’ (π‘šπ΄ + π‘šπ΅) π‘”πœ‡2 = π‘šπ΅π‘Žπ΅π‘₯

π‘Žπ΅π‘₯ =πΉπ‘œ βˆ’ π‘šπ΄π‘”πœ‡1 βˆ’ (π‘šπ΄ + π‘šπ΅) π‘”πœ‡2

π‘šπ΅

π‘Žπ΅π‘₯ =438 βˆ’ (50) (0.26) βˆ’ (50 + 71) (0.46)

7132.2

= 167.504 ft/sec2

0.5 Problem 5

Free body diagram for block 𝐡 results in

2𝑔 βˆ’8π‘‡π‘šπ΅

= π‘Žπ΄

Free body diagram for block 𝐴 resuts in

βˆ’π‘šπ΄π‘” sinπœƒ βˆ’ πœ‡π‘šπ΄π‘” cosπœƒ + 2𝑇 = π‘šπ΄π‘Žπ΄In addision, since rope length is fixed, we find that π‘Žπ΄ = 2π‘Žπ΅. The above are 3 equations in3 unknowns 𝑇, π‘Žπ΄, π‘Žπ΅. Solving gives

π‘Žπ΄ = 4.439 m/s2

π‘Žπ΅ = 2.2197 m/s2

𝑇 = 37.95 N

Page 7: HW 4,ME 240 Dynamics, Fall 2017 - 12000.org

7

0.6 Problem 6

maximum displacement is 2 ft. Maximum speed is 9.404 ft/sec.


Top Related