Transcript
  • Identification of Relationships among Morphometric

    Parameters and QSWAT Model Output

    International Conference on SWAT, University of Natural

    Resources and Life Sciences, BOKU, Vienna, Austria,

    July 17-19, 2019

    Rohit Goyal and Priyamitra Munoth

    Department of Civil Engineering

    Malaviya National Institute of Technology, Jaipur

    India

  • 1. Introduction

    2. Study Area

    3. Materials and Methods

    4. Results

    5. Conclusions

    References

    Contents

  • 1. INTRODUCTION

    • To understand the characteristics of any hydrological system like

    topography, slope, runoff characteristics, surface water potential

    etc. the hydro morphological analysis is the first step.

    • The drainage map is typically the first map that is generated in any

    watershed-development project (Pakhmode et al., 2003) and the

    morphology of a catchment has a strong relationship with the

    transformation process of rainfall into runoff (Saravanan and

    Manjula 2015).

    • At present the automated extraction of topographic parameters

    from Digital elevation Modal (DEM) using Geographical

    information system (GIS) and hydrological models are recognized

    as a viable alternative to traditional surveys and manual evaluation

    of topographic maps (Salih et al., 2017; Ehsani et al., 2010).

  • • Hydrological Models have been developed for estimating various

    geomorphological and hydrological variables of any watershed.

    • Among these models, The Soil and Water Assessment Tool (SWAT)

    has been widely used and successfully applied to several rivers

    basins across the globe.

    • Understanding the relationships between morphometric and

    hydrological parameters would enable to recognize the dominant

    variables acting on a particular basin.

    • Therefore the objective of present work is to identify various

    drainage and hydrological parameters and to understand the

    relationship among them for the Upper Tapi River Sub-basin, India.

  • 2. STUDY AREA

    • The study area covers the Upper part of Tapi Basin from Multai

    (Madhya Pradesh), the origin of Tapi River up to Hathnur Reservoir

    (Maharashtra State) known as Upper Tapi river sub-basin.

    • The Upper Tapi river, travels a distance of about 350km till it drains

    into Hathnur Reservoir from Multai. The catchment area of Upper

    Tapi river sub-basin is about 10,600 km2.

    • The annual average rainfall of the area is around 833mm.

    • Discharge is monitored at Burhanpur gauge station.

    • The main land use types in the watershed are Agriculture, Forest

    and Rangeland.

    • The elevation ranges from 188m to 1166m above mean sea level

  • Study Area Map

  • 3. Materials and Methods

  • Data Type Resolution Source

    Digital Elevation Model

    (DEM)

    90m Shuttle Radar Topography Mission

    (SRTM)

    http://www2.ipl.nasa.gov/srtm/

    Soil Data 1km FAO-UNESCO global soil map

    http:/www.fao.org/nr/land/soils/digital-

    soil-map-of-the-world

    Rainfall Data

    Temperature, Relative

    Humidity, Solar

    Radiation, Wind speed

    0.5ox 0.5o Indian Meteorological Department (IMD)

    http://www.imdpune.gov.in

    0.35o x 0.35o Global weather Data (CFSR data)

    https://globalweather.tamu.edu/

    Discharge

    and Sediment

    Observed India WRIS portal

    http:/www.india-wris.nrsc.gov.in

    Land use 30m LANDSAT ETM+

    https://earthexplorer.usgs.gov/

    Table 1: Input Data

  • Calculation of Morphometric Parameter’s

    Identify Sinks Filled Sinks DEM without Sinks

    Flow Direction Flow Accumulation Threshold Stream Grid

    Stream Network Stream Order Stream lengths Other Parameters

    DEM

    Define Pour Point Watershed Delineation

  • Morphometric

    parameterFormula Reference

    Linear AspectsStream order (Su) Hierarchical rank Strahler (1964)

    Stream length (Lu)Length of

    stream(Lu=Lu1+Lu2…Lun)Horton (1945)

    Mean stream length (Lsm)Lsm =Lu/Nu

    Where (Nu) = Stream NumberStrahler (1964)

    Stream length ratio(Lur) Lur = Lsm / Lsm-1 Horton (1945)

    Bifurcation ratio (Rbf) Rbf = Nu / Nu + 1 Schumn (1956)

    Mean bifurcation ratio(Rbf)Average of bifurcation ratios of all

    ordersStrahler (1957)

    Length of overland flow (Lg) Lg = 1/2Dd Horton (1945)

    Basin length (Lb) Lb = 1.321A0.568 Nookaratnam (2005)

    Basin Perimeter (P)Outer boundary measured with

    GIS softwareSchumn (1956)

  • Aerial AspectsDrainage density (Dd) Dd = Lu /A Horton (1932)

    Basin Area (A) Area measured with GIS software Strahler (1964)

    Stream frequency (Fs) Fs = Nu / A Horton (1932)

    Texture ratio (Rt) Rt= Nu / p Horton (1932)

    Infiltration Number ( If) If = Dd × Fs Zavoiance (1985)

    Form factor (Rf) Rf = A/Lb2 Horton (1932)

    Shape factor (Bs) Bs = Lb2/A Nookaratnam (2005)

    Circulatory ratio (Rc) Rc = 4 x π x A /P2 Miller (1953)

    Elongation ratio (Re) Re =(4 x A / π )0.5/ Lb Schumn (1956)

    Compactness constant (Cc) Cc = 0.2821P/A0.5 Horton (1945)

    Constant channel

    maintenance(C)C = 1 / Dd Schumn (1956)

  • Relief Aspects

    Ruggedness Number (Rn)Rn = Dd * (H /1000)

    Where (H)= Basin relief in (m)Strahler (1957)

    Relief Ratio Rhl = H / Lb Schumn (1956)

  • QSWAT Model development

  • 4. Results and Discussions ❑ Linear Morphometric parameters of Upper Tapi River Sub-Basin

  • Sub

    Watersheds

    (SW)

    No. of Streams

    of each Order (Nu)Stream Length of each Order (Lu) (km)

    1 2 3 4 5 Total 1 2 3 4 5 Total

    SW1

    13 7 3 1 0 24 72 35 13 5 0 125SW2

    10 5 4 0 0 19 40 24 30 0 0 94SW3

    10 4 5 0 0 19 49 23 29 0 0 101SW4

    50 27 4 1 0 82 224 133 18 90 0 465SW5

    25 12 12 0 0 49 120 51 64 0 0 235SW6

    26 11 7 1 0 45 75 47 26 21 0 169SW7

    12 4 6 0 0 22 37 31 23 0 0 91SW8

    24 12 9 0 0 45 86 55 34 0 0 175SW9

    21 11 2 2 1 37 114 109 31 5 49 308SW10

    30 14 5 0 1 50 163 62 75 0 46 346SW11

    10 5 0 1 1 17 64 20 17 7 24 132SW12

    60 34 5 1 1 101 256 166 30 2 66 520SW13

    11 6 2 0 1 20 32 27 10 0 14 83SW14

    29 19 4 0 1 53 161 103 33 0 39 336Upper

    Tapi River

    Sub-Basin331 171 68 7 6 583 1493 886 433 130 238 3180

  • Sub

    Watersheds

    (SW)

    Mean

    Bifurcation ratios

    (Rbf )

    Length of overland flow (Lg)

    (km)

    Basin length (Lb)

    (km)

    Basin Perimeter (P)

    (km)

    SW1 2.4 1.79 41.9 148.5

    SW2

    1.63 1.72 35.46 142.5

    SW3

    1.65 1.67 36.31 169.8

    SW4

    4.2 1.92 93.14 331.5

    SW5

    1.54 1.92 63 245.7

    SW6

    3.64 2 53.08 193.9

    SW7

    1.84 1.79 35.02 159

    SW8

    1.67 1.72 50.08 187.4

    SW9

    2.84 1.51 63.31 262.9

    SW10

    1.57 1.42 66.89 282.5

    SW11

    1.16 1.38 37.83 164

    SW12

    3.93 1.66 91.03 328.4

    SW13

    1.88 1.51 30.34 104.4

    SW14

    3.53 1.43 64.86 244.7

    Upper Tapi

    River

    Sub-Bain

    3.82 1.66 255.36 1057.78

  • Aerial and Relief aspects of Upper Tapi River Sub-Basin

    Morphometric

    parameters

    SW

    1

    SW

    2

    SW

    3

    SW

    4

    SW

    5

    SW

    6

    SW

    7

    SW

    8

    SW

    9

    SW

    10

    SW

    11

    SW

    12

    SW

    13

    SW

    14

    Upper

    Tapi

    River

    Sub

    Basin

    Drainage density

    (Dd)

    0.28 0.29 0.3 0.26 0.26 0.25 0.28 0.29 0.33 0.35 0.36 0.3 0.33 0.35 0.3

    Basin Area (A)

    (km2)

    440 328 342 1794 901 667 320 602 909 1001 367 1723 249 949 10595

    Stream

    frequency (Fs)

    0.05 0.06 0.06 0.05 0.05 0.07 0.07 0.07 0.04 0.05 0.05 0.06 0.08 0.06 0.06

    Texture ratio

    (Rt) 0.16 0.13 0.11 0.25 0.2 0.23 0.14 0.24 0.14 0.18 0.1 0.31 0.19 0.22 0.55

    Infiltration

    Number ( If)

    0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.02 0.02

    Form factor

    (Rf)

    0.25 0.26 0.26 0.21 0.23 0.24 0.26 0.24 0.23 0.22 0.26 0.21 0.27 0.23 0.16

    Shape factor

    (Bs)

    4 3.85 3.85 4.76 4.35 4.17 3.85 4.17 4.35 4.55 3.85 4.76 3.7 4.35 6.25

  • Morphometric

    parameters

    SW

    1

    SW

    2

    SW

    3

    SW

    4

    SW

    5

    SW

    6

    SW

    7

    SW

    8

    SW

    9

    SW

    10

    SW

    11

    SW1

    2

    SW

    13

    SW1

    4

    Upper

    Tapi

    River

    Sub

    Basin

    Circulatory ratio

    (Rc)

    0.25 0.2 0.15 0.21 0.19 0.22 0.16 0.22 0.17 0.16 0.17 0.2 0.29 0.2 0.12

    Elongation ratio

    (Re) 0.56 0.58 0.57 0.51 0.54 0.55 0.58 0.55 0.54 0.53 0.57 0.51 0.59 0.54 0.45

    Compactness

    constant (Cc)

    2 2.22 2.59 2.21 2.31 2.12 2.5 2.15 2.46 2.52 2.41 2.23 1.87 2.24 2.9

    Constant

    channel

    maintenance(C)

    3.57 3.45 3.33 3.85 3.85 4 3.57 3.45 3.03 2.86 2.78 3.33 3.03 2.86 3.33

    Relief(m) 417 416 800 500 877 890 631 702 665 772 312 627 482 487 978

    Ruggedness

    Number (Rn)

    0.12 0.12 0.24 0.13 0.23 0.22 0.18 0.2 0.22 0.27 0.11 0.19 0.16 0.17 0.29

    Relief Ratio 9.9 11.7 22.0 5.37 13.9 16.7 18.0 14.0 10.5 11.5 8.25 6.89 15.89 7.51 3.83

  • Analysis of QSWAT Output

    Parameter Min Value Max Value Calibrated Values

    r_CN2.mgt -0.1 0.1 -0.015

    v_GWQMN.gw 0 5000 2287

    v_ESCO.hru 0 1 0.9

    r_SOL_AWC(..).sol 0.02 0.2 0.14

    v_GW_REVAP.gw 0.02 0.2 0.02

    v_REVAPMN.gw 0 500 412

    Parameters used in calibration and their calibrated values

    Variable Application Year P-factor R-factor R2 NSE PBIAS

    Discharge

    Calibration 1991-2005 0.67 0.29 0.75 0.75 1.1

    Validation 2006-2013 0.66 0.31 0.90 0.89 -7.2

    Performance evaluation of developed model

  • Observed and Simulated Discharge (m3/sec) for calibration period

  • Observed and Simulated Discharge (m3/sec) for validation period

  • Sub

    Watersheds

    QSWAT Output

    SURQ

    (mm)

    ET

    (mm)

    PET

    (mm)

    GWQ

    (mm)

    PERC

    (mm)

    SW

    (mm)

    SYLD

    (t/ha)

    WYLD

    (mm)

    SW1 448.46 444.76 1749.59 193.31 266.67 944.65 57.05 667.53

    SW2 269.59 428.03 1781.68 114.34 197.15 843.82 35.52 411.32

    SW3 334.45 459.79 1686.72 231.58 292.97 827.84 21.02 619.87

    SW4 222.58 423.23 1697.89 81.24 165.19 919.1 27.6 321.16

    SW5 438 420.81 1729.62 269.03 337.66 671.97 5.4 767.32

    SW6 464.47 384.39 1744.97 277.04 347.13 551.39 30.62 802.02

    SW7 323 377.61 1808.83 104.38 185.21 719.11 69..44 449.17

    SW8 196.08 386.51 1882.73 48.19 136.06 667.24 56..47 266.35

    SW9 419.09 450.38 1736.3 199.17 272.15 887.97 39.74 662.38

    SW10 485.19 457.71 1709.9 243.49 312.13 891.09 17.3 729.27

    SW11 292.7 444.91 1760.27 220.54 293.72 954.25 42.55 735.86

    SW12 465.63 406.39 1808.77 106.79 189.11 813.67 51.52 419.2

    SW13 352.95 362.17 1842.78 18.27 81.48 1044.33 199.18 384.23

    SW14 254.76 375.03 1859.41 10.11 85.37 943.9 125.07 274.23

    Upper Tapi

    River

    Sub-Basin

    336.11 417.3 1764.3 221.98 221.9 834.3 47.31 512.44

    Hydrological parameters from QSWAT Model

  • Relationships among Morphometric Parameters and

    QSWAT Output

    Morphometric

    ParameterQSWAT Output

    SURQ ET PET GWQ PERC SW SYLD WYLD

    Dd 0.09 0.40 0.12 0.08 0.10 0.71 0.30 0.0

    Fs 0.58 0.97 0.92 0.80 0.75 0.0 0.50 0.81

    Rt 0.0 0.07 0.02 0.0 0.03 0.07 0.0 0.05

    If 0.14 0.59 0.57 0.48 0.53 0.04 0.70 0.34

    Rf 0.0 0.07 0.16 0.24 0.05 0.09 0.20 0.0

    Bs 0.0 0.04 0.10 0.20 0.02 0.07 0.11 0.0

    Rc 0.0 0.30 0.25 0.42 0.30 0.18 0.46 0.09

    Re 0.0 0.05 0.11 0.18 0.03 0.06 0.14 0.0

    Cc 0.0 0.18 0.14 0.21 0.11 0.02 0.22 0.05

    C 0.1 0.36 0.15 0.12 0.15 0.74 0.33 0.02

    Relief 0.14 0.0 0.07 0.30 0.18 0.53 0.15 0.10

    Rn 0.19 0.04 0.05 0.23 0.13 0.24 0.09 0.09

    Relief Ratio 0.01 0.01 0.0 0.21 0.04 0.18 0.0 0.05

    R2 values for Morphometric parameters and QSWAT Output

  • 5. Conclusions • The drainage basin analysis is important in any hydrological

    investigation like assessment of groundwater potential, groundwater

    management, and environmental assessment.

    • From the morphometric analyses, it can be concluded that the Upper

    Tapi River basin is elongated in shape and not prone to flood.

    • The low drainage density of the basin, indicating permeable strata

    and moderate runoff.

    • This is favourable for groundwater recharge, thus pointing to

    potential areas for groundwater development, which is further

    confirmed by the low value of the circulatory ratio.

    • The moderate bifurcation ratio indicates a strong relief and a wide

    variety of soils and geology.

  • • The morphometric analysis helps in better understanding the nature

    of landforms, slope, drainage system, runoff and hydrological

    characteristic of the Upper Tapi river basin.

    • Integration of morphometric parameters, GIS and QSWAT model

    have been done in this study to overcome the challenge of scarcity

    of observed data.

    • In the absence of observed data, relationship between hydrological

    and morphometric parameters could be used to gauge the

    effectiveness of output of the SWAT model.

    • The study reveals that Stream frequency (Fs), Infiltration Number

    (If), and Circulatory ratio (Rc) are well correlated with hydrological

    variables.

  • References • Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bonger, K., Mieleitner, J., Zobrist, J., and

    Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine Thur watershed using

    SWAT. Journal of Hydrology, 333 (2), 413-430.

    • Abbaspour, K.C., (2011). SWAT-CUP4: SWAT Calibration and Uncertainty Programs A User Manual.

    EAWAG Swiss Federal Institute of Aquatic Science and Technology 1-103.

    • Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B., (2015). A

    continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a

    high-resolution large-scale SWAT model. Journal of Hydrology 524, 733–752.

    • Arnold J.G., Srinivasan, R., Muttiah, R.S., Williams. J.R. (1998). Large area hydrologic modeling and

    assessment part I: Model development. Journal of the American Water Resources Association 34:73-

    89.

    • Arnold J.G., et al., (2015) Hydrological Processes and Model Representation: Impact of Soft Data on

    Calibration. American Society of Agricultural and Biological Engineering 58(6):1637-1660. doi

    10.13031/trans.58.10726.

    • Horton, R.E. (1945). Erosional development of streams and their drainage basins; Hydrophysical

    approach to quantitative morphology. Bulletin of Geological Society of America, 56, 275-370.

    • Horton, R. E. (1932). Drainage basin characteristics, Trans. Am. Geophys. Unon.13: 350-361.

    • Strahler, A. (1957). Quantitative analysis of watershed geomorphology. Transaction AGU38, 913–920.

    • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In:

    Chow V.T. (ed.), Handbook of Applied Hydrology. McGraw Hill Book Company, New York.

    • Schumn, S.A. (1956). Evolution of drainage systems and slopes in badlands at Perth,Amboy, New

    Jersey. Geological Society of America, Bulletin. 67, 597–646.

    • Zavoiance, I. (1985). Morphometry of drainage basins (Developments in water science), Elsevier

    Science, New York, USA.

  • Thank you


Top Related