Transcript

1

Tanguy ROUXEL, Jean-Christophe SANGLEBOEUF,

and Kwadwo KESE

LARMAUR, Université de Rennes 1, France

The temperature dependence of the Flaw Sensitivity

The residual stress field

Indentation Damage and Residual Strength of Glass

PacRim 8, Vancouver 2009

2

I. Temperature Dependence of the Flaw sensitivity

What « Brittleness » and « Ductility » mean?

High temperature studies

- To get insight into the nature of Brittlness

- To understand the nature of process-derived contact flaws and

simulate product handling damage

- To study the strength-controlling sites at room temperature

3

«!Comme elle a l’éclat du verre, elle en a la fragilité…!»Polyeucte, Corneille

Low temperature or high rate

!

!

Pre-existing flaw

High temperature or low rate

Ductile

Brittle (Fragile)

4

Indented window glass specimens loaded in bending

Brittle-Ductile transition

P

u

DuctileBrittle

Loa

d,

P

Deflection, u (mm)

J. Non-Cryst. Sol., 271 224-235 (2000)

5

6

Mechanical analysis

(Kt=E!Y! a)

Crack tip stress intensity factor:

Relaxation function:

At fracture:

!

ˆ K = K1c

!

ˆ " ="decohesion

7

8

10 hCopper at 20 °C

1 hCeramic composite Si3N4/SiC at 1600 °C

10 sBitumen at –5 °C

0,1 sWindow glass at 600 °C

1 msBitumen at 40 °C

1 msEpoxy resin at 20 °C

1 nsWater at 20 °C

1 dIce at –5 °C

1 dWindow glass at 500 °C

32 yWindow glass at 400 °C

120 yIce at –98 °C

106 yEarth mantle

Relaxation timeconstant,

"rel=#/µMaterials

9

Rela

xation T

ime C

onsta

nt (s

)

Reflets de la Physique (anc. Bull. de la SFP), n°8 5-9 (2008).

10

II. The residual stress field

What do we know about it?

11

« Plastic » deformation zone:

Volume V $ b3 $ E1/2/H (b/a=(V/%V)3)

Elastic

deformation zone

P

a c

P!r

Lawn, Evans and Marshall (1979-81)

2c

ca

Indentation volume: %V $ a3 $ H-3/2

Unloading

!r $ K %V/V

K: bulk modulus

2b

"r # (E/H)1/2

12

Watanabe et al, J.Mater.Sci., 2001

Michel et al, JNCS, 2004

Shang Rouxel, JACS, 2005

"r # (E/H)1/2

13

"r # (E/H)1/2

Tg

J. Non-Cryst. Sol., 271 224-235 (2000)

14

0

5

10

15

20

25

0 100 200 300 400 500

Indentation temperature, °C

E/H

Dwell time = 60 s, Michel et al

Dwell time = 0 s, this study,

Recall that the analysis of the indentation problem assuming pure elasto-plasticity leads to:

"r # (E/H)1/2

Residual stresses are expected to increase with

temperature up to 450 °C

15

!

c = "P( )2

3

EH( )

1

3

Kc

2

3

Measured crack length gives $ = 0.020

Sglavo Green, Acta Metall. Mater., 1995

0.028<$< 0.034

Rouxel Sangleboeuf, JNCS, 2000

16

Window Glass : Planilux (Saint-Gobain)

air sideT

em

pe

ratu

re

Time

2 h

49 N Vickers

0.1 mm/s no hold

2°C/min ->100°C

17K. Kese et al,, J. Phys. D, App. Phys., 41 [7] 074025 (2008)

18

Influence of Vickers residual stress

field on indentation cracking

cr

ct

co

co<

>

2.94 N

49 N

19

Calculate stresses from crack length

!

"T

= Kc

1# co

cr

$ % &

' ( ) 32

*cr

!

"c

= Kc

1# co

ct

$ % &

' ( ) 32

*ct

Zeng and Rowcliffe, Acta Metall. Mater., 1995

20

Estimation of the residual stresses

RT

K. Kese et al,, J. Phys. D, App. Phys., 41 [7] 074025 (2008)

21

Contact site transformation

500°C

22

Lateral crack dependence on radial crack

600°C

23

Crack length as a function of position

C0

24

540 °C

600 °C630 °C

20 °C

25

Lateral crack dependence on radial crack

600°C

26

• The nature of contact site can change from a fully crackedimprint at room temperature to a crack-free imprint athigher temperatures.

• The crack-free indent can transform into a fully crackedindent when the residual stress field is mechanicallydisturbed, as for example by another micro indent.

• The lateral cracks obtain their shape as a result of theircoupled growth with that of the radial cracks.

• Stresses are tensile in the tangential direction, andcompressive in the radial direction

• The spatial extent of the stress field decreases as afunction of temperature

Conclusion


Top Related