Transcript
Page 1: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in centralLake Erie: Field observations & future directions

Hank Vanderploeg, GLERLStuart Ludsin, GLERLSteve Pothoven, GLERLTomas Höök, CILER Univ. of MichiganJames Roberts, Univ. of MichiganSteve Ruberg, GLERLJoann Cavaletto, GLERLJames Liebig, GLERLGregory Lang, GLERLStephen Brandt, GLERL

Page 2: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Hypoxia is an old problem in freshwater—Results forCyclops bicuspidatus (Einsle 1965)

This species is very tolerant of low oxygen (~ 0.1mg/L)

Page 3: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

1. Hypoxia will disrupt vertical migration behavior

– Reduce time spent on bottom

2. Hypoxia will influence horizontal movement

– Fish will move into oxygenated, shallow nearshore zones

3. Hypoxia will reduce availability of prey, both ZP & benthic macroinvertebrate prey

– ZP use hypoxia as a refuge from predation– Hypoxia reduces benthic prey abundance

4. Fish consumption & condition will decline

Original Lake ErieFish-Centric Hypotheses

Page 4: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—a zooplankton-centric view

Scene from Bergman’s “The Seventh Seal”

Page 5: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Death normally comes in two forms: predation and starvation

• Zooplankton vertical migration is strategy to minimize overlap with visually preying invertebrate and vertebrate (fish) predators—conspicuous or unprotected (spineless) zooplankton move to lower light levels

• Move into upper favorable (temperature and food) areas at night.

• Predator abundance is assessed by kairomones.• When many predators, the zooplankter (prey)

must play chess to avoid overlap.

Page 6: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

The Great Lakes have both visual invertebrate & and vertebrate predators—Lake Michigan example

Page 7: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—the piscine players

Scene from Bergman’s “The Seventh Seal”

Page 8: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow Smelt:Planktivore-benthivore

Dominant planktivores of Lake Erie and their Vanderploeg & Scavia (1979) selectivity coefficients (W´) pre-hypoxia

Prey size

Page 9: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Hypoxia, another form of death, alters the game—some hypotheses:

• Differential tolerance of zooplankton to hypoxia allows some species to enter the hypoxic zone to escape predators—the refuge

• Others will be forced out and trapped in lighted areas above—the hypoxia-light trap.

Page 10: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

DissolvedOxygen(mg/l)

0

3

6

9

12

September

Diel Station B

August

Lake Erie

Some results before and after major hypoxia will give us some insights

Page 11: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

General Methods—What we did

Page 12: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

• Trawling (fish species & samples for diet & ration work)

• Zooplankton net and pump sampling (zooplankton)

• Ponar sampling (benthic macroinvertebrates)

• Zooplankton• Temperature• Dissolved oxygen• Light levels• Chlorophyll a

FishBiomass

Introduction to Study Systems & General Methods

Page 13: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Lake Erie Field Program (IFYLE 2005)

Diel (24-hr)Transect (day-night)

Source: Don Coles

EPA-GLNPOR/V Lake Guardian (180’)

NOAA-GLERLR/V Laurentian (80’)

Transect BDiel Station B

Page 14: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

0 5 10 15 20 25D

epth

(m

)0

2

4

6

8

10

12

14

16

18

20

22

24

Water Column Pumping Method

1 min. ea. depth

1 min. ea. depth

5 min.ea.

DO (mg/L)

Water Temp (oC)

2 min. ea. depth

Sept. 2005

shooting for pumping 1 cubic meter of water

Page 15: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

DissolvedOxygen(mg/l)

0

3

6

9

12

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

Transect B

Ho 2: Hypoxia will alter horizontal distribution of abundance– Fish will move into oxygenated, shallow nearshore zones

September

August

October

Lake Erie

Page 16: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

41.7 41.8 41.9 42 42.1

20

10

0

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Day

41.7 41.8 41.9 42 42.1

20

10

0

NightTemp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

(August – Pre-Hypoxia)

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

Ho 2: Hypoxia will alter horizontal distribution of abundance

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 17: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Temp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

(September – Peak Hypoxia)

Ho 2: Hypoxia will alter horizontal distribution of abundance

Day

41.7 41.8 41.9 42 42.1

20

10

0

Night

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 18: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Temp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

41.6 41.7 41.8 41.9

20

10

0

41.6 41.7 41.8 41.9

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

(October – Post Hypoxia)

Ho 2: Hypoxia will alter horizontal distribution of abundance

Day

41.7 41.8 41.9 42 42.1

20

10

0Night

– Reject: Fish move into oxygenated waters, but offshore

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 19: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—Insights from pre-hypoxia (control) & hypoxia distributions and prey selection

Scene from Bergman’s “The Seventh Seal”

Page 20: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future
Page 21: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Aug 17, 01:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zoop, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 22: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Aug 17, 13:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25Chl, DO, Zoop, Temp

De

pth

(m

)

0 200 400 600 800 1000 1200PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 23: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 10 20 30 40

dep

th

0

4

8

12

16

20

24

Cladocerans mg . m-3

0 100 200

Lake Erie B 8-17-05 DIEL 02:00

BosminaEubosminaDaphnia mendotaeD. longiremis

Predatory Cladocerans mg . m-3

0 10 20 30

4.8 mg/L DO

EPI

META

HYPO

4.8 mg/L DO 4.8 mg/L DO

LeptodoraBythotrephesCercopagis

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Page 24: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 50 100

dep

th

0

4

8

12

16

20

24

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Cladocerans mg . m-3

0 20 40

Lake Erie B 8-17-05 DIEL 14:00

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurva

Predatory Cladocerans mg . m-3

0 1 2

EPI

META

HYPO

4.8 mg/L DO 4.8 mg/L DO 4.8 mg/L DO

LeptodoraBythotrephes

Page 25: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future
Page 26: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Sept 18, 03:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zooplankton, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 27: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Sept 17, 15:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zooplankton, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 28: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Predatory Cladocerans mg . m-3

0 1 2 3Copepods mg . m-3

0 100 200

dep

th

0

4

8

12

16

20

24

Cladocerns mg . m-3

0 20 40 60 80

Lake Erie B 9-18-05 DIEL 02:00

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurvaDiaphanasoma

Leptodora

upper epi

lower epi

meta

hypo

1.2 mg/L DO 1.2 mg/L DO 1.2 mg/L DO

Page 29: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 20 40 60 80

dep

th

0

4

8

12

16

20

24

Cladocerans mg . m-3

0 20 40

Lake Erie B 9-17-05 DIEL 14:00

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Predatory Cladocerans mg . m-3

0.0 0.5 1.0

1.2 mg/L DO 1.2 mg/L DO 1.2 mg/L DO

upper epi

lower epi

meta

hypo

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurvaDiaphanasoma

Leptodora

Page 30: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow Smelt:Planktivore-benthivore

Selectivity coefficient of Vanderploeg & Scavia (W´) for Emerald shiner and Rainbow Smelt in August 2005

Prey size

Page 31: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt September 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner September 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow smelt:Planktivore-benthivore

Prey size

Selectivity coefficient of Vanderploeg & Scavia (W´) for emerald shiner and rainbow smelt in September 2005

Page 32: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

What’s going on down there?

Present status:Heavy emphasis in IFYLE Hypoxia study on upper

food web (fish and location of fish food)We do know, however:• Mesozooplankton and microzooplankton

distribution relative to hypoxia response is species specific

• Microzooplankton grazing dominates during the summer

• Bacteria-based food web becomes important in hypoxic zone

Page 33: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

What’s going on down there?

For the development of a conceptual framework we’d like to know:

• What is the minimum oxygen concentration a zooplankter (species by species) is willing to enter yet survive under various predation risk scenarios?

• How does feeding and behavior vary with oxygen concentration?

• What is the joint distribution of meso-and microzooplankton around hypoxic zones

• How is production and predation risk affected?

Page 34: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

We know something about Daphnia foraging in hypoxic areas but nothing for copepods, the dominants in the Great Lakes, or for visual

invertebrate predators

From Heisey & Porter (1977)

Page 35: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Some possible lab approaches to define spatial

rules of food web assembly (“indirect effects”)

• Observe location of position of zooplankton in laboratory water columns with gradients of light, temperature, kairomones of potential predators & oxygen

• Directly observe behavior and foraging in hypoxic water columns.

• Observe effect of hypoxia on visual predation (both invertebrate & vertebrate)—have predators watch TV

Page 36: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Inside the lab

Page 37: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Outside the lab: keeping the predator in focus


Top Related