Transcript
  • Interface Engineering of the Tungsten-Fiber-Reinforced Tungsten Composites

    J. Du*, T. Höschen, J-H. You, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr.2, 85748 Garching, Germany

    * corresponding author: [email protected] (address since 1st Mai 2011 : Forschungszentrum Jülich GmbH, EURATOM Association, 52425 Jülich, Germany)

    A toughening method for tungsten is proposed based on the reinforcement of tungsten fibers (Wf/Wm composites) and engineered interfaces.

    The interfacial parameter determination results show that selected interfaces satisfy to the interfacial debonding criterion.

    The interfacial debonding and fiber sliding were demonstrated by micro-mechanical 3-point bending test.

    The predicted stress-strain curve of the Wf/Wmcomposites with multiple fibers agree with the theoretical one, supporting the primary motivation of the thesis.

    Motivation: Tungsten/Tungsten composite

    A novel toughening method for tungsten (W), was proposed and developed based on the reinforcement of tungsten fibers (Wf/Wm composite) and engineered interfaces. The underlying toughening mechanism is analogous to that of a fiber-reinforced ceramic matrix composite (CMC). This work opened a new pathway to improve the toughness of tungsten as a structural material.

    com

    posi

    te s

    tress

    composite strain

    pseudo-toughnessCMC composite toughening mechanism

    • crack deflection• Interface debonding• fiber sliding• energy dissipation

    Wf/Wm composite concept

    W matrix

    W wire

    Analysis system:

    Single filament (fiber) composite

    2 fr

    l

    f

    m

    zi s

    2 fr

    l

    f

    m

    zi s

    =150m

    :2~3mmH:~0.3mm

    Wf with interface

    magnetronsputtering

    chemical vapor

    depositionWf Wf/Wm

    cut &polished

    Fiber push-out testExperiment Specimen preparation

    Carbon600 nm

    Cu 170 nmCu 480 nm

    Cu/W m

    ZrOx/Zr mZrOx/W mErOx/W mEr/W m

    ErOx600 nm1000 nm

    ZrOx150 nm260 nm450 nm950 nm

    Lubricating coatingDuctile coatingMultiple-layer coatingOxide coating

    Designed interfaces

    20.7

    23

    20.5

    17.315.6

    16.718.3

    21.9

    1616.8

    13.1

    15.817.2

    9.8

    0

    5

    10

    15

    20

    25

    ZrOx 150 ZrOx 450 ZrOx 950 ZrOx&W260

    ErOx600

    ErOx1000

    ZrOx/Zrm

    ZrOx/Wm

    ErOx/Wm

    Er/W m Cu/W m Cu 170 Cu 480 carbon

    Aver

    age

    enrg

    y ab

    sorp

    tion

    (kJ/

    m^2

    fiberfiber

    Result-Push-out test curve The area below the curve corresponds to the total amount of workdone by the applied load—average energy absorption Δ, kJ/m2

    Result-Interfacial fracture energy (i) calibration and debonding criterion verification P

    HR

    RL

    0.00 0.02 0.04 0.06 0.08 0.10 0.120

    10

    20

    30

    40

    50

    Load

    (N)

    Displacement (mm)

    A, Pd

    B

    C, Pfr

    Interface: ZrOx 450Specimen thickness: 0.226 mm

    0.05 0.10 0.15 0.20 0.250

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Stre

    ss p

    (MPa

    )

    Specimen thickness H (mm)

    23 0.6 J/mi Interface: ZrOx 450

    1 12 2

    2 1

    2 ( 1)f fB H B HR Ri f R

    f

    Ep e e

    B R B

    H : Specimen thickness2d

    f

    PpR

    (Liang,1993)

    i Mode 2 fracture energy for the debonding event 9.61

    5.86

    2.89 3 2.992.03

    1.23

    3.5 3.462.01

    7.66

    12.34

    7.41

    0

    2

    4

    6

    8

    10

    12

    14

    16

    ZrOx 150 ZrOx450

    ZrOx950

    ZrOx&W260

    ErOx600

    ErOx1000

    ZrOx/Zrm

    ZrOx/Wm

    Er/W m

    ErOx/Wm

    Cu/W m Cu170 Carbon

    Frac

    ture

    ene

    rgy

    (J/m

    ^2)

    9.61

    5.86

    2.89 3 2.992.03

    1.23

    3.5 3.462.01

    7.66

    12.34

    7.41

    0

    2

    4

    6

    8

    10

    12

    14

    16

    ZrOx 150 ZrOx450

    ZrOx950

    ZrOx&W260

    ErOx600

    ErOx1000

    ZrOx/Zrm

    ZrOx/Wm

    Er/W m

    ErOx/Wm

    Cu/W m Cu170 Carbon

    Frac

    ture

    ene

    rgy

    (J/m

    ^2)

    Fiber fracture

    Interfacial debonding

    Elastic mismatch

    i

    f

    0

    5.0

    1

    5.0 10

    5.1

    5.01

    Fracture mechanism

    He,1989

    Debonding criterion

    ≤≤0.250.25Interface fracture energy i

    Fiber fracture energy f (≈ 320 J/m2)

    Budiansky 1995

    3 22

    23 ( 2 ) (2 3 )

    3f

    mc D D S D D S m mmcA

    rc

    mc

    f f mmc

    mc E c E

    2 f cD fm m f

    iE Ecc E r

    2 f

    Am m

    Rc fc E Ec E

    132 2(1 ) /S f f f m f R cm fl r c E E c E r

    ( / )(1 )f c S f

    tR

    sf

    am

    c E l rc E

    /sats fa ft c E

    Evans 1994

    The stress-strain curves is typical for a toughened composite, supporting the motivation of this work.

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    0 0.5 1 1.5 2 2.5 3 3.5

    Strain (%)

    Stre

    ss (M

    Pa)

    mc

    sat

    y

    uFiber pull out

    Interface: ZrOx 450Fiber volume: cf=0.6

    Budiansky 1995

    3 22

    23 ( 2 ) (2 3 )

    3f

    mc D D S D D S m mmcA

    rc

    mc

    f f mmc

    mc E c E

    2 f cD fm m f

    iE Ecc E r

    2 f

    Am m

    Rc fc E Ec E

    132 2(1 ) /S f f f m f R cm fl r c E E c E r

    ( / )(1 )f c S f

    tR

    sf

    am

    c E l rc E

    /sats fa ft c E

    Evans 1994

    A toughening method for tungsten is proposed based on the reinforcement of tungsten fibers (Wf/Wm composites) and engineered interfaces.

    The interfacial parameter determination results show that selected interfaces satisfy to the interfacial debonding criterion.

    The interfacial debonding and fiber sliding were demonstrated by micro-mechanical 3-point bending test.

    The predicted stress-strain curve of the Wf/Wmcomposites with multiple fibers agree with the theoretical one, supporting the primary motivation of the work.

    Interfacial fracture energy i of investigated interfaces

    The main focus of this work lies in the investigation of the interfacial fracture behavior of Wf/Wm composites with various engineered interfaces to demonstrate the feasibility of synthesizing a toughened Wf/Wmcomposite using the CMC toughening mechanism.

    Goal and focus of this work

    W matrix

    W wire

    W matrix

    W wire

    • W fiber, u> 2.5 GPa, u> 2%• Interface thickness m

    The fracture properties of the engineered interface are the key factors controlling the overall composite toughness.

    Micro-mechanical 3-point bending test (ZrOx 260)

    2 m

    W fiber topW C

    Interface delamination

    ca) oxide interface: ZrOx 450

    b) ductile interface: Cu 480

    c) lubricating interface: C 600

    Interface deformation and delamination can cause higher interfacial fracture energy.

    1 mmatrix

    typical W wire surface

    structure

    fiber

    ZrOx 450

    a

    ConclusionResult-Crack deflection demonstration Result-Behavior prediction of Wf/Wm composite with multiple fibers

    The calculated ratios lie between 0.003 and 0.034. satisfying the 0.25 criterion.

    The debonding criterion is satisfied !

    specimen thickness: 0.226mm

    y f f yield Rc /y f yield fE u f f uc

    2.1%u

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice


Top Related