Transcript
Page 1: Introduction to Life

Introduction to life

By:-Ms. Smita Shukla

Assistant Professor

Page 2: Introduction to Life

Biology is  the  study  of  life  and  living organisms,  from  one-celled  creatures  to the most  complex  living organism of all — the human being.  Biology includes the study of genes and cells  that  give  living  things  their  special characteristics.

Page 4: Introduction to Life

All living things share some basic properties.Cellular OrganizationReproductionMetabolism (Obtain and Use Energy)HomeostasisHeredityResponsivenessGrowth and DevelopmentAdapt Through Evolution

Page 5: Introduction to Life

Unicellular OrganismsEntire organism is made up of one single cellBacteria and protists

Smallest unit capable of all life functions

Page 7: Introduction to Life

Reproduction is the process of producing new organisms of the same type

Asexual ReproductionA single parent organism reproducing by itself

Page 8: Introduction to Life

Sexual ReproductionTwo different parent organisms contribute genetic information Involves the combination of male and female sex cells

Page 9: Introduction to Life

Living organisms need energy to grow, develop, repair damage, and reproduce

Page 10: Introduction to Life

Anabolism

The process of building up complex substances from simpler substances Building up cells and cellular components Photosynthesis

Page 11: Introduction to Life

CatabolismThe process of breaking down complex substances into simpler substances to release energy Digestion Cellular Respiration

Page 12: Introduction to Life

MetabolismThe total of all chemical reactions in an organism Anabolism + Catabolism = Metabolism

Page 13: Introduction to Life

A stable state of conditions in the body that are necessary for life

Body temperatureBlood volumepH balance (Blood7.34–7.45)Water balance

Page 14: Introduction to Life

Genes carry hereditary information

Genes are composed of DNA

Heredity is the reason children resemble their parents

“Mutations change DNA code and can be passed from generation to generation”.

Page 15: Introduction to Life

Organisms react to stimuli:LightTemperatureOdorSound GravityHeatWaterPressure

An example is a plant’s leaves and stems growing toward light

Page 16: Introduction to Life

Growth means to get bigger in size

Page 18: Introduction to Life

AdaptationA process that enables organisms to become better suited to their environment Species obtain adaptations through evolution over great periods of time

Page 19: Introduction to Life

An Example of Adaptation

Desert plants have succulent waxy leaves and stems to store water and reduce water loss

Page 20: Introduction to Life

What is classification?

Classification  is  the  grouping  of  living organisms according to similar structures and functions.

Page 21: Introduction to Life

Aristotle grouped animals according to the way they moved.

Page 22: Introduction to Life

As living things are constantly being investigated, new attributes are revealed that affect how organisms are placed in a standard classification system.

Page 23: Introduction to Life

Taxonomy is  the  branch  of  biology concerned  with  the  grouping  and naming of organisms.

Biologists  who  study  this  are  called taxonomists.

Page 24: Introduction to Life

People wanted to organize their world  so  they  began  grouping, or  classifying everything  they saw.

Page 25: Introduction to Life

To help us see relationships, similarities and differences.

To help us organize all the organisms we discover . . . 

Page 26: Introduction to Life

To give every species a name based on a standard method so scientists from different countries can talk about the same animal without confusion.

Page 27: Introduction to Life

Carolus Linnaeus was a Swedish botanist. Developed a 7-level (taxa) classification system based on similarities between organisms.

Developed by Carolus Linnaeus.

Two-name system:First name  is the organism’s genus.Second name is the organism’s species. 

Page 28: Introduction to Life

The first letter of the genus is ALWAYS capitalized.

The first letter of the species is NEVER capitalized.

Scientific names of organisms are always italicized or underlined

Page 29: Introduction to Life

29

Classification of Groups

• Taxon (  taxa-plural)  is  a  category  into which related organisms are placed

• There  is  a  hierarchy  of  groups  (taxa) from broadest to most specific

• Domain, Kingdom, Phylum, Class, Order, Family, Genus, species

copyright cmassengale

Page 30: Introduction to Life

DomainKingdomPhylumClassOrderFamilyGenusSpecies

Page 31: Introduction to Life

31

Hierarchy-Taxonomic Groups 

• Domain• Kingdom•     Phylum (Division – used for plants)•        Class•            Order•                Family                                                                                            

•                    Genus•                      Species 

BROADEST TAXON

Most Specific

copyright cmassengale

Page 32: Introduction to Life

32copyright cmassengale

Page 33: Introduction to Life

HISTORY OF CLASSIFICATION

ARISTOTLEDIVIDED LIVING THINGS INTO TWO KINGDOMS

CAROLLUS LINNAEUS DEVELOPED THE CLASSIFICATION ON SIMILAR PROPERTIES, FOUND BINOMIAL NOMENCLATURE AS A SYSTEM TO GIVE A SCIENTIFIC NAME

ROBERT WHITTAKER HE GAVE FIVE KINGDOMS SYSTEM

Page 34: Introduction to Life

Domains

Domains are the broadest taxonomic classification of living organismsThe three Domains:

Archaea Bacteria Eukarya

Page 35: Introduction to Life

35

• Broadest, most inclusive taxon• Three domains• Archaea and Eubacteria are unicellular prokaryotes (no nucleus or membrane-bound organelles)

• Eukarya are more complex and have a nucleus and membrane-bound organelles

Domains

copyright cmassengale

Page 36: Introduction to Life

Domains are Divided into Kingdoms

Archaea----- ArchaebacteriaBacteria ------ Eubacteria Eukarya ------- Protist                             Fungi                             Plantae                             Animalia 

Page 37: Introduction to Life

How does it work?

There are 6 broad kingdomsEvery living thing that we know of fits into one of the six kingdomsEach level gets more specific as fewer organisms fit into any one group

Page 38: Introduction to Life

38

ARCHAEA

• Probably the 1st cells to evolve• Live in HARSH environments• Found in:

– Sewage Treatment Plants– Thermal or Volcanic Vents– Hot Springs or Geysers that are acid– Very salty water (Dead Sea; Great Salt Lake)

copyright cmassengale

Page 39: Introduction to Life

39

ARCHAEAN

copyright cmassengale

Page 40: Introduction to Life

40

EUBACTERIA• Some may cause DISEASE• Found in ALL HABITATS except harsh ones

• Important decomposers for environment

• Commercially important in making cottage cheese, yogurt, buttermilk, etc.

copyright cmassengale

Page 41: Introduction to Life

41

Live in the intestines of animals

copyright cmassengale

Page 42: Introduction to Life

42

Domain Eukarya is Divided into Kingdoms

• Monera (true bacteria (eubacteria) and cyanobacteria (blue-green algae).

• Protista (protozoans, algae…)• Fungi (mushrooms, yeasts …)• Plantae (multicellular plants)• Animalia (multicellular animals)  

copyright cmassengale

By: ROBERT WHITTAKER

Page 43: Introduction to Life

KINGDOM MONERA • Unicellular• Prokaryotic• Cell wall is non cellulosic• Nutrition - autotrophic or heterotrophic•Locomotion – flagella, gliding or non motile.•Reproduction – conjugation, transduction and transformation

Page 44: Introduction to Life

Bacteria Bacteria types

Page 45: Introduction to Life

45

Protista•Most are unicellular•Some are multicellular•Some are autotrophic, while others are heterotrophic•Aquatic

copyright cmassengale

Page 46: Introduction to Life

46

Fungi• Multicellular, except yeast

• Absorptive heterotrophs (digest food outside their body & then absorb it)

• Cell walls made of chitin

copyright cmassengale

Page 47: Introduction to Life

Yeast Sporangial forms

Amanita musaria Bracket fungi

Page 48: Introduction to Life

48

Plantae•Multicellular•Autotrophic•Absorb sunlight to make glucose – Photosynthesis•Cell walls made of cellulose

copyright cmassengale

Page 49: Introduction to Life

Bryophytes

Polytricum sp. female gametopytes Polytricum sp. male gametopytes

Page 50: Introduction to Life

Pteridophytes

Fern (Nephrolepis)

Page 51: Introduction to Life

Gymnosperms

Thuja Pine

Page 52: Introduction to Life

Angiosperms

Page 53: Introduction to Life

53

Animalia• Multicellular• Ingestive

heterotrophs (consume food & digest it inside their bodies)

• Feed on plants or animals

copyright cmassengale

Page 54: Introduction to Life

54copyright cmassengale

Page 55: Introduction to Life

55copyright cmassengale

Page 56: Introduction to Life

Organizational Hierarchy of LifeMost Complex

LeastComplex sub-atomic particles

atommoleculemacromoleculeorganellecelltissueorganorgan systemorganismpopulationcommunityecosystembiosphere

protons, neutrons, electronsnitrogen

nucleotideDNAnucleusneuronnervous tissuebrainnervous systemfishschool of fishcoral reef populations

coral reef (living + nonliving)inhabitable regions of earth

Page 57: Introduction to Life

Biological Levels of Organization

Page 58: Introduction to Life
Page 59: Introduction to Life

Basic Concept of Cell & its Function

Page 60: Introduction to Life

What are Cells?• What is a cell?• Where do we find cells?Cell: “A cell is a basic unit of structure and

function of life. In other words, cells make up living things and carry out activities that keep a living thing alive”.

Page 61: Introduction to Life

Cells Continued• What makes a cell?• A cell is a living thing.• Cells are able to make more cells like themselves.

• Interesting Fact: “New cells can only come from existing cells (cells that are already made)”.

Page 62: Introduction to Life

Some HISTORY for you• In 1660s there was a man named Robert

Hooke.  Robert lived in Britain and was a scientist. He was the first person to observe cells.  

• Robert took a piece bark from an old oak tree and looked at it through a microscope.  

Page 63: Introduction to Life

• The bark looked like it was made up of many small rooms (kind of like a house with many bedrooms).  He named the rooms, or structures, he saw under the microscope as cells. Therefore, he Coined the term cell

• THIS IS HOW THE WORD CELLS CAME TO BE!!

Page 64: Introduction to Life
Page 65: Introduction to Life

The Cell TheoryCell Theory:1. All living things are composed of cells.2. Cells are the basic units of structure and 

function in living things.3. New cells are produced from existing cells.

Schleiden

Schwann Virchowwww.nerdscience.com

« Omnis cellula e cellula »

Page 66: Introduction to Life

• Cells are the basic units of organisms–Cells can only be observed under microscope

• Two basic types of cells:

Animal Cell Plant Cell

Page 67: Introduction to Life

Plant Cell

–Made of cellulose which forms very thin fibres–Strong and rigid–In plant cells only

• Cell wall

Page 68: Introduction to Life

– Protect and support the enclosed substances (protoplasm)

– Resist entry of excess water into the cell

– Give shape to the cell

• Cell wall

Plant Cell

Page 69: Introduction to Life

–A dead layer–Large empty spaces present between cellulose fibres

freely permeable

• Cell wall

Plant Cell

Page 70: Introduction to Life

–Lies immediately against the cell wall

–Made of protein and lipid Selectively permeable

• Cell membrane

Plant Cell

Page 71: Introduction to Life

–A living layer–Can control the movement of materials into and out of the cell

• Cell membrane

Plant Cell

Page 72: Introduction to Life

–Jelly-like substance enclosed by cell membrane

–Provide a medium for chemical reactions to take place

• Cytoplasm

Plant Cell

Page 73: Introduction to Life

–Contains organelles and granules :•e.g. chloroplast

•e.g. mitochondria

• Cytoplasm

Plant Cell

Page 74: Introduction to Life

Organelles

very small size – can only be observed under electron microscope

has specific functions in cytoplasm

Page 75: Introduction to Life

–Contains the green pigment chlorophyll•To trap light energy, to make food by photosynthesis

Plant Cell

• Chloroplast

Page 76: Introduction to Life

–Contain starch grains (products of photosynthesis)

• Chloroplast

Plant Cell

Page 77: Introduction to Life

–Rod shape–For respiration

Plant Cell• Mitochondrio

n( mitochondria )

Page 78: Introduction to Life

–Active cells ( eg. sperms, liver cells) have more mitochondria

Plant Cell• Mitochondrio

n( mitochondria )

Page 79: Introduction to Life

–Starch granules

–Oil droplets–Crystals of insoluble wastes

Plant Cell

• Non-living granules

Page 80: Introduction to Life

– large central vacuole

– Surrounded by tonoplast

– Contains cell sap• a solution of chemicals (sugars, proteins, mineral salts, wastes, pigments)

Plant Cell• Vacuole

Page 81: Introduction to Life

–Control the normal activities of the cell

–Bounded by a nuclear membrane

–Contains thread-like chromosomes

Plant Cell

• Nucleus

Page 82: Introduction to Life

–Each cell has fixed number of chromosomes• Chromosomes carry genes–genes control cell characteristics

• Nucleus

Plant Cell

Page 83: Introduction to Life

mitochondrion

nucleus

glycogen granule

cell membrane

cytoplasm Animal cell

• No cell wall and chloroplast

• Stores glycogen granules and oil droplets in the cytoplasm

vacuole

Page 84: Introduction to Life

Different kinds of animal cells

white blood cell

red blood cell

cheek cells

sperm

nerve cell

muscle cell

Amoeba

Paramecium

Page 85: Introduction to Life

Similarities between plant cells and animal

cellsBoth have a cell membrane surrounding the cytoplasm

Both have a nucleus

Both contain mitochondria

Page 86: Introduction to Life

Differences between plant cells and animal cells

Animal cells Plant cellsRelatively smaller in

sizeIrregular shape

No cell wall

Relatively larger in size

Regular shape

Cell wall present

Page 87: Introduction to Life

Animal cells Plant cellsVacuole small or

absentGlycogen granules as food

storeNucleus at the centre

Large central vacuoleStarch granules

as food store

Nucleus near cell wall

Differences between plant cells and animal cells

Page 88: Introduction to Life

Structure Animal cells Plant cellscell membrane Yes yes

nucleus Yes yesnucleolus yes yesribosomes yes yes

ER yes yesGolgi yes yes

centrioles yes nocell wall no yes

mitochondria yes yescholorplasts no yes

One big vacuole no yescytoskeleton yes Yes

Page 89: Introduction to Life

Two Major Cell Types

Cell Type Example

Prokaryotic Bacteria

Eukaryotic ProtistsFungiPlantsAnimals

Page 90: Introduction to Life
Page 91: Introduction to Life
Page 92: Introduction to Life

Eukaryotic Cell(plant)

Page 93: Introduction to Life
Page 94: Introduction to Life

The distinction between prokaryotes and eukaryotes is considered to be the most important distinction among groups of organisms.     Eukaryotic cells contain membrane-bound organelles, such as  nucleus, while prokaryotic cells do not. 

Differences in cellular structure of prokaryotes and eukaryotes include the presence of mitochondria and chloroplasts, the cell wall, and the structure of chromosomalDNA.

Prokaryotes were the only form of life on Earth for millions of years until more complicated eukaryotic cells came into being through the process of evolution.

Page 95: Introduction to Life

Prokaryotic Cells

• In Greek:–Pro = before– karyotic = nucleus

• Cell that do not have a nucleus

• Bacteria

Page 96: Introduction to Life

Eukaryotic Cells

• In Greek:– Eu = True–Karyotic = nucleus

• Cell that have a nucleus

Page 97: Introduction to Life
Page 98: Introduction to Life
Page 99: Introduction to Life

What are cell parts and

their functions?

Page 100: Introduction to Life

In this PowerPoint you will learn the following:

• Different cell parts•What function each part has

Page 101: Introduction to Life

Even if cells are very tiny, they are made up of smaller parts, and the parts do different jobs.

Page 102: Introduction to Life

Cell organelles are of 2 types..• Membranous Organelles:

1. Rough Endoplasmic reticulum.2. Smooth endoplasmic reticulum.3. Mitochondria.4. Golgi.5. Lysosomes.

Page 103: Introduction to Life

• Non membranous Organelles.

1. Ribosomes.2. Cytoskeletal structures.

Page 104: Introduction to Life

As you can see cells have many parts.

Page 105: Introduction to Life

Cell wall • Only found surrounding plant, fungal and

bacterial cells• Its purpose is to shape and protect the cell like

the outside wall of a shopping mall, which provides shape and protection for it.

• “Supporter and Protector” 

Page 106: Introduction to Life

Cell membrane

 The cell membrane holds and protects the cell. It controls what substances come into and out of the cell like an entrance you have to pass to get into the shopping mall.

“Gate of the Cell”.

Page 107: Introduction to Life

Surrounds all cells.

In a plant cell, it lies beneath the cell wall.

In animal cells, it is the outer boundary (made of Cell Membranecholesterol)

Cell membrane Provides cell with– Protection– Control of movement ofmaterials in/out of cell– Support– Maintains condition of cell

Page 108: Introduction to Life

Function• Regulates the movement of materials from one

environment to the other.

• Transports raw materials into the cell and waste out of the cell.

• Prevents the entry of unwanted matter and the escape of needed materials.

• Maintain a steady environment: Homeostasis

Page 109: Introduction to Life

Cytoplasm

• The cytoplasm is the watery, gel-like material in which cell parts move and cell activities take place like the hallways of the mall where people move.

• “Area of Movement”

Page 110: Introduction to Life

Found in both plant andanimal cells• Clear, thick, jelly-likeMaterial.

• Located beneath cellMembrane.

• Supports and protects cellOrganelles.

• It’s like the sidewalks thatare found throughout acity!

Cytoplasm

Page 111: Introduction to Life

Mitochondria • Mitochondria produces most of the energy for the

cell, like an electrical system of the shopping mall, which supplies electrical energy.

• “Powerhouse of the cell”

Page 112: Introduction to Life

Found in both plant andanimal cells.

Looks like a jellybean

Breaks down sugarmolecules to release usable energy.

Has inner foldings(Cristae) that increasethe internal surface area.

It’s like a city’s powerplant!

Page 113: Introduction to Life

Mitochondria are the only organelles to have their own genetic material.

In EM it can be seen that mitochondria are bounded by double unit membrane.These membrane are separated by narrow intramembranous space

Inner membrane is four or five times larger than outer membrane.

Page 114: Introduction to Life

Outer membrane is fairly permeable, inner membrane is highly selective.

Interior of the mitochondrian is filled with mitochondrial matrix of slightly higher electron density than the surrounding cytoplasm.

Mitochondria are renewed on a continuous basis throughout the cell cycle.

Page 115: Introduction to Life

The number and size of mitochondria give an indication of the energy requirements.

Mitochondria primarily concerned with the chemical process by which energy is made available to the cell in the form of ATP.

ATP is often referred to as the energy “currency of cell”

Main site of aerobic respiration.

Page 116: Introduction to Life

• This DNA is inherited maternally.

• Mitochondria are also significant participants in many versions of apoptosis, and altered mitochondrial function appears to be associated with various cancerous changes in cells.

• In cell hypertrophy- increase in number of mitochondria in cells

• In cell atrophy- decrease in no. of mitochondria's in cells.

Mitochondrial DNA

Page 117: Introduction to Life

Chloroplast • Chloroplast is only in plant cells, like the cell wall. It

contains chlorophyll, which captures energy from sunlight and uses it to produce food for the cell like the pizza shop in the mall that makes food.

• “Food Producers”

• Green in color due to chlorophyll.

Page 118: Introduction to Life

Vacuoles • The vacuoles store food, water, and chemicals, like

water tank and pipes of the mall, which store water.

• “Storage Tanks”

Page 119: Introduction to Life

Found in both plant andanimal cells– In plant cells: veryfew and very largeVacuoles– In animal cells:many little ones

Fluid-filled sacs

Vacuoles

Page 120: Introduction to Life

Identified in 1833 byRobert Brown

Found in both plantand animal cells

NucleusLarge, oval shapeCentrally located in cellControls cell activitiesContains geneticinformation (DNA)

Page 121: Introduction to Life

Nucleus • Nucleus regulates and controls cell activities,

acting like the “brain” of the cell, like the mall office, which regulates and controls activities of the shopping mall.

• “Control Center”

Page 122: Introduction to Life

NUCLEUS

• Most prominent organelle.

• All cells in the body contain nucleus except mature RBCs & uppermost layer of skin.

Page 123: Introduction to Life

Cell Nucleus: Functions

• Bag of chromosomes: It contains most of the cell's genetic material.

• Storage of DNA, DNA maintenance• Replication & repair of DNA• Site of transcription & post transcriptional

processing/ modification

Page 124: Introduction to Life

The control center of a cell:- Controls the activities of cell

by regulating gene expression.

- Production of ribosomal subunits in the nucleolusNucleolus: Actively transcribing region of nucleus• Synthesis of rRNA• Formation of ribosome

subunits

Page 125: Introduction to Life

Nuclear membrane • The nuclear membrane protects the nucleus and also

allow substances to pass in and out of the nucleus, as the cell membrane does the same for the cell; like the main office; like the walls of the mall and its entrance, which protect the office and let workers in and out.

• “Gate of the Nucleus”

Page 126: Introduction to Life

FUNCTIONS CONT.Nuclear membrane Compartmentalizes the

nucleus

Nuclear poreTransport of molecules between the cytoplasm and the nucleus

Chromatin DNA Replication and transcription

Nuclear matrixReplication, DNA repair and transcriptional process

NucleolusSynthesis of rRNA and ribosomes

Page 127: Introduction to Life

Chromosomes

• The chromosomes direct the activities of cells like a mall office director who works in the office and directs all the activities of the shopping mall.

• “Director of the Cell”

Page 128: Introduction to Life

Golgi ApparatusDiscovered in 1898 byCamillo Golgi

Found in both plant andanimal cells

Looks like a flattenedstack of membranes (orpancakes!)

Processes and packagesmolecules, like lipidsand proteins, that weremade by the cell

Page 129: Introduction to Life

RibosomesFound in both plantand animal cells

Can be attached to theEndoplasmic Membraneor floating free in the cytoplasm

Ribosomes:-• Produces proteins• The smallest organelles• It’s like the brick yardthat supplies a city withwhat it’s made of!

Page 130: Introduction to Life

Endoplasmic ReticulumFound in both plant andanimal cells• Network of tubes• Transports materialsthroughout the cellEndoplasmic Reticulum

Two types– Smooth (no ribosomes)– Rough (covered withribosomes)• It’s like a city’s highwaysystem!

Page 131: Introduction to Life

‘The Cell’s Delivery System’

Page 132: Introduction to Life

Chapter 2Introduction to Biomolecules

Page 133: Introduction to Life

Biomolecules Definition

• Biomolecules are molecules that occur naturally in living organisms.

• Biomolecules include macromolecules like proteins, carbohydrates, lipids and nucleic acids.

Page 134: Introduction to Life

• It also includes small molecules like primary and secondary metabolites and natural products.

• Biomolecules consists mainly of carbon and hydrogen with nitrogen, oxygen, sulphur, and phosphorus.

• Biomolecules are very large molecules of many atoms, that are covalently bound together.

Page 135: Introduction to Life

Classes of Biomolecules

There are four major classes of biomolecules:

• Carbohydrates• Lipids• Proteins• Nucleic acids

Page 136: Introduction to Life

Carbohydrates

• Carbohydrates are often known as sugars, they are the 'staff of life' for most organisms.

• They are the most abundant class of biomolecules in nature, based on mass.

• Carbohydrates are also known as saccharides, in Greek sakcharon mean sugar or sweetness.

Page 137: Introduction to Life

• Carbohydrates consist of the elements carbon (C), hydrogen (H) and oxygen (O) with a ratio of hydrogen twice that of carbon and oxygen. General formula of carbohydrate is Cn H2n On

• In their basic form, carbohydrates are simple sugars or monosaccharides.

Page 138: Introduction to Life

• These simple sugars can combine with each other to form more complex carbohydrates.

• The combination of two simple sugars is a disaccharide.

• Carbohydrates consisting of two to ten simple sugars are called oligosaccharides, and those with a larger numbers are called polysaccharides.

Page 139: Introduction to Life

Sugars• Sugars are white crystalline carbohydrates

that are soluble in water and generally have a sweet taste.

Page 140: Introduction to Life

Classification of Carbohydrates

• The carbohydrates are divided into three major classes depending upon whether or not they undergo hydrolysis, and if they do, on the number of products formed.

Page 141: Introduction to Life
Page 142: Introduction to Life

Monosaccharides• The monosaccharides are polyhydroxy

aldehydes or polyhydroxy ketones which cannot be decomposed by hydrolysis to give simpler carbohydrates.

• Examples are glucose and fructose, both of which have molecular formula, C6H12O6.

• Many saccharide structures differ only in the orientation of the hydroxyl groups (-OH).

Page 143: Introduction to Life

• This slight structural difference makes a big difference in the biochemical properties, and in the physical properties such as melting point .

• A chain-form monosaccharide that has a carbonyl group (C=O) on an end carbon forming an aldehyde group (-CHO) is classified as an aldose. When the carbonyl group is on an inner atom forming a ketone, it is classified as a ketose.

Page 144: Introduction to Life

• On the basis of number of carbon atoms monosaccharide are further classified into following small units:

(i) Trioses (C3 H6 O3) – It contain 3 carbon molecule. Examples are: Glyceraldehyde and and   Dihydroxy acetone.

Glyceraldehyde

Page 145: Introduction to Life

(ii) Tetroses(C4 H8 O4) – It contain 4 carbon molecules. Examples are: Erythrose, Erythrulose.

D-Erythrose D-Threose D-Erythrulose

Page 146: Introduction to Life

(iii) Pentoses (C5 H10 O5) – It contain 5 carbon molecules. Examples are: Ribose, Ribulose, Arbinose,Xylulose, Deoxyribose.

D-Ribose D-Arabinose D-Xylose D-Lyxose

Page 147: Introduction to Life

• The ring form of ribose is a component of ribonucleic acid (RNA).

• Deoxyribose, which is missing an oxygen at position 2, is a component of deoxyribonucleic acid (DNA)

• In nucleic acids, the hydroxyl group attached to carbon number 1 is replaced with nucleotide bases.

Page 148: Introduction to Life

Ribose Deoxyribose

Page 149: Introduction to Life

(iv) Hexoses(C6H12O6) – It contain 6 carbon molecules. Examples are: Glucose, Mannose, Fructose, Galactose etc…

D-Glucose D-Mannose D-Galactose

Page 150: Introduction to Life

• Structures that have opposite configurations of a hydroxyl group at only one position, such as glucose and mannose, are called epimers.

• Glucose, also called dextrose, is the most widely distributed sugar in the plant and animal kingdoms and it is the sugar present in blood as "blood sugar".

Page 151: Introduction to Life

• Fructose, also called levulose or "fruit sugar", is shown here in the chain and ring forms. Galactose is a constituent of agar-agar. It is also called brain sugar.

• Fructose  and  glucose  are  the  main carbohydrate constituents of honey.

D-FructoseFructose

Page 152: Introduction to Life

(v) Heptoses (C7 H14 O7) – It contain 7 carbon molecules. Examples are: Sedoheptulose.

       Sedoheptulose  has  the  same  structure  as 

fructose,  but  it  has  one extra carbon. Sedoheptulose is found in carrots.

D-Sedoheptulose

Page 153: Introduction to Life

• Many simple sugars can exist in a chain form or a ring form, as illustrated by the hexoses above.

• The ring form is favored in aqueous solutions, and the mechanism of ring formation is similar for most sugars.

Page 154: Introduction to Life

• The rearrangement produces alpha glucose when the hydroxyl group is on the opposite side of the -CH2OH group, or beta glucose when the hydroxyl group is on the same side as the -CH2OH group.

α-D-Glucose β-D-Glucose

Page 155: Introduction to Life

• Monosaccharides forming a five-sided ring, like ribose, are called furanoses. Those forming six-sided rings, like glucose, are called pyranoses.

Furanose Pyranose

Page 156: Introduction to Life

Oligosaccharides

• These sugars are formed by linking of 2-10 units of monosaccharides.

• In Oligosaccharides ,aldehyde or ketone group of one monosaccharide are linked with alcoholic group of another monosaccharide to form Glycosidic bond

(C-O-C).

Page 157: Introduction to Life

• The most abundant oligosaccharides are disaccharides, formed by two monosaccharides, and especially in the human diet the most important are sucrose (common table sugar), lactose and maltose.

Page 158: Introduction to Life

(i) Disaccharides:

• Carbohydrates which upon hydrolysis give two molecules of the same or different monosaccharides are called disaccharides. Three particular disaccharides are: Sucrose, Maltose & Lactose.

Page 159: Introduction to Life

(a) Sucrose: Also called saccharose, is ordinary table sugar refined from sugar cane or sugar beets. When Sucrose is hydrolyzed, it yields one unit of glucose and one unit of fructose.

Sucrose

Page 160: Introduction to Life

(b) Maltose (also known as malt sugar): It occurs in the body as an intermediate product of starch digestion. When maltose is hydrolyzed, it yields two molecules of glucose.

Maltose

Page 161: Introduction to Life

(c) Lactose ( also known as milk sugar): This disaccharide is found only in milk. When lactose is hydrolyzed it yields one unit of glucose and one unit of galactose.

Lactose

Page 162: Introduction to Life
Page 163: Introduction to Life

(ii) Trisaccharides:(a) Raffinose: Also called melitose, is a trisaccharide that is widely found in legumes and vegetables, including beans, peas, cabbage etc..

• It consists of galactose connected to sucrose via a 1α→6 glycosidic linkage.

• Humans cannot digest saccharides with this linkage and the saccharides are fermented in the large intestine by gas-producing bacteria.

Page 164: Introduction to Life

Raffinose

Page 165: Introduction to Life

Polysaccharides• Polysaccharide, also called glycan, the form in

which most natural carbohydrates occur.

• Polysaccharides may have a molecular structure that is either branched or linear.

• Linear compounds such as cellulose often pack together to form a rigid structure; branched forms (e.g., gum arabic) generally are soluble in water and make pastes.

Page 166: Introduction to Life

• Polysaccharides composed of many molecules of one sugar or one sugar derivative are called homopolysaccharides (homoglycans).

• Homopolysaccharides composed of glucose include glycogen and starch, the storage carbohydrates of animals and plants respectively; and cellulose, the important structural component of most plants.

Page 167: Introduction to Life

• Polysaccharides consisting of molecules of more than one sugar or sugar derivative are called heteropolysaccharides (heteroglycans). Most contain only two different units and are associated with proteins; like Peptidoglycan, proteoglycans etc..

• Hetropolysaccharides provide extracellular support for organisms of all kingdoms.

Page 168: Introduction to Life

• The polysaccharides described below play important roles in nutrition, biology, or food preparation.

Types of polysaccharides:(i) Starch: Starch is the major form of stored

carbohydrate in plants. Starch is composed of a mixture of two substances: amylose, an essentially linear polysaccharide, and amylopectin, a highly branched polysaccharide.

Page 169: Introduction to Life

• Both forms of starch are polymers of α-D-Glucose. Natural starches contain 10-20% amylose and 80-90% amylopectin.

• Amylose forms a colloidal dispersion in hot water (which helps to thicken gravies) whereas amylopectin is completely insoluble.

Page 170: Introduction to Life

a) Amylose molecules consist typically of 200 to 20,000 glucose units which form a helix as a result of the bond angles between the glucose units. 

Amylose

Page 171: Introduction to Life

b) Amylopectin differs from amylose in being highly branched. 

    Short side chains of about 30 glucose units are attached with 1α→6 linkages approximately every twenty to thirty glucose units along the chain. Amylopectin molecules may contain up to two million glucose units.

Page 172: Introduction to Life

Examples of starch are: Dextrins, Syrups, High fructose corn syrup(HFCS), Polydextrose etc..

(ii) Glycogen: Glucose is stored as glycogen in animal tissues by the process of glycogenesis.

Glycogen is a polymer of α-D-Glucose identical to amylopectin, but the branches in glycogen tend to be shorter (about 13 glucose units)

Page 173: Introduction to Life

Glucose chains are organized globularly like branches of a tree originating from a pair of molecules of glycogenin, a protein with a molecular weight of 38,000 that acts as a primer at the core of the structure.

Glycogen is easily converted back to glucose to provide energy.

Page 174: Introduction to Life

(iii) Dextran: Dextran is a polysaccharide similar to amylopectin, but the main chains are formed by 1α→6 glycosidic linkages and the side branches are attached by 1α→3 or 1α→4 linkages.

   Dextran is an oral bacterial product that adheres to the teeth, creating a film called plaque. 

 It is also used commercially as food additives..

Page 175: Introduction to Life

Dextran

Page 176: Introduction to Life

(iv) Cellulose: Cellulose is a polymer of β-D-Glucose, which in contrast to starch, is oriented with -CH2OH groups alternating above and below the plane of the cellulose molecule thus producing long, unbranched chains.

The absence of side chains allows cellulose molecules to lie close together and form rigid structures.

Page 177: Introduction to Life

Cellulose is the major structural material of plants. 

Wood is largely cellulose, and cotton is almost pure cellulose. 

Cellulose can be hydrolyzed to its constituent glucose units by microorganisms that inhabit the digestive tract of termites and ruminants.

Page 178: Introduction to Life

Cellulose

Page 179: Introduction to Life

(v) Hemicellulose: The term "hemicellulose" is applied to the polysaccharide components of plant cell walls other than cellulose, or to polysaccharides in plant cell walls which are extractable by dilute alkaline solutions.

Hemicelluloses comprise almost one-third of the carbohydrates in woody plant tissue.

Page 180: Introduction to Life

The chemical structure of hemicelluloses consists of long chains of a variety of pentoses, hexoses.

Hemicelluloses may be found in fruit, plant stems & grain. Although hemicelluloses are not digestible, they can be fermented by yeasts and bacteria. 

Page 181: Introduction to Life

• The polysaccharides yielding pentoses on hydrolysis are called pentosans. Xylan is an example of a pentosan consisting of D-xylose units with 1β→4 linkages.

Xylan

Page 182: Introduction to Life

(vi) Chitin: Chitin is an unbranched polymer of N-Acetyl-D-glucosamine.

It is found in fungi and is the principal component of arthropod and lower animal exoskeletons, e.g., insect, crabs etc..

It may be regarded as a derivative of cellulose, in which the hydroxyl groups of the second carbon of each glucose unit have been replaced with acetamido (-NH(C=O)CH3) groups.

Page 183: Introduction to Life

Chitin

Page 184: Introduction to Life

(vii) Pectin: Pectin is a polysaccharide that acts as a cementing material in the cell walls of all plant tissues. Pectin is the methylated ester of polygalacturonic acid, which consists of chains of 300 to 1000 galacturonic acid units joined with 1α→4 linkages. 

   Pectin is an important ingredient of fruit

preserves, jellies, and jams.

Page 185: Introduction to Life

Pectin is a polymer of α-Galacturonic acidwith a variable number of methyl ester (-COOCH3) groups.

Page 186: Introduction to Life

Functions of Carbohydrates

Carbohydrates have six major functions within the body:

• Providing energy and regulation of blood glucose• Sparing the use of proteins for energy• Breakdown of fatty acids and preventing ketosis• Biological recognition processes i.e. they are essential for cells to communicate with each other.

• Flavor and Sweeteners• They have the potential to reduce the risks of many chronic diseases.

Page 187: Introduction to Life

Lipids: Fats & Oils

Page 188: Introduction to Life

LIPIDS• Lipids are naturally occurring hydrophobic

molecules.

• They are heterogeneous group of compounds related to fatty acids. They include fats, oils, waxes, phospholipids, etc.

• They make up about 70% of the dry weight of the nervous system. Lipids are crucial for the healthy functioning of the nerve cells.

Page 189: Introduction to Life

• Lipids are greasy or oily organic substances; lipids are sparingly soluble in water and are soluble in organic solvents like chloroform, ether and benzene.

• Lipids are important constituent of of the diet because they are a source of high energy value.

• Lipids combined with proteins are important constituents of the cell membranes and mitochondria of the cell. Lipids are not generally macromolecules.

Page 190: Introduction to Life

Classification of Lipids

Page 191: Introduction to Life

• They may be classified based on their physical properties at room temperature (solid or liquid, respectively fats and oils), on polarity, or on their essentiality for humans, but the preferable classification is based on their structure.

Page 192: Introduction to Life

Types of Lipid

1. Triglycerides [Fats & Oils]

2. Waxes3. Phospholipids4. Steroids5. Glycolipids6. Lipoproteins7. Terpenes

Page 193: Introduction to Life

Based on structure, they can be classified in three major groups.

Page 194: Introduction to Life

1. Simple Lipids or Homolipids

• These are esters of fatty acids with various alcohols.

(A)Fats and Oils: Esters of fatty acids with glycerol. The difference between fat and oil is only physical. Thus, oil is a liquid while fat is a solid at room temperature.

    These triglycerides (or triacylglycerols) are found in both plants and animals, and compose one of the major food groups of our diet. 

Page 195: Introduction to Life

Fats & Oils•the commonest lipids in nature

•the constituents of fats are:-

fatty acids (alkanoic acids)

glycerol (propane 1-2-3 triol)

Page 196: Introduction to Life

(B)Waxes: Esters of fatty acids(usually long chain)with alcohols other than glycerol. These alcohols may be aliphatic or alicyclic. Cetyl alcohol [CH3(CH2)15OH] is most commonly found in waxes. 

    The name cetyl derives from the whale oil (Latin: cetus) from which it was first isolated.

 Example: Beeswax(insect wax), Carnauba wax (important plant wax; also a complex mixture ; hardest known wax)

Page 197: Introduction to Life

Fatty acids- general formula: R.COOH

- most have an even number of C - most commonly 16-18

C16H32O2

R

- fatty acids may be: saturated or unsaturated

Page 198: Introduction to Life

Saturated fatty acid[Single bonds only]

Unsaturated fatty acid[Double bonds]

Page 199: Introduction to Life

Stearic acid, C17H35COOH –Saturated fatty acid Oleic acid, C17H33COOH –

Unsaturated fatty acid

Page 200: Introduction to Life

The more double bonds present, the more bent the molecule is

Page 201: Introduction to Life

Properties of SaturatedFatty Acids

• Contain only single C–C bonds• Closely packed • Strong attractions between chains• High melting points• Solids at room temperature

201

Page 202: Introduction to Life

Properties of UnsaturatedFatty Acids

• Contain one or more double C=C bonds• Nonlinear chains do not allow molecules

to pack closely• Few interactions between chains• Low melting points• Liquids at room temperature

202

Page 203: Introduction to Life

Fatty Acids

• The Length of the Carbon Chain– long-chain, medium-chain, short-chain

• The Degree of Unsaturation– saturated, unsaturated,

monounsaturated, polyunsaturated• The Location of Double Bonds–omega-3 fatty acid, omega-6 fatty acid

Page 204: Introduction to Life

Monounsaturated Fatty Acid(MUFA)

One carbon-carbon double bond

Page 205: Introduction to Life

Polyunsaturated Fatty Acid(PUFA)

More than one carbon-carbon double bond

Page 206: Introduction to Life

Location of Double Bonds• PUFA are identified by position of the double bond nearest the methyl end (CH3) of the carbon chain; this is described as a omega number;

• If PUFA has first double bond 3 carbons away from the methyl end=omega 3 FA

• 6 carbons from methyl end=omega 6 FA

Page 207: Introduction to Life
Page 208: Introduction to Life

Cis and Trans Fatty Acids

• Because of the presence of doubles bond in aliphatic hydrocarbon chain of unsaturated fatty acids, they can exhibit geometrical isomerism also called as cis-trans isomerization.

• Naturally occurring fatty acid exhibit cis-configuration which can be modified to artificial configuration known as trans. 

Page 209: Introduction to Life

• In cis-form the hydrogen atoms of double bonded carbon atom oriented on same side, however in trans form they oriented in opposite direction. 

• The differences in geometry of trans and cis-unsaturated fatty acids play an important role in biological processes.

Page 210: Introduction to Life

• Cis and trans forms of fatty acids show different physical and chemical properties just like other organic geometrical isomers.

•  Trans isomers show high melting points due to closely packed structure compare to cis isomers.

• The configuration of unsaturated fatty acids not only affects their physical properties but also their health implications. 

Page 211: Introduction to Life

Some other differences between cis and trans-fatty acids are as follows.

Page 212: Introduction to Life

2. Compound Lipids or Heterolipids

• Esters of fatty acids containing groups in addition to an alcohol and a fatty acid.

Page 213: Introduction to Life

(a)Phospholipids: Lipids containing, in addition to fatty acids and an alcohol, a phosphoric acid residue.

• They frequently have nitrogen containing bases and other substituent's, e.g., in glycerophospholipids the alcohol is glycerol and in sphingophospholipids the alcohol is sphingosine.

Page 214: Introduction to Life

(b) Glycolipids (glycosphingolipids):   Lipids containing a fatty acid, sphingosine, and carbohydrate. 

(c) Other complex lipids: Lipids such as sulfolipids and aminolipids. Lipoproteins may also be placed in this category.

Page 215: Introduction to Life

215

3. Precursor and derived lipids:• This group includes:– Fatty Acids.–Glycerol.–Cholesterol.– Steroid hormones.– Fatty aldehydes.– Fat soluble vitamins [ A D E K].– Some other alcohols.

Page 216: Introduction to Life

Derived lipids• Derived lipids are the substances derived from 

simple and compound lipids by hydrolysis. 

• These includes fatty acids, alcohols, monoglycerides and diglycerides, steroids, terpenes, carotenoids. 

• The most common derived lipids are steroids, terpenes and carotenoids.

Page 217: Introduction to Life

• Steroids do not contain fatty acids, they are nonsaponifiable, and are not hydrolyzed on heating.

• They are widely distributed in animals, where they are associated with physiological processes.

• They performs various functions such as hormones and contributes to the structure of cell membranes.

Page 218: Introduction to Life

Steroids• Steroids are: Lipids containing the steroid

nucleus, which is a fused structure of four rings.

• Found in cholesterol, bile salts, hormones, and vitamin D.

Page 219: Introduction to Life

a. Cholesterol • The most abundant steroid in the body.

•Contains 27 carbon atoms.

• At C3 there is a –OH group; so it is an alcohol. Composed of the steroid nucleus with methyl groups, an alkyl chain, and a hydroxyl group attached.

Page 220: Introduction to Life

b. Bile Salts• Are synthesized from cholesterol and stored

in the gall bladder.

• Emulsify fats and oils to give a greater surface area for lipid digesting enzymes.

Page 221: Introduction to Life

Terpenes• In majority are found in plants. Example:

natural rubber. Gernoil, etc.

• Are volatile organic compounds which are odoriferous constituents of essential oils.

• They contain carbon, hydrogen and oxygen and are not aromatic in character.

Page 222: Introduction to Life

Carotenoids• Carotenoids are tetraterpenes. They are widely distributed in both plants and animals. 

• They are exclusively of plant origin. 

• Due to the presence of many conjugated double bonds, they are colored red or yellow. Example: Lycopreene, carotenes, Xanthophylls.

Page 223: Introduction to Life

Function of Lipids

Lipids perform several biological functions:

• Lipids are storage compounds, triglycerides serve as reserve energy of the body.

• Lipids are important component of cell membranes structure in eukaryotic cells.

• Lipids regulate membrane permeability.

• They serve as source for fat soluble vitamins like A, D, E, K.

Page 224: Introduction to Life

• As lipids are small molecules and are insoluble in water, they act as signalling molecules.

• Cholesterol maintains fluidity of membranes by interacting with lipid complexes.

• Layers of fat in the subcutaneous layer, provides insulation and protection from cold. Body temperature maintenance is done by brown fat.

Page 225: Introduction to Life

Summary LipidsIt’s sub types: ClassificationFatty AcidsTypes of fatty acidsCompound and derived lipidsFunctions of lipids

Page 226: Introduction to Life

Proteins

Page 227: Introduction to Life

What is a Protein?

The word protein came from a Greek word “Proteios”Proteins are like long necklaces with differently

shaped beads. Each "bead" is a small molecule called an amino acid. 

Compounds composed of carbon, hydrogen, oxygen, and nitrogen and arranged as strands of amino acids

Page 228: Introduction to Life

• Proteins are a class of most important compounds that are found in living organisms.

• Proteins are the main constituents of our body such as muscles, skin, hair and nails.

• Protein carry all vital life processes in the human system.

• Proteins are a vast class of substances of almost unbelievable diversity in structure and function.

Page 229: Introduction to Life

What is Amino Acid?

• Amino acids are derivatives of carboxylic acids formed by substitution of -hydrogen for amino functional group

Page 230: Introduction to Life

What do Amino Acids Do? Amino acids are essential to life, have a role in

metabolism, and are important in nutrition. They form short polymer chains called peptides, as

well as longer chains that are called polypeptides or proteins.

About 75 percent of the human body is made up of chains of amino acids, which is why they are so vital to how your system functions.

All the chemical reactions that occur in the body depend on amino acids and the proteins they build.

Page 231: Introduction to Life

Amino Acids• Amino Acids are the building units of proteins. Proteins  are polymers of amino acids linked together by what is called “ Peptide bond”.

•   There are about 300 amino acids occur in nature. Only 20 of them occur in proteins. 

• Each amino acid has 4 different groups attached to α- carbon ( which is C-atom next to COOH). These 4 groups are : amino group, COOH gp, Hydrogen atom and side Chain (R)

R

Page 232: Introduction to Life

• At physiological PH (7.4), -COOH gp is dissociated forming a negatively charged carboxylate ion (COO-) and amino gp is protonated forming positively charged ion (NH3+) forming Zwitter ion

Page 233: Introduction to Life

• Amino acid structures differ at the side chain (R-groups).

• Abbreviations: three or one letter codes

•  Amino acids (except glycine) have chiral centers: 

• There are 20 commonly occurring amino acids that make up proteins, and the order of amino acids in proteins determines its structure and biological function.

Page 234: Introduction to Life

Classification of amino acids

• Amino acids are classified into different ways based on polarity, structure, nutritional requirement, metabolic fate, etc. 

• Generally used classification is based on polarity. 

• Amino acid polarity chart shows the polarity of amino acids. 

Page 235: Introduction to Life

Classification on polarity basis

 Based on polarity, amino acids are classified into four groups as follows,

• Non-polar amino acids.• Polar amino acids with no charge.• Polar amino acids with positive charge.• Polar amino acids with negative charge.

Page 236: Introduction to Life
Page 237: Introduction to Life
Page 238: Introduction to Life
Page 239: Introduction to Life
Page 240: Introduction to Life
Page 241: Introduction to Life

Classification of ProteinsProteins ate divided into three main classes :

1. Simple proteins2. Conjugated proteins3. Derived proteins

Page 242: Introduction to Life

Classification of Proteins

Page 243: Introduction to Life

Simple proteins• The simple proteins are those which are made of amino acid units only, joined by peptide bond. 

• Upon hydrolysis they yield mixture of amino acids or their derivatives. They include the following groups:-

Page 244: Introduction to Life

(a) Albumins:    These are water soluble-proteins found in all body cells and also in the blood stream. Examples are:  lacto albumin found in milk ; serum albumin found in blood and egg albumin found in egg.

(b) Globulins:   These are insoluble in water but are soluble in dilute salt solutions of strong acids and bases. Examples of globulins are lactoglobulin found in milk and ovoglobulin in egg yolk.

Page 245: Introduction to Life

(c) Glutelins:    These are soluble in dilute acids and alkalis. The 

protein glutenin of wheat and oryzenin of rice is an example. They occur only in plant material.

(d) Histones:   These are water soluble proteins in which basic amino acids predominates. They are rich in arginine or lysine. In eukaryotes the DNA of the chromosomes is associated with histones to form nucleoproteins.

Page 246: Introduction to Life

(e) Protamines:   These are water soluble basic polypeptides with a low molecular weight (about 4,000 Daltons). 

Protamines are found bound to DNA in spermatozoa of some fishes. Examples of protamines are salmine (in salmon) and sturine (in sturgeons)

Page 247: Introduction to Life

Conjugated proteins• These consist of simple proteins in 

combination with some non-protein component.

• The non-protein groups are called prosthetic groups. Conjugated protein includes the following group:-

Page 248: Introduction to Life

(a) Nucleoproteins:    (Protein + nucleic acid). Nucleoproteins are proteins in combination with nucleic acids. Examples are: Nucleohistone.

(d) Chromoproteins:    These are proteins in combination with a 

prosthetic group that is a pigment. Examples are the respiratory pigments hemoglobin.

Page 249: Introduction to Life

(c) Phosphoproteins (Protein+phosphate):   Phosphoproteins are proteins in combination with a phosphoric acid residue as a prosthetic group.

    Examples of phosphoproteins are casein of milk and vitellin in egg yolk.

(e) Lipoproteins:    These are proteins conjugated with lipids. There are different types of lipoproteins, high density lipoproteins (HDL), low density lipoproteins(LDL); Very low density lipoprotein(VLDL).

Page 250: Introduction to Life

(f) Metalloproteins:    These are proteins conjugated to metal ion

(s). Example : The heme protein, which contain iron are classed as chromoproteins also are metalloproteins.

Page 251: Introduction to Life

Derived proteins

   They are substances resulting from the decomposition of simple and conjugated proteins as in peptones, peptides.

Derived proteins are subdivided into primary derived proteins and secondary derived proteins.

Page 252: Introduction to Life

Derivatives of proteins due to action of heat,   enzymes, or chemical reagents.

    a) Primary Derivedb) Secondary Derived

Page 253: Introduction to Life

Primary derived proteins – • Proteans, • Metaproteins and • Coagulated proteins. Example: cooked egg albumin etc..

Secondary derived proteins – • Proteoses, • Peptones and • Polypeptides.

Page 254: Introduction to Life

STRUCTURE OF PROTEINS

Page 255: Introduction to Life

Four different levels of structure –

Primary,

Secondary,

Tertiary and

Quaternary

Page 256: Introduction to Life

PRIMARY STRUCTURE

Page 257: Introduction to Life

Secondary Structure

Page 258: Introduction to Life
Page 259: Introduction to Life

Tertiary & Quaternary Structure Structure

Page 260: Introduction to Life
Page 261: Introduction to Life

Protein FunctionsAntibodies

Contractile Proteins

Enzymes

Hormonal Proteins

Transport Proteins

Storage Proteins

Structural Proteins

Page 262: Introduction to Life

NUCLEIC ACIDS

Page 263: Introduction to Life

It’s Composition

DNA

RNA

Page 264: Introduction to Life

Composition of DNA

• A pentose sugar – Deoxy ribose sugar

• Nucleotides – A,T,G,C

• A phosphate

Page 265: Introduction to Life

Pentose sugar in DNA• Deoxyribose sugar– 4 C atoms and oxygen molecule forms the ring– 5th C atom is outside the, part of CH2 group– 3 OH groups at positions 1,3,5

Page 266: Introduction to Life

Nitrogen Bases• There are four nitrogen bases making up four different nucleotides.

Adenine

Guanine

Thymine

CytosinePyrimidines

PurinesA

C

G

T

N base

Page 267: Introduction to Life

Nucleic Acid Composition phosphate

nucleotide

N base

PO4

SugarSugar

PO4

N baseThe numbers are the positions of the carbons on the sugar.

(the 3’ end)

5

4

3 2

1

(the 5’ end)

sugarnitrogen base

DeoxyriboNucleic Acid

Page 268: Introduction to Life

Nucleosides & Nucleotides• Nucleotide = a nitrogenous (nitrogen-containing) base + a pentose + a phosphate

• Nucleoside = a nitrogenous (nitrogen-containing) base + a pentose 

Page 269: Introduction to Life
Page 270: Introduction to Life

A molecule of DNA is formed by millions of nucleotides joined together in a long chain

PO4

PO4

PO4

PO4

sugar-phosphate backbone

+ bases

Joined nucleotides

Page 271: Introduction to Life

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

PO4

Double stranded DNA

Page 272: Introduction to Life

The bases always pair up in the same way

Adenine forms a bond with Thymine

And cytosine bonds with guanine

Adenine Thymine

Cytosine Guanine

Page 273: Introduction to Life

The paired strands are coiled into a spiral called

A DOUBLE HELIX

sugar-phosphatechain

Bases

Page 274: Introduction to Life

Formation of Phosphodiester bonds to make a polynucleotide strand

Page 275: Introduction to Life

Structure of DNA: Watson & Crick model

Page 276: Introduction to Life
Page 277: Introduction to Life

Erwin Chargaff

A AA AA A

AT

T

T

T TT

T

CCC G G

G

Page 278: Introduction to Life

The Properties of DNA

Page 279: Introduction to Life

Types of DNA

Page 280: Introduction to Life
Page 281: Introduction to Life

DNA as a genetic material

Page 282: Introduction to Life

Is the Genetic Material Protein or DNA

Page 283: Introduction to Life

Direct evidences come from :

• Frederick Griffith’s (1928) experiment.

• Hershey and Chase (1952 ) experiment.

Page 284: Introduction to Life

Frederick Griffith’s (1928) experiment.

Page 285: Introduction to Life

STEPS IN THE EXPERIMENT

 1 LIVE SIII

2 LIVE RII

3 H K S III 4 H K S III & LIVE RII

Strains of Streptococcus pneumoniae injected to mice

Page 286: Introduction to Life

Griffith’s Experiment

RII SIII Transformation takes place in step 4  gives clue for DNA as 

    “genetic material”

   1

2

3

4

Page 287: Introduction to Life

Hershey & Chase Experiment

(1952)

Page 288: Introduction to Life

Life Cycle of T-2 Phage

Phage is made of DNA and protein coatOnly DNA enters

in the Bacterial cell and protein coat is left out side

288

Page 289: Introduction to Life

Events which take place in life cycle of bacteriophage

Page 290: Introduction to Life
Page 291: Introduction to Life
Page 292: Introduction to Life

HERSHEY & CHASE CONCLUSION

Page 293: Introduction to Life

Summary of Hershey & Chase (1952 ) experiment

Page 294: Introduction to Life

End of Presentation

Page 295: Introduction to Life

RNA STRUCTURE AND FUNCTIONS

Page 296: Introduction to Life

What we will be discussing?

Page 297: Introduction to Life

RNAIntroductionStructure Different types & functionsConclusion

Page 298: Introduction to Life

Structure of RNA

Page 300: Introduction to Life

THE NUCLEOTIDE: RNA OH

O=P-O-5CH2 BASE

OH O 4C 1C

H H H H 3C 2C

OH 0H

AdenineGuanineCytosineUracil

Page 301: Introduction to Life

Synthesis

Page 302: Introduction to Life

Types of RNAMessenger RNA (mRNA)carries information from DNA to the ribosome

Transfer RNA (tRNA)involved in the process of translation

Ribosomal RNA (rRNA)

RNA Types

Page 303: Introduction to Life

Messenger RNA (mRNA)

Comprises only 5% of the RNA in the cell

Page 304: Introduction to Life

Ribosomal RNA (rRNA)

Page 305: Introduction to Life

Transfer RNA (tRNA)

Page 306: Introduction to Life

Functions of different RNA

Page 307: Introduction to Life

RNA V/S DNA

Page 308: Introduction to Life
Page 309: Introduction to Life

Differences between RNA and DNAS.No. RNA DNA1) Single stranded mainly except

when self complementary sequences are there it forms a double stranded structure (Hair pin structure)

Double stranded (Except for certain viral DNA s which are single stranded)

2) Ribose is the main sugar The sugar moiety is deoxy ribose

3) Pyrimidine components differ. Thymine is never found(Except tRNA)

Thymine is always there but uracil is never found

4) Being single stranded structure- It does not follow Chargaff’s rule

It does follow Chargaff's rule. The total purine content in a double stranded DNA is always equal to pyrimidine content.

Page 310: Introduction to Life

Differences between RNA and DNAS.No. RNA DNA5) RNA can be easily destroyed by

alkalies to cyclic diesters of mono nucleotides.

DNA resists alkali action due to the absence of OH group at 2’ position

6) RNA is a relatively a labile molecule, undergoes easy and spontaneous degradation

DNA is a stable molecule. The spontaneous degradation is very slow. The genetic information can be stored for years together without any change.

7) Mainly cytoplasmic, but also present in nucleus (primary transcript and small nuclear RNA)

Mainly found in nucleus, extra nuclear DNA is found in mitochondria, and plasmids etc

8) The base content varies from 100- 5000. The size is variable.

Millions of base pairs are there depending upon the organism

Page 311: Introduction to Life

S.No. RNA DNA9) There are various types of RNA –

mRNA, r RNA, t RNA. These RNAs perform different and specific functions.

DNA is always of one type and performs the function of storage and transfer of genetic information.

10) No variable physiological forms of RNA are found. The different types of RNA do not change their forms

There are variable forms of DNA (A, B and Z)

11) RNA is synthesized from DNA, it can not form DNA(except by the action of reverse transcriptase). It can not duplicate (except in certain viruses where it is a genomic material )

DNA can form DNA by replication, it can also form RNA by transcription.

12) Many copies of RNA are present per cell

Single copy of DNA is present per cell.

Page 312: Introduction to Life

VITAMINS

Page 313: Introduction to Life
Page 314: Introduction to Life

• Organic (carbon-containing) compounds that are essential in small amounts for body processes

• Do not provide energy• Enable the body to use the energy provided

by fats, carbohydrates, and proteins• Mega doses can be toxic.

Page 315: Introduction to Life

Classification of Vitamins

Page 316: Introduction to Life
Page 317: Introduction to Life
Page 318: Introduction to Life
Page 319: Introduction to Life

Vitamin AAlternative Names:Retinol; Retinal; Retinoic acid; Carotenoids

• Is a fat-soluble vitamin.

• Preformed vitamin A is found in animal products .

• Pro-vitamin A is found in plant-based foods

Page 320: Introduction to Life

Vitamin A (and carotenoids)• Functions:– Normal vision– Protects from

infections– Regulates

immune system

– Antioxidant (carotenoids)

• Food sources:– Liver– Fish oil– Eggs– Fortified milk or

other foods– Red, yellow, orange,

and dark green veggies (carotenoids)

Page 321: Introduction to Life

Excess Birth defects, hair

loss, dry skin, headaches, nausea,

dry mucous membranes, liver damage, and bone and joint pain

Deficit Night blindness, dry, rough skin, increased

susceptibility to infections

Page 322: Introduction to Life

Vitamin DAlternative Name: Calciferol

Regulation of Calcium metabolism

Page 323: Introduction to Life

Vitamin D (the sunshine vitamin)

Functions:–Promotes absorption

of calcium and phosphorus–Helps deposit those in

bones/teeth–Regulates cell growth–Plays role in immunity

               Sources:– Sunlight (10 – 15

mins 2x a week)– Salmon with bones–Milk– Orange juice

(fortified)– Fortified cereals

Page 324: Introduction to Life

                 Excess Deposits of calcium

and phosphorus in soft tissues, kidney, and heart damage.

Deficit Poor bone and tooth

formation, rickets which causes malformed bones and pain in infants

Osteomalacia (softening of bones)

Osteoporosis (brittle, porous bones)

Page 325: Introduction to Life

VITAMIN EAlternative Name: TocopherolFunctions: AntioxidantEnhances immune systemRetards spoilage of commercial foods

Page 326: Introduction to Life

Sources of Vitamin E• Vegetable oils: corn,

soybean, and products made from them.

• Wheat and green leafy vegetables

Page 327: Introduction to Life

Excess Relatively

nontoxic, fat-soluble vitamin

Excess stored in adipose tissue

Avoid long-term mega doses.

                  Deficit

Serious neurological defects can occur from mal absorption.

Page 328: Introduction to Life

Vitamin KAlternative Name: Phylloquinone Made up of several compounds essential for  

blood clotting.

Vitamin K is destroyed by light and alkalis.

Page 329: Introduction to Life

Functions of Vitamin K

Formation of prothrombin for clotting of blood

Page 330: Introduction to Life

Sources of Vitamin K• Green leafy vegetables such as broccoli,

cabbage, spinach

• Bacteria in small intestine synthesizes some vitamin K, but must be supplemented by dietary sources.

Page 331: Introduction to Life

              Excess Anemia can result

from excessive amounts of synthetic vitamin K.

Deficit Defective blood

coagulation, which increases clotting time and makes client prone to hemorrhage.

Page 332: Introduction to Life

Water-Soluble Vitamins• Vitamin B complex and C• Dissolve in water• Easily destroyed by air, light, and cooking

Page 333: Introduction to Life

Vitamin B1 Alternative Name: Thiamin

Function: Used in metabolism of carbohydrates for energy.

muscle and nerve function, and hydrochloric acid production in the stomach

Page 334: Introduction to Life

Sources of Vitamin B1

• Whole grains, • Rice, • Pasta, • Fortified cereals, • Meat and pork.

Page 335: Introduction to Life

DeficiencyRare- BeriberiLoss of muscle function, Nerve damage,Mental confusion

Page 336: Introduction to Life

Vitamin B2

Alternative Name: RiboflavinFunction:Helps in energy production, Making niacin( Vit. B3), Red blood cell formation & human growth.

Page 337: Introduction to Life

Sources of Vitamin B2

• Dairy, • Eggs, • Green leafy vegetables, • Nuts, meat, • Legumes, and • Enriched flour

Page 338: Introduction to Life

DeficiencyUncommon- anemia,mouth sores, sore throat, swelled mucous membranes& skin disorders.

Page 339: Introduction to Life

Vitamin B3

Alternative Name: NiacinFunction:Used in metabolism, to produce hormones, enzyme & nerve function & reducing cholesterol

Page 340: Introduction to Life

Sources of Vitamin B3

• Pork,• Fish, beef, • Peanut butter, • Legumes, • Enriched and fortified grains

Page 341: Introduction to Life

DeficiencyPellagra is characterized by the 4 D’s: Dermatitis, Diarrhea, Dementia & Death

Page 342: Introduction to Life

Vitamin B5

Alternative Name: Pantothenic AcidFunction:Used to make blood cells, cholesterol,

hormones ,metabolize fat & carbohydrates

Page 343: Introduction to Life

Sources of Vitamin B5

• Poultry, fish, • Cereals, • Unprocessed foods.

Page 344: Introduction to Life

Deficiency• Very rare- only seen in severe malnutrition. Symptoms are:• Headache, • fatigue, • burning & numbness of feet

Page 345: Introduction to Life

Vitamin B6

Alternative Name: PyridoxineFunction: Protein metabolism, Blood cell formation, Immune system function, and Niacin production

Page 346: Introduction to Life

Sources of Vitamin B6

• Chicken, • Pork, fish, • Grains, • Nuts & legumes

Page 347: Introduction to Life

Deficiency• Dermatitis• Fatigue• Anemia

Page 348: Introduction to Life

Vitamin B7

Alternative Name: BiotinFunction: Used in fatty acid synthesis, also other functions.

Maintaining a strong immune system & proper working of the nervous system.

Page 349: Introduction to Life

Sources of Vitamin B7

• Generally produced in the intestine, in the presence of healthy intestinal flora.

• Cereals, • Pulses & legumes, • Vegetables, nuts

Page 350: Introduction to Life

DeficiencyPain, Tiredness, Lack of appetite, Muscular weakness,

Page 351: Introduction to Life

Vitamin B9

Alternative Name: Folic AcidFunction: For synthesis of glycine, methionine,

nucleotides etc..Important for rapidly dividing cells

Page 352: Introduction to Life

Sources of Vitamin B9

• Broccoli,• Citrus Fruits,• Beans, Peas• Avocado,• Spinach

Page 353: Introduction to Life

DeficiencyLinked to neural tube defects in fetus,

Inflammation of mouth & tongue, poor growth, depression & mental confusion,

Megaloblastic anemia

Page 354: Introduction to Life

Vitamin B12

Alternative Name: CyanocobalaminFunction: B12 is also used in regenerating folateHelps in the formation of red blood cells

Page 355: Introduction to Life

Sources of Vitamin B12

• Meats (beef liver)• Meat, • Poultry, • Eggs,• Milk and other dairy foods

Page 356: Introduction to Life

DeficiencySore tongue,Stomach upset and weight lossRapid heartbeat and breathingWeakness, tiredness

Page 357: Introduction to Life

Vitamin C

Alternative Name: Ascorbic AcidFunction: An antioxidant vitamin,For healthy teeth, gums and blood vessels;Improves iron absorption and resistance to

infection

Page 358: Introduction to Life

Sources of Vitamin C

• Fresh vegetables & fruits,• Broccoli,• Cauliflower, lemon, cabbage, pineapples,

strawberries, citrus fruits.

Page 359: Introduction to Life

DeficiencySore tongue,Stomach upset and weight lossRapid heartbeat and breathingWeakness, tiredness

Page 360: Introduction to Life

ENZYMES

Page 361: Introduction to Life

What Are Enzymes?• Most enzymes are

Proteins (tertiary and quaternary structures)

• Act as Catalyst to accelerates a reaction

• Not permanently changed in the process

Page 362: Introduction to Life

Enzymes• Are specific for what

they will catalyze• Are Reusable• End in –ase

-Sucrase-Lactase-Maltase

Page 363: Introduction to Life
Page 364: Introduction to Life

How do enzymes Work?

Enzymes work by: weakening bonds

which lowers activation energy

Page 365: Introduction to Life

Enzymes lower the activation energy of a reaction

Final energy state of products

Initial energy stateof substrates

Activation energyof uncatalysed reactions

Activation energyof enzyme catalysedreaction

Progress of reaction (time)

Ener

gy le

vels

of m

olec

ules

Page 366: Introduction to Life

Enzyme-Substrate Complex

The substance (reactant) an enzyme acts on is the substrate

EnzymeSubstrate Joins

Page 367: Introduction to Life

Active Site• A restricted region of an enzyme

molecule which binds to the substrate.

EnzymeSubstrate

Active Site

Page 368: Introduction to Life

Enzymes lower activation energy by forming an enzyme/substrate complex

Substrate + Enzyme

Enzyme/substrate complex

Enzyme/product complex

Product + Enzyme

Page 369: Introduction to Life

Classification of Enzymes

Page 370: Introduction to Life
Page 371: Introduction to Life

EC 1. Oxidoreductases

Page 372: Introduction to Life

EC 2. Transferases

Page 373: Introduction to Life

EC 3. Hydrolases

Page 374: Introduction to Life

EC 4. Lyases

Page 375: Introduction to Life

EC 5. Isomerases

Page 376: Introduction to Life

EC 6. Ligases

Page 377: Introduction to Life

Theories for Enzyme- Substrate Binding

Two Theories have been proposed to explain the interaction of enzyme and substrate LOCK & KEY MODEL

INDUCED – FIT THEORY

Page 378: Introduction to Life

Lock and Key

Page 379: Introduction to Life

Lock-and-key hypothesis assumes the active site of an enzyme is rigid in its

shape

How ever crystallographic studies indicate proteins are flexible.

Page 380: Introduction to Life

380

Induced Fit• A change in the

shape of an enzyme’s active site• Induced by the

substrate

Page 381: Introduction to Life

The Induced-fit hypothesis suggests the active site is flexible and only assumes its catalytic conformation after the substrate molecules bind to the site.

When the product leaves the enzyme the active site reverts to its inactive state.

Page 382: Introduction to Life

What Affects Enzyme Activity?

Page 383: Introduction to Life

Enzyme activity

How fast an enzyme is workingRate of Reaction

Rate of Reaction = Amount of substrate changed (or amount product formed) in a given period of time.

Page 384: Introduction to Life

Enzyme activity

Four Variables

TemperaturepH

Enzyme Concentration

Substrate Concentration

Page 385: Introduction to Life

Rate

of R

eacti

on

Temperature

0 20 30 5010 40 60

40oC - denatures

5- 40oC Increase in Activity

<5oC - inactive

Page 386: Introduction to Life

Effect of heat on enzyme activityIf you heat the protein above its optimal

temperature bonds break

meaning the protein loses it secondary and tertiary structure

Page 387: Introduction to Life

Effect of heat on enzyme activty

Denaturing the proteinACTIVE SITE CHANGES SHAPE

SO SUBSTRATE NO LONGER FITS

Even if temperature lowered – enzyme can’t regain its correct shape

Page 388: Introduction to Life

Rate of R

eaction

pH

Page 389: Introduction to Life

Rate

of R

eacti

on

pH

1 3 42 5 6 7 8 9

Page 390: Introduction to Life

Rate

of R

eacti

on

Enzyme Concentration

Page 391: Introduction to Life

Rate

of R

eacti

on

Enzyme Concentration

Enzyme Concentration

Page 392: Introduction to Life

Rate

of R

eacti

on

Substrate Concentration

Page 393: Introduction to Life

Rate

of R

eacti

on

Substrate Concentration

Substrate Concentration

Page 394: Introduction to Life

Rate

of R

eacti

on

Substrate Concentration

Substrate Concentration

Active sites full- maximum turnover

Page 395: Introduction to Life

Cofactors and Coenzymes

• Inorganic substances (zinc, iron) and vitamins (respectively) are sometimes need for proper enzymatic activity.

• Example:Iron must be present in the quaternary structure

- hemoglobin in order for it to pick up oxygen.

Page 396: Introduction to Life

Two examples of Enzyme Inhibitors

a. Competitive inhibitors: are chemicals that resemble an enzyme’s normal substrate and compete with it for the active site.

EnzymeCompetitive inhibitor

Substrate

Page 397: Introduction to Life

Inhibitorsb.Noncompetitive inhibitors:

Inhibitors that do not enter the active site, but bind to another part of the enzyme causing the enzyme to change its shape, which in turn alters the active site.

Enzymeactive site altered

NoncompetitiveInhibitor

Substrate

Page 398: Introduction to Life

Applications of Enzymes

Page 399: Introduction to Life

Enzymes in industry• There are many uses of enzymes in industry.

Examples of these are:• Clothes/dishwashing detergents• Baby food• Starch(HFCs)• Glucose(Fructose-Slimming Aid)• Medical Diagnosis• Diabetes Control• Curing Disease

Page 400: Introduction to Life

Enzymes in Clothes/Dishwasher Detergents

• People use biological detergents to remove stains.• Biological washing powders contain proteases and

lipases.• These enzymes break down proteins and fats in the

stain.AdvantagesEnzymes give you a cleaner wash.Work at lower temperatures-this means you use less electricity.

DisadvantagesIf water too hot, enzymes become denatured.

Page 401: Introduction to Life

Enzymes in baby food

• Proteases are used to make baby food.• Proteases ‘pre-digest’ some of the protein in

the food.

AdvantagesTreating food with protease enzymes make it easier for a baby’s digestive system to cope with it.

Page 402: Introduction to Life

Starch(HFCS)

• Carbohydrases are used to convert starch into sugar (glucose) syrup.

Did You Know?HFC stands for High Fructose Corn Syrup.

Page 403: Introduction to Life

Enzymes In Slimming Aids

• The enzyme, isomerase, is used to change glucose syrup to fructose syrup. Glucose and fructose contain exactly the same amount of energy. 

Page 404: Introduction to Life

Enzymes To Diagnose Disease

Page 405: Introduction to Life

Enzymes To Diagnose and Control Disease

• A common test for sugar in the urine relies on a color change on a test strip. The test strip contains a chemical indicator and an enzyme.

Page 406: Introduction to Life

Enzymes to cure disease

If you have a heart attack. An enzyme called streptokinase will be injected into your blood as soon as possible.

Page 407: Introduction to Life
Page 408: Introduction to Life

Introduction

Page 409: Introduction to Life

Functions of Hormones

Page 410: Introduction to Life

Characteristics of Hormones

Page 411: Introduction to Life

Mechanism of Hormones

Page 412: Introduction to Life
Page 413: Introduction to Life

All hormones in the human body can be divided into lipid-derived, amino acid-derived, and peptide hormones.

Page 414: Introduction to Life

Key Points• Most lipid hormones are steroid hormones, which

are usually ketones or alcohols and are insoluble in water.

• Steroid hormones (ending in '-ol' or '-one') include estradiol, testosterone, aldosterone, and cortisol.

• The amino acid-derived hormones (ending in '-ine') are derived from tyrosine and tryptophan and include epinephrine and norepinephrine (produced by the adrenal medulla).

Page 415: Introduction to Life

Key Points• Amino acid-derived hormones also include thyroxin (produced

by the thyroid gland) and melatonin (produced by the pineal gland).

• Peptide hormones consist of a polypeptide chain; they include molecules such as oxytocin (short polypeptide chain) or growth hormones (proteins).

• Amino acid-derived hormones and protein hormones are water-soluble and insoluble in lipids.

Page 416: Introduction to Life

Plant & Animal Hormones

Page 417: Introduction to Life

Plant Hormones• AUXIN• CYTOKININ• GIBBERELLIN• ETHYLENE

Page 418: Introduction to Life
Page 419: Introduction to Life

Animal Hormones

Page 420: Introduction to Life

Top Related