Transcript
Page 1: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Mechanics of Earthquakes and Faulting

www.geosc.psu.edu/Courses/Geosc508

• Work of deformation, shear and volume strain • Importance of volume change and dilatancy rate (rate of volume

strain with shear strain)• Effective stress and energy budget for shear, Dilatancy

• Discuss• Mead, W. J., The geologic role of dilatancy. Jour. Geol. 33, 685-

698, 1925.• Frank, F. C., On dilatancy in relation to seismic sources. Rev.

Geophys. 3, 485-503, 1965

10 Sep. 2019

Page 2: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Fracture Mechanics andStress intensity factors for each mode

KI, KII, KIII

Linear Elastic Fracture Mechanics•Frictionless cracks•Planar, perfectly sharp (mathematical) cuts

Crack tip stress field written in a generalized form

σ ij =Kn12πr

fijn θ( )

σ 22

σ 21

σ 23

%

& '

( '

)

* '

+ ' tip

≈12πr

KI

KII

KIII

%

& '

( '

)

* '

+ '

σ22

σ23

σ21

v1

2r

θ

rr’

Page 3: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Pore Fluid, Pp

Consider the implications of dilatancy and volume change for the total work (per unit volume) of shearing, W

W = τ p dγ + σ dθ

W is total work of shearing

W = τ dγ = σ µ dγ

dhdx

Page 4: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σeffective = σn - Pp

σ1σ1

σ3

σ3

Pp

Exercise: Follow through the implications of Kronecker’s delta to see that pore pressure only influences normal stresses and not shear stresses. Hint: see the equations for stress transformation that led to Mohr’s circle.

σ = σ1 +σ 2( )

2+σ 1 − σ 2( )

2 cos2α

Page 5: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Consider the implications of dilatancy and volume change for the total work of shearing, W

Page 6: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Friction mechanics of 2-D particles

τ = σ µ p + dθ / dγ( )

dθ=dV /V ; dγ =dx /h

W = τ p dγ + σ dθ

dh

dx

Data from Knuth and Marone, 2007

Page 7: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Friction mechanics of 2-D particles

τ = σ µ p + dθ / dγ( )

τ = σ µ p + dh /dx( )

W = τ p dγ + σ dθ • Dilatancy rate plays an important role in setting the frictional strength

dh

dx

Data from Knuth and Marone, 2007

Page 8: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

• Macroscopic variations in friction are due to variations in dilatancy rate.

• Smaller amplitude fluctuations in dilatancy rate produce smaller amplitude friction fluctuations.

Data from Knuth and Marone, 2007

Page 9: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

W = τ p dγ + σ dθ

W is total work of shearing

W = τ dγ = σ µ dγ

dhdx

Page 10: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Mead, 1925 (Geologic Role of Dilatancy)

Shear Localization

Marone, 1998

Strain homogeneity depends on whether dilatancy is restricted

• Homogeneous strain if dilatancy is not opposed

• Strain localization if deformed under finite confining pressure

Shear Bands Form if:

Page 11: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Mead, 1925 (Geologic Role of Dilatancy)

Shear Localization

Strain homogeneity depends on whether dilatancy is restricted

• Homogeneous strain if dilatancy is not opposed

• Strain localization if deformed under finite confining pressure

Shear Bands Form if:

τ = σ µ p + dθ / dγ( )

W = τ p dγ + σ dθ

Shear strength depends on friction and dilatancy rate

Deformation mode (degree of strain localization) minimizes dilatancy rate

Page 12: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Mead, 1925 (Geologic Role of Dilatancy)

Shear Localization

Strain homogeneity depends on whether dilatancy is restricted

• Homogeneous strain if dilatancy is not opposed

• Strain localization if deformed under finite confining pressure

Shear Bands Form if:

τ = σ µ p + dθ / dγ( )

W = τ p dγ + σ dθ

Shear strength depends on friction and dilatancy rate

Deformation mode (degree of strain localization) minimizes dilatancy rate

Page 13: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Frank, 1965. Volumetric work, shear localization and stability. Applies to Friction and Fracture

Volu

me

Stra

in, θShear Strain, γ

Strain hardening when:

Strain softening when:

Page 14: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Volu

me

Stra

in, θ

Shear Strain, γ

Marone, Raleigh & Scholz, 1990

Page 15: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Volu

me

Stra

in, θ

Shear Strain, γ

Marone, Raleigh & Scholz, 1990

Page 16: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Pop Quiz:

Derive the relations for shear and normalstress on a plane of arbitrary orientation interms of principal stresses σ1 and σ2Hint, use the Mohr Circle.

σ1

σ2

α

plane Pσ

τ

σ(α) =

τ(α) =

Page 17: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Fluids: Consider the affect on shear strength

•Mechanical Effects•Chemical Effects

σeffective = σn - PpMechanical Effects: Effective Stress Law

σ1σ1

σ3

σ3

Pp

Page 18: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σeffective = σn - PpMechanical Effects: Effective Stress Law

σ1σ1

σ3

σ3

Pp

Rock properties depend on effective stress: Strength, porosity, permeability, Vp, Vs, etc.

Leopold Kronecker (1823–1891)

Fluids: Consider the affects on shear strength

•Mechanical Effects•Chemical Effects

Page 19: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σeffective = σn - Pp

σ1σ1

σ3

σ3

Pp

Exercise: Follow through the implications of Kronecker’s delta to see that pore pressure only influences normal stresses and not shear stresses. Hint: see the equations for stress transformation that led to Mohr’s circle.

σ = σ1 +σ 2( )

2+σ 1 − σ 2( )

2 cos2α

Page 20: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σ

�p�o

�p

Fluids play a role by opposing the normal stress

Void space filled with a fluid at pressure Pp

But what if Ar ≠ A ?

σ

Page 21: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σ

�p�o

�p

Mechanical Effects: Effective Stress Law

For brittle conditions, Ar / A ~ 0.1

σ

Exercise: Consider how a change in applied stress would differ from a change in Pp in terms of its effect on Coulomb shear strength. Take α = 0.9

Page 22: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σ

�p�o

�p

Effective Stress Law

σ

Coupled Effects

Applied Stress

Pore Pressure

Strength, Stability

Exercise: Make the dilatancy demo described by Mead (1925) on pages 687-688. You can use a balllon, but a plastic bottle with a tube works better. Bring to class to show us. Feel free to work in groups of two.

Dilatancy: Shear driven volume change

Page 23: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

σ

�p�o

�p

Effective Stress Law

σ

Coupled Effects

Applied Stress

Pore Pressure

Strength, Stability

Dilatancy

Pore Fluid, PpPore Fluid, Pp

Shear Rate

Page 24: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Dilatancy:

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:Assume no change in

solid volume

Dilatancy Rate:

Shear Rate

Page 25: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Dilatancy:

Pore Fluid, PpPore Fluid, Pp

Volumetric Strain:Assume no change in

solid volume

Dilatancy Rate:

Shear Rate

Dilatancy Hardening if : or

Undrained loading

Page 26: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Pore Fluid, PpPore Fluid, Pp

Shear Rate

Dilatancy Hardening if :

Page 27: Mechanics of Earthquakes and Faulting · Friction mechanics of 2-D particles € τ = σ(µ p + dθ/ dγ) € τ = σ(µ p + dh / dx) € W = τ p dγ + σ dθ • Dilatancy rateplays

Pore Fluid, PpPore Fluid, Pp

Shear Rate

Dilatancy Weakening can occur if:

This is shear driven compaction


Top Related