Transcript

P2 Chapter 7 :: Trigonometry And Modelling

[email protected]

@DrFrostMaths

Last modified: 23rd November 2017

Use of DrFrostMaths for practice

Register for free at:www.drfrostmaths.com/homework

Practise questions by chapter, including past paper Edexcel questions and extension questions (e.g. MAT).

Teachers: you can create student accounts (or students can register themselves).

Chapter Overview

sin π‘Ž + 𝑏 = sin π‘Ž cos 𝑏 + cosπ‘Ž sin 𝑏

1a:: Addition Formulae

β€œSolve, for 0 ≀ π‘₯ < 2πœ‹, the equation2 tan 2𝑦 tan 𝑦 = 3

giving your solutions to 3sf.”

1b:: Double Angle Formulae

β€œFind the maximum value of 2 sin π‘₯ + cos π‘₯ and the value of π‘₯for which this maximum occurs.”

3:: Simplifying π‘Ž cos π‘₯ Β± 𝑏 sin π‘₯

This chapter is very similar to the trigonometry chapters in Year 1. The only difference is that new trig functions: 𝑠𝑒𝑐, π‘π‘œπ‘ π‘’π‘ and π‘π‘œπ‘‘, are introduced.

β€œThe sea depth of the tide at a beach can be

modelled by π‘₯ = 𝑅𝑠𝑖𝑛2πœ‹π‘‘

5+ 𝛼 , where 𝑑 is

the hours after midnight...”

4:: Modelling

Teacher Note: There is again no change in this chapter relative to the old pre-2017 syllabus.

Addition Formulae

Addition Formulae allow us to deal with a sum or difference of angles.

𝐬𝐒𝐧 𝑨 + 𝑩 = 𝐬𝐒𝐧𝑨 πœπ¨π¬π‘© + πœπ¨π¬π‘¨ 𝐬𝐒𝐧𝑩𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 = π’”π’Šπ’π‘¨π’„π’π’”π‘© βˆ’ π’„π’π’”π‘¨π’”π’Šπ’π‘©

𝐜𝐨𝐬 𝑨 + 𝑩 = πœπ¨π¬π‘¨ πœπ¨π¬π‘© βˆ’ 𝐬𝐒𝐧𝑨 π¬π’π§π‘©πœπ¨π¬ 𝑨 βˆ’ 𝑩 = πœπ¨π¬π‘¨ πœπ¨π¬π‘© + 𝐬𝐒𝐧𝑨 𝐬𝐒𝐧𝑩

𝐭𝐚𝐧 𝑨 + 𝑩 =π­πšπ§π‘¨ + π­πšπ§π‘©

𝟏 βˆ’ π­πšπ§π‘¨ π­πšπ§π‘©

𝒕𝒂𝒏 𝑨 βˆ’ 𝑩 =𝒕𝒂𝒏𝑨 βˆ’ 𝒕𝒂𝒏𝑩

𝟏 + 𝒕𝒂𝒏𝑨 𝒕𝒂𝒏𝑩

Do I need to memorise these?They’re all technically in the formula booklet, but you REALLY want to eventually memorise these (particularly the 𝑠𝑖𝑛 and π‘π‘œπ‘  ones).

How to memorise:

First notice that for all of these the first thing on the RHS is the same as the first thing on the LHS!

β€’ For sin, the operator in the middle is the same as on the LHS.

β€’ For cos, it’s the opposite.β€’ For tan, it’s the same in

the numerator, opposite in the denominator.

β€’ For sin, we mix sin and cos.

β€’ For cos, we keep the cos’s and sin’s together.

Common Schoolboy/Schoolgirl Error

Why is sin(𝐴 + 𝐡) not just sin 𝐴 + sin(𝐡)?Because π’”π’Šπ’ is a function, not a quantity that can be expanded out like this. It’s a bit like how 𝒂 + 𝒃 𝟐 β‰’ π’‚πŸ + π’ƒπŸ.We can easily disprove it with a counterexample.

?

Addition Formulae

Now can you reproduce them without peeking at your notes?

𝐬𝐒𝐧 𝑨 + 𝑩 ≑ 𝐬𝐒𝐧𝑨 πœπ¨π¬π‘© + πœπ¨π¬π‘¨ 𝐬𝐒𝐧𝑩𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 β‰‘π’”π’Šπ’π‘¨π’„π’π’”π‘© βˆ’ π’„π’π’”π‘¨π’”π’Šπ’π‘©

𝐜𝐨𝐬 𝑨 + 𝑩 β‰‘πœπ¨π¬π‘¨ πœπ¨π¬π‘© βˆ’ 𝐬𝐒𝐧𝑨 π¬π’π§π‘©πœπ¨π¬ 𝑨 βˆ’ 𝑩 ≑ πœπ¨π¬π‘¨ πœπ¨π¬π‘© + 𝐬𝐒𝐧𝑨 𝐬𝐒𝐧𝑩

𝐭𝐚𝐧 𝑨 + 𝑩 β‰‘π­πšπ§π‘¨ + π­πšπ§π‘©

𝟏 βˆ’ π­πšπ§π‘¨ π­πšπ§π‘©

𝒕𝒂𝒏 𝑨 βˆ’ 𝑩 ≑𝒕𝒂𝒏𝑨 βˆ’ 𝒕𝒂𝒏𝑩

𝟏 + 𝒕𝒂𝒏𝑨 𝒕𝒂𝒏𝑩

How to memorise:

First notice that for all of these the first thing on the RHS is the same as the first thing on the LHS!

β€’ For sin, the operator in the middle is the same as on the LHS.

β€’ For cos, it’s the opposite.β€’ For tan, it’s the same in

the numerator, opposite in the denominator.

β€’ For sin, we mix sin and cos.

β€’ For cos, we keep the cos’s and sin’s together.

??

??

?

?

Proof of sin 𝐴 + 𝐡 ≑ sin 𝐴 cos𝐡 + cos𝐴 sin 𝐡

𝐡

𝐴

1

(Not needed for exam)

1: Suppose we had a line of length 1 projected an angle of 𝐴 + 𝐡 above the horizontal.Then the length of π‘‹π‘Œ =sin 𝐴 + 𝐡It would seem sensible to try and find this same length in terms of 𝐴 and 𝐡 individually.

𝑂 𝑋

π‘Œ

sin(𝐴

+𝐡)

2: We can achieve this by forming two right-angled triangles.

𝐴

3: Then we’re looking for the combined length of these two lines.

4: We can get the lengths of the top triangle…

sin𝐴cos𝐡

cos𝐴sin𝐡

5: Which in turn allows us to find the green and blue lengths.

6: Hence sin 𝐴 + 𝐡 =sin𝐴 cos𝐡 + cos𝐴 sin𝐡

β–‘

Proof of other identities

Can you think how to use our geometrically proven result sin 𝐴 + 𝐡 = sin𝐴 cos𝐡 + cos 𝐴 sin𝐡 to prove the identity for sin(𝐴 βˆ’ 𝐡)?

𝐬𝐒𝐧 𝑨 βˆ’ 𝑩 = 𝐬𝐒𝐧 𝑨 + βˆ’π‘©

= 𝐬𝐒𝐧 𝑨 𝐜𝐨𝐬 βˆ’π‘© + 𝐜𝐨𝐬 𝑨 𝐬𝐒𝐧 βˆ’π‘©= 𝐬𝐒𝐧𝑨 πœπ¨π¬π‘© βˆ’ πœπ¨π¬π‘¨ 𝐬𝐒𝐧𝑩

What about cos(𝐴 + 𝐡)? (Hint: what links 𝑠𝑖𝑛 and π‘π‘œπ‘ ?)

𝐜𝐨𝐬 𝑨 + 𝑩 = 𝐬𝐒𝐧𝝅

πŸβˆ’ 𝑨 + 𝑩 = 𝐬𝐒𝐧

𝝅

πŸβˆ’ 𝑨 + βˆ’π‘©

= 𝐬𝐒𝐧𝝅

πŸβˆ’ 𝑨 𝐜𝐨𝐬 βˆ’π‘© + 𝐜𝐨𝐬

𝝅

πŸβˆ’ 𝑨 𝐬𝐒𝐧 βˆ’π‘©

= πœπ¨π¬π‘¨ πœπ¨π¬π‘© βˆ’ 𝐬𝐒𝐧𝑨 𝐬𝐒𝐧𝑩

?

?

?

?

Proof of other identities

Edexcel C3 Jan 2012 Q8

The important thing is that you explicit show the division of each term by π‘π‘œπ‘ π΄ cos𝐡.

?

Examples

Given that 2 sin(π‘₯ + 𝑦) = 3 cos π‘₯ βˆ’ 𝑦 express tan π‘₯ in terms of tan 𝑦.

Using your formulae:𝟐 𝐬𝐒𝐧𝒙 𝐜𝐨𝐬 π’š + 𝟐𝐜𝐨𝐬 𝒙 π¬π’π§π’š = πŸ‘πœπ¨π¬ 𝒙 𝐜𝐨𝐬 π’š + πŸ‘ 𝐬𝐒𝐧𝒙 π¬π’π§π’š

We need to get 𝐭𝐚𝐧 𝒙 and π­πšπ§π’š in there. Dividing by 𝐜𝐨𝐬 𝒙 𝐜𝐨𝐬 π’š would seem like a sensible step:

𝟐 𝐭𝐚𝐧 𝒙 + 𝟐 𝐭𝐚𝐧 π’š = πŸ‘ + πŸ‘ 𝐭𝐚𝐧 𝒙 π­πšπ§π’šRearranging:

𝐭𝐚𝐧 𝒙 =πŸ‘ βˆ’ 𝟐 π­πšπ§π’š

𝟐 βˆ’ πŸ‘ π­πšπ§π’š

Q

?

Exercises 7A

Pearson Pure Mathematics Year 2/ASPage 144

(Classes in a rush may wish to skip this exercise)

Uses of Addition Formulae

[Textbook] Using a suitable angle formulae, show that sin 15Β° =6βˆ’ 2

4.Q

π¬π’π§πŸπŸ“ = 𝐬𝐒𝐧 πŸ’πŸ“ βˆ’ πŸ‘πŸŽ = π¬π’π§πŸ’πŸ“ πœπ¨π¬πŸ‘πŸŽ βˆ’ 𝐜𝐨𝐬 πŸ’πŸ“ π¬π’π§πŸ‘πŸŽ

=𝟏

πŸΓ—

πŸ‘

πŸβˆ’

𝟏

πŸΓ—πŸ

𝟐

=πŸ‘ βˆ’ 𝟏

𝟐 𝟐

=πŸ” βˆ’ 𝟐

πŸ’

[Textbook] Given that sin 𝐴 = βˆ’3

5and 180Β° < 𝐴 < 270Β°, and that cos𝐡 = βˆ’

12

13,

and B is obtuse, find the value of: (a) cos 𝐴 βˆ’ 𝐡 (b) tan 𝐴 + 𝐡

𝒄𝒐𝒔 𝑨 βˆ’ 𝑩 ≑ 𝒄𝒐𝒔 𝑨 𝒄𝒐𝒔 𝑩 + π’”π’Šπ’ 𝑨 π’”π’Šπ’ 𝑩

𝒄𝒐𝒔 𝑨 ≑ 𝟏 βˆ’ π’”π’Šπ’πŸπ‘¨ = Β±πŸ’

πŸ“. But we know from the graph of 𝒄𝒐𝒔 that it is negative

between πŸπŸ–πŸŽΒ° < 𝑨 < πŸπŸ•πŸŽΒ°, so 𝒄𝒐𝒔 𝑨 = βˆ’πŸ’

πŸ“.

Similarly π’”π’Šπ’ 𝑩 = Β±πŸ“

πŸπŸ‘, and similarly considering the graph for π’”π’Šπ’, π’”π’Šπ’ 𝑩 = +

πŸ“

πŸπŸ‘.

∴ 𝒄𝒐𝒔 𝑨 βˆ’ 𝑩 ≑ βˆ’πŸ’

πŸ“Γ— βˆ’

𝟏𝟐

πŸπŸ‘+ βˆ’

πŸ‘

πŸ“Γ—

πŸ“

πŸπŸ‘=πŸ‘πŸ‘

πŸ”πŸ“

Continued…

Q

?

?

Fro Tip: You can get π‘π‘œπ‘  in terms of 𝑠𝑖𝑛 and vice versa by using a rearrangement of sin2 π‘₯ + cos2 π‘₯ ≑ 1.

So cos𝐴 = 1 βˆ’ sin2 𝐴

Continued…

Given that sin𝐴 = βˆ’3

5and 180Β° < 𝐴 < 270Β°, and that cos𝐡 = βˆ’

12

13, find the

value of: (b) tan 𝐴 + 𝐡

Q

𝐭𝐚𝐧 𝑨 + 𝑩 =𝐭𝐚𝐧 𝑨 + 𝐭𝐚𝐧(𝑩)

𝟏 βˆ’ π­πšπ§π‘¨ π­πšπ§π‘©

We earlier found 𝐬𝐒𝐧𝑨 = βˆ’πŸ‘

πŸ“, 𝐬𝐒𝐧𝑩 =

πŸ“

πŸπŸ‘, πœπ¨π¬π‘¨ = βˆ’

πŸ’

πŸ“, πœπ¨π¬π‘© = βˆ’

𝟏𝟐

πŸπŸ‘

∴ π­πšπ§π‘¨ = βˆ’πŸ‘

πŸ“Γ· βˆ’

πŸ’

πŸ“=

πŸ‘

πŸ’and π­πšπ§π‘© =

πŸ“

πŸπŸ‘Γ· βˆ’

𝟏𝟐

πŸπŸ‘= βˆ’

πŸ“

𝟏𝟐

By substitution:

𝐭𝐚𝐧 𝑨 + 𝑩 =πŸπŸ”

πŸ”πŸ‘

?

Test Your Understanding

Without using a calculator, determine the exact value of:a) cos 75Β°b) tan 75Β°

𝐜𝐨𝐬 πŸ•πŸ“Β° = 𝐜𝐨𝐬 πŸ’πŸ“Β° + πŸ‘πŸŽΒ° = 𝐜𝐨𝐬 πŸ’πŸ“Β° 𝐜𝐨𝐬 πŸ‘πŸŽΒ° βˆ’ 𝐬𝐒𝐧 πŸ’πŸ“Β° 𝐬𝐒𝐧 πŸ‘πŸŽΒ°

=𝟏

πŸΓ—

πŸ‘

πŸβˆ’

𝟏

πŸΓ—πŸ

𝟐

=πŸ‘ βˆ’ 𝟏

𝟐 𝟐=

πŸ” βˆ’ 𝟐

πŸ’

𝐭𝐚𝐧 πŸ•πŸ“Β° =𝐬𝐒𝐧 πŸ•πŸ“Β°

𝐜𝐨𝐬 πŸ•πŸ“Β°π¬π’π§ πŸ•πŸ“Β° = 𝐬𝐒𝐧 πŸ’πŸ“Β° + πŸ‘πŸŽΒ° = 𝐬𝐒𝐧 πŸ’πŸ“Β° 𝐜𝐨𝐬 πŸ‘πŸŽΒ° + 𝐜𝐨𝐬 πŸ’πŸ“Β° 𝐬𝐒𝐧 πŸ‘πŸŽΒ°

=𝟏

πŸΓ—

πŸ‘

𝟐+

𝟏

πŸΓ—πŸ

𝟐=

πŸ” + 𝟐

πŸ’

∴ 𝐭𝐚𝐧 πŸ•πŸ“Β° =πŸ” + 𝟐

πŸ’Γ·

πŸ” βˆ’ 𝟐

πŸ’=

πŸ” + 𝟐

πŸ” βˆ’ 𝟐= 𝟐 + πŸ‘

?

?

Challenging question

Edexcel June 2013 Q3

β€˜Expanding’ both sides:2 cos π‘₯ cos 50 βˆ’ 2 sin π‘₯ sin 50= sin π‘₯ cos 40 + cos π‘₯ sin 40

Since thing to prove only has 40 in it, use cos 50 = sin 40 and sin 50 =cos 40 .

2 cos π‘₯ sin 40 βˆ’ 2 sin π‘₯ cos 40= sin π‘₯ cos 40 + cos π‘₯ sin 40

As per usual, when we want tans, divide by cos π‘₯ cos 40:

2 tan 40 βˆ’ 2 tan π‘₯ = tan π‘₯ + tan 40tan 40 = 3 tan π‘₯1

3tan 40 = tan π‘₯

a

?

Exercise 7B

Pearson Pure Mathematics Year 2/ASPages 172-173

[STEP I 2010 Q3] Show thatsin π‘₯ + 𝑦 βˆ’ sin π‘₯ βˆ’ 𝑦 = 2 cos π‘₯ sin 𝑦

and deduce that

sin 𝐴 βˆ’ sin 𝐡 = 2 cos1

2𝐴 + 𝐡 sin

1

2𝐴 βˆ’ 𝐡

Show also that

cos𝐴 βˆ’ cos𝐡 = βˆ’2 sin1

2𝐴 + 𝐡 sin

1

2𝐴 βˆ’ 𝐡

The points 𝑃, 𝑄, 𝑅 and 𝑆 have coordinates π‘Ž cos 𝑝 , 𝑏 sin 𝑝 and π‘Ž cos 𝑠 , 𝑏 sin 𝑠 respectively,

where 0 ≀ 𝑝 < π‘ž < π‘Ÿ < 𝑠 < 2πœ‹, and π‘Ž and 𝑏 are positive.Given that neither of the lines 𝑃𝑄 and 𝑆𝑅 is vertical, show that these lines are parallel if and only if

π‘Ÿ + 𝑠 βˆ’ 𝑝 βˆ’ π‘ž = 2πœ‹

Extension

Double Angle Formulae

sin 2𝐴 ≑ 2 sin𝐴 cos𝐴cos 2𝐴 ≑ cos2 𝐴 βˆ’ sin2 𝐴

≑ 2 cos2 𝐴 βˆ’ 1≑ 1 βˆ’ 2 sin2 𝐴

tan 2𝐴 =2 tan𝐴

1 βˆ’ tan2 𝐴

Tip: The way I remember what way round these go is that the cos on the RHS is β€˜attracted’ to the cos on the LHS, whereas the sin is pushed away.

These are all easily derivable by just setting 𝐴 = 𝐡 in the compound angle formulae. e.g.

sin 2𝐴 = sin 𝐴 + 𝐴= sin𝐴 cos𝐴 + cos𝐴 sin 𝐴= 2 sin𝐴 cos𝐴

!This first form is relatively rare.

Double-angle formula allow you to halve the angle within a trig function.

Examples

[Textbook] Use the double-angle formulae to write each of the following as a single trigonometric ratio.a) cos2 50Β° βˆ’ sin2 50Β°

b)2 tan

πœ‹

6

1βˆ’tan2πœ‹

6

c)4 sin 70Β°

sec 70Β°

This matches 𝐜𝐨𝐬 πŸπ‘¨ = 𝐜𝐨𝐬𝟐 𝑨 βˆ’ π¬π’π§πŸπ‘¨:π’„π’π’”πŸ πŸ“πŸŽΒ° βˆ’ π’”π’Šπ’πŸ πŸ“πŸŽΒ° = 𝐜𝐨𝐬 𝟏𝟎𝟎°

This matches 𝐭𝐚𝐧 πŸπ‘¨ =𝟐 𝐭𝐚𝐧 𝑨

πŸβˆ’π­πšπ§πŸ 𝑨

𝟐 π’•π’‚π’π…πŸ”

𝟏 βˆ’ π’•π’‚π’πŸπ…πŸ”

= π­πšπ§π…

πŸ‘

πŸ’ π¬π’π§πŸ•πŸŽΒ°

𝐬𝐞𝐜 πŸ•πŸŽΒ°=

πŸ’π¬π’π§πŸ•πŸŽΒ°

𝟏 Γ· πœπ¨π¬πŸ•πŸŽΒ°= πŸ’π¬π’π§πŸ•πŸŽΒ° 𝐜𝐨𝐬 πŸ•πŸŽΒ°

This matches 𝐬𝐒𝐧 πŸπ‘¨ = πŸπ¬π’π§π‘¨ πœπ¨π¬π‘¨πŸ’ π¬π’π§πŸ•πŸŽΒ° π’„π’π’”πŸ•πŸŽΒ° = 𝟐 π¬π’π§πŸπŸ’πŸŽΒ°

sin 2π‘₯ = 2 sin π‘₯ cos π‘₯cos 2π‘₯ = cos2 π‘₯ βˆ’ sin2 π‘₯

= 2 cos2 π‘₯ βˆ’ 1= 1 βˆ’ 2 sin2 π‘₯

tan 2π‘₯ =2 tan π‘₯

1 βˆ’ tan2 π‘₯

a

b

c

?

?

?

Examples

[Textbook] Given that π‘₯ = 3 sin πœƒ and 𝑦 = 3 βˆ’ 4π‘π‘œπ‘ 2πœƒ, eliminate πœƒ and express 𝑦 in terms of π‘₯.

sin 2π‘₯ = 2 sin π‘₯ cos π‘₯cos 2π‘₯ = cos2 π‘₯ βˆ’ sin2 π‘₯

= 2 cos2 π‘₯ βˆ’ 1= 1 βˆ’ 2 sin2 π‘₯

tan 2π‘₯ =2 tan π‘₯

1 βˆ’ tan2 π‘₯

Fro Note: This question is an example of turning a set of parametric equations into a single Cartesian one. You will cover this in the next chapter.

π’š = πŸ‘ βˆ’ πŸ’ 𝟏 βˆ’ 𝟐𝐬𝐒𝐧𝟐 𝜽

= πŸ–π¬π’π§πŸ 𝜽 βˆ’ 𝟏

𝐬𝐒𝐧𝜽 =𝒙

πŸ‘

∴ π’š = πŸ–π’™

πŸ‘

𝟐

βˆ’ 𝟏

Given that cos π‘₯ =3

4and π‘₯ is acute, find the exact value of

(a) sin 2π‘₯ (b) tan 2π‘₯

Since π’”π’Šπ’πŸπ’™ + πœπ¨π¬πŸπ’™ = 𝟏, π’”π’Šπ’ 𝒙 = Β± 𝟏 βˆ’ π’„π’π’”πŸπ’™

π’”π’Šπ’ 𝒙 = 𝟏 βˆ’πŸ‘

πŸ’

𝟐=

πŸ•

πŸ’(and is positive given 𝟎 < 𝐱 < πŸ—πŸŽΒ°)

∴ π’”π’Šπ’ πŸπ’™ = πŸπ’”π’Šπ’ 𝒙 𝒄𝒐𝒔 𝒙 = 𝟐 Γ—πŸ•

πŸ’Γ—πŸ‘

πŸ’=πŸ‘ πŸ•

πŸ–

𝒕𝒂𝒏 𝒙 =π’”π’Šπ’ 𝒙

𝒄𝒐𝒔=πŸ‘ πŸ•/πŸ–

πŸ‘/πŸ’=

πŸ•

πŸ‘βˆ΄ π’•π’‚π’πŸπ’™ =

𝟐 Γ—πŸ•πŸ‘

𝟏 βˆ’πŸ•πŸ‘

𝟐 = πŸ‘ πŸ•

?

?

Exercise 7C

Pearson Pure Mathematics Year 2/ASPages 175-177

Solving Trigonometric Equations

This is effectively the same type of question you encountered in Chapter 6 and in Year 1, except you may need to use either the addition formulae or double angle formulae.

[Textbook] Solve 3 cos 2π‘₯ βˆ’ cos π‘₯ + 2 = 0 for 0 ≀ π‘₯ ≀ 360Β°.

3 2 cos2 π‘₯ βˆ’ 1 βˆ’ cos π‘₯ + 2 = 06 cos2 π‘₯ βˆ’ 3 βˆ’ cos π‘₯ + 2 = 06 cos2 π‘₯ βˆ’ cos π‘₯ βˆ’ 1 = 03 cos π‘₯ + 1 2 cos π‘₯ βˆ’ 1 = 0

cos π‘₯ = βˆ’1

3π‘œπ‘Ÿ cos π‘₯ =

1

2

π‘₯ = 109.5Β°, 250.5Β° π‘₯ = 60Β°, 300Β°

Recall that we have a choice of double angle identities for cos 2π‘₯. This is clearly the most sensible choice as we end up with an equation just in terms of π‘π‘œπ‘ .?

Further Examples

[Textbook] By noting that 3𝐴 = 2𝐴 + 𝐴, :a) Show that sin 3𝐴 = 3 sin𝐴 βˆ’ 4 sin3𝐴.b) Hence or otherwise, solve, for 0 < πœƒ < 2πœ‹,

the equation 16 sin3 πœƒ βˆ’ 12 sinπœƒ βˆ’ 2 3 = 0

𝐬𝐒𝐧 πŸπ‘¨ + 𝑨= 𝐬𝐒𝐧 πŸπ‘¨ πœπ¨π¬π‘¨ + 𝐜𝐨𝐬 πŸπ‘¨ 𝐬𝐒𝐧𝑨

= 𝟐 𝐬𝐒𝐧𝑨 𝐜𝐨𝐬 𝑨 πœπ¨π¬π‘¨ + 𝟏 βˆ’ 𝟐 𝐬𝐒𝐧𝟐 𝑨 𝐬𝐒𝐧𝑨

= 𝟐 𝐬𝐒𝐧𝑨 𝟏 βˆ’ 𝐬𝐒𝐧𝟐 𝑨 + 𝐬𝐒𝐧 𝑨 βˆ’ πŸπ¬π’π§πŸ‘ 𝑨

= 𝟐 𝐬𝐒𝐧𝑨 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝑨 + 𝐬𝐒𝐧𝑨 βˆ’ 𝟐 π¬π’π§πŸ‘ 𝑨= πŸ‘ 𝐬𝐒𝐧𝑨 βˆ’ πŸ’ π¬π’π§πŸ‘ 𝑨

Note that πŸπŸ”π’”π’Šπ’πŸ‘ 𝜽 βˆ’ 𝟏𝟐 π’”π’Šπ’πœ½

= βˆ’πŸ’ πŸ‘π¬π’π§ 𝑨 βˆ’ πŸ’ π¬π’π§πŸ‘ 𝑨 = βˆ’πŸ’ 𝐬𝐒𝐧 πŸ‘πœ½.

∴ βˆ’πŸ’ 𝐬𝐒𝐧 πŸ‘πœ½ = 𝟐 πŸ‘

𝐬𝐒𝐧 πŸ‘πœ½ = βˆ’πŸ‘

𝟐

πŸ‘πœ½ =πŸ’π…

πŸ‘,πŸ“π…

πŸ‘,πŸπŸŽπ…

πŸ‘,πŸπŸπ…

πŸ‘,πŸπŸ”π…

πŸ‘,πŸπŸ•π…

πŸ‘

𝜽 =πŸ’π…

πŸ—,πŸ“π…

πŸ—,πŸπŸŽπ…

πŸ—,πŸπŸπ…

πŸ—,πŸπŸ”π…

πŸ—,πŸπŸ•π…

πŸ—

Fro Exam Note: A question pretty much just like this came up in an exam once.

?

?

[Textbook] Solve 4 cos πœƒ βˆ’ 30Β° = 8 2sin πœƒ in the range 0 ≀ πœƒ < 360Β°.

Your instinct should be to use the addition formulae first to break up the πŸ’π’„π’π’” 𝜽 βˆ’ πŸ‘πŸŽΒ° .

πŸ’ 𝐜𝐨𝐬𝜽 πœπ¨π¬πŸ‘πŸŽΒ° + πŸ’ 𝐬𝐒𝐧𝜽 π¬π’π§πŸ‘πŸŽΒ° = πŸ– 𝟐 𝐬𝐒𝐧𝜽

𝟐 πŸ‘ 𝐜𝐨𝐬𝜽 + 𝟐𝐬𝐒𝐧𝜽 = πŸ– 𝟐𝐬𝐒𝐧𝜽

𝟐 πŸ‘πœπ¨π¬πœ½ = πŸ– 𝟐𝐬𝐒𝐧𝜽 βˆ’ 𝟐 𝐬𝐒𝐧𝜽

𝟐 πŸ‘ 𝐜𝐨𝐬𝜽 = πŸ– 𝟐 βˆ’ 𝟐 𝐬𝐒𝐧𝜽

𝟐 πŸ‘

πŸ– 𝟐 βˆ’ 𝟐=𝐬𝐒𝐧𝜽

𝐜𝐨𝐬𝜽= 𝐭𝐚𝐧𝜽

𝜽 = 𝟐𝟎. πŸ’Β°, 𝟐𝟎𝟎. πŸ’Β°

?

Test Your Understanding

Edexcel C3 Jan 2013 Q6

?

If you finish that quickly…

[Textbook] Solve 2 tan2𝑦 tan𝑦 = 3 for 0 ≀ 𝑦 < 2πœ‹, giving your answer to 2dp.

𝟐 𝐭𝐚𝐧 πŸπ’š 𝐭𝐚𝐧 π’š = πŸ‘

𝟐𝟐 𝐭𝐚𝐧 π’š

𝟏 βˆ’ 𝐭𝐚𝐧𝟐 π’šπ­πšπ§ π’š = πŸ‘

β€¦πŸ• 𝐭𝐚𝐧𝟐 π’š = πŸ‘

𝐭𝐚𝐧 π’š = Β±πŸ‘

πŸ•

π’š = 𝟎. πŸ“πŸ–, 𝟐. πŸ“πŸ”, πŸ‘. πŸ•πŸ, πŸ“. πŸ•πŸŽ

Forgetting the Β± is an incredibly common source of lost marks.

?

Exercise 7D

Pearson Pure Mathematics Year 2/ASPages 180-181

Extension

[AEA 2013 Q2]

1

2 [AEA 2009 Q3]

(Solution on next slide)

?

Solution to Extension Question 2

π‘Ž sin πœƒ + 𝑏 cos πœƒ

Here’s a sketch of 𝑦 = 3 sin π‘₯ + 4 cos π‘₯.What do you notice?

It’s a sin graph that seems to be translated on the 𝒙-axis and stretched on the π’š axis. This suggests we can represent it as π’š = 𝑹 𝐬𝐒𝐧(𝒙 + 𝜢), where 𝜢 is the horizontal translation and 𝑹 the stretch on the π’š-axis.

?

π‘Ž sin πœƒ + 𝑏 sin πœƒ

Put 3 sin π‘₯ + 4 cos π‘₯ in the form 𝑅 sin π‘₯ + 𝛼 giving 𝛼 in degrees to 1dp.Q

Fro Tip: I recommend you follow this procedure every time – I’ve tutored students who’ve been taught a β€˜shortcut’ (usually skipping Step 1), and they more often than not make a mistake.

STEP 1: Expanding:𝑅 sin π‘₯ + 𝛼 = 𝑅 sin π‘₯ cos𝛼 + 𝑅 cos π‘₯ sin 𝛼

STEP 2: Comparing coefficients:𝑅 cos𝛼 = 3 𝑅 sin 𝛼 = 4

STEP 3: Using the fact that 𝑅2 sin2 𝛼 + 𝑅2 cos2 𝛼 = 𝑅2:

𝑅 = 32 + 42 = 5

STEP 4: Using the fact that 𝑅 sin 𝛼

𝑅 cos 𝛼= tan𝛼:

tan𝛼 =4

3𝛼 = 53.1Β°

STEP 5: Put values back into original expression.3 sin π‘₯ + 4 cos π‘₯ ≑ 5 sin π‘₯ + 53.1Β°

?

?

?

?

?

If 𝑅 cos 𝛼 = 3 and 𝑅 sin𝛼 = 4then 𝑅2 cos2 𝛼 = 32 and 𝑅2 sin2 𝛼 = 42.𝑅2 sin2 𝛼 + 𝑅2 cos2 𝛼 = 32 + 42

𝑅2 sin2𝛼 + cos2 𝛼 = 32 + 42

𝑅2 = 32 + 42

𝑅 = 32 + 42

(You can write just the last line in exams)

Test Your Understanding

Put sinπ‘₯ + cosπ‘₯ in the form 𝑅 sin π‘₯ + 𝛼 giving 𝛼 in terms of πœ‹.Q

𝑅 sin π‘₯ + 𝛼 ≑ 𝑅 sin π‘₯ cos 𝛼 + 𝑅 cos π‘₯ sin 𝛼𝑅 cos𝛼 = 1 𝑅 sin𝛼 = 1

𝑅 = 12 + 12 = 2tan𝛼 = 1

𝛼 =πœ‹

4

sin π‘₯ + cos π‘₯ ≑ 2 sin π‘₯ +πœ‹

4

Put sinπ‘₯ βˆ’ 3 cos π‘₯ in the form 𝑅 sin π‘₯ βˆ’ 𝛼 giving 𝛼 in terms of πœ‹.Q

𝑅 sin π‘₯ + 𝛼 ≑ 𝑅 sin π‘₯ cos 𝛼 βˆ’ 𝑅 cos π‘₯ sin 𝛼

𝑅 cos𝛼 = 1 𝑅 sin 𝛼 = 3𝑅 = 2

tan𝛼 = 3 π‘ π‘œ 𝛼 =πœ‹

3

sin π‘₯ + cos π‘₯ ≑ 2 sin π‘₯ βˆ’πœ‹

3

?

?

Further Examples

Put 2 cosπœƒ + 5 sin πœƒ in the form 𝑅 cos πœƒ βˆ’ 𝛼 where 0 < 𝛼 < 90Β°Hence solve, for 0 < πœƒ < 360, the equation 2 cosπœƒ + 5 sin πœƒ = 3

Q

2 cos πœƒ + 5 sin πœƒ ≑ 29 cos πœƒ βˆ’ 68.2Β°Therefore:

29 cos πœƒ βˆ’ 68.2Β° = 3

cos πœƒ βˆ’ 68.2Β° =3

29πœƒ βˆ’ 68.2Β° = βˆ’56.1… Β°, 56.1… Β°πœƒ = 12.1Β°, 124.3Β°

(Without using calculus), find the maximum value of 12 cosπœƒ + 5 sinπœƒ, and give the smallest positive value of πœƒ at which it arises.

Q

Use either 𝑅 sin(πœƒ + 𝛼) or 𝑅 cos(πœƒ βˆ’ 𝛼) before that way the + sign in the middle matches up.

≑ 13 cos πœƒ βˆ’ 22.6Β°

π‘π‘œπ‘  is at most 1,thus the expression has value at most 13.This occurs when πœƒ βˆ’ 22.6 = 0 (as cos 0 = 1) thus πœƒ = 22.6

?

?

Fro Tip: This is an exam favourite!

Quickfire Maxima

What is the maximum value of the expression and determine the smallest positive value of πœƒ (in degrees) at which it occurs.

Expression Maximum (Smallest) 𝜽 at max

20 sin πœƒ 20 90Β°

5 βˆ’ 10 sin πœƒ 15 270Β°

3 cos πœƒ + 20Β° 3 340Β°

2

10 + 3 sin πœƒ βˆ’ 30

2

7

300Β°

? ?? ?? ?

? ?

Further Test Your Understanding

Edexcel C3 Jan 2013 Q4

?

Exercise 7E

Pearson Pure Mathematics Year 2/ASPages 184-186

Proving Trigonometric Identities

Prove that tan 2πœƒ ≑2

cot πœƒβˆ’tan πœƒ

Prove that 1βˆ’cos 2πœƒ

sin 2πœƒβ‰‘ tan πœƒ

Just like Chapter 6 had β€˜provey’ and β€˜solvey’ questions, we also get the β€˜provey’ questions in Chapter 7. Just use the appropriate double angle or addition formula.

tan 2πœƒ ≑2 tan πœƒ

1 βˆ’ tan2 πœƒβ‰‘

2

1tan πœƒ

βˆ’ tanπœƒ

≑2

cot πœƒ βˆ’ tanπœƒ

?

1 βˆ’ 1 βˆ’ 2 sin2 πœƒ

2 sin πœƒ cos πœƒβ‰‘

2 sin2 πœƒ

2 sin πœƒ cos πœƒβ‰‘ tanπœƒ

?

Test Your Understanding

[OCR] Prove that cot 2π‘₯ + π‘π‘œπ‘ π‘’π‘ 2π‘₯ ≑ cot π‘₯

𝐜𝐨𝐬 πŸπ’™

π¬π’π§πŸπ’™+

𝟏

π¬π’π§πŸπ’™

β‰‘πœπ¨π¬ πŸπ’™ + 𝟏

π¬π’π§πŸπ’™β‰‘πŸπœπ¨π¬πŸ 𝒙 βˆ’ 𝟏 + 𝟏

πŸπ¬π’π§π’™ 𝐜𝐨𝐬 𝒙

β‰‘πŸπœπ¨π¬πŸ 𝒙

𝟐 𝐬𝐒𝐧𝒙 𝐜𝐨𝐬 π’™β‰‘πœπ¨π¬ 𝒙

𝐬𝐒𝐧𝒙≑ 𝐜𝐨𝐭 𝒙

[OCR] By writing cos π‘₯ = cos 2 Γ—π‘₯

2or otherwise,

prove the identity 1βˆ’cos π‘₯

1+cos π‘₯≑ tan2

π‘₯

2

𝐜𝐨𝐬 𝒙 ≑ 𝒄𝒐𝒔 𝟐 ×𝒙

πŸβ‰‘ 𝟐𝐜𝐨𝐬𝟐

𝒙

πŸβˆ’ 𝟏

∴𝟏 βˆ’ 𝒄𝒐𝒔 𝒙

𝟏 + 𝒄𝒐𝒔 π’™β‰‘πŸ βˆ’ 𝟐𝐜𝐨𝐬𝟐

π’™πŸ

βˆ’ 𝟏

𝟏 + πŸπ’„π’π’”πŸπ’™πŸ

βˆ’ 𝟏

β‰‘πŸ 𝟏 βˆ’ 𝐜𝐨𝐬𝟐

π’™πŸ

𝟐 πœπ¨π¬πŸπ’™πŸ

β‰‘π¬π’π§πŸ

π’™πŸ

πœπ¨π¬πŸπ’™πŸ

≑ π­πšπ§πŸπ’™

𝟐

?

?

Exercise 7F

Pearson Pure Mathematics Year 2/ASPages 187-188

Extension:

[STEP I 2005 Q4]

(a) βˆ’117

125(b) π‘‘π‘Žπ‘› πœƒ = 8 + 75? ?

Very Challenging Exam Example

Edexcel C3 June 2015 Q8

? b

We eventually want cos 𝐴 βˆ’ sin𝐴so cos2 𝐴 βˆ’ sin2𝐴 is best choice of double-angle formula because this can be factorise to give cos 𝐴 βˆ’ sin𝐴 as a factor.

This is even less obvious. Knowing that we’ll have cos𝐴 βˆ’ sin 𝐴 cos𝐴 + sin 𝐴 in the denominator and that the cos𝐴 + sin 𝐴 will cancel, we might work backwards from the final result and multiply by cos𝐴 + sin 𝐴! Working backwards from the thing we’re trying to prove is occasionally a good strategy (provided the steps are reversible!)

? a

Modelling

? a

? b

? c

? d

When trigonometric equations are in the form 𝑅𝑠𝑖𝑛 π‘Žπ‘₯ Β± 𝑏 or π‘…π‘π‘œπ‘  π‘Žπ‘₯ Β± 𝑏 , they can be used to model various things which have an oscillating behaviour, e.g. tides, the swing of a pendulum and sound waves.

Test Your Understanding

? a? bi? bii

? c

? d

Tip: Reflect carefully on the substitution you use to allow (bii) to match your identity in (a). πœƒ =?

Exercise 7G

Pearson Pure Mathematics Year 2/ASPages 190-191


Top Related