Transcript
Page 1: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

1

Tensor Analysis: Differential and Integral Calculus with Tensors

โ€œWe do not fuss over smoothness assumptions: Functions and boundaries of

regions are presumed to have continuity and differentiability properties sufficient

to make meaningful underlying analysisโ€ฆโ€ Morton Gurtin, et al.

MetaData

1. The first chapter provided the necessary background to study tensors. Chapter 2 explored the properties of

tensors.

2. This third chapter begins the applications by introducing the concept of differentiation for objects larger

than scalars.

THREE

Page 2: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

2

3. The gradient of scalar, vector or tensor is connected to the extension of the concept of directional derivative

called the Gateaux differential.

4. The complexity in differentiation of large objects comes, not from the objects themselves, but from the

domain of differentiation. Differentiation rules with respect to scalar arguments follows closely the similar

laws for scalar fields.

5. Integral theorems of Stokes, Green and Gauss are introduced with computational examples.

6. Orthogonal Curvilinear systems are dealt with in the addendum. Important results and the use of Computer

Algebra are given.

Page 3: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

3

In the calculus we are embarking upon, there will be tensor valued functions and tensor domains.

In the most complex cases, the domains and function values are tensors. Most common is the

case where the domain itself is the three-dimensional Euclidean Point Space. Even though this

space embeds the vectors containing the position vectors, they are not tensors. Tensor-valued

functions defined in such domains are called tensor fields.

Differentiation & Large Objects

Differentiating with Respect to Scalar Arguments

We are already familiar with the techniques of differentiation of simple objects like scalars with

respect to other scalars. These scalars are defined in scalar domains. In the simplest case, ๐‘ฅ, โ„Ž โˆˆ

โ„ the derivative, ๐‘“โ€ฒ(๐‘ฅ), of the function, ๐‘“:โ„ โ†’ โ„, is defined as,

๐‘“โ€ฒ(๐‘ฅ) = limโ„Žโ†’0

๐‘“(๐‘ฅ + โ„Ž) โˆ’ ๐‘“(๐‘ฅ)

โ„Ž.

Things become more complex when we handle tensors. A second-order tensor, as we have seen,

when expressed in the component form, contains nine scalars. A vector โ€“ a first-order tensor, as

we know, is made of three scalar members.

The complication does not actually arise from the size of the objects themselves. In fact, the

derivation of tensor objects with respect to scalar domains, with some adjustments, basically

conforms to the same rules as the above derivation of scalars:

Division of a tensor by a scalar is accomplished by multiplying the tensor by the inverse of the

scalar. This operation is defined in all vector spaces to which our vectors and tensors belong.

Consequently, the derivative of the tensor ๐“(๐‘ก), with respect to a scalar argument, such as time,

for example, can be defined as,

๐‘‘

๐‘‘๐‘ก ๐“(๐‘ก) = lim

๐‘กโ†’0

๐“(๐‘ก + โ„Ž) โˆ’ ๐“(๐‘ก)

๐‘กโ‰ก lim๐‘กโ†’0

1

๐‘ก(๐“(๐‘ก + โ„Ž) โˆ’ ๐“(๐‘ก))

If ๐›ผ(๐‘ก) โˆˆ โ„, and tensor , ๐“(๐‘ก) โˆˆ ๐•ƒ are both functions of time ๐‘ก โˆˆ โ„, we find,

๐‘‘

๐‘‘๐‘ก(๐›ผ๐“) = lim

โ„Žโ†’0

๐›ผ(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)๐“(๐‘ก)

๐‘ก

= limโ„Žโ†’0

๐›ผ(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)๐“(๐‘ก + โ„Ž) + ๐›ผ(๐‘ก)๐“(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)๐“(๐‘ก)

๐‘ก

Page 4: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

4

= limโ„Žโ†’0

๐›ผ(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)๐“(๐‘ก + โ„Ž)

๐‘ก+ limโ„Žโ†’0

๐›ผ(๐‘ก)๐“(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)๐“(๐‘ก)

๐‘ก

= (limโ„Žโ†’0

๐›ผ(๐‘ก + โ„Ž) โˆ’ ๐›ผ(๐‘ก)

๐‘ก) (lim

โ„Žโ†’0๐“(๐‘ก + โ„Ž)) + ๐›ผ(๐‘ก) lim

โ„Žโ†’0

๐“(๐‘ก + โ„Ž) โˆ’ ๐“(๐‘ก)

๐‘ก

=๐‘‘

๐‘‘๐‘ก(๐›ผ๐“) = ๐›ผ

๐‘‘๐“

๐‘‘๐‘ก+๐‘‘๐›ผ

๐‘‘๐‘ก๐“

showing that the familiar product rule applies as expected.

Proceeding in a similar fashion, for ๐›ผ(๐‘ก) โˆˆ โ„, ๐ฎ(๐‘ก), ๐ฏ(๐‘ก) โˆˆ ๐”ผ, and ๐’(๐‘ก), ๐“(๐‘ก) โˆˆ ๐•ƒ, all being

functions of a scalar variable ๐‘ก, the following results hold as expected.

Expression Note

๐‘‘

๐‘‘๐‘ก(๐›ผ๐ฎ) = ๐›ผ

๐‘‘๐ฎ

๐‘‘๐‘ก+๐‘‘๐›ผ

๐‘‘๐‘ก๐ฎ

Each term on the RHS retains the commutative property

of multiplication by a scalar.

๐‘‘

๐‘‘๐‘ก(๐ฎ โ‹… ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กโ‹… ๐ฏ + ๐ฎ โ‹…

๐‘‘๐ฏ

๐‘‘๐‘ก

Each term on the RHS retains the commutative property

of the scalar product

๐‘‘

๐‘‘๐‘ก(๐ฎ ร— ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กร— ๐ฏ + ๐ฎ ร—

๐‘‘๐ฏ

๐‘‘๐‘ก

Original product order must be maintained

๐‘‘

๐‘‘๐‘ก(๐ฎโŠ— ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กโŠ— ๐ฏ + ๐ฎโŠ—

๐‘‘๐ฏ

๐‘‘๐‘ก

Original product order must be maintained

๐‘‘

๐‘‘๐‘ก(๐“ + ๐’) =

๐‘‘๐“

๐‘‘๐‘ก+๐‘‘๐’

๐‘‘๐‘ก

Sum of tensors

๐‘‘

๐‘‘๐‘ก๐“๐’ =

๐‘‘๐“

๐‘‘๐‘ก๐’ + ๐“

๐‘‘๐’

๐‘‘๐‘ก

Product of tensors. Note that we must maintain the order

of the product as shown. ๐“๐‘‘๐’

๐‘‘๐‘กโ‰ ๐‘‘๐’

๐‘‘๐‘ก๐“

๐‘‘

๐‘‘๐‘ก๐“: ๐’ =

๐‘‘๐“

๐‘‘๐‘ก: ๐’ + ๐“:

๐‘‘๐’

๐‘‘๐‘ก

Scalar Product of tensors. the order is not important here

๐“:๐‘‘๐’

๐‘‘๐‘ก=๐‘‘๐’

๐‘‘๐‘ก: ๐“

๐‘‘

๐‘‘๐‘ก(๐›ผ๐“) = ๐›ผ

๐‘‘๐“

๐‘‘๐‘ก+๐‘‘๐›ผ

๐‘‘๐‘ก๐“

Scalar product of a tensor. Order is not important in

multiplication by a scalar.

๐‘‘

๐‘‘๐‘ก(๐“๐ฎ) =

๐‘‘๐“

๐‘‘๐‘ก๐ฎ + ๐“

๐‘‘๐ฎ

๐‘‘๐‘ก

The original operation order must be maintained in each

term of the derivatives.

๐‘‘

๐‘‘๐‘ก๐’T = (

๐‘‘๐’

๐‘‘๐‘ก)T

Derivative of a transpose is the transpose of the

derivative

Page 5: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

5

Scalar Argument: Time Derivatives of Tensors

1. Consequences of Differentiating the Identity Tensor

Differentiating a tensor with respect to time, or any other scalar parameter follows the expected

pattern with little modification. Here are some further results.

The Inverse. Certain important results come from the obvious fact that the identity tensor is a

constant so that

๐‘‘๐ˆ

๐‘‘๐‘ก= ๐Ž.

We recognize the fact that the derivative of the tensor with respect to a scalar must give a tensor.

The value here is the annihilator tensor, ๐Ž. For any invertible tensor valued scalar function, ๐’(๐‘ก),

we differentiate the equation, ๐’โˆ’๐Ÿ(๐‘ก) ๐’(๐‘ก) = ๐ˆ to obtain,

๐‘‘๐’โˆ’๐Ÿ

๐‘‘๐‘ก ๐’ + ๐’โˆ’๐Ÿ

๐‘‘๐’

๐‘‘๐‘ก= ๐Ž

โ‡’๐‘‘๐’โˆ’๐Ÿ

๐‘‘๐‘ก= โˆ’๐’โˆ’๐Ÿ

๐‘‘๐’

๐‘‘๐‘ก๐’โˆ’๐Ÿ

If we post multiply both sides by ๐’โˆ’๐Ÿ, the following important expression results for the

derivative of the inverse tensor with respect to a scalar parameter, in terms of the derivative of

the original tensor function:

๐‘‘๐’โˆ’๐Ÿ

๐‘‘๐‘ก= โˆ’๐’โˆ’๐Ÿ

๐‘‘๐’

๐‘‘๐‘ก๐’โˆ’๐Ÿ

Conversely,

๐‘‘๐’

๐‘‘๐‘ก= โˆ’๐’

๐‘‘๐’โˆ’๐Ÿ

๐‘‘๐‘ก๐’

Orthogonal Tensors. An orthogonal tensor as well as its transpose can each be functions of a

scalar parameter. They still must equal the identity tensor at any value of the argument, so that

๐(๐‘ก)๐T(๐‘ก) = ๐ˆ. One consequence of this relationship is that the tensor valued function, ๐›€(๐‘ก) โ‰ก

Page 6: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

6

๐‘‘๐(๐‘ก)

๐‘‘๐‘ก๐T(๐‘ก) of the same scalar parameter must be skew. This is another result from differentiating

the identity tensor ๐๐T = ๐ˆ,

๐‘‘

๐‘‘๐‘ก(๐๐T) =

๐‘‘๐๐‘‘๐‘ก๐T +๐

๐‘‘๐T

๐‘‘๐‘ก=๐‘‘๐ˆ๐‘‘๐‘ก= ๐Ž

Consequently,

๐‘‘๐๐‘‘๐‘ก๐T = โˆ’๐

๐‘‘๐T

๐‘‘๐‘ก= โˆ’(

๐‘‘๐๐‘‘๐‘ก๐T)

T

So we have that the tensor ๐›€ =๐‘‘๐

๐‘‘๐‘ก๐T is negative of its own transpose, hence it is skew.

Angular Velocity. Consider a rigid body fixed at one end ๐Ž โ€“

for example a spinning top shown. It is given a rotation ๐‘(๐‘ก)

from rest so that each point ๐ is at a position vector ๐ซ(๐‘ก) at a

time ๐‘ก, related to the original position ๐ซ๐‘œ by the equation,

๐ซ(๐‘ก) = ๐‘(๐‘ก)๐ซ๐‘œ

We can find the velocity by differentiating the position vector,

๐‘‘๐ซ

๐‘‘๐‘ก=๐‘‘๐‘๐‘‘๐‘ก๐ซ๐‘œ =

๐‘‘๐‘๐‘‘๐‘ก๐‘โˆ’1๐ซ

And the rotation is an orthogonal tensor, hence its inverse is

its transpose, so that,

๐ฏ =๐‘‘๐ซ

๐‘‘๐‘ก=๐‘‘๐‘๐‘‘๐‘ก๐‘T๐ซ = ๐›€๐ซ

And, ๐›€ as we have seen above, is a skew tensor (every rotation is a proper orthogonal tensor)

hence it is associated with an axial vector (๐›š ร—) = ๐›€. From this fact we can see that every point

in the body has an angular velocity, ๐›š, such that,

๐ฏ = ๐›š ร— ๐ซ

๐›š, defined by this expression, the axial vector of the ๐‘‘๐‘

๐‘‘๐‘ก๐‘T where ๐‘(๐‘ก) is the rotation function,

is called the angular velocity.

Page 7: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

7

2. The Magnitude of a Tensor.

We saw in the previous chapter that the tensor belongs to its own Euclidean vector space which

is equipped with a scalar product, and consequently, a scalar magnitude. Consider the

magnitude,

๐œ™(๐‘ก) = โˆš๐€(๐‘ก): ๐€(๐‘ก) = โ€–๐€(๐‘ก)โ€–

so that, ๐œ™2 = ๐€: ๐€. Differentiating this scalar equation, and remembering that the scalar

operand here is just a product, we have,

๐‘‘

๐‘‘๐‘ก๐œ™2 = 2๐œ™

๐‘‘๐œ™

๐‘‘๐‘ก=๐‘‘๐€

๐‘‘๐‘ก: ๐€ + ๐€:

๐‘‘๐€

๐‘‘๐‘ก= 2

๐‘‘๐€

๐‘‘๐‘ก: ๐€.

This simplifies to

๐‘‘๐œ™

๐‘‘๐‘ก=๐‘‘

๐‘‘๐‘ก|๐€(๐‘ก)|

=๐‘‘๐€(๐‘ก)

๐‘‘๐‘ก:๐€(๐‘ก)

|๐€(๐‘ก)|

3. Tensor Invariants.

Consider as before, that tensor ๐€(๐‘ก) varies with a scalar parameter ๐‘ก. What are the responses of

the three invariants of ๐€? The invariants, as was shown in chapter 2 are the Trace, tr ๐€, Trace of

the cofactor, tr ๐€c and the Determinant, det๐€.

Trace is a linear operator. It follows immediately that

๐‘‘

๐‘‘๐‘ก tr ๐€ = tr

๐‘‘๐€

๐‘‘๐‘ก

- A fact that can also be established easily by observing that,

๐‘‘

๐‘‘๐‘ก๐ผ1(๐€) =

๐‘‘๐‘‘๐‘ก

tr ๐€ =[๐‘‘๐€๐‘‘๐‘ก๐š, ๐›, ๐œ] + [๐š,

๐‘‘๐€๐‘‘๐‘ก๐›, ๐œ] + [๐š, ๐›,

๐‘‘๐€๐‘‘๐‘ก๐œ]

[๐š, ๐›, ๐œ]

= tr ๐‘‘๐€

๐‘‘๐‘ก

The second invariant is NOT a linear scalar valued function of its tensor argument. However,

we have the expression,

๐€c = ๐€โˆ’T det๐€ โ‡’ tr๐€c = tr(๐€โˆ’T det ๐€)

Differentiating with respect to ๐‘ก,

Page 8: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

8

๐‘‘

๐‘‘๐‘ก tr๐€c = tr

๐‘‘

๐‘‘๐‘ก(๐€โˆ’T det ๐€)

Not a very useful quantity. The derivative of the third invariant with respect to a scalar

argument is of momentous importance. It is the basis of Liouvilleโ€™s theorem and is fundamental

to the study of continuum flow in general. Just like the second invariant, the third invariant is

not a linear function of its tensor argument.

๐ผ3(๐€) =[๐€๐š, ๐€๐›,๐€๐œ]

[๐š, ๐›, ๐œ]= det ๐€

so that, [๐š, ๐›, ๐œ] det ๐€ = [๐€๐š, ๐€๐›, ๐€๐œ]. Differentiating, we have,

[๐š, ๐›, ๐œ]๐‘‘

๐‘‘๐‘กdet๐€ = [

๐‘‘๐€

๐‘‘๐‘ก๐š, ๐€๐›, ๐€๐œ] + [๐€๐š,

๐‘‘๐€

๐‘‘๐‘ก๐›, ๐€๐œ] + [๐€๐š, ๐€๐›,

๐‘‘๐€

๐‘‘๐‘ก๐œ]

= [๐‘‘๐€

๐‘‘๐‘ก๐€โˆ’1๐€๐š, ๐€๐›,๐€๐œ] + [๐€๐š,

๐‘‘๐€

๐‘‘๐‘ก๐€โˆ’1๐€๐›,๐€๐œ] + [๐€๐š, ๐€๐›,

๐‘‘๐€

๐‘‘๐‘ก๐€โˆ’1๐€๐œ]

= tr (๐‘‘๐€

๐‘‘๐‘ก๐€โˆ’1) [๐€๐š, ๐€๐›, ๐€๐œ]

So that, ๐‘‘

๐‘‘๐‘กdet ๐€ = tr (

๐‘‘๐€

๐‘‘๐‘ก๐€โˆ’1) det๐€.

Differentiation: Vector & Tensor Arguments

So far, the domain of differentiation has remained in the real space. The objects we have

differentiated were larger in the sense that we dealt with vectors and tensors. The evaluation of

derivatives of larger objects presented a small difficulty but remained essentially the same so

long as the domain remained real. When the domain of differentiation itself is a made up of large

objects, the task of differentiation becomes a little more demanding. Such problems are standard

in Continuum mechanics. For example, the Energy function is a scalar, yet we can obtain the

strains from it by differentiating with respect to the stress. We are dealing there with the

differentiation of a scalar function of a tensor: stress. We may want to compute the velocity

gradient from the velocity function. Here, we are differentiating a vector field defined on the

Euclidean point space, โ„ฐ, with respect to the position vector of the points in โ„ฐ. In these and

several other derivatives of interest, the domains are no longer in the simple real space.

The approach to this challenge is twofold:

Page 9: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

9

1. Recognize that the vectors and tensors live in their respective Euclidean VECTOR spaces

where the concept of length is already defined.

2. Use the above to extend the concept of directional derivative to include the derivative of

any object from a given Euclidean space with respect to objects from another.

Such a generalization is in the Gateaux differential. Consider a map,

๐…:V โ†’ ๐•Ž

This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of

limit and continuity carries naturally from the real space to any Euclidean vector space.

Let ๐’—0 โˆˆ V and ๐’˜0 โˆˆ ๐•Ž, as usual we can say that the limit

lim๐’—โ†’ ๐’—0

๐…(๐ฏ) = ๐ฐ0

if for any pre-assigned real number ๐œ– > 0, no matter how small, we can always find a real number

๐›ฟ > 0 such that |๐…(๐ฏ) โˆ’ ๐ฐ0| โ‰ค ๐œ– whenever |๐ฏ โˆ’ ๐ฏ0| < ๐›ฟ. The function is said to be continuous

at ๐ฏ0 if ๐…(๐ฏ0) exists and ๐…(๐ฏ0) = ๐ฐ0

The Gateaux Differential

Specifically, for ๐›ผ โˆˆ โ„ let this map be:

๐ท๐…(๐ฑ, ๐ก) โ‰ก lim๐›ผโ†’0

๐…(๐ฑ + ๐›ผ๐ก) โˆ’ ๐…(๐ฑ)

๐›ผ=๐‘‘

๐‘‘๐›ผ๐…(๐ฑ + ๐›ผ๐ก)|

๐›ผ=0

We focus attention on the second variable โ„Ž while we allow the dependency on ๐’™ to be as general

as possible. We shall show that while the above function can be any given function of ๐ฑ (linear or

nonlinear), the above map is always linear in ๐ก irrespective of what kind of Euclidean space we

are mapping from or into. It is called the Gateaux Differential.

Real functions in Real Domains. Let us make the Gateaux differential a little more familiar in real

space in two steps: First, we move to the real space and allow โ„Ž โ†’ ๐‘‘๐‘ฅ and we obtain,

๐ท๐น(๐‘ฅ, ๐‘‘๐‘ฅ) = lim๐›ผโ†’0

๐น(๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ) โˆ’ ๐น(๐‘ฅ)

๐›ผ=๐‘‘

๐‘‘๐›ผ๐น(๐‘ฅ + ๐›ผ๐‘‘๐‘ฅ)|

๐›ผ=0

And let ๐›ผ๐‘‘๐‘ฅ โ†’ ฮ”๐‘ฅ, the middle term becomes,

limฮ”๐‘ฅโ†’0

๐น(๐‘ฅ + ฮ”๐‘ฅ) โˆ’ ๐น(๐‘ฅ)

ฮ”๐‘ฅ๐‘‘๐‘ฅ =

๐‘‘๐น

๐‘‘๐‘ฅ๐‘‘๐‘ฅ

Page 10: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

10

from which it is obvious that the Gateaux derivative is a generalization of the well-known

differential from elementary calculus. The Gateaux differential helps to compute a local linear

approximation of any function (linear or nonlinear).

Linearity. It is easily shown that the Gateaux differential is linear in its second argument, ie,

for ๐›ผ โˆˆ R. It is easily shown that,

๐ท๐…(๐ฑ, ๐›ผ๐ก) = ๐›ผ๐ท๐…(๐ฑ, ๐ก)

Furthermore,

๐ท๐…(๐ฑ, ๐  + ๐ก) = lim๐›ผโ†’0

๐…(๐ฑ, ๐›ผ(๐  + ๐ก)) โˆ’ ๐…(๐ฑ)

๐›ผ

= lim๐›ผโ†’0

๐…(๐ฑ, ๐›ผ(๐  + ๐ก)) โˆ’ ๐…(๐ฑ, ๐›ผ๐ ) + ๐…(๐ฑ, ๐›ผ๐ ) + ๐…(๐ฑ)

๐›ผ

= lim๐›ผโ†’0

๐…(๐ฒ + ๐›ผ๐ก) โˆ’ ๐…(๐ฒ)

๐›ผ+ lim๐›ผโ†’0

๐…(๐ฑ, ๐›ผ๐ ) + ๐…(๐ฑ)

๐›ผ

= ๐ท๐…(๐ฑ, ๐ก) + ๐ท๐…(๐ฑ, ๐ )

as the variable ๐ฒ โ‰ก ๐ฑ + ๐›ผ๐  โ†’ ๐ฑ as ๐›ผ โ†’ 0; For ๐›ผ, ๐›ฝ โˆˆ R, using similar arguments, we can also

show that,

๐ท๐…(๐ฑ, ๐›ผ๐  + ๐›ฝ๐ก) = ๐›ผ๐ท๐…(๐ฑ, ๐ ) + ๐›ฝ๐ท๐…(๐ฑ, ๐ก)

Points to Note:

โ€ข The Gateaux differential is not unique to the point of evaluation. Rather, at each point ๐ฑ

there is a Gateaux differential for each โ€œvectorโ€ ๐ก. If the domain is a vector space, then

we have a Gateaux differential for each of the infinitely many directions at each point. In

two of more dimensions, there are infinitely many Gateaux differentials at each point!

Remember however, that ๐ก may not even be a vector, but second- or higher-order tensor.

It does not matter, as the tensors themselves are in a Euclidean space that define

magnitude and direction as a result of the embedded inner product.

โ€ข The Gateaux differential is a one-dimensional calculation along a specified direction ๐ก.

Because itโ€™s one-dimensional, you can use ordinary one-dimensional calculus to compute

it. Product rules and other constructs for the differentiation in real domains apply.

Page 11: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

11

Gradient or Frรฉchet Derivatives

A scalar, vector or tensor valued function in a scalar, vector or tensor valued domain is said to be

Frรฉchet differentiable if a subdomain exists in which we can find grad ๐…(๐ฑ) such that,

(grad ๐…(๐ฑ)) โ€ข ๐ก = ๐ท๐…(๐ฑ, ๐ก)

This equation defines the gradient of a function in terms of its operating on the domain object to

obtain the Gateaux differential.

The nature of, grad ๐…(๐ฑ) as well as the kind of product, " โ€ข ", between the gradient and the

differential depend on the value type of the function and the type of argument involved. In the

simple case of a scalar valued function of a scalar argument, we are back to the regular derivative

as can be seen in the first row of the table, and the product involved is simply multiplication of

two scalars. The Gateaux differential here is your regular differential.

For a scalar valued function, when the argument type is a vector, we get, for the Frรฉchet

derivative, the familiar gradient operation, grad ๐œ™(๐ฑ). The Gateaux differential here is the

directional derivative, (grad ๐œ™(๐ฑ)) โ‹… ๐‘‘๐ฑ, in the direction given by the differential, ๐‘‘๐ฑ. Notice two

things here:

1. The function value is a scalar;

2. The function differential, ๐ท๐œ™(๐ฑ, ๐‘‘๐ฑ) = (grad ๐œ™(๐ฑ)) โ‹… ๐‘‘๐ฑ is also a scalar.

The product between grad ๐œ™(๐ฑ) and the vector differential is a scalar product so that the

gradient of a scalar valued function of a vector argument is itself a vector. In the table, product

of the Frรฉchet derivative in column 2 with the argument in column 3 is a scalar hence the correct

product here is the scalar product.

No grad ๐…(๐ฑ) Argument Product โ€ข ๐…(๐ฑ) Gateaux-Frรฉchet Example

1 Scalar Scalar Multiply Scalar ๐ท๐น(๐‘ฅ) =

๐‘‘๐น(๐‘ฅ)

๐‘‘๐‘ฅ๐‘‘๐‘ฅ

2 Vector Vector Scalar product Scalar ๐ท๐œ™(๐ฑ, ๐‘‘๐ฑ) = (grad ๐œ™(๐ฑ)) โ‹… ๐‘‘๐ฑ

3 Tensor Tensor Scalar product Scalar ๐ท๐‘“(๐“, ๐‘‘๐“) =

๐‘‘๐‘“(๐“)

๐‘‘๐“: ๐‘‘๐“

4 Tensor Vector Contraction Vector ๐ท๐›™(๐ฑ, ๐‘‘๐ฑ) = (grad ๐›™(๐ฑ))๐‘‘๐ฑ

5 Tensor Scalar Scalar multiply Tensor ๐ท๐“(๐‘ฅ) =

๐‘‘๐“(๐‘ฅ)

๐‘‘๐‘ฅ๐‘‘๐‘ฅ

Page 12: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

12

6 Tensor (3) Vector Contraction Tensor ๐ท๐…(๐ฑ, ๐‘‘๐ฑ) = (grad ๐…(๐ฑ))๐‘‘๐ฑ

7 Tensor (4) Tensor Contraction Tensor ๐ท๐…(๐’, ๐‘‘๐’) = (grad ๐…(๐’))๐‘‘๐’

For a scalar valued function of a tensor argument, row 3, Gateaux differential is a scalar โ€“ notice

it will necessarily be the same type as the function value as it is simply a change in value: Change

in a scalar is scalar, change in vector is vector and change in tensor is tensor. The gradient here

is a second-order tensor. The proper product to recover the scalar value from the product of

these tensors is the tensor scalar product. On rows six and seven, the tensor order for the Frรฉchet

derivative is higher than two and so stated.

We will rely on a set of worked examples to demonstrate these.

Scalar-valued function of Tensors

Some of the most important functions you will differentiate are scalar-valued functions that take

tensor arguments. Here are some examples:

1. Principal Invariants of Tensors and related functions. This could include invariants of other

tensors such as the deviatoric parts of the original tensor, etc.

2. Traces of powers of the tensor. Traces of products and transposes, etc. These results are

powerful because we often able to convert scalar valued functions to the sums and

products of traces and their powers.

3. Magnitudes of tensors.

(a) Direct Application of Gateaux Differential

Given any scalar ๐‘˜ > 0, for the scalar-valued tensor function, ๐‘‘

๐‘‘๐’ tr ๐’ = ๐ˆ, show that, and

๐‘‘

๐‘‘๐’ tr ๐’2 = ๐’T.

Compute the Gateaux differential directly here:

๐ท๐‘“(๐’, ๐‘‘๐’) =๐‘‘

๐‘‘๐›ผ๐‘“(๐’ + ๐›ผ๐‘‘๐’)|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr(๐’ + ๐›ผ๐‘‘๐’)|

๐›ผ=0 = tr(๐ˆ ๐‘‘๐’)

= ๐ˆ: ๐‘‘๐’ =๐‘‘๐‘“(๐’)

๐‘‘๐’: ๐‘‘๐’

Page 13: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

13

So that, we have found a function that, multiplies the differential argument to give us the Gateaux

differential. That is the Frรฉchet derivative, or gradient. As you can see here, it is the Identity

tensor:

๐‘‘

๐‘‘๐’tr(๐’) = ๐ˆ.

When ๐‘˜ = 2, The Gateaux differential in this case,

๐ท๐‘“(๐’, ๐‘‘๐’) =๐‘‘

๐‘‘๐›ผ๐‘“(๐’ + ๐›ผ๐‘‘๐’)|

๐›ผ=0 =๐‘‘

๐‘‘๐›ผtr(๐’ + ๐›ผ๐‘‘๐’)2|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr{(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)}|

๐›ผ=0

= tr [๐‘‘

๐‘‘๐›ผ(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)]|

๐›ผ=0

= tr[๐‘‘๐’(๐’ + ๐›ผ๐‘‘๐’) + (๐’ + ๐›ผ๐‘‘๐’)๐‘‘๐’]|๐›ผ=0

= tr[๐‘‘๐’ ๐’ + ๐’ ๐‘‘๐’] = 2๐’T: ๐‘‘๐’

=๐‘‘๐‘“(๐’)

๐‘‘๐’: ๐‘‘๐’

So that,

๐‘‘

๐‘‘๐’tr ๐’2 = ๐’T

Using these two results and the linearity of the trace operation, we can proceed to find the

derivative of the second principal invariant of the tensor ๐’:

๐‘‘

๐‘‘๐’ ๐ผ2(๐’) =

1

2

๐‘‘

๐‘‘๐’[tr2(๐’) โˆ’ tr(๐’2)]

=1

2[2tr(๐’)๐ˆ โˆ’ 2 ๐’T]

= tr(๐’)๐ˆ โˆ’ ๐’T

using the fact that differentiating tr2(๐’) with respect to tr(๐’) is a scalar derivative of a scalar

argument. To find the derivative of the third principal invariant of the tensor ๐’, we appeal to the

Cayley-Hamilton theorem, which expresses the determinant in terms of traces only,

๐ผ3(๐’) =1

6[tr3(๐’) โˆ’ 3tr(๐’)tr(๐’2) + 2tr(๐’3)]

๐‘‘

๐‘‘๐’ ๐ผ3(๐’) =

1

6

๐‘‘

๐‘‘๐’[tr3(๐’) โˆ’ 3tr(๐’)tr(๐’2) + 2tr(๐’3)]

Page 14: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

14

=1

6[3tr2(๐’)๐ˆ โˆ’ 3tr(๐’2)๐ˆ โˆ’ 3tr(๐’)2๐’T + 2 ร— 3(๐’2)T]

= ๐ผ2๐ˆ โˆ’ ๐ผ1(๐’)๐’T + ๐’2T.

Given that ๐€ is a constant tensor, show that โˆ‚

โˆ‚๐’tr(๐€๐’) = ๐€T.

For this scalar-valued function, the Gateaux differential,

๐ท๐‘“(๐’, ๐‘‘๐’) =๐‘‘

๐‘‘๐›ผtr(๐€๐’ + ๐›ผ๐€๐‘‘๐’)|

๐›ผ=0 =๐‘‘๐‘“(๐’)

๐‘‘๐’: ๐‘‘๐’

=๐‘‘

๐‘‘๐›ผ tr(๐€๐’)|

๐›ผ=0 +๐‘‘

๐‘‘๐›ผ ๐›ผtr(๐€๐‘‘๐’)|

๐›ผ=0

= tr(๐€๐‘‘๐’) = ๐€๐“: ๐‘‘๐’

Giving us,

๐‘‘๐‘“(๐’)

๐‘‘๐’= ๐€๐“.

Finally, we look at the derivative of magnitude. We have found this by a simpler means earlier.

It is instructive to look more rigorously, using the Gateaux differential. Given a scalar ๐›ผ variable,

the derivative of a scalar function of a tensor ๐‘“(๐€) is

๐œ•๐‘“(๐€)

๐œ•๐€: ๐ = lim

๐›ผโ†’0

๐œ•

๐œ•๐›ผ๐‘“(๐€ + ๐›ผ๐)

for any arbitrary tensor ๐. In the case of ๐‘“(๐€) = |๐€|,

๐œ•|๐€|

๐œ•๐€: ๐ = lim

๐›ผโ†’0

๐œ•

๐œ•๐›ผ|๐€ + ๐›ผ๐|

|๐€ + ๐›ผ๐| = โˆštr(๐€ + ๐›ผ๐)(๐€ + ๐›ผ๐)๐‘‡ = โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)

Note that everything under the root sign here is scalar and that the trace operation is linear.

Consequently, we can write,

lim๐›ผโ†’0

๐œ•

๐œ•๐›ผ|๐€ + ๐›ผ๐| = lim

๐›ผโ†’0

tr (๐๐€T) + tr (๐€๐T) + 2๐›ผ tr (๐๐T)

2โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)=2๐€: ๐

2โˆš๐€:๐€=๐€

|๐€|: ๐

So that,

๐œ•|๐€|

๐œ•๐€: ๐ =

๐€

|๐€|: ๐

or,

๐œ•|๐€|

๐œ•๐€=๐€

|๐€|

Page 15: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

15

as required since ๐ is arbitrary.

Differentiation of Fields

Euclidean Point Space in Concrete Terms

In Continuum Mechanics, we are often concerned with quantities that are scalars (density, mass,

temperature, etc.,) vectors (e.g. displacements, velocities, etc.,) or second-order tensors (e.g.,

stresses, strains, etc.). There are other things that are derivatives, in space, of these basic

quantities. Some of these are temperature gradients, velocity gradients, deformation gradient

(Which, some have argued, is not even a gradient in the strict sense).

One other fact is that these quantities of interest are often associated with points in space. A set

of examples will clarify this before we provide an abstract definition:

1. A Velocity Map

The arrows here show the velocity at each point. The color gives other information. About

the distribution.

2. Weather Map

Page 16: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

16

The meteorologist has a lot of ways to tell about the weather and predicting it. There are

radar maps that give the pressure distribution, wind velocities, temperature,

precipitation, etc.:

3. Simulation Maps

The diagram below shows field functions, displacement, stress and factor of safety

displayed in the simulation of a vertically loaded curved bar that is supported at one end.

These and many others maps in our daily experience are concrete examples of point functions or

field functions. The domains here are a flow field โ„ฑ, A geographical region ๐’ข and the body of a

curved bar โ„ฌ. Each represents a subset of the Euclidean point space in concrete terms. More

precisely, โ„ฑ, ๐’ข, โ„ฌ โŠ‚ โ„ฐ.

๐ฏ:๐“• โ†’ ๐”ผ, ๐‘: ๐’ข โ†’ โ„,๐“:๐“‘ โ†’ ๐•ƒ

Page 17: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

17

Expressing the facts that the velocity ๐ฏ(๐‘ฅ) was defined at the subset โ„ฑ in the Euclidean point

Space and a vector object is created at each point. Those objects themselves reside in the vector

space which we already understand how to deal with in that the structure and rules governing

them are well defined. The same goes for the pressure ๐‘(๐‘ฅ), and the stress ๐“(๐‘ฅ) as they have all

been defined in the respective subsets.

When we talk about temperature, density, strain functions as fields, these are different kinds of

objects that share the common feature of being defined in the Euclidean Point Space.

Furthermore, there are other functions that are derived from these base functions. Some

examples such derived fields are Temperature Gradient, Velocity Gradient and the Deformation

Gradient. In this section, it will be clear that these derived point functions are one rank higher

than the ones they are derived from. Temperature Gradient, for example is a vector quantity

derived from scalar temperature while the velocity gradient is a second-order tensor derived

from the Frรฉchet derivative of the vector velocity.

Components of Gradient in ONB Systems

We now express the gradients measuring changes in the fields beginning with

๐ท๐œ™(๐ฑ, ๐‘‘๐ฑ) = (grad ๐œ™(๐ฑ)) โ‹… ๐‘‘๐ฑ

With a scalar-valued function with vector arguments that are now the position vectors in the

Euclidean Point space. Given a parameter ๐‘ก, for the point {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3} consider the neighboring

point is at {๐‘ฅ1 + ๐‘Ž1๐‘ก, ๐‘ฅ2 + ๐‘ก๐‘Ž2, ๐‘ฅ3 + ๐‘ก๐‘Ž3}

๐ท๐œ™(๐ฑ, ๐‘‘๐ฑ) = lim๐›ผโ†’0

๐œ™(๐ฑ + ๐›ผ๐‘‘๐ฑ) โˆ’ ๐œ™(๐ฑ)

๐›ผ

= (๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ1๐ž1 +

๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ2๐ž2 +

๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ3๐ž3) โ‹… ๐‘‘๐ฑ

So that, for a scalar-valued function, in an Orthonormal system,

grad ๐œ™(๐ฑ) = (๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ1๐ž1 +

๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ2๐ž2 +

๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ3๐ž3).

Without further ado, we shall generalize this expression and this provide the results for more

general cases. We use the comma notation to denote partial derivatives and apply it post so that

we can write,

Page 18: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

18

grad ๐œ™(๐ฑ) =๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ๐‘–๐ž๐‘– = ๐œ™,๐‘– ๐ž๐‘–

Addition, product and other rules apply to Gradient in the comma notation as follows:

grad (๐œ™(๐ฑ)๐œ“(๐ฑ)) = (๐œ™๐œ“),๐‘– ๐ž๐‘–

= (๐œ™,๐‘– ๐œ“ + ๐œ™๐œ“,๐‘– )๐ž๐‘–

= ๐œ“ grad ๐œ™(๐ฑ) + ๐œ™ grad ๐œ™(๐ฑ)

If we define the gradient operator as a post fix operator,

grad (โˆŽ) = (โˆŽ),๐›ผโŠ—๐ž๐›ผ

Where (as long as the coordinate system of reference is ONB) the comma signifies partial

derivative, with respect to the ๐›ผ coordinate. The tensor product applying in all cases except for

the scalar function where there is no existing basis vector to take the product with. It therefore

stands for ordinary product in this case.

Gradient of a Vector Function.

Consider a vector function, ๐ฏ(๐‘ฅ), defined in a Euclidean space spanned by ONB. This can be

written in terms of its components,

๐ฏ(๐‘ฅ) = ๐‘ฃ๐‘–(๐‘ฅ)๐ž๐’Š

Then,

grad ๐ฏ(๐ฑ) = (๐‘ฃ๐‘–(๐‘ฅ)๐ž๐’Š),๐›ผโŠ—๐ž๐›ผ

= ๐‘ฃ๐‘– ,๐›ผ (๐‘ฅ)๐ž๐’ŠโŠ—๐ž๐›ผ

= [๐ž1 ๐ž2 ๐ž3]

(

๐œ•๐‘ฃ1๐œ•๐‘ฅ1

๐œ•๐‘ฃ1๐œ•๐‘ฅ2

๐œ•๐‘ฃ1๐œ•๐‘ฅ3

๐œ•๐‘ฃ2๐œ•๐‘ฅ1

๐œ•๐‘ฃ2๐œ•๐‘ฅ2

๐œ•๐‘ฃ2๐œ•๐‘ฅ3

๐œ•๐‘ฃ3๐œ•๐‘ฅ1

๐œ•๐‘ฃ3๐œ•๐‘ฅ2

๐œ•๐‘ฃ3๐œ•๐‘ฅ3)

โŠ—(

๐ž1๐ž2๐ž3)

For a tensor field ๐“(๐ฑ), the gradient can be obtained in the same way:

grad ๐“(๐ฑ) = (๐‘‡๐‘–๐‘—(๐ฑ)๐ž๐’ŠโŠ—๐ž๐‘—),๐›ผโŠ—๐ž๐›ผ

= ๐‘‡๐‘–๐‘—,๐›ผ (๐ฑ)๐ž๐’ŠโŠ—๐ž๐‘—โŠ—๐ž๐›ผ

which is a third-order tensor containing 27 terms. Each set of nine terms can be written out as

we have done for the tensor gradient of a vector-valued field above.

Page 19: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

19

Now, a temperature field is a scalar field. The forgoing shows that the gradient of such a filed is

a vector field on its own. A velocity field is a vector field. Gradient of such a field is a second-order

tensor. This is a well-known field called Velocity Gradient.

The Divergence

Gradients of objects larger than scalar are at least second-order tensors. Such derived fields can

be contracted in the following way by taking the trace of the last two bases (when they are more

than two.) Such a contraction is called the divergence, not of the derived field, but of the original

field.

Temperature and other scalar fields cannot have divergence because their gradients are vectors

and therefore cannot be contracted (you cannot take the trace). The gradient of a vector field

such as the Velocity Gradient, can only be contracted in one way (has only one possible trace).

Gradients of larger objects such as tensor fields can be contracted (traced) in more than one way:

In that case, the disambiguation rule for contraction to obtain a divergence is to contract with

the basis that came from the derivative. For example,

grad ๐ฏ(๐ฑ) = ๐‘ฃ๐‘– ,๐›ผ (๐‘ฅ)๐ž๐’ŠโŠ—๐ž๐›ผ. The divergence of the same field is

div ๐ฏ(๐ฑ) = tr grad ๐ฏ(๐ฑ)

= ๐‘ฃ๐‘–,๐›ผ (๐‘ฅ)๐ž๐’Š โ‹… ๐ž๐›ผ = ๐‘ฃ๐‘– ,๐›ผ (๐‘ฅ)๐›ฟ๐‘–๐›ผ

= ๐‘ฃ๐‘–,๐‘– (๐‘ฅ) =๐œ•๐‘ฃ๐‘–(๐ฑ)

๐œ•๐‘ฅ๐‘–

=๐œ•๐‘ฃ1(๐ฑ)

๐œ•๐‘ฅ1+๐œ•๐‘ฃ2(๐ฑ)

๐œ•๐‘ฅ2+๐œ•๐‘ฃ3(๐ฑ)

๐œ•๐‘ฅ3

Similarly, for the tensor, ๐“(๐ฑ), the divergence,

div ๐“(๐ฑ) = tr grad ๐“(๐ฑ)

= ๐‘‡๐‘–๐‘—,๐›ผ (๐ฑ)๐ž๐’Š(๐ž๐‘— โ‹… ๐ž๐›ผ)

= ๐‘‡๐‘–๐‘—,๐›ผ (๐ฑ)๐ž๐’Š๐›ฟ๐‘—๐›ผ = ๐‘‡๐‘–๐‘— ,๐‘— (๐ฑ)๐ž๐‘–

= (๐œ•๐‘‡11๐œ•๐‘ฅ1

+๐œ•๐‘‡12๐œ•๐‘ฅ2

+๐œ•๐‘‡13๐œ•๐‘ฅ3

) ๐ž1 + (๐œ•๐‘‡21๐œ•๐‘ฅ1

+๐œ•๐‘‡22๐œ•๐‘ฅ2

+๐œ•๐‘‡23๐œ•๐‘ฅ3

) ๐ž2 + (๐œ•๐‘‡31๐œ•๐‘ฅ1

+๐œ•๐‘‡32๐œ•๐‘ฅ2

+๐œ•๐‘‡33๐œ•๐‘ฅ3

) ๐ž3

Page 20: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

20

The Laplacian or โ€œgrad squaredโ€.

If we take the gradient of a scalar twice, we obtain a second order tensor. The trace of this field

creates the well know Laplacian operator wrongly called grad square. The square of the gradient

of a scalar is the tensor of order 2 from which the trace is taken. The Laplacian is a scalar operator

that appears frequently in the governing equations of many systems. Let us find the expression

for this for a typical scalar field.

You will recall that, for a scalar field, ๐œ™(๐ฑ),

grad ๐œ™(๐ฑ) =๐œ•๐œ™(๐ฑ)

๐œ•๐‘ฅ๐‘–๐ž๐‘– = ๐œ™,๐‘– ๐ž๐‘–.

Taking the gradient of this expression a second time, we have,

grad grad ๐œ™(๐ฑ) = (๐œ™,๐‘– ๐ž๐‘–),๐’‹โŠ—๐ž๐’‹ = ๐œ™,๐‘–๐‘— ๐ž๐‘–โŠ—๐ž๐’‹

The trace of this tensor can be found by contracting the dyad bases:

ฮ”๐œ™(๐ฑ) = tr grad grad ๐œ™(๐ฑ) = ๐œ™,๐‘–๐‘— ๐ž๐‘– โ‹… ๐ž๐’‹

= ๐œ™,๐‘–๐‘— ๐›ฟ๐‘–๐‘— = ๐œ™,๐‘–๐‘–

=๐œ•2๐œ™(๐ฑ)

๐œ•๐‘ฅ12 +

๐œ•2๐œ™(๐ฑ)

๐œ•๐‘ฅ22 +

๐œ•2๐œ™(๐ฑ)

๐œ•๐‘ฅ32 .

The trace of the double gradient of any field can be taken in this way. The observation one can

make here is that while gradient raise the order of its operand by one, divergence decreases its

own by one while the Laplacian operation makes no order change. As an example, grad ๐ฏ(๐ฑ) =

๐‘ฃ๐‘– ,๐‘— (๐‘ฅ)๐ž๐’ŠโŠ—๐ž๐‘— so that,

grad grad ๐ฏ(๐ฑ) = ๐‘ฃ๐‘– ,๐‘—๐‘˜ (๐‘ฅ)๐ž๐’ŠโŠ—๐ž๐‘—โŠ—๐ž๐‘˜

so that, the Laplacian of ๐ฏ(๐ฑ) is,

ฮ”๐ฏ(๐ฑ) = tr grad grad ๐ฏ(๐ฑ)

= ๐‘ฃ๐‘– ,๐‘—๐‘˜ (๐‘ฅ)๐ž๐’Š๐›ฟ๐‘—๐‘˜ = ๐‘ฃ๐‘– ,๐‘—๐‘— (๐‘ฅ)๐ž๐’Š

= (๐œ•2๐‘ฃ1

๐œ•๐‘ฅ12 +

๐œ•2๐‘ฃ1

๐œ•๐‘ฅ22 +

๐œ•2๐‘ฃ1

๐œ•๐‘ฅ32 )๐ž1 + (

๐œ•2๐‘ฃ2

๐œ•๐‘ฅ12 +

๐œ•2๐‘ฃ2

๐œ•๐‘ฅ22 +

๐œ•2๐‘ฃ2

๐œ•๐‘ฅ32 )๐ž2 + (

๐œ•2๐‘ฃ3

๐œ•๐‘ฅ12 +

๐œ•2๐‘ฃ3

๐œ•๐‘ฅ22 +

๐œ•2๐‘ฃ3

๐œ•๐‘ฅ32 )๐ž3

We can continue and find the trace of grad gradโ€ข of a tensor object. The process is similar and

the result of the trace, to give the Laplacian, will also be a tensor of the same order.

Page 21: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

21

Curl of Vector and Tensor Fields.

The third-order alternating tensor, ๐“” โ‰ก ๐‘’๐‘–๐‘—๐‘˜๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜ was introduced in the last chapter.

Compositions of this tensor with vectors and other tensors yield some useful constructs in

Continuum Mechanics. We have already seen its action resulting in the axial vector for a skew

tensor. We are about see that the well-known curl of vectors and tensors can be neatly defined

by the divergence of products with this tensor.

1. Curl of a vector. Given any vector ๐ฎ(๐‘ฅ) = ๐‘ข๐›ผ(๐‘ฅ)๐ž๐›ผ, the second-order tensor, the

composition ๐“”๐ฎ is skew and is the transpose of the vector cross of ๐ฎ.

๐“”๐ฎ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐›ผ(๐‘ฅ)(๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜)๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐›ผ(๐‘ฅ)(๐ž๐‘–โŠ—๐ž๐‘—)๐ž๐‘˜ โ‹… ๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐›ผ(๐‘ฅ)(๐ž๐‘–โŠ—๐ž๐‘—)๐›ฟ๐‘˜๐›ผ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜(๐‘ฅ)(๐ž๐‘–โŠ—๐ž๐‘—)

Gradient of ๐“”๐ฎ is,

grad(๐“”๐ฎ) = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜ ,๐›ผ (๐‘ฅ)๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐›ผ

And the trace gives us the divergence,

curl ๐ฎ โ‰ก div(๐“”๐ฎ) = tr grad(๐“”๐ฎ)

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐›ผ ๐ž๐‘–(๐ž๐‘— โ‹… ๐ž๐›ผ)

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘— ๐ž๐‘–

= (

๐ž1 ๐ž2 ๐ž3๐œ•

๐œ•๐‘ฅ1

๐œ•

๐œ•๐‘ฅ2

๐œ•

๐œ•๐‘ฅ3๐‘ข1 ๐‘ข2 ๐‘ข3

)

which is the curl of the vector field ๐ฎ(๐‘ฅ). The curl of a vector has zero divergence:

grad curl ๐ฎ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘—๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

The trace of this expression,

div curl ๐ฎ = tr grad curl ๐ฎ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘—๐‘™ ๐ž๐‘– โ‹… ๐ž๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘—๐‘™ ๐›ฟ๐‘–๐‘™ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘—๐‘–

= 0

2. Curl of a Tensor Field. Given a tensor ๐“(๐ฑ) = (๐‘‡๐‘–๐‘—(๐ฑ)๐ž๐’ŠโŠ—๐ž๐‘—), the composition,

๐“๐“” = (๐‘‡๐›ผ๐›ฝ(๐ฑ)๐ž๐›ผโŠ—๐ž๐›ฝ)(๐‘’๐‘–๐‘—๐‘˜๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜)

= (๐‘‡๐›ผ๐›ฝ(๐ฑ)๐‘’๐‘–๐‘—๐‘˜๐žฮฑโŠ—๐ž๐‘—โŠ—๐ž๐‘˜)๐›ฟ๐›ฝ๐‘–

Page 22: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

22

= ๐‘‡๐›ผ๐‘–๐‘’๐‘–๐‘—๐‘˜๐ž๐›ผโŠ—๐ž๐‘—โŠ—๐ž๐‘˜

This third-order tensor, ๐‘‡๐›ผ๐‘–๐‘’๐‘–๐‘—๐‘˜๐ž๐›ผโŠ—๐ž๐‘—โŠ—๐ž๐‘˜ is skew in two of its indices ๐‘— and ๐‘˜. The

transpose of the divergence of this tensor is

curl ๐“(๐ฑ) = (div ๐“๐“”)T

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= (๐ž1 ๐ž2 ๐ž3)

(

๐œ•๐‘‡13๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡12๐œ•๐‘ฅ3

๐œ•๐‘‡23๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡22๐œ•๐‘ฅ3

๐œ•๐‘‡33๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡32๐œ•๐‘ฅ3

๐œ•๐‘‡11๐œ•๐‘ฅ3

โˆ’๐œ•๐‘‡13๐œ•๐‘ฅ1

๐œ•๐‘‡21๐œ•๐‘ฅ3

โˆ’๐œ•๐‘‡23๐œ•๐‘ฅ1

๐œ•๐‘‡31๐œ•๐‘ฅ3

โˆ’๐œ•๐‘‡33๐œ•๐‘ฅ1

๐œ•๐‘‡12๐œ•๐‘ฅ1

โˆ’๐œ•๐‘‡11๐œ•๐‘ฅ2

๐œ•๐‘‡22๐œ•๐‘ฅ1

โˆ’๐œ•๐‘‡21๐œ•๐‘ฅ2

๐œ•๐‘‡32๐œ•๐‘ฅ1

โˆ’๐œ•๐‘‡31๐œ•๐‘ฅ2 )

โŠ—(

๐ž1 ๐ž2 ๐ž3

)

The curl of a symmetric tensor is traceless:

tr curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘– โ‹… ๐ž๐›ผ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–๐‘˜,๐‘—

which vanishes when ๐“ is symmetric.

Show that for a constant vector ๐ฌ, curl ๐“T๐ฌ = (curl ๐“)๐ฌ

๐“(๐ฑ) = ๐‘‡๐‘–๐‘—(๐ฑ)๐ž๐‘–โŠ—๐ž๐‘—

๐“T๐ฌ = (๐‘‡๐‘—๐‘–๐ž๐’ŠโŠ—๐ž๐‘—)๐‘ ๐›ผ๐ž๐›ผ = ๐‘‡๐‘—๐‘–๐‘ ๐‘—๐ž๐‘– = ๐‘‡๐›ผ๐‘˜๐‘ ๐›ผ๐ž๐‘˜

Curl of this vector is,

๐‘’๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜๐‘ ๐›ผ),๐‘— ๐ž๐‘– = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘ ๐›ผ๐ž๐‘–

since ๐ฌ is a constant vector. For the tensor ๐“ = ๐‘‡๐‘–๐‘—๐ž๐‘–โŠ—๐ž๐‘— itself, we have that, curl ๐“ =

๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ. Hence,

(curl ๐“)๐ฌ = (๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ)๐‘ ๐›ฝ๐ž๐›ฝ

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐‘ ๐›ผ๐ž๐‘–

So that curl ๐“T๐ฌ = (curl ๐“)๐ฌ as required. Note that this relationship is often used as the

definition of the curl of a second-order tensor.

Integral Field Theorems

Integral field theorems are needed to derive the governing equations of continua. The most

relevant results, known by several names in the Literature, are often associated with the names

of Stokes, Green and Gauss. These theorems are related to one another in several ways. Our

Page 23: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

23

practical uses are emphasized here rather than establishment of proofs that are available in

mathematical texts. We begin with Stokes Theorem:

Stokesโ€™ Theorem

Consider a surface with a boundary curve as shown in the

picture. The outward drawn normal, ๐ง, is in such a way that

a traversal of the boundary curve in the direction shown

keeps the surface on the left-hand side. Such a surface is

said to be positively oriented. Stokes theorem relates the

integral of the curl of a vector or tensor field over this

surface ๐’ฎ in the Euclidean Point Space to the line integral of

the vector field ๐ฏ(๐ฑ, ๐‘ก) over its boundary curve ฮ“. In this case, Stokes theorem states that, given

a positively oriented surface ๐’ฎ, and bounded as shown by a path ฮ“, the line integral,

โˆซ๐ฏ(๐ฑ, ๐‘ก) โ‹… ๐‘‘๐ฑ

ฮ“

=โˆฌ(curl ๐ฏ) โ‹… ๐‘‘๐ฌ.

๐’ฎ

That is, the line integral taken over the path shown is equal to the surface integral of the curl of

the same field over the entire surface. For tensor fields, the theorem states:

โˆซ๐“(๐ฑ, ๐‘ก) โ‹… ๐‘‘๐ฑ

ฮ“

=โˆฌ(curl ๐“)T๐‘‘๐ฌ

๐’ฎ

=โˆฌdiv๐“๐“”๐‘‘๐ฌ

๐’ฎ

where ๐“” = ๐‘’๐‘–๐‘—๐‘˜๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜. Notice that the transpose of the curl is taken in the case of the

tensor field. The curl of a vector field is a vector and admits no transpose. It is instructive to

demonstrate the meaning of these integrals by a simple computation, aided by Mathematica.

Computation Issues

The line integral in equations___ and ___ are easily computed by taking a parametrized position

vector, bound to the integration path, ๐ฑ = ๐›„(๐œƒ) along the path. We therefore have,

โˆซ๐ฏ(๐ฑ, ๐‘ก) โ‹… ๐‘‘๐›„

ฮ“

= โˆซ ๐ฏ(๐›„(๐œƒ), ๐‘ก) โ‹…๐‘‘๐›„

๐‘‘๐œƒ

๐œƒ๐ธ

๐œƒ๐ต

๐‘‘๐œƒ

As the path is traversed beginning with ๐œƒ๐ต and ending with ๐œƒ๐ธ . ๐‘‘๐›„

๐‘‘๐œƒ is the vector pointing along the

tangent to the path.

Page 24: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

24

On the RHS, we are dealing with a surface integral. For a surface parametrized by the scalars,

๐œ‰1, ๐œ‰2 if the position vector ๐(๐œ‰1, ๐œ‰2) spanning the surface as attain all possible values is

differentiated with respect to each variable, again we obtain the surface base vectors. The angle

between these vectors are NOT guaranteed to be orthogonal to each other, but their cross

product,

๐œ•๐(๐œ‰1, ๐œ‰2)

๐œ•๐œ‰1ร—๐œ•๐(๐œ‰1, ๐œ‰2)

๐œ•๐œ‰2

gives the vector in the direction normal to the surface since the two vectors, defined by the

derivatives, lie on the surface. The orientation of the surface must be checked to see if a traversal

of the path puts the right handed system is such a way that the surface normal is outward. If not,

a reversal of the cross product.

The surface integral then becomes,

โˆฌ(curl ๐ฏ) โ‹… ๐‘‘๐ฌ =

๐’ฎ

โˆซ โˆซ (curl ๐ฏ) โ‹… (๐œ•๐(๐œ‰1, ๐œ‰2)

๐œ•๐œ‰1ร—๐œ•๐(๐œ‰1, ๐œ‰2)

๐œ•๐œ‰2)

๐œ‰1๐ธ

๐œ‰1๐ต

๐œ‰2๐ธ

๐œ‰2๐ต

๐‘‘๐œ‰1๐‘‘๐œ‰2

Instead of offering a proof of this important result, we shall proceed to a simple example of a

demonstration of it involving a computation of both sides of the above expressions for the simple

vector case. Consider a closed counter-clockwise circular path, centered at the ๐‘ฅ3 -axis and

perpendicular to it on the plane ๐‘ฅ3 = 1, so that a typical position vector on it is inclined at angle

๐œƒ to the vertical as shown in figure ___. We

parametrize the path with the familiar spherical

coordinates, as ๐‘ฅ = ๐œŒ sin ๐œƒ cos๐œ™, ๐‘ฆ =

๐œŒ sin ๐œƒ sin ๐œ™ and ๐‘ง = ๐œŒ cos ๐œƒ. On the circle, only

๐œ™ varies. If we take {๐œŒ = โˆš2, ๐œƒ =๐œ‹

4}, the

parameters are that of a unit circle at 1 unit

distance along the ๐‘ฅ3axis.

The line integral of a vector field, according to

Stokes, equals that of the surface integral on a

surface with this curve as its edge.

The line integral can be computed as stated earlier;

๐›„(๐œƒ) = cos ๐œƒ ๐ž1 + sin ๐œƒ e2 + e3

Page 25: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

25

which is the position vector for all the points on this path as ๐œƒ๐ต = 0; ๐œƒ๐ธ = 2๐œ‹. Differentiating

this,

๐‘‘๐›„(๐œƒ) =๐‘‘๐›„(๐œƒ)

๐‘‘๐œƒ๐‘‘๐œƒ = (โˆ’sin ๐œƒ ๐ž1 + cos ๐œƒ ๐ž2)๐‘‘๐œƒ

For any prescribed vector field, ๐ฏ(๐ฑ, ๐‘ก) = ๐ฏ(๐›„(๐œƒ), ๐‘ก). A ๐‘€๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Žยฎ implementation of this

integral with the function,

๐ฏ(๐ฑ) = sin ๐‘ฅ ๐ž1 + (cos ๐‘ฆ + ๐‘ฅ +๐‘ฅ2

2+๐‘ฅ3

3)๐ž2 + ๐‘ง cos ๐‘ฅ cos ๐‘ฆ ๐ž3

is given here:

There at least three easy ways we can realize such a surface:

1. A flat circular region on the same plane as the path. This is the region, ๐‘ฅ12 + ๐‘ฅ2

2 โ‰ค 1, on

the plane at ๐‘ฅ3 = 1. It has the parametric equations,

๐‘ฅ1 = ๐‘Ÿ cos๐œ™, ๐‘ฅ2 = ๐‘Ÿ sin๐œ™, ๐‘ฅ3 = 1

By inspection, we can see that the normal to this plane surface is the ๐ž3 axis. However,

this can be computed directly by using equation 1.__ giving us two vectors on the

coordinate lines on the plane:

In the plane region,

Page 26: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

26

๐›™(๐‘Ÿ, ๐œ™) = ๐‘Ÿ cos๐œ™ ๐ž1 + ๐‘Ÿ sin๐œ™ ๐ž2

With ๐‘Ÿ โ‰ค 1; 0 โ‰ค ๐œ™ โ‰ค 2๐œ‹ covers the region. And the normal to the surface is

๐œ•๐›™(๐‘Ÿ, ๐œ™)

๐œ•๐‘Ÿร—๐œ•๐›™(๐‘Ÿ, ๐œ™)

๐œ•๐œ™

Since both derivatives represent vectors lying on the surface. We can now integrate the

curl of any vector field with the domain set to this plane surface.

Page 27: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

27

2. The cone surface, ๐‘ฅ32 = ๐‘ฅ1

2 + ๐‘ฅ22 given that ๐‘ฅ1

2 +

๐‘ฅ22 โ‰ค 1. The radius vectors constrained to this

region is,

๐›™(๐œŒ, ๐œ™) = ๐œŒ sin๐œ‹

4cos๐œ™ ๐ž1 + ๐œŒ sin

๐œ‹

4sin๐œ™ ๐ž2

+ ๐œŒ cos๐œ‹

4 ๐ž3

Contained within the surface for 0 โ‰ค ๐œŒ โ‰ค โˆš2, 0 โ‰ค

๐œ™ โ‰ค 2๐œ‹. Here the two surface vectors are: ๐œ•๐›™(๐œŒ,๐œ™)

๐œ•๐œ™ and

๐œ•๐›™(๐œŒ,๐œ™)

๐œ•๐œ™

The cross products of which give the normal to the surface.

Page 28: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

28

3. Lastly, we can take the sphere centered at the origin

with radius โˆš2 as shown in Figure ___. The radius

vector constrained to the surface is,

๐›™(๐œƒ, ๐œ™) = โˆš2 sin ๐œƒ cos๐œ™ ๐ž1 + โˆš2 sin ๐œƒ sin๐œ™ ๐ž2

+ โˆš2 cos ๐œƒ ๐ž3

With ๐œ‹

4โ‰ค ๐œƒ โ‰ค ๐œ‹; 0 โ‰ค ๐œ™ โ‰ค 2๐œ‹. Surface normal can

be evaluated from ๐œ•๐›™(๐œƒ,๐œ™)

๐œ•๐œƒร—๐œ•๐›™(๐œƒ ๐œ™)

๐œ•๐œ™. In the ๐‘€๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Žยฎ code below,

Computations using the three surfaces give the same value of 5๐œ‹

4 which is the same as the field

integrated over the closed path shown earlier. For hand calculations, simpler functions may be

used.

Greenโ€™s Theorem

Greenโ€™s theorem can be viewed as a two-dimensional version of the 3-D Stokes Theorem:

Given two scalar fields ๐‘ƒ1(๐‘ฅ1, ๐‘ฅ2), ๐‘ƒ2(๐‘ฅ1, ๐‘ฅ2), functions defined over a two dimensional Euclidean

Point Space, we can form the vector field,

๐ฏ(๐ฑ) = ๐‘ƒ1(๐‘ฅ1, ๐‘ฅ2)๐ž1 + ๐‘ƒ2(๐‘ฅ1, ๐‘ฅ2)๐ž2

curl ๐ฏ(๐ฑ) = (

๐ž1 ๐ž2 ๐ž3๐œ•

๐œ•๐‘ฅ1

๐œ•

๐œ•๐‘ฅ2

๐œ•

๐œ•๐‘ฅ3๐‘ƒ1(๐‘ฅ1, ๐‘ฅ2) ๐‘ƒ2(๐‘ฅ1, ๐‘ฅ2) 0

)

=๐œ•๐‘ƒ1๐œ•๐‘ฅ2

๐ž1 โˆ’๐œ•๐‘ƒ2๐œ•๐‘ฅ1

๐ž2

Page 29: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

29

From Stokes Theorem,

โˆฎ๐ฏ(๐ฑ) โ‹… ๐‘‘๐›„

ฮ“

=โˆฌ(curl ๐ฏ) โ‹… ๐‘‘๐ฌ

๐’ฎ

But ๐‘‘๐ฌ = ๐‘‘๐‘ฅ1๐ž1 + ๐‘‘๐‘ฅ2๐ž2 so that,

โˆฎ(๐‘ƒ1(๐‘ฅ1, ๐‘ฅ2)๐ž1 + ๐‘ƒ2(๐‘ฅ1, ๐‘ฅ2)๐ž2) โ‹… ๐‘‘๐›„

ฮ“

=โˆฌ (๐œ•๐‘ƒ1๐œ•๐‘ฅ2

๐ž1 โˆ’๐œ•๐‘ƒ2๐œ•๐‘ฅ1

๐ž2) โ‹… (๐‘‘๐‘ฅ1๐ž1 + ๐‘‘๐‘ฅ2๐ž2)

๐’ฎ

=โˆฌ (๐œ•๐‘ƒ1๐œ•๐‘ฅ2

๐‘‘๐‘ฅ1 โˆ’๐œ•๐‘ƒ2๐œ•๐‘ฅ1

๐‘‘๐‘ฅ2)

๐’ฎ

Gauss Divergence Theorem

The divergence theorem is central to several other results in Continuum Mechanics. It related

the volume integral of a field to the surface integral of the tensor product of the field and unit

normal. We present here a generalized form [Ogden] which states that, Gauss Divergence

Theorem

For a tensor field ๐šต, The volume integral in the region ฮฉ โŠ‚ โ„ฐ,

โˆซ(grad ๐šต)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐šตโŠ—๐งโˆ‚ฮฉ

๐‘‘๐‘ 

where ๐ง is the outward drawn normal to ๐œ•ฮฉ โ€“ the boundary of ฮฉ. The tensor product applies

when the field is of order one or higher: vectors, second and higher-order tensor. For scalars, it

degenerates, as expected, to a simple multiplication by a scalar. We will now derive several more

familiar statements of this theorem from equation ____ above:

Vector field.

Replacing the tensor with the vector field ๐Ÿ and taking the trace on both sides, remembering that

the integral operator is linear and therefore the trace of an integral equals the integral of its trace,

we have,

trโˆซ (grad ๐Ÿ)ฮฉ

๐‘‘๐‘ฃ = trโˆซ ๐ŸโŠ— ๐งโˆ‚ฮฉ

๐‘‘๐‘ 

so that,

โˆซ(div ๐Ÿ)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐Ÿ โ‹… ๐งโˆ‚ฮฉ

๐‘‘๐‘ 

Page 30: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

30

Stating that the integral of the divergence of a vector field over the volume equals the integral

over the surface of the same function with the outwardly drawn normal. Which is the usual form

of the Gauss theorem. We can proceed immediately to the form of this theorem that applies to

a scalar function:

Scalar Fields

Consider a scalar field ๐œ™ and a constant vector ๐š. We apply the vector form of the divergence

theorem to the product ๐œ™๐š:

โˆซ(div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐š โ‹… ๐ง๐œ•ฮฉ

๐‘‘๐‘  = ๐š โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

For the LHS, note that, div[๐œ™๐’‚] = tr grad[๐œ™๐’‚]

grad[๐œ™๐’‚] = (๐œ™๐‘Ž๐‘–),๐‘— ๐ž๐‘–โŠ—๐ž๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐ž๐‘–โŠ—๐ž๐‘—

The trace of which is,

๐‘Ž๐‘–๐œ™,๐‘— ๐ž๐‘– โ‹… ๐ž๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐›ฟ๐‘–๐‘— = ๐‘Ž๐‘–๐œ™,๐‘– = ๐š โ‹… grad ๐œ™

For the arbitrary constant vector ๐š, we therefore have that,

โˆซ(div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = ๐š โ‹… โˆซgrad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = ๐š โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

โˆซgrad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

Second-Order Tensors

We can apply the general form above to a second-order tensor field, ๐“(๐ฑ) = ๐‘‡๐‘–๐‘—(๐ฑ)๐ž๐’ŠโŠ—๐ž๐‘—.

Applying equation ___ as before,

โˆซ๐‘‡๐‘–๐‘—,๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘—โŠ—ฮฉ

๐ž๐‘˜๐‘‘๐‘ฃ = โˆซ ๐‘‡๐‘–๐‘—๐‘›๐‘˜๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜๐œ•ฮฉ

๐‘‘๐‘ 

Contracting, we have

โˆซ๐‘‡๐‘–๐‘—,๐‘˜ฮฉ

(๐ž๐‘–โŠ—๐ž๐‘—)๐ž๐‘˜๐‘‘๐‘ฃ = โˆซ ๐‘‡๐‘–๐‘—๐‘›๐‘˜(๐ž๐‘–โŠ—๐ž๐‘—)๐ž๐‘˜๐œ•ฮฉ

๐‘‘๐‘ 

โˆซ๐‘‡๐‘–๐‘—,๐‘˜ ๐›ฟ๐‘˜๐‘—๐ž๐‘–ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐‘‡๐‘–๐‘—๐‘›๐‘˜๐›ฟ๐‘˜๐‘—๐ž๐‘–๐œ•ฮฉ

๐‘‘๐‘ 

โˆซ๐‘‡๐‘–๐‘—,๐‘— ๐ž๐‘–ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐‘‡๐‘–๐‘—๐‘›๐‘—๐ž๐‘–๐œ•ฮฉ

๐‘‘๐‘ 

Page 31: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

31

Which is the same as,

โˆซ(div๐“)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐“๐ง๐œ•ฮฉ

๐‘‘๐‘ 

Relating the volume integral of the divergence of a tensor field to the same tensor field integrated

over the surface after being contracted with the unit normal to the boundary of the same volume.

Curvilinear Coordinates

Tensors provide a unified way to express most of the quantities and objects we come across in

Continuum Mechanics. The material objects we deal with abide in the Euclidean 3D space. For

computation purposes, we refer to this space using a global chart or a coordinate syste. Apart

from those that have ventured into the advanced topics section in each chapter, we have

restricted consideration so far to the simplest of such systems: the Cartesian System with

Orthonormal Basis Vectors (ONB).

There are oblique Cartesian coordinates that are the same as the ONB but their axes do not

necessarily meet at right angles. These oblique systems are not our main concern. The Cartesian

system is useful and easy to use. Reasons for this ease of use include

1. Base vectors meet at right angles. They are not only mutually independent as base vectors

must be, by they also do not have zero components in other base vector directions: their

scalar products with one another vanish.

2. The basis vectors are spatial constants. Remain normal to each other and always point in

the same directions at any point.

3. Because of these, derivatives of tensors expressed in terms of such bases only concern

the coefficients as the base vectors are always constants.

4. In addition to these, the position vectors in Cartesian coordinates ale linear in the

coordinate variables.

In curvilinear coordinate systems, the basis vectors are spatial variables, they are not necessarily

unit vectors and they are not necessarily orthogonal.

For the purpose of this work, we restrict attention to coordinate systems that are orthogonal.

There are very useful and practical systems that meet this criterion, for example, the Cylindrical,

spherical and spheroidal systems we have already seen are curvilinear. While they may not

Page 32: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

32

necessarily meet the normality criterion, they are orthogonal. Yet we have to cope with the fact

that the basis vectors are variables.

In the next section, we derive the derivatives of tensor fields with such varying bases. However,

it no longer necessary to go through the tedium to doing such computations unless specific

applications compels one to go through the labor.

In this section, we shall show some of the principal results and principles for working with not

Cartesian systems that obviate the necessity of going through the computation of the derivatives

with varying bases vectors.

The Covariant Derivative

We defined the gradient, in Cartesian systems as,

grad (โˆŽ) = (โˆŽ),๐›ผโŠ—๐ž๐›ผ

The comma in the above equation has been interpreted as a partial derivative thus far. The fact

is that this equation is actually valid in every coordinate system. That includes the orthogonal

curvilinear coordinates we are considering! All we will need to do is to simply change our

interpretation of this equation.

From now on, when we are referring to coordinate systems other than Cartesian, the comma

operator will be interpreted as Covariant Derivatives. The full definition of covariant derivative

is in the advanced section. However, the explanation given here should suffice:

A covariant derivative is simply one where all the terms that would have arisen from the spatial

variability of the basis vectors are already added. Consequently, when we write,

grad (โˆŽ) = (โˆŽ),๐›ผโŠ—๐ ๐›ผ

we have an expression that is valid everywhere. Specifically we can represent a second-order

tensor and write,

grad ๐“ = (๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—),๐›ผโŠ—๐ ๐›ผ = (๐‘‡ ๐‘—

๐‘– ๐ ๐‘–โŠ—๐ ๐‘—),๐›ผโŠ—๐ ๐›ผ = (๐‘‡๐‘– ๐‘—๐ ๐‘–โŠ—๐ ๐‘—),๐›ผโŠ—๐ ๐›ผ

= (๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—),๐›ผโŠ—๐ ๐›ผ

which are four different ways of expressing the same gradient in curvilinear systems, they work

exactly in the same way as the ordinary Cartesian experience with fixed vectors. The covariant

derivative has so taken care of the variability of base issues that the vector bases behave like

constants under covariant differentiation! It does it by computing extra terms, called Christoffel

Page 33: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

33

symbols, that add more terms to the expression to account for the variation of the basis vectors.

Just like in the Cartesian system, therefore, there are no further terms to worry about.

The heavy lifing therefore transfers to the computation of the covariant derivative and evaluating

the physical components of the tensor components. We do not emphasize the computations of

these things as they are easily programmed. One of the advantages of a Symbolic Algebra System

is that it facilitates such computation just for the asking! You do not need to do much

programming! A few examples will be given shortly. Remember, all you need to worry about are

the equations as they exist in Cartesian systems. With correct interpretations, they are valid in

every system. And, when you need to compute actual values for those coordinate systems, a

symbolic algebra system like ๐‘€๐‘Ž๐‘กโ„Ž๐‘’๐‘š๐‘Ž๐‘ก๐‘–๐‘๐‘Žยฉ delivers them easily.

The consequence of these is that many textbooks, including modern books devote a large

number of pages on these items that are done with completeness by software to an extent far

beyond what can reasonable be placed in textbooks.

If there is any need (very doubtful) to compute the Christoffel symbols, they can be done by

programming also โ€“ no need for manual computations. If you want manual computations despite

all this, then read the advanced part of this chapter, the manual computations are explained

there.

Gradient Divergence and Curl in Curvilinear Coordinates.

In this section we will show how to find these differential operations in the common systems of

Cylindrical, Spherical and Oblate Spheroidal systems. The extension to any popular coordinate

system is immediate. Furthermore, you will see that Mathematica allows you to define a

completely new coordinate system by yourself. And, if your definition is correctly specified to it,

it will compute all the differential operators you need for you!

Gradient is easy to compute manually and we will do so right away:

For a scalar field, ๐œ“(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3), in Cartesian coordinates, we already know that,

grad ๐œ“ =๐œ•๐œ“

๐œ•๐‘ฅ1๐ž1 +

๐œ•๐œ“

๐œ•๐‘ฅ2๐ž2 +

๐œ•๐œ“

๐œ•๐‘ฅ3๐ž3

The same expression can be obtained in cylindrical coordinates by observing that, in that system,

the position vector is,

Page 34: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

34

๐ซ = ๐‘Ÿ cos๐œ™ ๐ž1 + ๐‘Ÿ sin๐œ™ ๐ž2 + ๐‘ง๐ž๐‘ง = ๐‘Ÿ๐ž๐‘Ÿ + ๐‘ง๐ž๐‘ง

๐ ๐Ÿ =๐œ•๐ซ

๐œ•๐‘Ÿ= ๐ž๐‘Ÿ; ๐ ๐Ÿ =

๐œ•๐ซ

๐œ•๐œ™= ๐‘Ÿ๐ž๐œ™; ๐ ๐Ÿ‘ =

๐œ•๐ซ

๐œ•๐‘ง= ๐ž๐‘ง

The natural basis vectors,

๐ ๐’Š โ‰ก๐œ•๐ซ

๐œ•๐œ‰๐‘–

Obtained by differentiating the position vector with respect to the coordinates ๐œ‰๐‘– in this case,

๐œ‰1 = ๐‘Ÿ, ๐œ‰2 = ๐œƒ and ๐œ‰3 = ๐‘ง, are all unit vectors except the middle one. Suppose we did not know

that. What we will need to do for each system, to get the physically consistent gradient in physical

components, we need to divide each term by the magnitude of each basis vector. In this case

therefore,

โ„Ž1 = โˆš๐ 1 โ‹… ๐ 1 = 1

โ„Ž2 = โˆš๐ 2 โ‹… ๐ 2 = ๐‘Ÿ ๐‘Ž๐‘›๐‘‘

โ„Ž2 = โˆš๐ ๐Ÿ‘ โ‹… ๐ 3 = 1

If we write, ๐ โ€ฒ๐›ผ, ๐›ผ = 1,2,3 as the normalized basis vectors in the curvilinear system, the gradient

is therefore,

grad (๐œ“) = โˆ‘1

โ„Ž๐›ผ(๐œ“),๐›ผโŠ—๐ โ€ฒ๐›ผ

3

๐›ผ=1

=1

โ„Ž1

๐œ•๐œ“

๐œ•๐œ‰1 ๐ โ€ฒ1 +

1

โ„Ž2

๐œ•๐œ“

๐œ•๐œ‰2 ๐ โ€ฒ2 +

1

โ„Ž3

๐œ•๐œ“

๐œ•๐œ‰3 ๐ โ€ฒ3

=๐œ•๐œ“

๐œ•๐‘Ÿ ๐ž๐‘Ÿ +

1

๐‘Ÿ

๐œ•๐œ“

๐œ•๐‘Ÿ ๐ž๐œƒ +

๐œ•๐œ“

๐œ•๐œ‰3 ๐ž๐‘ง .

Notice again, the summation convention cannot be used here, hence we revert to the regular

nomenclature and use summation directly. This is the gradient in the normalized natural bases.

Observe that we have re-introduces the summation symbol in the above computation to avoid

breaking the summation convention. Furthermore, we have just dealt with a scalar field. For such

a field, the covariant derivative coincides with the partial derivatives. Hence all we need do here

is to normalize the basis vectors and divide by the magnitude of the basis vectors to obtain the

physically consistent tensor expression.

In Spherical coordinates, with no further ado,

Page 35: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

35

We can write:

grad (๐œ“) =1

โ„Ž1

๐œ•๐œ“

๐œ•๐œ‰1 ๐ โ€ฒ1 +

1

โ„Ž2

๐œ•๐œ“

๐œ•๐œ‰2 ๐ โ€ฒ2 +

1

โ„Ž3

๐œ•๐œ“

๐œ•๐œ‰3 ๐ โ€ฒ3

=๐œ•๐œ“

๐œ•๐œŒ ๐ž๐œŒ +

1

๐œŒ

๐œ•๐œ“

๐œ•๐œƒ ๐ž๐œƒ +

1

๐œŒ sin ๐œƒ

๐œ•๐œ“

๐œ•๐œ™ ๐ž๐œ™.

To find the gradient in any coordinate systems is simply to invoke the command as follows:

Comparing the above output to the previous result, it is obvious that, in Cylindrical coordinates,

๐œ•๐œ“

๐œ•๐‘Ÿ= ๐œ“(1,0,0)(๐‘Ÿ, ๐œƒ, ๐‘ง),

๐œ•๐œ“

๐œ•๐œƒ= ๐œ“(0,1,0)(๐‘Ÿ, ๐œƒ, ๐‘ง),

๐œ•๐œ“

๐œ•๐‘ง= ๐œ“(0,0,1)(๐‘Ÿ, ๐œƒ, ๐‘ง)

And that the result is given in lists with the understanding that we are referring to the normalized

basis vectors in each case.

Gradient of a vector

The gradient f a vector is a tensor. To compute it manually, we will have to carry out the covariant

derivative with the attendant Christoffel symbols. How about doing it by simply writing the

function on the Mathematica Notebook as follows?

Page 36: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

36

You are able to get any vector operation on a tensor function with such simple commands.

Examples

3.1 Given that ๐›ผ(๐‘ก) โˆˆ โ„, ๐ฎ(๐‘ก), ๐ฏ(๐‘ก) โˆˆ ๐”ผ, and ๐’(๐‘ก), ๐“(๐‘ก) โˆˆ ๐•ƒ, are all functions of a

scalar variable ๐‘ก, show that (๐‘Ž)๐‘‘

๐‘‘๐‘ก(๐›ผ๐ฎ) = ๐›ผ

๐‘‘๐ฎ

๐‘‘๐‘ก+๐‘‘๐›ผ

๐‘‘๐‘ก๐ฎ, (๐‘)

๐‘‘

๐‘‘๐‘ก(๐ฎ โ‹… ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กโ‹…

๐ฏ + ๐ฎ โ‹…๐‘‘๐ฏ

๐‘‘๐‘ก, (๐‘)

๐‘‘

๐‘‘๐‘ก(๐ฎ ร— ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กร— ๐ฏ + ๐ฎ ร—

๐‘‘๐ฏ

๐‘‘๐‘ก, and (๐‘‘)

๐‘‘

๐‘‘๐‘ก(๐ฎโŠ— ๐ฏ) =

๐‘‘๐ฎ

๐‘‘๐‘กโŠ—๐ฏ+

๐ฎโŠ—๐‘‘๐ฏ

๐‘‘๐‘ก

๐‘‘

๐‘‘๐‘ก(๐ฎโŠ— ๐ฏ) = lim

โ„Žโ†’0

๐ฎ(๐‘ก + โ„Ž) โŠ— ๐ฏ(๐‘ก + โ„Ž) โˆ’ ๐ฎ(๐‘ก) โŠ— ๐ฏ(๐‘ก)

๐‘ก

= limโ„Žโ†’0

๐ฎ(๐‘ก + โ„Ž)โŠ—๐ฏ(๐‘ก + โ„Ž) โˆ’ ๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก + โ„Ž)+๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก + โ„Ž)โˆ’๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก)

๐‘ก

= limโ„Žโ†’0

๐ฎ(๐‘ก + โ„Ž)โŠ—๐ฏ(๐‘ก + โ„Ž) โˆ’ ๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก + โ„Ž)

๐‘ก

+ limโ„Žโ†’0

๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก + โ„Ž)โˆ’๐ฎ(๐‘ก)โŠ—๐ฏ(๐‘ก)

๐‘ก

= (limโ„Žโ†’0

๐ฎ(๐‘ก + โ„Ž) โˆ’ ๐ฎ(๐‘ก)

๐‘ก)โŠ— (lim

โ„Žโ†’0๐ฏ(๐‘ก + โ„Ž)) + ๐ฎ(๐‘ก)

โŠ— limโ„Žโ†’0

๐ฏ(๐‘ก + โ„Ž)โˆ’โŠ—๐ฏ(๐‘ก)

๐‘ก

=๐‘‘๐ฎ๐‘‘๐‘กโŠ— ๐ฏ+๐ฎโŠ—

๐‘‘๐ฏ๐‘‘๐‘ก.

3.2 Given that ๐›ผ(๐‘ก) โˆˆ โ„, ๐ฎ(๐‘ก), ๐ฏ(๐‘ก) โˆˆ ๐”ผ, and ๐’(๐‘ก), ๐“(๐‘ก) โˆˆ ๐•ƒ, are all functions of a

scalar variable ๐‘ก, show that (๐‘Ž)๐‘‘

๐‘‘๐‘ก(๐“ + ๐’) =

๐‘‘๐“

๐‘‘๐‘ก+๐‘‘๐’

๐‘‘๐‘ก, (๐‘)

๐‘‘

๐‘‘๐‘ก๐“๐’ =

๐‘‘๐“

๐‘‘๐‘ก๐’ +

๐“๐‘‘๐’

๐‘‘๐‘ก, (๐‘)

๐‘‘

๐‘‘๐‘ก(๐“๐ฎ) =

๐‘‘๐“

๐‘‘๐‘ก๐ฎ + ๐“

๐‘‘๐ฎ

๐‘‘๐‘ก, and (๐‘‘)

๐‘‘

๐‘‘๐‘ก๐’T = (

๐‘‘๐’

๐‘‘๐‘ก)T

b ๐‘‘

๐‘‘๐‘ก(๐’๐“) = lim

โ„Žโ†’0

๐’(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)๐“(๐‘ก)

๐‘ก

= limโ„Žโ†’0

๐’(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)๐“(๐‘ก + โ„Ž) + ๐’(๐‘ก)๐“(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)๐“(๐‘ก)

๐‘ก

Page 37: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

37

= limโ„Žโ†’0

๐’(๐‘ก + โ„Ž)๐“(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)๐“(๐‘ก + โ„Ž)

๐‘ก+ limโ„Žโ†’0

๐’(๐‘ก)๐“(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)๐“(๐‘ก)

๐‘ก

= (limโ„Žโ†’0

๐’(๐‘ก + โ„Ž) โˆ’ ๐’(๐‘ก)

๐‘ก) (lim

โ„Žโ†’0๐“(๐‘ก + โ„Ž)) + ๐’(๐‘ก) lim

โ„Žโ†’0

๐“(๐‘ก + โ„Ž) โˆ’ ๐“(๐‘ก)

๐‘ก

=๐‘‘

๐‘‘๐‘ก(๐’๐“) =

๐‘‘๐’

๐‘‘๐‘ก๐“ + ๐’

๐‘‘๐“

๐‘‘๐‘ก.

3.3 Given that ๐(๐‘ก)๐T(๐‘ก) = ๐ˆ, the identity tensor, show (๐‘Ž) that ๐‘‘๐

๐‘‘๐‘ก๐T is an

antisymmetric tensor, and (๐‘) that ๐T๐‘‘๐

๐‘‘๐‘ก is an antisymmetric tensor

Differentiating ๐๐T = ๐ˆ,

๐‘‘

๐‘‘๐‘ก(๐๐T) =

๐‘‘๐๐‘‘๐‘ก๐T +๐

๐‘‘๐T

๐‘‘๐‘ก=๐‘‘๐ˆ๐‘‘๐‘ก= ๐Ž

Consequently,

๐‘‘๐๐‘‘๐‘ก๐T = โˆ’๐

๐‘‘๐T

๐‘‘๐‘ก= โˆ’(

๐‘‘๐๐‘‘๐‘ก๐T)

T

So we have that the tensor ๐“ =๐‘‘๐

๐‘‘๐‘ก๐T is negative of its own transpose, hence it is skew.

๐๐T = ๐ˆ = ๐T๐

Differentiating as before,

๐‘‘

๐‘‘๐‘ก(๐T๐) =

๐‘‘๐T

๐‘‘๐‘ก๐+๐T

๐‘‘๐๐‘‘๐‘ก= ๐Ž

So that,

๐‘‘๐T

๐‘‘๐‘ก๐ = (๐T

๐‘‘๐๐‘‘๐‘ก)

T

= โˆ’๐T๐‘‘๐๐‘‘๐‘ก

Tensor ๐“ = ๐T๐‘‘๐

๐‘‘๐‘ก is negative of its own transpose, hence skew as required.

3.4 Show that ๐‘‘

๐‘‘๐‘บ tr (๐’๐‘˜) = ๐‘˜(๐‘บ๐‘˜โˆ’1)๐‘‡

Page 38: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

38

The cases, ๐‘˜ = 1, ๐‘˜ = 2 are already provided in the text. When ๐‘˜ = 3,

๐ท๐‘“(๐’, ๐‘‘๐’) =๐‘‘

๐‘‘๐›ผ๐‘“(๐’ + ๐›ผ๐‘‘๐’)|

๐›ผ=0 =๐‘‘

๐‘‘๐›ผtr{(๐’ + ๐›ผ๐‘‘๐’)3}|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr{(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)}|

๐›ผ=0

= tr [๐‘‘

๐‘‘๐›ผ(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)]|

๐›ผ=0

= tr[๐‘‘๐’(๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’) + (๐’ + ๐›ผ๐‘‘๐’)๐‘‘๐’(๐’ + ๐›ผ๐‘‘๐’)

+ (๐’ + ๐›ผ๐‘‘๐’)(๐’ + ๐›ผ๐‘‘๐’)๐‘‘๐’]|๐›ผ=0

= tr[๐‘‘๐’ ๐’ ๐’ + ๐’ ๐‘‘๐’ ๐’ + ๐’ ๐’ ๐’…๐’] = 3(๐’2)๐‘‡: ๐‘‘๐’

It easily follows by induction that, ๐‘‘

๐‘‘๐’ ๐‘“(๐’) = ๐‘˜(๐’๐‘˜โˆ’1)T.

3.5 Define the magnitude of tensor ๐€ as, |๐€| = โˆštr(๐€๐€T) Show that โˆ‚|๐€|

โˆ‚๐€=

๐€

|๐€|

Given a scalar ๐›ผ variable, the derivative of a scalar function of a tensor ๐‘“(๐‘จ) is

๐œ•๐‘“(๐€)

๐œ•๐€: ๐ = lim

๐›ผโ†’0

๐œ•

๐œ•๐›ผ๐‘“(๐€ + ๐›ผ๐)

for any arbitrary tensor ๐.

In the case of ๐‘“(๐€) = |๐€|,

๐œ•|๐€|

๐œ•๐€: ๐ = lim

๐›ผโ†’0

๐œ•

๐œ•๐›ผ|๐€ + ๐›ผ๐|

|๐€ + ๐›ผ๐| = โˆštr(๐€ + ๐›ผ๐)(๐€ + ๐›ผ๐)T = โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)

Note that everything under the root sign here is scalar and that the trace operation is

linear. Consequently, we can write,

lim๐›ผโ†’0

๐œ•

๐œ•๐›ผ|๐€ + ๐›ผ๐| = lim

๐›ผโ†’0

tr (๐๐€T) + tr (๐€๐T) + 2๐›ผ tr (๐๐T)

2โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)=2๐€:๐

2โˆš๐€:๐€=๐€

|๐€|: ๐

So that,

๐œ•|๐€|

๐œ•๐€: ๐ =

๐€

|๐€|: ๐

or,

๐œ•|๐€|

๐œ•๐€=๐€

|๐€|

Page 39: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

39

as required since ๐ is arbitrary.

3.6 Without breaking down into components, use Liouvilleโ€™s theorem, โˆ‚

โˆ‚๐›ผdet(๐“) =

det(๐“) tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’๐Ÿ), to establish the fact that ๐œ•det(๐“)

๐œ•๐“= ๐“๐’„

Start from Liouvilleโ€™s Theorem, given a scalar parameter such that ๐“ = ๐“(๐›ผ),

๐œ•

๐œ•๐›ผ(det ๐“) = det ๐“ tr [(

๐œ•๐“

๐œ•๐›ผ)๐“โˆ’1] = [(det ๐“)๐“โˆ’T]: (

๐œ•๐“

๐œ•๐›ผ)

By the chain rule,

๐œ•

๐œ•๐›ผ(det ๐“) = [

๐œ•

๐œ•๐“(det ๐“)]: (

๐œ•๐“

๐œ•๐›ผ)

It therefore follows that,

[๐œ•

๐œ•๐“(det ๐“) โˆ’ [(det ๐“)๐“โˆ’T]]: (

๐œ•๐“

๐œ•๐›ผ) = 0

Hence

๐œ•

๐œ•๐“(det ๐“) = (det ๐“)๐“โˆ’๐“ = ๐“c

3.7 If ๐“ is invertible, show that โˆ‚

โˆ‚๐“(log det(๐“)) = ๐“โˆ’๐“

โˆ‚

โˆ‚๐“(log det ๐“) =

โˆ‚(log det ๐“)

โˆ‚ det ๐“ โˆ‚ det ๐“

โˆ‚๐“

=1

det ๐“๐“c =

1

det ๐“(det ๐“)๐“โˆ’T

= ๐“โˆ’T

3.8 Use Caley-Hamilton theorem to express the third invariant in terms of traces

only (b) Use this result and the fact that ๐’c = (๐’2 โˆ’ ๐ผ1๐’ + ๐ผ2๐ˆ)T (2.19)to

show that the derivative of the determinant is the cofactor.

๐’‚ Given a tensor ๐’, by Cayley Hamilton theorem,

๐’3 โˆ’ ๐ผ1๐’2 + ๐ผ2๐’ โˆ’ ๐ผ3 = 0

Note that ๐ผ1 = ๐ผ1(๐’), ๐ผ2 = ๐ผ2(๐’) ๐‘Ž๐‘›๐‘‘ ๐ผ3 = ๐ผ3(๐’) the first, second and third invariants of ๐‘บ

are all scalar functions of the tensor ๐’. Taking the trace of the above equation,

Page 40: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

40

๐ผ1(๐’3) = ๐ผ1(๐’)๐ผ1(๐’

2) โˆ’ ๐ผ2(๐’)๐ผ1(๐’) + 3๐ผ3(๐’)

= ๐ผ1(๐’)(๐ผ12(๐’) โˆ’ 2๐ผ2(๐’)) โˆ’ ๐ผ1(๐’)๐ผ2(๐’) + 3๐ผ3(๐’)

= ๐ผ13(๐’) โˆ’ 3๐ผ1(๐’)๐ผ2(๐’) + 3๐ผ3(๐’)

Or,

๐ผ3(๐’) =1

3(๐ผ1(๐’

3) โˆ’ ๐ผ13(๐’) + 3๐ผ1(๐’)๐ผ2(๐’))

=1

3(๐ผ1(๐’

3) โˆ’ ๐ผ13(๐’) +

3

2๐ผ1(๐’)(๐ผ1

2(๐’) โˆ’ ๐ผ1(๐’2)))

=1

6(2๐ผ1(๐’

3) + ๐ผ13(๐’) โˆ’ 3๐ผ1(๐’)๐ผ1(๐’

2))

which show that the third invariant is itself expressible in terms of traces only. It is

therefore invariant in value as a result of coordinate transformation.

๐’ƒ Taking the Frรฉchet derivative of the third invariant expression above, noting that

๐‘‘

๐‘‘๐‘บ tr (๐’๐‘˜) = ๐‘˜(๐’๐‘˜โˆ’1)T

6๐œ•

๐œ•๐’๐ผ3(๐’) = 6๐’

2T + 3๐ผ12(๐’)๐ˆ โˆ’ 6๐ผ1(๐’)๐’

T โˆ’ 3๐ผ1(๐’2)๐ˆ

so that

๐œ•

๐œ•๐’๐ผ3(๐’) = ๐’

2T โˆ’ ๐ผ12(๐’)๐ˆ + ๐ˆ๐ผ2(๐’) + 3๐ผ1(๐’)(๐ผ1(๐’)๐ˆ โˆ’ ๐’

T)

= (๐’2 โˆ’ ๐ผ1(๐’)๐’+๐ผ2(๐’)๐ˆ)T

= ๐’c

3.9 If ๐“ is invertible, show that ๐‘‘

๐‘‘๐“(log det(๐“โˆ’1)) = โˆ’๐“โˆ’๐“

๐‘‘

๐‘‘๐“(log det(๐“โˆ’1)) =

๐‘‘(log det(๐“โˆ’1))

๐‘‘det(๐“โˆ’1) ๐‘‘det(๐“โˆ’1)

๐‘‘๐“โˆ’1๐‘‘๐“โˆ’1

๐‘‘๐“

= โˆ’1

det(๐“โˆ’1)๐“โˆ’c(๐“โˆ’1โŠ ๐“โˆ’T)

= โˆ’1

det(๐“โˆ’1)det(๐“โˆ’1) ๐“๐“(๐“โˆ’1โŠ ๐“โˆ’T)

= โˆ’๐“โˆ’T๐“T๐“โˆ’๐“ = โˆ’๐“โˆ’T

An easier method that does not require the evaluation of a fourth-order tensor:

Page 41: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

41

๐‘‘

๐‘‘๐“(log det(๐“โˆ’1)) =

๐‘‘(log det(๐“โˆ’1))

๐‘‘det(๐“โˆ’1) ๐‘‘ det(๐“โˆ’1)

๐‘‘det(๐“)

๐‘‘ det(๐“)

๐‘‘๐“

=1

det(๐“โˆ’1)

๐‘‘(1/det(๐“))

๐‘‘ det(๐“)๐“c

= โˆ’det(๐“)

det(๐“2)๐“๐œ

= โˆ’๐“โˆ’T

3.10 Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = ๐€T๐

First observe that tr(๐€๐’๐T) = tr(๐T๐€๐’). If we write, ๐‚ โ‰ก ๐T๐€, it is obvious from the

above that ๐œ•

๐œ•๐’tr(๐‚๐’) = ๐‚T. Therefore,

โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = (๐T๐€)๐“ = ๐€T๐

3.11 Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) = ๐T๐€

Observe that

tr(๐€๐’T๐T) = tr(๐T๐€๐’T)

= tr[๐’(๐T๐€)T]

= tr[(๐T๐€)T๐’]

[The transposition does not alter trace; neither does a cyclic permutation. Ensure you

understand why each equality here is true.] Consequently,

โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) =

โˆ‚

โˆ‚๐’ tr[(๐T๐€)T๐’] = [(๐T๐€)T]๐“ = ๐T๐€

3.12 Let ๐’ be a symmetric and positive definite tensor and let ๐ผ1(๐’), ๐ผ2(๐’)and๐ผ3(๐’)

be the three principal invariants of ๐’ show, using components, that (a)

๐œ•๐‘ฐ1(๐’)

๐œ•๐’= ๐ˆ the identity tensor, (b)

๐œ•๐‘ฐ2(๐’)

๐œ•๐’= ๐ผ1(๐’)๐ˆ โˆ’ ๐’ and (c)

๐œ•๐ผ3(๐’)

๐œ•๐’= ๐ผ3(๐’) ๐’

โˆ’1

Page 42: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

42

๐’‚ ๐œ•๐‘ฐ1(๐‘บ)

๐œ•๐‘บ can be written in the invariant component form as,

๐œ•๐ผ1(๐’)

๐œ•๐’=๐œ•๐ผ1(๐’)

โˆ‚๐‘†๐‘–๐‘—๐ž๐‘–โŠ—๐ž๐‘—

Recall that ๐ผ1(๐‘บ) = tr ๐’ = ๐‘†๐›ผ๐›ผ hence

๐œ•๐ผ1(๐’)

๐œ•๐’=๐œ•๐ผ1(๐’)

โˆ‚๐‘†๐‘–๐‘—๐ž๐‘–โŠ—๐ž๐‘— =

๐œ•๐‘†๐›ผ๐›ผโˆ‚๐‘†๐‘–๐‘—

๐ž๐‘–โŠ—๐ž๐‘—

= ๐›ฟ๐‘–๐›ผ๐›ฟ๐›ผ๐‘—๐ž๐‘–โŠ—๐ž๐‘— = ๐ˆ

which is the identity tensor as expected.

๐’ƒ ๐œ•๐ผ2(๐‘บ)

๐œ•๐‘บ in a similar way can be written in the invariant component form as,

๐œ•๐ผ2(๐’)

๐œ•๐’=1

2

๐œ•

โˆ‚๐‘†๐‘–๐‘—[๐‘†๐›ผ๐›ผ๐‘†๐›ฝ๐›ฝ โˆ’ ๐‘†๐›ผ๐›ฝ๐‘†๐›ฝ๐›ผ]๐ž๐‘–โŠ—๐ž๐‘—

where we have utilized the fact that ๐ผ2(๐’) =1

2[tr2 ๐’ โˆ’ tr ๐’2]. Consequently,

๐œ•๐ผ2(๐’)

๐œ•๐’=1

2

๐œ•

โˆ‚๐‘†๐‘–๐‘—[๐‘†๐›ผ๐›ผ๐‘†๐›ฝ๐›ฝ โˆ’ ๐‘†๐›ผ๐›ฝ๐‘†๐›ฝ๐›ผ]๐ž๐‘–โŠ—๐ž๐‘—

=1

2[๐›ฟ๐‘–๐›ผ๐›ฟ๐›ผ๐‘—๐‘†๐›ฝ๐›ฝ + ๐›ฟ๐‘–๐›ฝ๐›ฟ๐›ฝ๐‘—๐‘†๐›ผ๐›ผ โˆ’ ๐›ฟ๐›ฝ๐‘–๐›ฟ๐‘—๐›ผ๐‘†๐›ผ๐›ฝ โˆ’ ๐›ฟ๐›ผ๐‘–๐›ฟ๐‘—๐›ฝ๐‘†๐›ฝ๐›ผ]๐ž๐‘–โŠ—๐ž๐‘—

=1

2[๐›ฟ๐‘–๐‘—๐‘†๐›ฝ๐›ฝ + ๐›ฟ๐‘–๐‘—๐‘†๐›ผ๐›ผ โˆ’ ๐‘†๐‘–๐‘— โˆ’ ๐‘†๐‘—๐‘–]๐ž๐‘–โŠ—๐ž๐‘—

= ๐ผ1(๐’)๐ˆ โˆ’ ๐’

๐’„ det ๐’ =1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ, we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ž๐›ผโŠ—๐ž๐›ฝ =

1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก [

๐œ•๐‘†๐‘–๐‘Ÿ๐œ•๐‘†๐›ผ๐›ฝ

๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก๐œ•๐‘†๐›ผ๐›ฝ

] ๐ž๐›ผโŠ—๐ž๐›ฝ

=1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก[๐›ฟ๐‘–๐›ผ๐›ฟ๐‘Ÿ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘ ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜๐›ผ๐›ฟ๐‘ก๐›ฝ]๐ž๐›ผโŠ—๐ž๐›ฝ

=1

3!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก[๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก]๐ž๐›ผโŠ—๐ž๐›ฝ

=1

2!๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ž๐›ผโŠ—๐ž๐›ฝ โ‰ก [๐‘†

๐‘]๐›ผ๐›ฝ๐ž๐›ผโŠ—๐ž๐›ฝ

Which is the cofactor of [๐‘†๐›ผ๐›ฝ] or ๐‘บ

Page 43: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

43

3.13 Divergence of a product: Given that ๐œ‘ is a scalar field and ๐ฏ a vector field,

show that div(๐œ‘๐ฏ) = (grad๐œ‘) โ‹… ๐ฏ + ๐œ‘ div ๐ฏ

grad(๐œ‘๐ฏ) = (๐œ‘๐‘ฃ๐‘–),๐‘— ๐ž๐‘–โŠ—๐ž๐‘—

= ๐œ‘,๐‘— ๐‘ฃ๐‘–๐ž๐‘–โŠ—๐ž๐‘— + ๐œ‘๐‘ฃ๐‘– ,๐‘— ๐ž๐‘–โŠ—๐ž๐‘—

= ๐ฏโŠ— (grad ๐œ‘) + ๐œ‘ grad ๐ฏ

Now, div(๐œ‘๐ฏ) = tr(grad(๐œ‘๐ฏ)). Taking the trace of the above, we have:

div(๐œ‘๐ฏ) = ๐ฏ โ‹… (grad ๐œ‘) + ๐œ‘ div ๐ฏ

3.14 Show that grad(๐ฎ ยท ๐ฏ) = (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

๐ฎ ยท ๐ฏ = ๐‘ข๐‘–๐‘ฃ๐‘– is a scalar sum of components.

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ž๐‘—

= ๐‘ข๐‘–,๐‘— ๐‘ฃ๐‘–๐ž๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ž๐‘—

Now grad ๐ฎ = ๐‘ข๐‘– ,๐‘— ๐ž๐‘–โŠ—๐ž๐‘— swapping the bases, we have that,

(grad ๐ฎ)T = ๐‘ข๐‘– ,๐‘— (๐ž๐‘—โŠ—๐ž๐‘–).

Writing ๐ฏ = ๐‘ฃ๐‘˜๐ž๐‘˜, we have that,

(grad ๐ฎ)T๐ฏ = ๐‘ข๐‘–,๐‘— ๐‘ฃ๐‘˜(๐ž๐‘—โŠ—๐ž๐‘–)๐ž๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜๐ž๐‘—๐›ฟ๐‘–๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ž๐‘—

It is easy to similarly show that ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ž๐‘— = (grad ๐ฏ)T๐’–. Clearly,

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ž๐‘—

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ž๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘–,๐‘— ๐ž๐‘—

= (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

As required.

3.16 Show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad ๐ฏ โˆ’ (๐ฏ ร—)grad ๐ฎ

๐ฎ ร— ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ž๐‘–

Recall that the gradient of this vector is the tensor,

grad(๐ฎ ร— ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ž๐‘–โŠ—๐ž๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

= โˆ’๐‘’๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ž๐‘–โŠ—๐ž๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

= โˆ’ (๐ฏ ร—)grad ๐ฎ + (๐ฎ ร—)grad ๐ฏ

Page 44: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

44

3.17 Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

We already have the expression for grad(๐ฎ ร— ๐ฏ) above; remember that

div (๐ฎ ร— ๐ฏ) = tr[grad(๐ฎ ร— ๐ฏ)]

= โˆ’๐‘’๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ž๐‘– โ‹… ๐ž๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ ๐ž๐‘– โ‹… ๐ž๐‘™

= โˆ’๐‘’๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐›ฟ๐‘–๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐›ฟ๐‘–๐‘™

= โˆ’๐‘’๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

= ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

3.18 Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (grad ๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐‘’๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ž๐‘–

= ๐‘’๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜,๐‘— )๐ž๐‘–

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ž๐‘– + ๐‘’๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–

= (grad๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

3.19 Show that div (๐ฎโŠ— ๐ฏ) = (div ๐ฏ)๐ฎ + (grad ๐ฎ)๐ฏ

๐ฎโŠ— ๐ฏ is the tensor, ๐‘ข๐‘–๐‘ฃ๐‘—๐ž๐‘–โŠ—๐ž๐‘™. The gradient of this is the third order tensor,

grad (๐ฎโŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜

And by divergence, we mean the contraction of the last basis vector:

div (๐ฎโŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘˜ (๐ž๐‘–โŠ—๐ž๐‘—)๐ž๐‘˜

= (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ž๐‘–๐›ฟ๐‘—๐‘˜ = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘— ๐ž๐‘–

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘—๐ž๐‘– + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— ๐ž๐‘–

= (grad ๐ฎ)๐ฏ + (div ๐ฏ)๐ฎ

3.20 For a scalar field ๐œ™ and a tensor field ๐“ show that grad (๐œ™๐“) = ๐œ™grad ๐“ +

๐“โŠ— grad๐œ™. Also show that div (๐œ™๐“) = ๐œ™ div ๐“ + ๐“grad๐œ™

grad(๐œ™๐“) = (๐œ™๐‘‡๐‘–๐‘—),๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘—,๐‘˜ )๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜

= ๐“โŠ— grad๐œ™ + ๐œ™grad ๐“

Furthermore, we can contract the last two bases and obtain,

Page 45: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

45

div(๐œ™๐‘ป) = (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ž๐‘–โŠ—๐ž๐‘— โ‹… ๐ž๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐’ˆ๐‘–๐›ฟ๐‘—๐‘˜

= ๐‘‡๐‘–๐‘˜ ๐œ™,๐‘˜ ๐ž๐‘– + ๐œ™๐‘‡๐‘–๐‘˜,๐‘˜ ๐ž๐‘–

= ๐“grad๐œ™ + ๐œ™ div ๐“

3.21 For two arbitrary tensors ๐’ and ๐“, show that grad(๐’๐“) = (grad ๐’T)T๐“+

๐’grad๐“

grad(๐’๐“) = (๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜),๐›ผ ๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐›ผ

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐›ผ

= (๐‘‡๐‘˜๐‘—๐‘†๐‘—๐‘–,๐›ผ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜,๐›ผ )๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐›ผ

= (grad ๐’T)T๐“ + ๐’ grad๐“

3.22 Show that curl (grad ๐ฏ)T = grad(curl ๐ฏ)

From previous derivation, we can see that,

curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ. Clearly,

curl ๐“T = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘˜๐›ผ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

so that curl (grad ๐ฏ)T = ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐›ผ๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ. But curl ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ž๐‘–. The gradient of this

is,

grad(curl ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ),๐›ผ ๐ž๐‘–โŠ—๐ž๐›ผ = ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘—๐›ผ ๐ž๐‘–โŠ—๐ž๐›ผ = curl (grad ๐ฏ)T

3.23 For a second-order tensor ๐“ = ๐‘‡๐‘–๐‘—๐ž๐‘–โŠ—๐ž๐‘—, write the explicit expression for

curl ๐“ in Cartesian Coordinates.

curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘˜๐›ผ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

๐‘– ๐›ผ ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘˜๐›ผ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

1 1 (๐œ•๐‘‡13๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡12๐œ•๐‘ฅ3

) ๐ž1โŠ—๐ž1

๐‘– 2 (๐œ•๐‘‡23๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡22๐œ•๐‘ฅ3

) ๐ž1โŠ—๐ž3

๐‘– 3 (๐œ•๐‘‡33๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡32๐œ•๐‘ฅ3

) ๐ž1โŠ—๐ž2

2 1 (๐œ•๐‘‡11๐œ•๐‘ฅ3

โˆ’๐œ•๐‘‡13๐œ•๐‘ฅ1

) ๐ž2โŠ—๐ž1

Page 46: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

46

2 2 (๐œ•๐‘‡21๐œ•๐‘ฅ3

โˆ’๐œ•๐‘‡23๐œ•๐‘ฅ1

) ๐ž2โŠ—๐ž2

2 3 (๐œ•๐‘‡31๐œ•๐‘ฅ2

โˆ’๐œ•๐‘‡33๐œ•๐‘ฅ3

) ๐ž2โŠ—๐ž3

3 1 (๐œ•๐‘‡12๐œ•๐‘ฅ1

โˆ’๐œ•๐‘‡11๐œ•๐‘ฅ2

) ๐ž3โŠ—๐ž1

3.24 For two arbitrary tensors ๐’ and ๐“, show that div(๐’๐“) = (grad๐’): ๐“ + ๐“div ๐’

grad(๐’๐“) = (๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜),๐›ผ ๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐›ผ

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐›ผ

div(๐’๐“) = (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ž๐‘–(๐ž๐‘˜ โ‹… ๐ž๐›ผ)

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ž๐‘–๐›ฟ๐‘˜๐›ผ

= (๐‘†๐‘–๐‘—,๐‘˜๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐‘˜ )๐ž๐‘–

= (grad ๐’): ๐“ + ๐’div ๐“

3.25 For two arbitrary vectors, ๐ฎ and ๐ฏ, show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad๐ฏ โˆ’

(๐ฏ ร—)grad๐ฎ

grad(๐ฎ ร— ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

= (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ )๐ž๐‘–โŠ—๐ž๐‘™

= (๐‘ข๐‘— ,๐‘™ ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ + ๐‘ฃ๐‘˜,๐‘™ ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—)๐ž๐‘–โŠ—๐ž๐‘™

= โˆ’(๐ฏ ร—)grad ๐ฎ + (๐ฎ ร—)grad ๐ฏ

3.26 For a vector field ๐ฎ, show that grad(๐ฎ ร—) is a third ranked tensor. Hence or

otherwise show that div(๐ฎ ร—) = โˆ’curl ๐ฎ.

The secondโ€“order tensor (๐ฎ ร—) is defined as ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ž๐‘–โŠ—๐ž๐‘˜. Taking the derivative with an

independent base, we have

grad(๐ฎ ร—) = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ž๐‘–โŠ—๐ž๐‘˜โŠ—๐ž๐‘™

This gives a third order tensor as we have seen. Contracting on the last two bases,

div(๐ฎ ร—) = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ž๐‘–โŠ—๐ž๐‘˜ โ‹… ๐ž๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ž๐‘–๐›ฟ๐‘˜๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘˜ ๐ž๐‘–

Page 47: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

47

= โˆ’curl ๐ฎ

3.27 Show that div (๐œ™๐ˆ) = grad ๐œ™

Note that ๐œ™๐ˆ = (๐œ™๐›ฟ๐›ผ๐›ฝ)๐ž๐›ผโŠ—๐ž๐›ฝ. Also note that

grad ๐œ™๐ˆ = (๐œ™๐›ฟ๐›ผ๐›ฝ),๐‘– ๐ž๐›ผโŠ—๐ž๐›ฝโŠ—๐ž๐‘–

The divergence of this third order tensor is the contraction of the last two bases:

div (๐œ™๐ˆ) = tr(grad ๐œ™๐ˆ) = (๐œ™๐›ฟ๐›ผ๐›ฝ),๐‘– (๐ž๐›ผโŠ—๐ž๐›ฝ)๐ž๐‘– = (๐œ™๐›ฟ๐›ผ๐›ฝ),๐‘– ๐ž๐›ผ๐›ฟ๐›ฝ๐‘–

= ๐œ™,๐‘– ๐›ฟ๐›ผ๐›ฝ๐ž๐›ผ๐›ฟ๐›ฝ๐‘–

= ๐œ™,๐‘– ๐›ฟ๐›ผ๐‘–๐ž๐›ผ = ๐œ™,๐‘– ๐ž๐‘– = grad ๐œ™

3.28 Show that curl (๐œ™๐ˆ) = ( grad ๐œ™) ร—

Note that ๐œ™๐ˆ = (๐œ™๐›ฟ๐›ผ๐›ฝ)๐ž๐›ผโŠ—๐ž๐›ฝ, and that curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ so that,

curl (๐œ™๐ˆ) = ๐‘’๐‘–๐‘—๐‘˜(๐œ™๐›ฟ๐›ผ๐‘˜),๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐›ฟ๐›ผ๐‘˜)๐ž๐‘–โŠ—๐ž๐›ผ = ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ž๐‘–โŠ—๐ž๐‘˜

= ( grad ๐œ™) ร—

3.29 Show that the dyad ๐ฎโŠ— ๐ฏ is NOT, in general symmetric: ๐ฎ โŠ— ๐ฏ = ๐ฏโŠ— ๐ฎโˆ’

(๐ฎ ร— ๐ฏ) ร—

๐ฎ ร— ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ๐ž๐‘–

((๐ฎ ร— ๐ฏ) ร—) = ๐‘’๐›ผ๐‘–๐›ฝ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ž๐›ผโŠ—๐ž๐›ฝ

= โˆ’(๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ๐‘— )๐‘ข๐‘—๐‘ฃ๐‘˜๐ž๐›ผโŠ—๐ž๐›ฝ

= (โˆ’๐‘ข๐›ผ๐‘ฃ๐›ฝ + ๐‘ข๐›ฝ๐‘ฃ๐›ผ)๐ž๐›ผโŠ—๐ž๐›ฝ

= ๐ฏโŠ— ๐ฎ โˆ’ ๐ฎโŠ— ๐ฏ

3.30 Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

div (๐ฎ ร— ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

Noting that the tensor ๐‘’๐‘–๐‘—๐‘˜ behaves is a constant, we can write,

div (๐ฎ ร— ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

= ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

Page 48: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

48

3.31 Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (grad๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐‘’๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ž๐‘–

= ๐‘’๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐ž๐‘–

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ž๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–

= (gradฯ•) ร— ๐ฏ + ฯ• curl ๐ฏ

3.32 Show that curl (๐ฏ ร—) = (div ๐ฏ)๐ˆ โˆ’ grad ๐ฏ

(๐ฏ ร—) = ๐‘’๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ๐ž๐›ผโŠ—๐ž๐‘˜

curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

so that

curl (๐ฏ ร—) = ๐‘’๐‘–๐‘—๐‘˜๐‘’๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= (๐›ฟ๐‘–๐›ผ๐›ฟ๐‘—๐›ฝ โˆ’ ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘–๐›ฝ) ๐‘ฃ๐›ฝ ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘ฃ๐‘— ,๐‘— ๐ž๐›ผโŠ—๐ž๐›ผ โˆ’ ๐‘ฃ๐‘– ,๐‘— ๐ž๐‘–โŠ—๐ž๐‘—

= (div ๐ฏ)๐ˆ โˆ’ grad ๐ฏ

3.33 Show that curl (grad ๐ฏ) = ๐ŸŽ

For any tensor ๐“ = ๐‘‡๐›ผ๐›ฝ๐ž๐›ผโŠ—๐ž๐›ฝ

curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐›ผโŠ—๐ž๐›ฝ

Let ๐“ = grad ๐ฏ. Clearly, in this case, ๐‘‡๐›ผ๐›ฝ = ๐‘ฃ๐›ผ ,๐›ฝ so that ๐‘‡๐›ผ๐‘˜,๐‘— = ๐‘ฃ๐›ผ ,๐‘˜๐‘—. It therefore follows

that,

curl (grad ๐ฏ) = ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐›ผ ,๐‘˜๐‘— ๐ž๐›ผโŠ—๐ž๐›ฝ = ๐ŸŽ.

The contraction of symmetric tensors with anti-symmetric led to this conclusion. Note that

this presupposes that the order of differentiation in the vector field is immaterial. This will

be true only if the vector field is continuous โ€“ a proposition we have assumed in the above.

3.34 Show that curl (grad ๐œ™) = ๐จ

For any tensor ๐ฏ = ๐‘ฃ๐›ผ๐’†๐›ผ

curl ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐’†๐‘–

Page 49: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

49

Let ๐ฏ = grad ๐œ™. Clearly, in this case, ๐‘ฃ๐‘˜ = ๐œ™,๐‘˜ so that ๐‘ฃ๐‘˜,๐‘— = ๐œ™,๐‘˜๐‘—. It therefore follows

that,

curl (grad ๐œ™) = ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘˜๐‘— ๐ž๐‘– = ๐’.

The contraction of symmetric tensors with anti-symmetric led to this conclusion. Note that

this presupposes that the order of differentiation in the scalar field is immaterial. This will

be true only if the scalar field is continuous โ€“ a proposition we have assumed in the above.

3.35 Show that div (grad ๐œ™ ร— grad ฮธ) = 0

grad ๐œ™ ร— grad ฮธ = ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ๐’ˆ๐‘–

The gradient of this vector is the tensor,

grad(grad ๐œ™ ร— grad ๐œƒ) = (๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ),๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

The trace of the above result is the divergence we are seeking:

div (grad ๐œ™ ร— grad ฮธ) = tr[grad(grad ๐œ™ ร— grad ๐œƒ)]

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ž๐‘– โ‹… ๐ž๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ž๐‘– โ‹… ๐ž๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐›ฟ๐‘–๐‘™ + ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐›ฟ๐‘–๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘– ๐œƒ,๐‘˜+ ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘– = 0

Each term vanishing on account of the contraction of a symmetric tensor with an

antisymmetric.

3.36 Show that curl curl ๐ฏ = grad(div ๐ฏ) โˆ’ grad2๐ฏ

Let ๐’˜ = ๐‘๐‘ข๐‘Ÿ๐‘™ ๐’— โ‰ก ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–. But curl ๐’˜ โ‰ก ๐‘’๐›ผ๐›ฝ๐›พ๐‘ค๐›พ,๐›ฝ ๐ž๐›ผ. Upon inspection, we find that

๐‘ค๐›พ = ๐›ฟ๐›พ๐‘–๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— so that

curl ๐ฐ โ‰ก ๐‘’๐›ผ๐›ฝ๐›พ(๐›ฟ๐›พ๐‘–๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ),๐›ฝ ๐ž๐›ผ = ๐›ฟ๐›พ๐‘–๐‘’๐›ผ๐›ฝ๐›พ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘—๐›ฝ ๐ž๐›ผ

Now, it can be shown that ๐›ฟ๐›พ๐‘–๐‘’๐›ผ๐›ฝ๐›พ๐‘’๐‘–๐‘—๐‘˜ = ๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ๐‘— so that,

curl ๐ฐ = (๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ๐‘—)๐‘ฃ๐‘˜,๐‘—๐›ฝ ๐ž๐›ผ

= ๐‘ฃ๐›ฝ ,๐‘—๐›ฝ ๐ž๐‘— โˆ’ ๐›ฟ๐›ฝ๐‘—๐‘ฃ๐›ผ ,๐‘—๐›ฝ ๐ž๐›ผ

= grad(div ๐ฏ) โˆ’ grad2๐ฏ

Also recall that the Laplacian (grad2) of a scalar field ๐œ™ is, grad2๐œ™ = ๐›ฟ๐‘–๐‘—๐œ™,๐‘–๐‘—. In Cartesian

coordinates, this becomes,

Page 50: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

50

grad2๐œ™ = ๐›ฟ๐‘–๐‘—๐œ™,๐‘–๐‘— = ๐œ™,๐‘–๐‘–

as the unit (metric) tensor now degenerates to the Kronecker delta in this special case.

For a vector field, grad2๐ฏ = ๐‘ฃ๐›ผ ,๐‘—๐‘— ๐ž๐›ผ.

Also note that while grad is a vector operator, the Laplacian (grad2) is a scalar operator.

3.37 For a second-order tensor ๐“ define curl ๐“ โ‰ก ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ž๐‘–โŠ— ๐ž๐›ผ show that for

any constant vector ๐š, (curl ๐“) ๐š = curl (๐“T๐š)

Express vector ๐š in the invariant form with covariant components as ๐š = ๐‘Ž๐›ฝ๐ž๐›ฝ . It follows

that

(curl ๐“) ๐š = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— (๐ž๐‘–โŠ—๐ž๐›ผ)๐š

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ(๐ž๐‘–โŠ—๐ž๐›ผ)๐ž๐›ฝ

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ๐ž๐‘–๐›ฟ๐›ฝ๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜),๐‘— ๐ž๐‘–๐‘Ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜๐‘Ž๐›ผ),๐‘— ๐ž๐‘–

The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly,

(curl ๐“) ๐š = curl (๐“T๐š)

3.38 For any two vectors ๐ฎ and ๐ฏ, show that curl (๐ฎโŠ— ๐ฏ) = [(grad ๐ฎ)๐ฏ ร—]T +

(curl ๐ฏ)โŠ— ๐ฎ where ๐ฏ ร— is the skew tensor ๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘—.

Recall that the curl of a tensor ๐“ is defined by curl ๐“ โ‰ก ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ. Clearly

therefore,

curl (๐ฎโŠ— ๐ฏ) = ๐‘’๐‘–๐‘—๐‘˜(๐‘ข๐›ผ๐‘ฃ๐‘˜),๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜(๐‘ข๐›ผ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ) ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ ๐ž๐‘–โŠ—๐ž๐›ผ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= (๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ž๐‘–) โŠ— (๐‘ข๐›ผ ,๐‘— ๐ž๐›ผ) + (๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–) โŠ— (๐‘ข๐›ผ๐ž๐›ผ)

= (๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜๐ž๐‘–โŠ—๐ž๐‘—)(๐‘ข๐›ผ,๐›ฝ ๐ž๐›ฝโŠ—๐ž๐›ผ) + (๐‘’๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ž๐‘–) โŠ— (๐‘ข๐›ผ๐ž๐›ผ)

= โˆ’(๐ฏ ร—)(grad ๐ฎ)๐“ + (curl ๐ฏ) โŠ— ๐ฎ

= [(grad ๐ฎ)๐ฏ ร—]๐“ + (curl ๐ฏ) โŠ— ๐ฎ

upon noting that the vector cross is a skew tensor.

Page 51: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

51

3.39 For a second-order tensor field ๐“, show that div(curl ๐“) = curl(div ๐“T)

Define the second order tensor ๐’ as

curl ๐“ โ‰ก ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ = ๐‘†๐‘–๐›ผ๐ž๐‘–โŠ—๐ž๐›ผ

The gradient of ๐’ is ๐‘†๐‘–๐›ผ,๐›ฝ ๐ž๐‘–โŠ—๐ž๐›ผโŠ—๐ž๐›ฝ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ž๐‘–โŠ—๐ž๐›ผโŠ—๐ž๐›ฝ

Clearly,

div(curl ๐“) = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ (๐ž๐‘–โŠ—๐ž๐›ผ)๐ž๐›ฝ

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ž๐‘– ๐›ฟ๐›ผ๐›ฝ

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜,๐‘—๐›ฝ ๐ž๐‘– = curl(div ๐“T)

3.40 Show that ((curl ๐ฎ) ร—) = grad ๐ฎ โˆ’ gradT๐ฎ

((curl ๐ฎ) ร—) = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜,๐‘— ๐ž๐‘– ร—

= ๐‘’๐›ผ๐‘–๐›ฝ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘˜ ,๐‘— ๐ž๐›ผโŠ—๐ž๐›ฝ

= (๐›ฟ๐›ฝ๐‘—๐›ฟ๐›ผ๐‘˜ โˆ’ ๐›ฟ๐›ฝ๐‘˜๐›ฟ๐›ผ๐‘—)๐‘ข๐‘˜,๐‘— ๐ž๐›ผโŠ—๐ž๐›ฝ

= ๐‘ข๐‘˜ ,๐‘— ๐ž๐‘˜โŠ—๐ž๐‘—โˆ’๐‘ข๐‘˜,๐‘— ๐ž๐‘—โŠ—๐ž๐‘˜

= grad ๐ฎ โˆ’ gradT๐ฎ

3.41 Show that curl (๐ฎ ร— ๐ฏ) = div(๐ฎโŠ— ๐ฏ โˆ’ ๐ฏโŠ— ๐ฎ)

The vector ๐ฐ โ‰ก ๐ฎ ร— ๐ฏ = ๐‘ค๐‘˜๐ž๐‘˜ = ๐‘’๐‘˜๐›ผ๐›ฝ๐‘ข๐›ผ๐‘ฃ๐›ฝ๐ž๐‘˜ and curl ๐ฐ = ๐‘’๐‘–๐‘—๐‘˜๐‘ค๐‘˜ ,๐‘— ๐ž๐‘–. Therefore,

curl (๐ฎ ร— ๐ฏ) = ๐‘’๐‘–๐‘—๐‘˜๐‘ค๐‘˜,๐‘— ๐ž๐‘–

= ๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘˜๐›ผ๐›ฝ(๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ž๐‘–

= (๐›ฟ๐‘–๐›ผ๐›ฟ๐‘—๐›ฝ โˆ’ ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘–๐›ฝ)(๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ž๐‘–

= (๐›ฟ๐‘–๐›ผ๐›ฟ๐‘—๐›ฝ โˆ’ ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘–๐›ฝ)(๐‘ข๐›ผ,๐‘— ๐‘ฃ

๐›ฝ + ๐‘ข๐›ผ๐‘ฃ๐›ฝ ,๐‘— )๐ž๐‘–

= [๐‘ข๐‘–,๐‘— ๐‘ฃ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘—โˆ’ (๐‘ข๐‘— ,๐‘— ๐‘ฃ๐‘– + ๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘— )]๐ž๐‘–

= [(๐‘ข๐‘–๐‘ฃ๐‘—),๐‘—โˆ’ (๐‘ข๐‘—๐‘ฃ๐‘–),๐‘— ]๐ž๐‘–

= div(๐ฎโŠ— ๐ฏ โˆ’ ๐ฏโŠ— ๐ฎ)

since div(๐ฎโŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐›ผ (๐ž๐‘–โŠ—๐ž๐‘—)๐ž๐›ผ = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ž๐‘–.

3.42

Page 52: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

52

3.43 Given a scalar point function ๐œ™ and a second-order tensor field ๐“, show that

curl (๐œ™๐“) = ๐œ™ curl ๐“ + ((grad๐œ™) ร—)๐“T where [(grad๐œ™) ร—] is the skew

tensor ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ž๐‘–โŠ—๐ž๐‘˜

curl (๐œ™๐“) โ‰ก ๐‘’๐‘–๐‘—๐‘˜(๐œ™๐‘‡๐›ผ๐‘˜),๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ + ๐œ™๐‘‡๐›ผ๐‘˜ ,๐‘— ) ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ ๐ž๐‘–โŠ—๐ž๐›ผ + ๐œ™๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= (๐‘’๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ž๐‘–โŠ—๐ž๐‘˜) (๐‘‡๐›ผ๐›ฝ๐ž๐›ฝโŠ—๐ž๐›ผ) + ๐œ™๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= ๐œ™ curl ๐“ + ((grad๐œ™) ร—)๐“T

3.44 Given a tensor field ๐“, obtain the vector ๐ฐ โ‰ก ๐“T๐ฏ and show that its

divergence is ๐“: (grad๐ฏ) + ๐ฏ โ‹… div ๐“

The gradient of ๐ฐ is the tensor, (๐‘‡๐‘—๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘˜. Therefore, divergence of ๐’˜ (the trace

of the gradient) is the scalar sum, ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘˜ ๐›ฟ๐‘–๐‘˜ + ๐‘‡๐‘—๐‘– ,๐‘˜ ๐‘ฃ๐‘—๐›ฟ๐‘–๐‘˜. Expanding, we obtain,

div (๐“T๐ฏ) = ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘˜ ๐›ฟ๐‘–๐‘˜ + ๐‘‡๐‘—๐‘–,๐‘˜ ๐‘ฃ๐‘—๐›ฟ๐‘–๐‘˜

= ๐‘‡๐‘—๐‘– ,๐‘– ๐‘ฃ๐‘— + ๐‘‡๐‘—๐‘˜๐‘ฃ๐‘— ,๐‘˜

= (div ๐“) โ‹… ๐ฏ + tr(๐“Tgrad ๐ฏ)

= (div ๐“) โ‹… ๐ฏ + ๐“: (grad ๐ฏ)

Recall that scalar product of two vectors is commutative so that

div (๐“T๐ฏ) = ๐“: (grad ๐ฏ) + ๐ฏ โ‹… div ๐“

3.45

3.46

3.47

3.48

Page 53: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

53

3.49

3.50

3.51

3.52

3.53 Show that if ๐œ™ is a scalar field in the Euclidean space spanned by orthogonal

coordinates ๐‘ฅ๐‘–, with unit basis vectors, ๐ž๐‘–, then (a) for the position vector ๐ซ,

div grad(๐ซ๐œ™) = 2 grad ๐œ™ + ๐ซ div grad ๐œ™ .(b) Will this expression be valid in

the spherical coordinate system?

(๐’‚) In such a coordinate system, the radius vector will be given by,

๐ซ = ๐‘ฅ๐‘–๐ž๐‘–

where ๐ž๐‘– is the unit vector along coordinate ๐‘ฅ๐‘– .

grad(๐ซ๐œ™) = (๐‘ฅ๐‘–๐œ™),๐‘— ๐ž๐‘–โŠ—๐ž๐‘—

grad(grad(๐ซ๐œ™)) = ((๐‘ฅ๐‘–๐œ™),๐‘— ),๐‘˜ ๐ž๐‘–โŠ—๐ž๐‘—โŠ—๐ž๐‘˜

div(grad(๐ซ๐œ™)) = tr (grad(grad(๐ซ๐œ™))) = ((๐‘ฅ๐‘–๐œ™),๐‘— ),๐‘˜ ๐ž๐‘–๐›ฟ๐‘—๐‘˜

= (๐›ฟ๐‘–๐‘—๐œ™ + ๐‘ฅ๐‘–๐œ™,๐‘— ),๐‘— ๐ž๐‘–

= (๐›ฟ๐‘–๐‘—๐œ™,๐‘—+ ๐‘ฅ๐‘– ,๐‘— ๐œ™,๐‘—+ ๐‘ฅ๐‘–๐œ™,๐‘—๐‘— )๐ž๐‘–

div grad(๐ซ๐œ™) = 2 grad ๐œ™ + ๐ซ div grad ๐œ™

(๐’ƒ) The position vector in spherical coordinates are non-linear in the coordinate variables. This

form of the expression will not be correct. It works only for Cartesian systems.

Page 54: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

54

3.54 In Cartesian coordinates let ๐‘ฅ denote the magnitude of the position vector

๐ซ = ๐‘ฅ๐‘–๐ž๐‘–. Show that (a) ๐‘ฅ,๐‘— =๐‘ฅ๐‘—

๐‘ฅ, (b) ๐‘ฅ,๐‘–๐‘— =

1

๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘—

(๐‘ฅ)3, (c) ๐‘ฅ,๐’Š๐’Š =

๐Ÿ

๐’™, (d) If ๐‘ˆ =

1

๐‘ฅ, then ๐‘ˆ,๐‘–๐‘— =

โˆ’๐œน๐’Š๐’‹

๐’™๐Ÿ‘+3๐‘ฅ๐‘–๐‘ฅ๐‘—

๐‘ฅ5 ๐‘ˆ,๐‘–๐‘– = 0 and div (

๐ซ

๐‘ฅ) =

2

๐‘ฅ.

(๐’‚) ๐‘ฅ = โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐‘ฅ,๐‘— =๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•๐‘ฅ๐‘—=๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•(๐‘ฅ๐‘–๐‘ฅ๐‘–)ร—๐œ•(๐‘ฅ๐‘–๐‘ฅ๐‘–)

๐œ•๐‘ฅ๐‘—=

1

2โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–[๐‘ฅ๐‘–๐›ฟ๐‘–๐‘— + ๐‘ฅ๐‘–๐›ฟ๐‘–๐‘—] =

๐‘ฅ๐‘—

๐‘ฅ.

(๐’ƒ) ๐‘ฅ,๐‘–๐‘— =

๐œ•

๐œ•๐‘ฅ๐‘—(๐œ•โˆš๐‘ฅ๐‘–๐‘ฅ๐‘–

๐œ•๐‘ฅ๐‘–) =

๐œ•

๐œ•๐‘ฅ๐‘—(๐‘ฅ๐‘–๐‘ฅ) =

๐‘ฅ๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—

โˆ’ ๐‘ฅ๐‘–๐œ•๐‘ฅ๐œ•๐‘ฅ๐‘—

(๐‘ฅ)2=๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘ฅ

(๐‘ฅ)2=1

๐‘ฅ๐›ฟ๐‘–๐‘— โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘—(๐‘ฅ)3

(๐’„) ๐‘ฅ,๐‘–๐‘– =1

๐‘ฅ๐›ฟ๐‘–๐‘– โˆ’

๐‘ฅ๐‘–๐‘ฅ๐‘–(๐‘ฅ)3

=3

๐‘ฅโˆ’(๐‘ฅ)2

(๐‘ฅ)3=2

๐‘ฅ.

(๐’…) ๐‘ˆ =1

๐‘ฅ so that

๐‘ˆ,๐‘— =๐œ•1๐‘ฅ

๐œ•๐‘ฅ๐‘—=๐œ•1๐‘ฅ๐œ•๐‘ฅร—๐œ•๐‘ฅ

๐œ•๐‘ฅ๐‘—= โˆ’

1

๐‘ฅ21

๐‘ฅ๐‘ฅ๐‘— = โˆ’

๐‘ฅ๐‘—

๐‘ฅ3

Consequently,

๐‘ˆ,๐‘–๐‘— =๐œ•

๐œ•๐‘ฅ๐‘—(๐‘ˆ,๐‘– ) = โˆ’

๐œ•

๐œ•๐‘ฅ๐‘—(๐‘ฅ๐‘–๐‘ฅ3) =

๐‘ฅ3 (๐œ•๐œ•๐‘ฅ๐‘—

(โˆ’๐‘ฅ2)) + ๐‘ฅ๐‘–๐œ•๐œ•๐‘ฅ๐‘—

(๐‘ฅ3)

๐‘ฅ6

=

๐‘ฅ3(โˆ’๐›ฟ๐‘–๐‘—) + ๐‘ฅ๐‘– (๐œ•(๐‘ฅ3)๐œ•๐‘ฅ

๐œ•๐‘ฅ๐œ•๐‘ฅ๐‘—)

๐‘ฅ6=โˆ’๐‘ฅ3๐›ฟ๐‘–๐‘— + ๐‘ฅ๐‘– (3๐‘ฅ

2 ๐‘ฅ๐‘—๐‘ฅ )

๐‘ฅ6=โˆ’๐›ฟ๐‘–๐‘—

๐‘ฅ3+3๐‘ฅ๐‘–๐‘ฅ๐‘—

๐‘ฅ5

๐‘ˆ,๐‘–๐‘– =โˆ’๐›ฟ๐‘–๐‘–๐‘ฅ3

+3๐‘ฅ๐‘–๐‘ฅ๐‘–๐‘ฅ5

=โˆ’3

๐‘ฅ3+3๐‘ฅ2

๐‘ฅ5= 0.

๐‘‘๐‘–๐‘ฃ (๐’“

๐‘ฅ) = (

๐‘ฅ๐‘—

๐‘ฅ) ,๐‘— =

1

๐‘ฅ๐‘ฅ๐‘— ,๐‘—+ (

1

๐‘ฅ),๐‘—=3

๐‘ฅ+ ๐‘ฅ๐‘— (

๐œ•

๐œ•๐‘ฅ(1

๐‘ฅ) ๐‘‘๐‘ฅ

๐‘‘๐‘ฅ๐‘—)

=3

๐‘ฅ+ ๐‘ฅ๐‘— [โˆ’ (

1

๐‘ฅ2) ๐‘ฅ๐’‹

๐‘ฅ] =

3

๐‘ฅโˆ’๐‘ฅ๐‘—๐‘ฅ๐‘—

๐‘ฅ3=3

๐‘ฅโˆ’1

๐‘ฅ=2

๐‘ฅ

3.55 Show that curl ๐ฎ ร— ๐ฏ = (grad๐ฎ)๐ฏ โˆ’ (div๐ฎ)๐ฏ โˆ’ (grad๐ฏ)๐ฎ + (div ๐ฏ)๐ฎ

๐ฎ ร— ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ž๐‘–

Page 55: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

55

curl ๐ฐ = ๐‘’๐›ผ๐›ฝ๐‘™๐‘ค๐‘™ ,๐›ฝ ๐ž๐›ผ

Clearly,

curl ๐ฎ ร— ๐ฏ = ๐‘’๐›ผ๐›ฝ๐‘–(๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐›ฝ ๐ž๐›ผ

= ๐‘’๐›ผ๐›ฝ๐‘–๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—,๐›ฝ๐‘ฃ๐‘˜๐ž๐›ผ + ๐‘’๐›ผ๐›ฝ๐‘–๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐›ฝ ๐ž๐›ผ

= (๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ๐‘—)๐‘ข๐‘—,๐›ฝ๐‘ฃ๐‘˜๐ž๐›ผ+ (๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ๐‘—)๐‘ข๐‘—๐‘ฃ๐‘˜,๐›ฝ ๐ž๐›ผ

= ๐‘ข๐‘— ,๐‘˜ ๐‘ฃ๐‘˜๐ž๐‘— โˆ’ ๐‘ข๐‘— ,๐‘— ๐‘ฃ๐‘˜๐ž๐‘˜ + ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘˜ ๐ž๐‘— โˆ’ ๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘— ๐ž๐‘˜

= (grad๐ฎ)๐ฏ โˆ’ (div๐ฎ)๐ฏ โˆ’ (grad ๐ฏ)๐ฎ + (div ๐ฏ)๐ฎ

3.56 For a scalar function ๐œ™and a vector ๐ฏ show that the divergence of the vector

๐ฏ๐œ™ is equal to, ๐ฏ โ‹… grad ๐œ™ + ๐œ™ div ๐ฏ

grad (๐ฏ๐œ™) = (๐‘ฃ๐‘–๐œ™),๐‘— ๐ž๐‘–โŠ—๐ž๐‘— = (๐œ™๐‘ฃ๐‘–,๐‘—+ ๐‘ฃ๐‘–๐œ™,๐‘— )๐ž๐‘–โŠ—๐ž๐‘—

Taking the trace of this equation,

div ๐ฏ๐œ™ = tr(grad (๐ฏ๐œ™)) = (๐œ™๐‘ฃ๐‘–,๐‘—+ ๐‘ฃ๐‘–๐œ™,๐‘— )๐ž๐‘– โ‹… ๐ž๐‘—

= (๐œ™๐‘ฃ๐‘– ,๐‘—+ ๐‘ฃ๐‘–๐œ™,๐‘— )๐›ฟ๐‘–๐‘—

= ๐œ™๐‘ฃ๐‘– ,๐‘–+ ๐‘ฃ๐‘–๐œ™,๐‘–

= ๐ฏ โ‹… grad ๐œ™+๐œ™ div ๐ฏ

Hence the result.

3.57 When ๐“ is symmetric, show that tr(curl ๐“) vanishes.

When ๐“ is symmetric, show that tr(curl ๐“) vanishes.

curl ๐“ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ฝ

tr(curl ๐“) = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜,๐‘— ๐ž๐‘– โ‹… ๐ž๐›ฝ

= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜,๐‘— ๐›ฟ๐‘–๐›ฝ = ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–๐‘˜,๐‘—

which obviously vanishes on account of the symmetry and antisymmetry in ๐‘– and ๐‘˜. In this

case,

3.58 For a general tensor field ๐“ show that,

curl(curl ๐“) = [grad2(tr ๐“) โˆ’ div(div ๐“)]๐ˆ + grad(div ๐“)

Page 56: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

56

+ (grad(div ๐“))Tโˆ’ grad(grad (tr ๐“)) โˆ’ grad2๐“T

curl ๐“ = ๐‘’๐‘Ž๐‘ ๐‘ก๐‘‡๐›ฝ๐‘ก,๐‘  ๐ž๐›ผโŠ—๐ž๐›ฝ

= ๐‘†๐›ผ๐›ฝ๐ž๐›ผโŠ—๐ž๐›ฝ

curl ๐’ = ๐‘’๐‘–๐‘—๐‘˜๐‘†๐›ผ๐‘˜,๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

so that

curl ๐’ = curl(curl ๐“) = ๐‘’๐‘–๐‘—๐‘˜๐‘’๐‘Ž๐‘ ๐‘ก๐‘‡๐‘˜๐‘ก,๐‘ ๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= |

๐›ฟ๐‘–๐›ผ ๐›ฟ๐‘–๐‘  ๐›ฟ๐‘–๐‘ก๐›ฟ๐‘—๐›ผ ๐›ฟ๐‘—๐‘  ๐›ฟ๐‘—๐‘ก๐›ฟ๐‘˜๐›ผ ๐›ฟ๐‘˜๐‘  ๐›ฟ๐‘˜๐‘ก

| ๐‘‡๐‘˜๐‘ก,๐‘ ๐‘— ๐ž๐‘–โŠ—๐ž๐›ผ

= [๐›ฟ๐‘–๐›ผ(๐›ฟ๐‘—๐‘ ๐›ฟ๐‘˜๐‘ก โˆ’ ๐›ฟ๐‘—๐‘ก๐›ฟ๐‘˜๐‘ ) + ๐›ฟ๐‘–๐‘ (๐›ฟ๐‘—๐‘ก๐›ฟ๐‘˜๐›ผ โˆ’ ๐›ฟ๐‘—๐›ผ๐›ฟ๐‘˜๐‘ก)

+๐›ฟ๐‘–๐‘ก(๐›ฟ๐‘—๐›ผ๐›ฟ๐‘˜๐‘  โˆ’ ๐›ฟ๐‘—๐‘ ๐›ฟ๐‘˜๐›ผ)] ๐‘‡๐‘˜๐‘ก,๐‘ ๐‘— ๐’ˆ๐‘–โŠ—๐’ˆ๐›ผ

= [๐›ฟ๐‘—๐‘ ๐‘‡๐‘ก๐‘ก ,๐‘ ๐‘—โˆ’ ๐‘‡๐‘ ๐‘— ,๐‘ ๐‘— ](๐ž๐›ผโŠ—๐ž๐›ผ) + [๐‘‡๐›ผ๐‘—,๐‘ ๐‘—โˆ’ ๐›ฟ๐‘—๐›ผ๐‘‡๐‘ก๐‘ก,๐‘ ๐‘— ](๐ž๐‘ โŠ—๐ž๐›ผ)

+ [๐›ฟ๐‘—๐›ผ๐‘‡๐‘ ๐‘ก ,๐‘ ๐‘—โˆ’ ๐›ฟ๐‘—๐‘ ๐‘‡๐›ผ๐‘ก,๐‘ ๐‘— ](๐ž๐‘กโŠ—๐ž๐›ผ)

= [grad2(tr ๐“) โˆ’ div(div ๐‘ป)]๐ˆ + (grad(div ๐“))Tโˆ’ grad(grad (tr ๐“)) + (grad(div ๐“))

โˆ’ grad2๐“T

3.59 For any Euclidean coordinate system, show that div ๐ฎ ร— ๐ฏ = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹…

curl ๐ฏ

๐ฎ ร— ๐ฏ = ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ž๐‘–

grad (๐ฎ ร— ๐ฏ) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ž๐‘–โŠ—๐ž๐‘™

div (๐ฎ ร— ๐ฏ) = tr(grad (๐ฎ ร— ๐ฏ)) = (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ž๐‘– โ‹… ๐ž๐‘™

= (๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘™ )๐›ฟ๐‘–๐‘™

= ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐‘’๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜,๐‘–

= ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

3.60 In Cartesian coordinates, If the volume ๐‘‰ is enclosed by the surface ๐‘†, the

position vector ๐’“ = ๐‘ฅ๐‘–๐ ๐‘– and ๐’ is the external unit normal to each surface

element, show that 1

6โˆซ โˆ‡(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘†๐‘†

equals the volume contained in ๐‘‰.

Page 57: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

57

๐ซ โ‹… ๐ซ = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐ž๐‘– โ‹… ๐ž๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐›ฟ๐‘–๐‘—

By the Divergence Theorem,

โˆซgrad(๐’“ โ‹… ๐’“) โ‹… ๐’๐‘‘๐‘†๐‘†

= โˆซ๐›ป โ‹… [๐›ป(๐’“ โ‹… ๐’“)]๐‘‘๐‘‰๐‘‰

= โˆซ๐œ•๐‘™[๐œ•๐‘˜(๐‘ฅ๐‘–๐‘ฅ๐‘—๐‘”๐‘–๐‘—)] ๐’ˆ

๐‘™ โ‹… ๐’ˆ๐‘˜ ๐‘‘๐‘‰๐‘‰

= โˆซ๐œ•๐‘™[๐‘”๐‘–๐‘—(๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ

๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ )] ๐’ˆ๐‘™ โ‹… ๐’ˆ๐‘˜ ๐‘‘๐‘‰

๐‘‰

= โˆซ๐‘”๐‘–๐‘—๐‘”๐‘™๐‘˜(๐›ฟ๐‘˜

๐‘–๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐›ฟ๐‘˜๐‘—),๐‘™ ๐‘‘๐‘‰

๐‘‰

= โˆซ2๐‘”๐‘–๐‘˜๐‘”๐‘™๐‘˜๐‘ฅ๐‘–,๐‘™ ๐‘‘๐‘‰

๐‘‰

= โˆซ2๐›ฟ๐‘–๐‘™๐›ฟ๐‘™๐‘– ๐‘‘๐‘‰

๐‘‰

= 6โˆซ ๐‘‘๐‘‰๐‘‰

??

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

Page 58: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

58

3.69

3.70

3.71

Fields in Curvilinear Coordinates

Given a vector point function ๐ฎ(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3) and its covariant components, ๐‘ข๐›ผ(๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3), ๐›ผ =

1,2,3, with ๐’ˆ๐›ผas the reciprocal basis vectors, Let

๐ฎ = ๐‘ข๐›ผ๐ ๐›ผ, then ๐‘‘๐ฎ =

๐œ•

๐œ•๐‘ฅ๐‘˜(๐‘ข๐›ผ๐ 

๐›ผ)๐‘‘๐‘ฅ๐‘˜

= (๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐ ๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ) ๐‘‘๐‘ฅ

๐‘˜

Clearly,

๐œ•๐ฎ

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐ ๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ

And the projection of this quantity on the ๐’ˆ๐‘–direction is,

๐œ•๐ฎ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘– = (

๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐ ๐›ผ +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜๐‘ข๐›ผ) โˆ™ ๐ ๐‘–

=๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐ ๐›ผ โˆ™ ๐ ๐‘– +๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘–๐‘ข๐›ผ

=๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐›ฟ๐‘–๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘–๐‘ข๐›ผ

Now ๐ ๐‘– โˆ™ ๐ ๐‘— = ๐›ฟ๐‘–๐‘— so that,

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— + ๐ 

๐‘– โˆ™๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜= 0.

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— = โˆ’๐ 

๐‘– โˆ™๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜โ‰ก โˆ’ {

๐‘–๐‘—๐‘˜}.

Page 59: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

59

This important quantity, necessary to quantify the derivative of a tensor in general coordinates,

is called the Christoffel Symbol of the second kind.

Using this, we can now write that,

๐œ•๐ฎ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘– =

๐œ•๐‘ข๐›ผ๐œ•๐‘ฅ๐‘˜

๐›ฟ๐‘–๐›ผ +

๐œ•๐ ๐›ผ

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘–๐‘ข๐›ผ =

๐œ•๐‘ข๐‘–๐œ•๐‘ฅ๐‘˜

โˆ’ {๐›ผ๐‘–๐‘˜} ๐‘ข๐›ผ

The quantity on the RHS is the component of the derivative of vector ๐ฎ along the ๐’ˆ๐‘– direction

using covariant components. It is the covariant derivative of ๐ฎ. Using contravariant components,

we could write,

๐‘‘๐ฎ = (๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜๐ ๐‘– +

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

๐‘ข๐‘–)๐‘‘๐‘ฅ๐‘˜

= (๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜๐ ๐‘– + {

๐›ผ๐‘–๐‘˜} ๐ ๐›ผ๐‘ข

๐‘–)๐‘‘๐‘ฅ๐‘˜

So that,

๐œ•๐ฎ

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ +

๐œ•๐ ๐›ผ๐œ•๐‘ฅ๐‘˜

๐‘ข๐›ผ

The components of this in the direction of ๐’ˆ๐‘– can be obtained by taking a dot product as before:

๐œ•

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘– = (

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐ ๐›ผ +

๐œ•๐ ๐›ผ๐œ•๐‘ฅ๐‘˜

๐‘ข๐›ผ) โˆ™ ๐ ๐‘–

=๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜๐›ฟ๐›ผ๐‘– +

๐œ•๐ ๐›ผ๐œ•๐‘ฅ๐‘˜

โˆ™ ๐ ๐‘–๐‘ข๐›ผ

=๐œ•๐‘ข๐‘–

๐œ•๐‘ฅ๐‘˜+ {

๐‘–๐›ผ๐‘˜} ๐‘ข๐›ผ

The two results above are represented symbolically as,

๐‘ข๐‘–,๐‘˜ =๐œ•๐‘ข๐‘–๐œ•๐‘ฅ๐‘˜

โˆ’ {๐›ผ๐‘–๐‘˜} ๐‘ข๐›ผ

for covariant components, and

๐‘ข,๐‘˜๐‘– =

๐œ•๐‘ข๐›ผ

๐œ•๐‘ฅ๐‘˜+ {

๐‘–๐›ผ๐‘˜} ๐‘ข๐›ผ

for conravariant vector components. Which are the components of the covariant derivatives in

terms of the covariant and contravariant components respectively.

It now becomes useful to establish the fact that our definition of the Christoffel symbols here

conforms to the definition you find in the books using the transformation rules to define the

tensor quantities.

Page 60: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

60

We observe that the derivative of the covariant basis, ๐ ๐‘– (=๐œ•๐’“

๐œ•๐‘ฅ๐‘–),

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

=๐œ•2๐ซ

๐œ•๐‘ฅ๐‘—๐œ•๐‘ฅ๐‘–

=๐œ•2๐ซ

๐œ•๐‘ฅ๐‘–๐œ•๐‘ฅ๐‘—=๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–

Taking the dot product with ๐ ๐‘˜

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

โˆ™ ๐ ๐‘˜ =1

2(๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐‘˜ +

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

โˆ™ ๐ ๐‘˜)

=1

2(๐œ•

๐œ•๐‘ฅ๐‘–[๐ ๐‘— โˆ™ ๐ ๐‘˜] +

๐œ•

๐œ•๐‘ฅ๐‘—[๐ ๐‘– โˆ™ ๐ ๐‘˜] โˆ’ ๐ ๐‘— โˆ™

๐œ•๐ ๐‘˜๐œ•๐‘ฅ๐‘–

โˆ’ ๐ ๐‘– โˆ™๐œ•๐ ๐‘˜๐œ•๐‘ฅ๐‘—

)

=1

2(๐œ•

๐œ•๐‘ฅ๐‘–[๐ ๐‘— โˆ™ ๐ ๐‘˜] +

๐œ•

๐œ•๐‘ฅ๐‘—[๐ ๐‘– โˆ™ ๐ ๐‘˜] โˆ’ ๐ ๐‘— โˆ™

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โˆ’ ๐ ๐‘– โˆ™๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜)

=1

2(๐œ•

๐œ•๐‘ฅ๐‘–[๐ ๐‘— โˆ™ ๐ ๐‘˜] +

๐œ•

๐œ•๐‘ฅ๐‘—[๐ ๐‘– โˆ™ ๐ ๐‘˜] โˆ’

๐œ•

๐œ•๐‘ฅ๐‘˜[๐ ๐‘– โˆ™ ๐ ๐‘—])

=1

2(๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–+๐œ•๐‘”๐‘˜๐‘–๐œ•๐‘ฅ๐‘—

โˆ’๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜)

Which is the quantity defined as the Christoffel symbols of the first kind in the textbooks. It is

therefore possible for us to write,

[๐‘–๐‘—, ๐‘˜] โ‰ก ๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

โˆ™ ๐ ๐‘˜

=๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐‘˜

=1

2(๐œ•๐‘”๐‘—๐‘˜

๐œ•๐‘ฅ๐‘–+๐œ•๐‘”๐‘˜๐‘–๐œ•๐‘ฅ๐‘—

โˆ’๐œ•๐‘”๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜)

It should be emphasized that the Christoffel symbols, even though the play a critical role in

several tensor relationships, are themselves NOT tensor quantities. (Prove this). However, notice

their symmetry in the ๐‘– and ๐‘—. The extension of this definition to the Christoffel symbols of the

second kind is immediate:

Contract the above equation with the conjugate metric tensor, we have,

๐‘”๐‘˜๐›ผ[๐‘–๐‘—, ๐›ผ] โ‰ก ๐‘”๐‘˜๐›ผ ๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

โˆ™ ๐ ๐›ผ

= ๐‘”๐‘˜๐›ผ๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘–โˆ™ ๐ ๐›ผ =

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘—

โˆ™ ๐ ๐‘˜

Page 61: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

61

= {๐‘˜๐‘–๐‘—} = โˆ’

๐œ•๐ ๐‘˜

๐œ•๐‘ฅ๐‘—โˆ™ ๐ ๐‘–

Which connects the common definition of the second Christoffel symbol with the one defined in

the above derivation. The relationship,

๐‘”๐‘˜๐›ผ[๐‘–๐‘—, ๐›ผ] = {๐‘˜๐‘–๐‘—}

apart from defining the relationship between the Christoffel symbols of the first kind and that

second kind, also highlights, once more, the index-raising property of the conjugate metric

tensor.

We contract the above equation with ๐‘”๐‘˜๐›ฝand obtain,

๐‘”๐‘˜๐›ฝ๐‘”๐‘˜๐›ผ[๐‘–๐‘—, ๐›ผ] = ๐‘”๐‘˜๐›ฝ {

๐‘˜๐‘–๐‘—} ๐›ฟ๐›ฝ

๐›ผ [๐‘–๐‘—, ๐›ผ]

= [๐‘–๐‘—, ๐›ฝ] = ๐‘”๐‘˜๐›ฝ {๐‘˜๐‘–๐‘—}

so that,

๐‘”๐‘˜๐›ผ {๐›ผ๐‘–๐‘—} = [๐‘–๐‘—, ๐‘˜]

Showing that the metric tensor can be used to lower the contravariant index of the Christoffel

symbol of the second kind to obtain the Christoffel symbol of the first kind.

We are now in a position to express the derivatives of higher order tensor fields in terms of the

Christoffel symbols.

Higher Order Tensors

For a second-order tensor ๐“, we can express the components in dyadic form along the product

basis as follows:

๐“ = ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—

= ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚๐ ๐‘—

= ๐‘‡.๐‘—๐‘–๐ ๐‘–โŠ—๐ ๐‘—

= ๐‘‡๐‘—. ๐‘–๐ ๐‘—โจ‚๐ ๐‘–

This is perfectly analogous to our expanding vectors in terms of basis and reciprocal bases.

Derivatives of the tensor may therefore be expressible in any of these product bases. As an

example, take the product covariant bases.

Page 62: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

62

We have:

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡

๐‘–๐‘—๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

Recall that, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— = {

๐‘—๐‘–๐‘˜}. It follows therefore that,

๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โˆ™ ๐ ๐‘— โˆ’ {๐›ผ๐‘–๐‘˜} ๐›ฟ๐›ผ

๐‘—=๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โˆ™ ๐ ๐‘— โˆ’ {๐›ผ๐‘–๐‘˜} ๐ ๐›ผ โˆ™ ๐ 

๐‘—

= (๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โˆ’ {๐›ผ๐‘–๐‘˜} ๐ ๐›ผ) โˆ™ ๐ 

๐‘— = 0.

Clearly, ๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜= {

๐›ผ๐‘–๐‘˜} ๐ ๐›ผ

(Obviously since ๐ ๐‘— is a basis vector it cannot vanish)

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡

๐‘–๐‘—๐œ•๐ ๐‘–๐œ•๐‘ฅ๐‘˜

โจ‚๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โจ‚

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡

๐‘–๐‘— ({๐›ผ๐‘–๐‘˜} ๐ ๐›ผ)โจ‚๐ ๐‘— + ๐‘‡

๐‘–๐‘—๐ ๐‘–โจ‚({๐›ผ๐‘—๐‘˜} ๐ ๐›ผ)

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โจ‚๐ ๐‘— + ๐‘‡

๐›ผ๐‘— ({๐‘–๐›ผ๐‘˜} ๐ ๐‘–)โจ‚๐ ๐‘— + ๐‘‡

๐‘–๐›ผ๐ ๐‘–โจ‚({๐‘—๐›ผ๐‘˜} ๐ ๐‘—)

= (๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜+๐‘‡๐›ผ๐‘— {

๐‘–๐›ผ๐‘˜} + ๐‘‡๐‘–๐›ผ {

๐‘—๐›ผ๐‘˜}) ๐ ๐‘–โจ‚๐ ๐‘— = ๐‘‡ ,๐‘˜

๐‘–๐‘—๐ ๐‘–โจ‚๐ ๐‘—

Where

๐‘‡๐‘–๐‘— ,๐‘˜=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜+๐‘‡๐›ผ๐‘— {

๐‘–๐›ผ๐‘˜} + ๐‘‡๐‘–๐›ผ {

๐‘—๐›ผ๐‘˜} or

๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜+๐‘‡๐›ผ๐‘—ฮ“๐›ผ๐‘˜

๐‘– + ๐‘‡๐‘–๐›ผฮ“๐›ผ๐‘˜๐‘—

are the components of the covariant derivative of the tensor ๐“ in terms of contravariant

components on the product covariant bases as shown.

In the same way, by taking the tensor expression in the dyadic form of its contravariant product

bases, we can write,

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ 

๐‘–โŠ—๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—ฮ“๐›ผ๐‘˜

๐‘– โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—

๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

Again, notice from previous derivation above, {๐‘–๐‘—๐‘˜} = โˆ’

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โˆ™ ๐ ๐‘— so that,

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜= โˆ’{

๐‘–๐›ผ๐‘˜} ๐ ๐›ผ =

โˆ’ฮ“๐›ผ๐‘˜๐‘– ๐ ๐›ผ. (The Literature has the two representations for the Christoffel Symbols.) Therefore,

Page 63: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

63

๐œ•๐“

๐œ•๐‘ฅ๐‘˜=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—

๐œ•๐ ๐‘–

๐œ•๐‘ฅ๐‘˜โŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ 

๐‘–โŠ—๐œ•๐ ๐‘—

๐œ•๐‘ฅ๐‘˜

=๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜๐ ๐‘–โŠ—๐ ๐‘— โˆ’ ๐‘‡๐‘–๐‘—ฮ“๐›ผ๐‘˜

๐‘– ๐ ๐›ผโŠ—๐ ๐‘— + ๐‘‡๐‘–๐‘—๐ ๐‘–โŠ—ฮ“๐›ผ๐‘˜

๐‘—๐ ๐›ผ

= (๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’ ๐‘‡๐›ผ๐‘—ฮ“๐‘–๐‘˜

๐›ผ โˆ’ ๐‘‡๐‘–๐›ผฮ“๐‘—๐‘˜๐›ผ)๐ ๐‘–โŠ—๐ ๐‘— = ๐‘‡๐‘–๐‘—,๐‘˜๐ 

๐‘–โŠ—๐ ๐‘—

so that

๐‘‡๐‘–๐‘—,๐‘˜ =๐œ•๐‘‡๐‘–๐‘—

๐œ•๐‘ฅ๐‘˜โˆ’ ๐‘‡๐›ผ๐‘—ฮ“๐‘–๐‘˜

๐›ผ โˆ’ ๐‘‡๐‘–๐›ผฮ“๐‘—๐‘˜๐›ผ

Two other expressions can be found for the covariant derivative components in terms of the

mixed tensor components using the mixed product bases defined above. It is a good exercise to

derive these.

The formula for covariant differentiation of higher order tensors follow the same kind of logic as

the above definitions. Each covariant index will produce an additional term similar to that in 3

with a dummy index supplanting the appropriate covariant index. In the same way, each

contravariant index produces an additional term like that in 3 with a dummy index supplanting

an appropriate contravariant index.

The covariant derivative of the mixed tensor, ๐ด๐‘–1 , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š is the most general case for the

covariant derivative of an absolute tensor:

๐ด๐‘–1 , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š

,๐‘—= ๐œ•๐ด๐‘–1 , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š

๐œ•๐‘ฅ๐‘—โˆ’ {

๐›ผ๐‘–1๐‘—} ๐ด๐›ผ , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š โˆ’ {๐›ผ๐‘–2๐‘—} ๐ด๐‘–1, ๐›ผ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š โˆ’โ‹ฏโˆ’ {๐›ผ๐‘–๐‘›๐‘—} ๐ด๐‘–1 , ๐‘–2 ,โ€ฆ,๐›ผ

๐‘—1 , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š

+ {๐‘—1๐›ฝ๐‘—} ๐ด๐‘–1 , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐›ฝ , ๐‘—2 ,โ€ฆ, ๐‘—๐‘š + {๐‘—2๐›ฝ๐‘—}๐ด๐‘–1 , ๐‘–2 ,โ€ฆ, ๐‘–๐‘›

๐‘—1 , ๐›ฝ,โ€ฆ, ๐‘—๐‘š +โ‹ฏ+

Physical Components in Orthogonal Systems

The components of a vector or tensor in a Cartesian system are projections of the vector on

directions that have no dimensions and a value of unity.

These components therefore have the same units as the vectors themselves.

It is natural therefore to expect that the components of a tensor have the same dimensions.

In general, this is not so. In curvilinear coordinates, components of tensors do not necessarily

have a direct physical meaning. This comes from the fact that base vectors are not guaranteed

to have unit values (โ„Ž๐‘– โ‰  1 in general).

Page 64: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

64

They may not be dimensionless. For example, in orthogonal spherical polar, the base vectors are

๐ 1, ๐ 2 and ๐ 3.

These can be expressed in terms of dimensionless unit vectors as, ๐œŒ๐’†๐œŒ, ๐œŒ sin๐œ™ ๐’†๐œƒ, and ๐’†๐œ™ since

the magnitudes of the basis vectors are ๐œŒ, ๐œŒ sin๐œ™ , and 1 or (โˆš๐‘”11, โˆš๐‘”22, โˆš๐‘”33) respectively.

As an example consider a force with the contravariant components ๐น1, ๐น2 and ๐น3,

๐… = ๐น1๐ 1 + ๐น2๐ 2 + ๐น

3 ๐ 3

= ๐œŒ๐น1๐ž๐œŒ + ๐œŒ sin๐œ™ ๐น2๐ž๐œƒ + ๐น3๐ž๐œ™

Which may also be expressed in terms of physical components,

๐… = ๐น๐œŒ๐ž๐œŒ + ๐น๐œƒ๐ž๐œƒ + ๐น๐œ™๐ž๐œ™.

While these physical components {๐น๐œŒ, ๐น๐œƒ, ๐น๐œ™} have the dimensions of force, for the contravariant

components normalized by the in terms of the unit vectors along these axes to be consistent,

{๐œŒ๐น1, ๐œŒ sin ๐œƒ ๐น2, ๐น3} must each be in the units of a force. Hence, ๐น1, ๐น2 and ๐น3 may not

themselves be in force units. The consistency requirement implies,

๐น๐œŒ = ๐œŒ๐น1, ๐น๐œƒ = ๐œŒ sin ๐œƒ ๐น2, and ๐น๐œ™ = ๐น3

For the same reasons, if we had used covariant components, the relationships,

๐น๐œŒ = ๐น1๐œŒ, ๐น๐œƒ =

๐น2๐œŒ sin ๐œƒ

, and ๐น๐œ™ = ๐น3

The magnitudes of the reciprocal base vectors are 1

๐œŒ,

1

๐œŒ sin๐œ™, and 1. While the physical

components have the dimensions of force, ๐น1 = ๐œŒ๐น๐œŒ and ๐น2 = ๐œŒ sin๐œ™ ๐น๐œƒ have the dimensions of

moment, while ๐น1 =๐น๐œŒ

๐œŒ and ๐น2 =

๐น๐œƒ

๐œŒ sin๐œ™ are in dimensions of force per unit length. Only the

third components in both cases are given in the dimensions of force.

Physical

Component

Contravariant Covariant Mixed

๐œ(๐œŒ๐œŒ) ๐œ11โ„Ž1โ„Ž1 = ๐œ11๐œŒ2 ๐œ11

โ„Ž1 โ„Ž1=๐œ11๐œŒ2

๐œ11

โ„Ž1โ„Ž1 = ๐œ1

1

Page 65: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

65

๐œ(๐œŒ๐œƒ) ๐œ12โ„Ž1โ„Ž2

= ๐œ12๐œŒ2 ๐‘ ๐‘–๐‘› ๐œ™

๐œ12โ„Ž1 โ„Ž1

=๐œ12

๐œŒ2 ๐‘ ๐‘–๐‘› ๐œ™ ๐œ2

1

โ„Ž2โ„Ž1 =

๐œ21

๐‘ ๐‘–๐‘› ๐œ™

๐œ(๐œƒ๐œƒ) ๐œ22โ„Ž2โ„Ž2

= ๐œ22๐œŒ2 ๐‘ ๐‘–๐‘›2๐œ™

๐œ22โ„Ž2 โ„Ž2

=๐œ22

๐œŒ2 ๐‘ ๐‘–๐‘›2 ๐œ™ ๐œ2

2

โ„Ž2โ„Ž2 = ๐œ2

2

๐œ(๐œƒ๐œ™) ๐œ23โ„Ž2โ„Ž3

= ๐œ23๐œŒ ๐‘ ๐‘–๐‘› ๐œ™

๐œ23โ„Ž2 โ„Ž3

=๐œ23

๐œŒ ๐‘ ๐‘–๐‘› ๐œ™ ๐œ3

2

โ„Ž3โ„Ž2

= ๐œ32๐œŒ ๐‘ ๐‘–๐‘› ๐œ™

๐œ(๐œ™๐œ™) ๐œ33โ„Ž3โ„Ž3 = ๐œ33 ๐œ33

โ„Ž3 โ„Ž3= ๐œ33 ๐œ3

3

โ„Ž3โ„Ž3 = ๐œ3

3

๐œ(๐œŒ๐œ™) ๐œ31โ„Ž3โ„Ž1 = ๐œ31๐œŒ ๐œ31

โ„Ž3 โ„Ž1=๐œ31๐œŒ

๐œ13

โ„Ž1โ„Ž3 =

๐œ13

๐œŒ

The transformation equations from the Cartesian to the oblate spheroidal

coordinates ๐œ‰, ๐œ‚ and ๐œ‘ are: ๐‘ฅ = ๐‘“๐œ‰๐œ‚ ๐‘ ๐‘–๐‘› ๐œ‘, ๐‘ฆ = ๐‘“โˆš(๐œ‰2 โˆ’ 1)(1 โˆ’ ๐œ‚2) , and ๐‘ง =๐‘“๐œ‰๐œ‚ ๐‘๐‘œ๐‘  ๐œ‘, where f is a constant representing the half the distance between the foci of a family of confocal ellipses. Find the components of the metric tensor in this system. The metric tensor components are:

๐‘”๐œ‰๐œ‰ = (๐œ•๐‘ฅ

๐œ•๐œ‰)2

+ (๐œ•๐‘ฆ

๐œ•๐œ‰)2

+ (๐œ•๐‘ง

๐œ•๐œ‰)2

= (๐‘“๐œ‚ sin๐œ‘)2 + ๐‘“2๐œ‰2 (1 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1) + (๐‘“๐œ‚ cos๐œ‘)2 = ๐‘“2 (

๐œ‰2 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1)

๐‘”๐œ‚๐œ‚ = (๐œ•๐‘ฅ

๐œ•๐œ‚)2

+ (๐œ•๐‘ฆ

๐œ•๐œ‚)2

+ (๐œ•๐‘ง

๐œ•๐œ‚)2

= ๐‘“2 (๐œ‰2 โˆ’ ๐œ‚2

1 โˆ’ ๐œ‰2)

Page 66: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

66

๐‘”๐œ‘๐œ‘ = (๐œ•๐‘ฅ

๐œ•๐œ‘)2

+ (๐œ•๐‘ฆ

๐œ•๐œ‘)2

+ (๐œ•๐‘ง

๐œ•๐œ‘)2

= (๐‘“๐œ‰๐œ‚)2

๐‘”๐œ‰๐œ‚ = (๐œ•๐‘ฅ

๐œ•๐œ‰) (๐œ•๐‘ฅ

๐œ•๐œ‚) + (

๐œ•๐‘ฆ

๐œ•๐œ‰) (๐œ•๐‘ฆ

๐œ•๐œ‚) + (

๐œ•๐‘ง

๐œ•๐œ‰) (๐œ•๐‘ง

๐œ•๐œ‚)

= (๐‘“๐œ‚ sin๐œ‘)(๐‘“๐œ‰ sin๐œ‘) โˆ’ (๐‘“๐œ‚โˆš๐œ‰2 โˆ’ 1

1 โˆ’ ๐œ‚2)(๐‘“๐œ‰โˆš

1 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1) + (๐‘“๐œ‚ cos๐œ‘)(๐‘“๐œ‰ cos๐œ‘)

= 0 = ๐‘”๐œ‚๐œ‘ = ๐‘”๐œ‘๐œ‰

Find an expression for the divergence of a vector in orthogonal curvilinear coordinates. (***Rework***) The gradient of a vector ๐… = ๐น๐‘–๐ ๐‘– is ๐›ป โŠ— ๐‘ญ = ๐’ˆ๐‘—๐œ•๐‘—โŠ— (๐น๐‘–๐’ˆ๐‘–) = ๐น

๐‘–,๐‘—๐’ˆ

๐‘—โŠ—๐’ˆ๐‘–. The divergence is

the contraction of the gradient. While we may use this to evaluate the divergence directly it is

often easier to use the computation formula in equation Ex 15:

div ๐… = ๐น๐‘– ,๐‘—๐ ๐‘— โ‹… ๐ ๐‘– = ๐น

๐‘– ,๐‘–=1

โˆš๐‘”

๐œ•(โˆš๐‘” ๐น๐‘–)

๐œ•๐‘ฅ๐‘–

=1

โ„Ž1โ„Ž2โ„Ž3[๐œ•

๐œ•๐‘ฅ1(โ„Ž1โ„Ž2โ„Ž3๐น

1) +๐œ•

๐œ•๐‘ฅ2(โ„Ž1โ„Ž2โ„Ž3๐น

2) +๐œ•

๐œ•๐‘ฅ3(โ„Ž1โ„Ž2โ„Ž3๐น

3)]

Recall that the physical (components having the same units as the tensor in question)

components of a contravariant tensor are not equal to the tensor components unless the

coordinate system is Cartesian. The physical component ๐น(๐‘–) = ๐น๐‘–โ„Ž๐‘– (no sum on i). In terms of

the physical components therefore, the divergence becomes,

=1

โ„Ž1โ„Ž2โ„Ž3[๐œ•

๐œ•๐‘ฅ1(โ„Ž2โ„Ž3๐น(1)) +

๐œ•

๐œ•๐‘ฅ2(โ„Ž1โ„Ž3๐น(2)) +

๐œ•

๐œ•๐‘ฅ3(โ„Ž1โ„Ž2๐น(3))]

Find an expression for the Laplacian operator in Orthogonal coordinates.

For the contravariant component of a vector, ๐น๐‘—,

๐น๐‘—,๐‘— =1

โˆš๐‘”

๐œ•(โˆš๐‘” ๐น๐‘—)

๐œ•๐‘ฅ๐‘—.

Now the contravariant component of gradient ๐น๐‘— = ๐‘”๐‘–๐‘—๐œ‘,๐‘–. Using this in place of the vector ๐น๐‘—,

we can write,

๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– =1

โˆš๐‘”

๐œ•(โˆš๐‘” ๐‘”๐‘–๐‘—๐œ‘,๐‘— )

๐œ•๐‘ฅ๐‘–

Page 67: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

67

given scalar ๐œ‘, the Laplacian ๐›ป2๐œ‘ is defined as, ๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– so that,

๐›ป2๐œ‘ = ๐‘”๐‘–๐‘—๐œ‘,๐‘—๐‘– =1

โˆš๐‘”

๐œ•

๐œ•๐‘ฅ๐‘–(โˆš๐‘” ๐‘”๐‘–๐‘—

๐œ•๐œ‘

๐œ•๐‘ฅ๐‘—)

When coordinates are orthogonal, ๐‘”๐‘–๐‘— = ๐‘”๐‘–๐‘— = 0 whenever ๐‘– โ‰  ๐‘—. Expanding the computation

formula therefore, we can write,

๐›ป2๐œ‘ =1

โ„Ž1โ„Ž2โ„Ž3[๐œ•

๐œ•๐‘ฅ1(โ„Ž1โ„Ž2โ„Ž3โ„Ž1

๐œ•๐œ‘

๐œ•๐‘ฅ1) +

๐œ•

๐œ•๐‘ฅ2(โ„Ž1โ„Ž2โ„Ž3โ„Ž2

๐œ•๐œ‘

๐œ•๐‘ฅ2) +

๐œ•

๐œ•๐‘ฅ3(โ„Ž1โ„Ž2โ„Ž3โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ3)]

=1

โ„Ž1โ„Ž2โ„Ž3[๐œ•

๐œ•๐‘ฅ1(โ„Ž2โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ1) +

๐œ•

๐œ•๐‘ฅ2(โ„Ž1โ„Ž3

๐œ•๐œ‘

๐œ•๐‘ฅ2) +

๐œ•

๐œ•๐‘ฅ3(โ„Ž1โ„Ž2

๐œ•๐œ‘

๐œ•๐‘ฅ3)]

Show that the oblate spheroidal coordinate systems are orthogonal. Find an

expression for the Laplacian of a scalar function in this system.

Example above shows that ๐‘”๐œ‰๐œ‚ = ๐‘”๐œ‚๐œ‘ = ๐‘”๐œ‘๐œ‰ = 0 . This is the required proof of orthogonality.

Using the computation formula in example 11, we may write for the oblate spheroidal

coordinates that,

๐›ป2ฮฆ =โˆš(๐œ‰2 โˆ’ 1)(1 โˆ’ ๐œ‚2)

๐‘“3๐œ‰2(๐œ‰2 โˆ’ ๐œ‚2)[๐œ•

๐œ•๐œ‰(๐‘“๐œ‰๐œ‚โˆš

๐œ‰2 โˆ’ 1

1 โˆ’ ๐œ‚2๐œ•ฮฆ

๐œ•๐œ‰) +

๐œ•

๐œ•๐œ‚(๐‘“๐œ‰๐œ‚โˆš

1 โˆ’ ๐œ‚2

๐œ‰2 โˆ’ 1

๐œ•ฮฆ

๐œ•๐œ‚)]

+๐œ•

๐œ•๐œ‚(

๐‘“(๐œ‰2 โˆ’ ๐œ‚2)

๐œ‰๐œ‚โˆš(๐œ‰2 โˆ’ 1)(1 โˆ’ ๐œ‚2)

๐œ•ฮฆ

๐œ•๐œ‚)

3.61 Given tensors ๐€,๐ and ๐‚ we define the tensor square product with operator, โŠ , in the

equation, (๐€โŠ  ๐)๐‚ = ๐€๐‚๐T, show that the square product of two tensors ๐€ and ๐ has

the component form, ๐€โŠ ๐ = ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ ๐‘–โŠ—๐ ๐‘—โŠ—๐ ๐‘˜โŠ—๐ ๐‘™

Let ๐€ = ๐ด๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—, ๐‘ฉ = ๐ต๐‘˜๐‘™๐ 

๐‘˜โŠ—๐ ๐‘™, ๐‚ = ๐ถ๐›ผ๐›ฝ๐ ๐›ผโŠ—๐ ๐›ฝ . If we assume that ๐€โŠ ๐ =

๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ ๐‘–โŠ—๐ ๐‘—โŠ—๐ ๐‘˜โŠ—๐ ๐‘™, Then the product,

(๐€โŠ  ๐)๐‚ = ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™(๐ ๐‘–โŠ—๐ ๐‘—โŠ—๐ ๐‘˜โŠ—๐ ๐‘™)(๐ถ๐›ผ๐›ฝ๐ ๐›ผโŠ—๐ ๐›ฝ)

= ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ถ๐›ผ๐›ฝ๐›ฟ๐›ผ

๐‘˜๐›ฟ๐›ฝ๐‘™๐ ๐‘–โŠ—๐ ๐‘™

= ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ถ๐‘˜๐‘™๐ ๐‘–โŠ—๐ ๐‘™

To complete the proof, we only need to show that the above result equals ๐€๐‚๐T. To do

so, we change the basis order in ๐ so that,

Page 68: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

68

๐€๐‚๐T = (๐ด๐‘–๐‘—๐ ๐‘–โŠ—๐ ๐‘—)(๐ถ๐›ผ๐›ฝ๐ ๐›ผโŠ—๐ ๐›ฝ)(๐ต๐‘˜๐‘™๐ 

๐‘™โŠ—๐ ๐‘˜)

= ๐ด๐‘–๐‘—๐ถ๐›ผ๐›ฝ๐ต๐‘˜๐‘™๐ 

๐‘–โŠ—๐ ๐‘˜๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ๐‘™ = ๐ด๐‘–๐‘—๐ถ

๐‘—๐‘™๐ต๐‘˜๐‘™๐ ๐‘–โŠ—๐ ๐‘˜

= ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ถ๐‘˜๐‘™๐ ๐‘–โŠ—๐ ๐‘—

= (๐€โŠ  ๐)๐‚

We can therefore conclude that ๐€โŠ ๐ = ๐ด๐‘–๐‘˜๐ต๐‘—๐‘™๐ ๐‘–โŠ—๐ ๐‘—โŠ—๐ ๐‘˜โŠ—๐ ๐‘™.

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

Page 69: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

69

3.71

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69

Page 70: THREE - OA Fakoafak.com/wp-content/uploads/2019/10/Chapter-3.-Tensor...This maps from the domain V to ๐•Ž both of which are Euclidean vector spaces. The concepts of limit and continuity

70

3.70

3.71

References

Abramowitz, M & Stegun, I, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York 1970

Bertram, A, Elasticity and Plasticity of Large Deformations, An Introduction, Springer, 2008 Heinbockel, JH, Introduction to Tensor Calculus and Continuum Mechanics, Trafford, 2003 Bower, AF, Applied Mechanics of Solids, CRC Press, NY, 2010 Brannon, RM, Functional and Structured Tensor Analysis for Engineers, UNM BOOK DRAFT,

2006, pp 177-184. Dill, EH, Continuum Mechanics, Elasticity, Plasticity, Viscoelasticity, CRC Press, 2007 Gurtin, ME, Fried, E & Anand, L, The Mechanics and Thermodynamics of Continua, Cambridge

University Press, 2010 Holzapfel, GA, Nonlinear Solid Mechanics, Wiley NY, 2007 Humphrey, JD, Cadiovascular Solid Mechanics: Cells, Tissues and Organs, Springer-Verlag, NY,

2002 Itskov, M, Tensor Algebra and Tensor Analysis for Engineers with applications to Continuum

Mechanics, Springer, 2010 Jog, BS, Continuum Mechanics: Foundations and Applications of Mechanics, Cambridge-IISc

Series, 2015 Kay, DC, Tensor Calculus, Schaum Outline Series, McGraw-Hill, 1988 Mase,GE, Theory and Problems of Continuum Mechanics, Schaum Outline Series, McGraw-Hill,

1970 McConnell, AJ, Applications of Tensor Analysis, Dover Publications, NY 1951 Ogden, RW, Nonlinear Elastic Deformations, Dover Publications, Inc. NY, 1997 Romano, A, Lancellotta, R, Marasco, A, Continuum Mechanics using Mathematica, Birkhauser,

2006 Sokolnikoff, I.S., Tensor Analysis with Applications to Geometry and the Mechanics of

Continua, John Wiley and Sons, Inc., New York, NY 1964 Spiegel, MR, Theory and Problems of Vector Analysis, Schaum Outline Series, McGraw-Hill,

1974 Taber, LA, Nonlinear Theory of Elasticity, World Scientific, 2008 Wegner, JL & Haddow, JB, Elements of Continuum Mechanics and Thermodynamics,

Cambridge University Press, 2009.


Top Related