Transcript
Page 1: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Challenging

First Year Students

Steve Barrett, John Fry, Uta Klein, Lynn Moran

Department of Physics

UoL Conference, June 23rd , 2009

Page 2: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Issues

How to make an efficient transition from school to University?

How to keep the learning outcome and success rate high?

Are there particularly suitable teaching methods?

In Physics, special attention is required to:

understanding of unseen and more complex problems

develop/challenge logical and critical thinking

practice more mathematics

offer tools for self assessment

practice time management

Page 3: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Introduction and Motivation :

Physics Olympics in Freshers’ Week The Undergraduate Physics Olympics (UPO) is a half-day event

organised for freshers and is run by staff and existing undergraduate students.

It is held in Freshers’ Week, slotted in between scheduled university and departmental information sessions.

Goal:

To enhance the first-year students' experience by allowing teams of freshers the opportunity to compete against each other in physics-based hands-on tasks and quizzes:

It enables students to be introduced to the departmental laboratories, staff and more senior students in an informal environment at an early stage in the year.

Statistical and anecdotal evidence both indicate that the UPO enhances the first year experience and helps to build peer support groups.

Page 4: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

First Year Courses for Comparison

Course Lectures AssessedExercises

Tutorials Problem Classes

Group Work

Assessed Homework

ClassTest

Contents

A 2 - - 1* - 2*5% 15% classic

B 2 2 - 1 - 6*5% - new

C 2 - 1/4 - - - - new

D - 10/6% - 1 2 4*5% - classic

E 2 - - 1-2 - - 30% new

Courses differ by contents (classical physics on University level or new fields of physics) and by the types of assessment, exercises, problem classes etc., in particular

B: Problem classes and problem solving strategies, use of electronic homework system ‘Mastering Physics’ (Pearson)

C: Course in traditional manner of lectures and non-assessed tutorials

D: No lectures but ‘techniques’ session, groups of 5 students (project-based learning), and use of ‘Mastering Physics’

E: Traditional course with a larger class test.

Page 5: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities
Page 6: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities
Page 7: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Feedback

• Students encouraged to give feedback at all times, and they made use of this opportunity.

• Progress/issues were discussed in students-staff committee sessions regularly.

• Modified modules (courses B and D) were evaluated by dedicated questionnaires.

• In general, students were satisfied with organisation and contents, but they said ‘that they had to work harder for those modules’.

• Details of feedback depend significantly on abilities of students.

Weak students had unexpected difficulties (but our ‘open-door’ policy helped here).

Brighter students felt that they were up to the challenge.

Page 8: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Module Results

Course Students Average >70% <40%

classical

A 86 69% 46% 10%

new+elearn

B 74 63% 33% 8%

new+traditional

C 78 55% 21% 27%

project-based

D 83 60% 33% 16%

new+class test

E 87 48% 19% 43%

1. year students only(63)

Around 40% of students achieved >70% in at least 2 modules.

Around 25% of students failed 2 or more modules.

Page 9: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Typical Module Mark-

Attendance Correlation

0

20

40

60

80

100

0 20 40 60 80 100

Mark

Attendance

Module Mark

Course D

Attendance is important and is monitored

Page 10: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Conclusions• The traditional approach (courses C and E) where students are

given problems to do in their own time does not give satisfactory results. The failure rate in both courses was too high (E by 20%!) which triggered a revision of the courses (contents and teaching method).

• Students learn better when required work that is assessed week by week (courses A, B and D). Weaker students did profit from problem classes and group work. The effort for B and D, however, was too large for ‘routine’ teaching.

• Independently of the type of the module more than a quarter of the students achieved excellent results (>70%). Ten per cent of the students achieved excellent results in all 5 modules, and 50% in at least one module. The excellent students can and should be challenged more.

We will develop the system further.

Page 11: Uta Klein, John Fry & Lynn Moran: Challenging first-year Students, Pre-entry and induction learning activities

Next Steps

• Investigate further the correlation to mathematics modules, e.g. course E rather mathematical.

• Try to improve the synchronisation of mathematics modules and physics contents. It is planned to add new mathematics modules. Also problem classes are excellent tools for practice mathematics within physics context.

• Next pilots :

We plan to add 2 ½ ‘introduction’ days in September which should revise A-level mathematics in context of a physics task (e.g. ‘Trip to Mars’).

Use more and more widely the available electronic homework system (assessed and for practice).


Top Related