Transcript
Page 1: VUV PHOTOFRAGMENTATION PATHWAYS OF COOLED HeH … · Ion source Experimental station at FEL focus Ion trap FLASH monochromator beamline Fragment detectors VUV PHOTOFRAGMENTATION PATHWAYS

Ion source

Experimental stationat FEL focus

Ion trap

FLASHmonochromatorbeamline

Fragmentdetectors

VUV PHOTOFRAGMENTATION PATHWAYS OF COOLED HeH+ STUDIED AT FLASH

The TIFF experiment [3,4] – Trapped Ion Fragmentation at FLASH [1,2]

H. B. Pedersen1, L. Lammich1, B. Jordon-Thaden2, C. Domesle2, O. Heber3, J. Ullrich2, R. Treusch4, N. Guerassimova4, and A. Wolf2

HeH+ XUV photodissociation

1Department of Physics and Astronomy, Aarhus University, Denmark, 2Max-Planck-Institut für Kernphysik, Heidelberg, Germany , 3Dept. of Particle Physics, Weizmann Institute of Science, Rehovot, Israel, 4HASYLAB, DESY at Hamburg, Germany.

Ionsource

Quadrupole deflector

Separatormagnet

Focusing& steering

Ion beam preparation

4.2 kV

Diagnostics & collimation

DET 1

DET 2

FLASH beam

FLASH dump

Trapping and pulsing

Ion dumpFragmentdetection

Interactionregions

Key features

Photofragmentation of fast mass-selected, gas-phase molecular ions

Fast ion beam

• target preparation

• universal acces to all fragments, including neutrals

Ion trapping

• preparation/characterization of initial state

Momentum imaging

• Kinematically complete analysis of fragments -determining m/q, energy and emission angle

• Identification of electron proceses - electron spectrometry under development.

• Reaction microscope

Ion pulses

He

DET 2

DET 1

H+

Ion dump

FLASH pulses

Interaction regionElectrodes for biasing,deflection, trapping

Detection systemTime- and position sensitive,coincidence detection

HeH+ is a fundamental system

• Non-adiabatic interactions

• Astrophysics

• Neutrino mass measurements

• Ionic analog of H2

– e.g. dissociation in strong laser fields

XUV photodissociation of HeH+

• Dominating reaction channels ?He + H+ or He+ + H

• Dominating absorption states ?- versus -

• Dominating fragment states ?H(nl), He(1snl) – which n ?

• Importance of vibrational excitation ?

HeH+ + 32 nm

He+(1s) + H(nl)

[HeH+(/)]*

He(1snl) + H+

p

p

References

[1] W. Ackermann et al., Nature Photonics 1, 336 (2007)

[2] K. Tiedtke et al., New J. Phys. 11, 023029 (2009)

[3] H. B. Pedersen et al. , Phys. Rev. Lett. 98, 223202 (2007)

[4] H. B. Pedersen et al., Phys. Rev. A 80, 012707 (2009)

[5] H. B. Pedersen et al., Phys. Rev A 82, 023415 (2010)

[6] I. Dumitriu and A. Saenz, J. Phys. B 42, 165101 (2009)

[7] K. Sodoga et al., Phys. Rev. A 80, 033417 (2009)

Absorption states Angular distributions

HOT ions COLD ions (v=0) Theory [6]

He + H+ : - 30 2 % - 24 6 % ~ 30 %

- 70 2 % - 76 6 % ~ 70 %

He+ + H : - 38 3 % - 50 3 % ~ 15 %

- 62 1 % - 50 5 % ~ 85 %

Summary of results on HeH+ + 32 nm [5]

Reactions channels Imaging with biased interaction region

HOT ions COLD ions (v=0) Theory [6]

0.96 0.11 1.70 0.48 ~ 1.6

Final states - fragment excitation Final kinetic energy

HOT ions COLD ions (v=0) Theory

He(1snl) + H+ : n > 3 - 4 n > 3 - 4 ?

He+ + H(nl) : n > 3 - 4 n > 3 - 4 ?

He+ + H----------He + H+

Experimental results [5]

Imaging with a biased interaction region

He+ + H(nl)

Imaging with coincidence detection

He(1snl) + H+

Vibrationally hot and cold ions [5]

Top Related