dr. ahmed samir al-naaimi · dr. ahmed sameer alnuaimi page 1 of 27 slide 1 test performance...

27
Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community Medicine Baghdad College of medicine Test Performance Characteristics This lecture was prepared by Dr. Ahmed Samir Al-Naaimi An epidemiologist and teaching staff member in Department of Community Medicine Baghdad College of medicine The same tutor will do the talk for the slides

Upload: others

Post on 12-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 1 of 27

Slide 1

Test Performance Characteristics

Dr. Ahmed Samir Al-Naaimi

MBChB, MSc, PhD-Epidemiology

Department of Community Medicine

Baghdad College of medicine

Test Performance Characteristics

This lecture was prepared by Dr. Ahmed Samir Al-Naaimi

An epidemiologist and teaching staff member in Department of Community Medicine

Baghdad College of medicine The same tutor will do the talk for the slides

Page 2: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 2 of 27

Slide 2

Objectives

Define validity of a test or criteria.

List 7 validity parameters of a test or criteria.

Compare stable validity parameters to those with clinical applications.

Understand the effect of changing the cut-off value for quantitative test on stable validity parameters.

Evaluate the role of physician in assessing the meaning of test results.

Master the calculation of validity parameters.

Assess the effect of sensitivity, specificity and pretest probability on predictive value of test result.

The prospective physician is expected to order and interpret laboratory tests.

The aim of this presentation is to help physicians in understanding the role that lab tests play in their profession.

Learning Objectives

By the end of this lecture the participants should be able to achieve the following objectives

•Define validity of a test or criteria. •List 7 validity parameters of a test or criteria.

•Compare stable validity parameters to those with clinical applications. •Understand the effect of changing the cut-off value for quantitative test on

stable validity parameters.

•Evaluate the role of physician in assessing the meaning of test results. •Master the calculation of validity parameters.

•Assess the effect of sensitivity, specificity and pretest probability on predictive value of test result.

Page 3: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 3 of 27

Slide 3

Validity

Validity of a test or criteria in predicting a health outcome (disease) measures the extent to which the test really measures what is supposed to measure.

The validity indices of a test include:

Sensitivity and its complement (rate of false negative)

Specificity and its complement (rate of false positive).

Accuracy (agreement).

PPV (positive predictive value).

NPV (negative predictive value). Define validity of a test or criteria.

Validity is a characteristic of a test or criteria in predicting a health outcome

(disease). It measures the extent to which the test really measures what is supposed to measure. Validity is also called test performance

characteristics.

The validity indices of a test include: Sensitivity and its complement (rate of false negative).

Specificity and its complement (rate of false positive). Accuracy (agreement)

PPV (positive predictive value). NPV (negative predictive value).

Page 4: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 4 of 27

Slide 4

Calculating validity parameters

Typical arrangement for 2 by 2 table used for calculating validity parameters.

Disease status

Test results Disease

positive

Disease

free Total

+ve

(A)

True +ve test

(B)

False +ve testTotal positive test

results

-ve

(C)

False –ve test

(D)

True -ve testTotal negative test

results

Total

Total cases

(disease)

Total non-cases

(disease free) Total sample

Calculating validity parameters

The table shown in the slide displays the typical arrangement for 2 by 2 table

used in calculating validity parameters. The cross-tabulation between test results and disease status will result in placement of the tested subjects in one

of the 4 cells:

Cell A “True positive test results”: frequency (count) of subjects who test positive and have the disease.

Cell B “False positive test results”: frequency (count) of subjects who test positive and are disease free.

Cell C “False negative test results”: frequency (count) of subjects who test

negative and have the disease. Cell D “True negative test results”: frequency (count) of subjects who test

negative and are disease free.

Any of the 4 cells is labeled by the test result and its evaluation as true or false according to the disease status.

Page 5: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 5 of 27

Slide 5

Sensitivity

Definition 1: Is the conditional probability that a diseased person has a positive result. It measures the ability of test to identify all those who have the disease in the screened population.

Definition 2: The proportion of people who have the disease in whom a screening test gives positive result

Applications (making use of sensitivity)

1. Sensitivity is of direct use in screening .

2. Its value is used indirectly when ruling-out (excluding)

Sensitivity : Is the conditional probability that a diseased person has a

positive result. It measures the ability of test to identify all those who have the disease in the screened population.

Sensitivity: is also defined as the proportion of people who have the disease in

whom a screening test gives positive result.

Applications (Making use of sensitivity) 1. Sensitivity is of direct use in screening (looking for / searching) for a certain condition or disease among subjects who are asymptomatic or those in

whom the penalty for missing the disease is high. A test with high sensitivity is used for screening purposes. Example of tests used in screening:

Mammography in mass screening for breast cancer in menopausal women. Pap smear for screening of cervical cancer in women.

The second application for sensitivity is an indirect one. The value of sensitivity

is used indirectly when ruling-out (excluding) a possible diagnosis (through its impact on negative predictive value). We will come across this later on.

Page 6: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 6 of 27

Slide 6

Sensitivity-2

The complement of sensitivity is the proportion of false negative, is the conditional probability that a diseased person has a negative test result (it equals 1-sensitivity or 100-sensitivity%).

Sensitivity =Number of true positives

=A

Number of diseased people A+C

Proportion

of False -ve=

Number of false negative=

C

Number of diseased people A+C

Sensitivity =Number of true positives/Number of diseased people = A/A+C

(referring to the typical 2x2 table on slide 4)

The complement of sensitivity is the proportion of false negative, is the conditional probability that a diseased person has a negative test result (it

equals 1-sensitivity or 100-sensitivity%).

Consequences for people who test false negative are being not identified, falsely reassured. We usually choose tests of high sensitivity to reduce the

possibility of missing diseased people to the minimum.

The formula used for calculating the proportion of false negative

=Number of False negative / Number of diseased people = C/A+C

Page 7: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 7 of 27

Slide 7

Specificity

Definition 1: Is the conditional probability that a disease-free person has a negative test result.

Definition 2: The proportion of people free of the disease in whom a test gives a negative result.

Applications (making use of specificity)

1. Specificity is of no direct use or clinical application.

2. Its value indirectly affect the positive predictive value of a test. Therefore a test with high specificity

is used to establish a possible diagnosis.

or

Specificity: Is the conditional probability that a disease-free person has a

negative test result.

Specificity can also be defined as the proportion of people free of the disease in whom a test gives a negative result.

Applications (making use of specificity) • Specificity is of no direct use or clinical application.

• Its value indirectly affect the positive predictive value of a test. Therefore a test with high specificity is used to establish a possible

diagnosis. This finding deserves further discussion which is found later on in this lecture.

Page 8: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 8 of 27

Slide 8

Specificity-2

The complement of specificity is the proportion of false positive, is the conditional probability that a disease free person has a positive test result (it equals 1-specificity or 100-specificity%).

Specificity =Number of true negative

=D

Number of disease free people B+D

Proportion

of False +ve=

Number of false positive=

B

Number of disease free people B+D

Specificity =Number of true negative/Number of disease free people = D/B+D

(referring to the typical 2x2 table on slide 4)

The complement of specificity is the proportion of false positive, which is the conditional probability that a disease free person has a positive test result (it

equals 1-specificity or 100-specificity%).

Consequences for people who test false positive: anxiety, unnecessary diagnostic tests which may be invasive, costly and painful. A highly specific test

therefore can keep false positive test results to the minimum.

The formula used for calculating the Proportion of false positive

=Number of False positive/ Number of disease free people = B/B+D

Page 9: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 9 of 27

Slide 9

Stable validity parameters

The sensitivity and specificity of a test are sometimes called stable validity parameters, i.e. once established will not change under different circumstances.

An exception is made by changing the cut-off value for defining a positive test result in quantitative assessments. The changes in stable validity parameters depend on direction of the test.

A) Positive direction = raising the cut-off value will increase the specificity and decrease the sensitivity.

B) Negative direction = reducing the cut-off value will increase the specificity and decrease the sensitivity

Stable validity parameters

The sensitivity and specificity of a test are sometimes called stable validity

parameters, i.e. once established will not change under different circumstances.

An exception is with quantitative tests, changing the cut-off value for a

positive test result will change the stable validity parameters (sensitivity and specificity) depending on the direction of test.

A) Positive direction: Higher values for test results indicate disease (or

positive outcome): For example fasting serum glucose concentration, in which higher values indicate hyperglycemia, one of the biochemical

abnormalities of diabetes mellitus. The WHO suggests that a fasting serum glucose concentration of 126 mg/dl or higher is positive for DM. Increasing the

cut-off value for positive test much above 126 will increase the specificity and decrease the sensitivity of test and Vice versa.

• Negative direction: Lower values for test results indicate disease (or positive outcome): For example blood Hb concentration, in which lower

values indicate anemia. The WHO suggests that blood Hb concentration of < 12g/dl in an adult non-pregnant female is positive for anemia. Decreasing

the cut-off value for positive test much below 12 g/dl will increase the specificity and decrease the sensitivity and Vice versa.

Page 10: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 10 of 27

Slide 10

Accuracy

Accuracy (percent agreement) is the proportion of true results among all test results (positive and negative). It is a summary measure for the performance (validity) of test.

Accuracy=Number of true +ve and -ve

=A+D

Total sample size A+B+C+D

Accuracy (percent agreement) is the proportion of true results among all

test results (positive and negative). It is a summary measure for the performance (validity) of the test that allow easy comparison between two

tests. But it does not help in choosing an application for a specific test.

Accuracy=Number of true +ve and –ve/Total sample size=A+D/A+B+C+D (you can always refer to the typical 2x2 table on slide 4)

Page 11: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 11 of 27

Slide 11

Clinically applied parameters

In clinical settings the test result is used to predict the disease status of the tested individual. The confidence level in predicting disease status can be measured in terms of probability theory using PPV and NPV.

To measure PPV and NPV one should use the stable validity parameters (sensitivity and specificity) in addition to pretest probability or prevalence .

Clinically applied parameters sometimes called yield or predictive value of a

test result

In clinical settings the test result is used to predict the disease status of the tested individual. So if a subject tests positive one would like to believe that he

is really diseased. On the other hand when he tests negative one would like to believe that the subject is really disease free. The confidence level in the

previous 2 types of predictions can be measured in terms of probability theory using PPV (predictive value of a positive test result) and NPV (predictive value

of a negative test result).

To measure PPV and NPV one should use the stable validity parameters

(sensitivity and specificity) in addition to pretest probability or prevalence (which is the probability that an individual with certain characteristics have the

disease based on history and clinical judgment alone.

Page 12: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 12 of 27

Slide 12

PPV

Positive Predictive Value (PPV) is the conditional probability that a person with a positive test result is truly diseased.

The PPV is directly proportional to specificity and pretest probability (prevalence or the clinical judgment for the probability of having the disease).

A high PPV is needed to establish the diagnosis with confidence.

PPV =Number of true positive

=A

Number of all positive test results A+B

Positive Predictive Value (PPV) is the conditional probability that a person with

a positive test result is truly diseased.

The PPV is directly proportional to specificity and pretest probability (prevalence or the clinical judgment for the probability of having the disease).

It reflects the degree of confidence in being diseased after applying the test (post-test probability).

A high PPV is needed to establish the diagnosis with confidence.

PPV=Number of true positive/Number of all positive test results= A/A+B

(referring to the typical 2x2 table on slide 4)

Page 13: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 13 of 27

Slide 13

NPV

Negative predictive value (NPV) is the conditional probability that a person with a negative test result is truly free of the disease.

The NPV is directly proportional to sensitivity and inversely proportional to pretest probability.

A high NPV is needed to exclude a possible diagnosis with confidence.

NPV =Number of true negative

=D

Number of all negative test results C+D

Negative predictive value (NPV) is the conditional probability that a person

with a negative test result is truly free of the disease.

The NPV is directly proportional to sensitivity and inversely proportional to pretest probability.

A high NPV is needed to exclude a possible diagnosis with confidence.

PPV=Number of true negative/Number of all negative test results= D/C+D

(referring to the typical 2x2 table on slide 4)

Page 14: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 14 of 27

Slide 14

Notes about PPV and NPV

The value of both PPV and NPV in quantitative test depends in addition to the prevalence of the disease (pretest probability) on the cutoff point for positive test result (through its effect on sensitivity and specificity).

The NPV and PPV reported in literatures for a certain test is not comparable to values of the same test when applied in other samples or studies.

The use of NPV and PPV is in the domain of physicians only, since they need the pretest probability for its calculation, which can only be specified by them (through history taking and clinical examination).

PPV cannot be used in the same context of NPV.

or

Notes about PPV and NPV The value of both PPV and NPV in quantitative test depends in addition to the

prevalence of the disease (pretest probability) on the cutoff point for positive

test result (through its effect on sensitivity and specificity).

The NPV and PPV reported in literatures for a certain test is not comparable to values of the same test when applied in other samples or studies, since the

pretest probability for having the condition is usually different between studies. It is therefore better not to compare them. They are reported in literatures to

show how good (or bad) was the test when applied in clinical settings.

The use of NPV and PPV is in the domain of physicians only, since they need the pretest probability for its calculation, which can only be specified by them

(through history taking and clinical examination), a process which we call differential diagnosis. All what we need to do is to assign probability figures to

phrases, such as: rare, highly probable, very common, common, unlikely ……etc.

Keep in mind that PPV cannot be used in the same context of NPV. One should decide in advance what he really needs from the test. Is it to establish the

diagnosis? or exclude it?. If on clinical bases the disease is highly likely (high pretest probability) then the PPV is needed, while if the disease is considered a

rare possibility clinically (low pretest probability) then we will wait for the NPV of the test.

Page 15: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 15 of 27

Slide 15

Prevalence and Predictive Values

0

20

40

60

80

100

5 20 50

PV +

PV -

Effect of Prevalence on

Predictive Values

Prevalence (%)

Rules of Prevalence and Predictive Values:

As prevalence rate increases (moving from left to right on X axis in the figure); so does the positive predictive value (red bars in the figure) while negative

predictive value decreases (yellow bars in the same figure).

On the other hand as the prevalence rate decreases (moving from right to left on X axis in the figure); so does positive predictive value, while negative

predictive value increases.

PPV is directly proportional to prevalence or pretest probability, while NPV is inversely proportional.

Page 16: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 16 of 27

Slide 16

Example-calculations

The following 2 by 2 table show the association between a test and disease status

Disease status

TestDiseasepositive

Disease free Total

+ve 450 100 550

-ve 50 400 450

Total 500 500 1000

The following 2 by 2 table show the association between a test and disease

status

All the 7 validity parameters are calculated as follows:

Sensitivity = 450/500 x 100 = 90% Specificity = 400/500 x 100 = 80%

Accuracy = [(450+400)/1000] x 100 = 85% Proportion of false positive = 100 – 80 = 20%

Proportion of false negative = 100 – 90 = 10% PPV = 450 / 550 x 100 = 81.8% for prevalence of disease = 500/1000 x 100 =

50%

NPV = 400 / 450 x 100 = 88.9% for the same 50% prevalence rate

Page 17: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 17 of 27

Slide 17

Example-1-Increase Prevalence

Now let's increase the disease prevalence to 90%

Disease status

TestDiseasepositive

Disease free Total

+ve 810 20 830

8

1

0

-ve 90 80 1709

0

Total 900 100 1000

9

0

0

PPV increase from 81.8% to 90% and NPV decrease from 88.9 to 47.1% , while sensitivity and specificity are stable.

Now let's increase the disease prevalence to 90%, without affecting the stable

validity parameters (sensitivity and specificity).

Sensitivity = 810/900 x 100 = 90% Specificity = 80/100 x 100 = 80%

Accuracy = (810+80)/200 = 890/1000 x 100 = 89% Proportion of false positive = 100 – 80 = 20%

Proportion of false negative = 100 – 90 = 10%

You can see that PPV increased from 81.8% to 90% and NPV decreased from 88.9 to 47.1% , while sensitivity and specificity are stable. As shown in

the calculations below

PPV = 810 / 830 x 100 = 97.6% for prevalence of disease = 900/1000 x 100 =

90% NPV = 80 / 170 x 100 = 47.1% for the same 90% prevalence rate

Page 18: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 18 of 27

Slide 18

Example-1-Decrease Prevalence

Now let's decrease the disease prevalence to 10%

Disease status

TestDiseasepositive

Disease free Total

+ve 90 180 270

8

1

0

-ve 10 720 7309

0

Total 100 900 1000

9

0

0

PPV decrease from 81.8% to 33.3% and NPV increase from 88.9 to 98.6% , while sensitivity and specificity are stable.

Now let's decrease the disease prevalence to 10%, without affecting the stable

validity parameters (sensitivity and specificity).

Sensitivity = 90/100 x 100 = 90% Specificity = 720/900 x 100 = 80%

Accuracy = (90+720)/1000 = 810/1000 x 100 = 81% Proportion of false positive = 100 – 80 = 20%

Proportion of false negative = 100 – 90 = 10%

You can notice that PPV decreased from 81.8% to 33.3% and NPV increased from 88.9% to 98.6% , while sensitivity and specificity are

stable. As shown in the calculations below .

PPV = 90 / 270 x 100 = 33.3% for prevalence of disease = 100/1000 x 100 =

10%

NPV = 720 / 730 x 100 = 98.6% for the same prevalence rate of 10%

Page 19: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 19 of 27

Slide 19

Example-2-effect of sensitivity

The following 2 by 2 table show the association between a

test and disease status

Disease status

TestDiseasepositive

Disease free Total

+ve 450 100 550

8

1

0

-ve 50 400 4509

0

Total 500 500 1000

9

0

0

Example-2-stuying the effect of changes in sensitivity The following 2 by 2 table show the association between a test and disease status

Sensitivity = 450/500 x 100 = 90% Proportion of false negative = 100 – 90 = 10%

NPV = 400 / 450 x 100 = 88.9%

Prevalence of disease=500/1000 x 100 = 50% Specificity= 400/500 x 100 = 80%

Page 20: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 20 of 27

Slide 20

Example-2-decrease sensitivity

Now let's decrease the test sensitivity from 90% to 10%-

keeping the prevalence and specificity constant

The NPV decreased from 88.9% to 47.1%

Disease status

TestDiseasepositive

Disease free Total

+ve 50 100 150

8

1

0

-ve 450 400 8509

0

Total 500 500 1000

9

0

0

Now let's decrease the test sensitivity from 90% to 10%-keeping the prevalence rate and specificity constant

Sensitivity = 50/500 x 100 = 10%

Proportion of false negative = 100 – 10 = 90% Specificity= 400/500 x 100 = 80% The NPV decreased from 88.9% to 47.1% , as shown in the calculations below

NPV = 400 / 850 x 100 = 47.1%

Prevalence of disease=500/1000 x 100 = 50%

Page 21: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 21 of 27

Slide 21

Example-2-increase sensitivity

Now let's increase the test sensitivity from 90% to 99%-

keeping the prevalence and specificity constant

The NPV increased from 88.9% to 98.8%

Disease status

TestDiseasepositive

Disease free Total

+ve 495 100 595

8

1

0

-ve 5 400 4059

0

Total 500 500 1000

9

0

0

Example-2-increase sensitivity

Now let's increase the test sensitivity from 90% to 99%-keeping the prevalence rate and specificity constant.

Sensitivity = 495/500 x 100 = 99%

Proportion of false negative = 100 – 99 = 1%

You can see that the NPV increased from 88.9% to 98.8%, as shown in the calculations below.

NPV = 400 / 405 x 100 = 98.8%

Prevalence of disease=500/1000 x 100 = 50%

Page 22: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 22 of 27

Slide 22

Example-3-effect of specificity

The following 2 by 2 table show the association between a

test and disease status

Disease status

TestDiseasepositive

Disease free Total

+ve 450 100 550

8

1

0

-ve 50 400 4509

0

Total 500 500 1000

9

0

0

Example-3-studying the effect of changing specificity

The following 2 by 2 table show the association between a test and disease status

Specificity = 400/500 x 100 = 80%

Proportion of false positive = 100 – 80 = 20%

PPV = 450 / 550 x 100 =81.8% for prevalence of disease = 500/1000 x 100 = 50%

Sensitivity = 450 / 500 x 100 = 90%

Page 23: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 23 of 27

Slide 23

Example-3-decrease specificity

Now let's decrease the test specificity from 80% to 10%-

keeping the prevalence and sensitivity constant.

Disease status

TestDiseasepositive

Disease free Total

+ve 450 450 900

8

1

0

-ve 50 50 1009

0

Total 500 500 1000

9

0

0

The PPV decreased from 81.8% to 50%

Example-3-decrease specificity Now let's decrease the test specificity from 80% to 10%-keeping the prevalence and sensitivity constant.

Specificity = 50/500 x 100 = 10% Proportion of false positive = 100 – 10 = 90%

Sensitivity = 450 / 500 x 100 = 90% The PPV decreased from 81.8% to 50%, as shown in the calculations below

PPV = 450 / 900 x 100 =50% for prevalence of disease = 500/1000 x 100 = 50%

Page 24: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 24 of 27

Slide 24

Example-3-increase specificity

Now let's increase the test specificity from 80% to 99%-

keeping the prevalence and sensitivity constant

The PPV increased from 81.8% to 98.9%

Disease status

TestDiseasepositive

Disease free Total

+ve 450 5 455

8

1

0

-ve 50 495 5459

0

Total 500 500 1000

9

0

0

Example-3-increase specificity Now let's increase the test specificity from 80% to 99%-keeping the prevalence and sensitivity constant

Specificity = 495/500 x 100 = 99% Proportion of false positive = 100 – 99 = 1%

The PPV increased from 81.8% to 98.9% , as shown in the calculations below

PPV = 450 / 455 x 100 = 98.9% for prevalence of disease = 500/1000 x 100

= 50% Sensitivity = 450 / 500 x 100 = 90%

Page 25: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 25 of 27

Slide 25

Recap

A valid test is one that measures what it is supposed to measure accurately.

Sensitivity and specificity are stable parameters for a test and therefore useful for comparison across studies.

A highly sensitive test is useful for screening purposes.

Sensitivity and specificity has no direct clinical application on their own.

Accuracy is useful in comparison between tests, but it gives no idea about its specific performance.

Recap

Let us recall some core concepts presented in this lecture

A valid test is one that measures what it is supposed to measure

accurately.

Sensitivity and specificity are stable parameters for a test and therefore

useful for comparison across studies.

A highly sensitive test is useful for screening purposes.

Sensitivity and specificity has no direct clinical application on their own.

Accuracy is useful in comparison between tests, but it gives no idea

about its specific performance.

Page 26: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 26 of 27

Slide 26

Recap-2

Only a well trained physician is able to assess the predictive value of a test result in assessing disease membership, since he can give an assumption of pretest probability or prevalence of the outcome for a subject.

The predictive value of a positive test result can be maximized by increasing specificity and prevalence.

The predictive value of a negative test result can be maximized by increasing sensitivity and decreasing the prevalence or pretest probability.

Recap

Only a well trained physician is able to assess the predictive value of a test result in assessing disease membership, since he can give an

assumption of pretest probability or prevalence of the outcome for a subject.

The predictive value of a positive test result can be maximized by increasing specificity and prevalence.

The predictive value of a negative test result can be maximized by increasing sensitivity and decreasing the prevalence or pretest

probability.

Page 27: Dr. Ahmed Samir Al-Naaimi · Dr. Ahmed Sameer Alnuaimi Page 1 of 27 Slide 1 Test Performance Characteristics Dr. Ahmed Samir Al-Naaimi MBChB, MSc, PhD-Epidemiology Department of Community

Dr. Ahmed Sameer Alnuaimi

Page 27 of 27

Slide 27

The

Thank you for listening