dr. alexander kryukov

95
www.secnrs.ru Dr. Alexander Kryukov Actual issues of VVER reactor pressure vessel irradiation embrittlement assessment Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety

Upload: others

Post on 13-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

www.secnrs.ru

Dr. Alexander Kryukov

Actual issues of VVER reactor pressure vessel irradiation embrittlement assessment

Federal Environmental, Industrial and Nuclear Supervision Service

Scientific and Engineering Centre for Nuclear and Radiation Safety

www.secnrs.ru www.secnrs.ru 2

OUTLINE

Introduction

www.secnrs.ru www.secnrs.ru 3

OUTLINE

Introduction

RPV Radiation Damage

www.secnrs.ru www.secnrs.ru 4

OUTLINE

Introduction

RPV Radiation Damage

Irradiation Embrittlement Mitigation by Annealing

www.secnrs.ru www.secnrs.ru 5

OUTLINE

Introduction

RPV Radiation Damage

Irradiation Embrittlement Mitigation by Annealing

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 6

OUTLINE

Introduction

RPV Radiation Damage

Irradiation Embrittlement Mitigation by Annealing

VVER RPV-440 life time long term operation

International STRUMAT project

www.secnrs.ru www.secnrs.ru 7

www.secnrs.ru www.secnrs.ru 8

REACTOR PRESSURE VESSELS

• Cannot be replaced

www.secnrs.ru www.secnrs.ru 9

REACTOR PRESSURE VESSELS

• Cannot be replaced

• Under high pressure, temperature and radiation:

www.secnrs.ru www.secnrs.ru 10

REACTOR PRESSURE VESSELS

• Cannot be replaced

• Under high pressure, temperature and radiation:

• pressure: 12-18 MPa,

www.secnrs.ru www.secnrs.ru 11

REACTOR PRESSURE VESSELS

• Cannot be replaced

• Under high pressure, temperature and radiation:

• pressure: 12-18 MPa,

• temperature: 270 - 325 ⁰C,

www.secnrs.ru www.secnrs.ru 12

REACTOR PRESSURE VESSELS

• Cannot be replaced

• Under high pressure, temperature and radiation:

• pressure: 12-18 MPa,

• temperature: 270 - 325 ⁰C,

• neutron fluence: 1017 сm-2 – 3 x 1020 cm-2 (E>0.5 MeV)

www.secnrs.ru www.secnrs.ru 13

REACTOR PRESSURE VESSELS

• Cannot be replaced

• Under high pressure, temperature and radiation:

• pressure: 12-18 MPa,

• temperature: 270 - 325 ⁰C,

• neutron fluence: 1017 сm-2 – 3 x 1020 cm-2 (E>0.5 MeV)

• Effects of several stressors from operating conditions

relative motion offluids and solids

stress-constant

strain constant

stress variablestrain variable

temperature

irradiation

corrodant

STRESSORS

AGEING STRUCTURE

14www.secnrs.ru

A major stressor in an ageing structure is time itself

wear & erosion

corrosion

irradiationdamage

thermal ageing

fatigue

relaxation

creep

relative motion offluids and solids

stress-constant

strain constant

stress variablestrain variable

temperature

irradiation

corrodant

AGEING MECHANISMSSTRESSORS

AGEING STRUCTURE

15www.secnrs.ru

A major stressor in an ageing structure is time itself

wear & erosion

corrosion

irradiationdamage

thermal ageing

fatigue

relaxation

creep

relative motion offluids and solids

stress-constant

strain constant

stress variablestrain variable

temperature

irradiation

corrodant

degradationdamage

deformation

cracking

material loss

AGEING MECHANISMSSTRESSORS CONSEQUENCES

AGEING STRUCTURE

16www.secnrs.ru

A major stressor in an ageing structure is time itself

wear & erosion

corrosion

irradiationdamage

thermal ageing

fatigue

relaxation

creep

relative motion offluids and solids

stress-constant

strain constant

stress variablestrain variable

temperature

irradiation

corrodant

degradationdamage

deformation

cracking

material loss

AGEING MECHANISMSSTRESSORS CONSEQUENCES

AGEING STRUCTURE

17www.secnrs.ru

A major stressor in an ageing structure is time itself

www.secnrs.ru www.secnrs.ru 18

RADIATION DAMAGE (Irradiation Embrittlement)Most important ageing mechanism resulting to:

www.secnrs.ru www.secnrs.ru 19

RADIATION DAMAGE (Irradiation Embrittlement)Most important ageing mechanism resulting to:

• Increase in strength properties

www.secnrs.ru www.secnrs.ru 20

RADIATION DAMAGE (Irradiation Embrittlement)Most important ageing mechanism resulting to:

• Increase in strength properties

• Decrease in ductility and reduction of area

www.secnrs.ru www.secnrs.ru 21

RADIATION DAMAGE (Irradiation Embrittlement)Most important ageing mechanism resulting to:

• Increase in strength properties

• Decrease in ductility and reduction of area

• Shift of impact and fracture toughness dependences

to higher temperatures

www.secnrs.ru www.secnrs.ru 22

Main influencing elements: Cu, P, Ni and Mn

www.secnrs.ru www.secnrs.ru 23

RPV ageing management

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT, °

C

Operation years

PTS limit

www.secnrs.ru www.secnrs.ru 24

RPV ageing management

• Fuel management

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT, °

C

Operation years

PTS limit

Do nothingFuel management

www.secnrs.ru www.secnrs.ru 25

RPV ageing management

• Fuel management• RPV shielding

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT, °

C

Operation years

PTS limit

Do nothingFuel management

Shielding

www.secnrs.ru www.secnrs.ru 26

RPV ageing management

• Fuel management• RPV shielding• Thermal annealing

• Wet annealing

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT, °

C

Operation years

PTS limit

Do nothingFuel management

Shielding

Wet annealing

www.secnrs.ru www.secnrs.ru 27

RPV ageing management

• Fuel management• RPV shielding• Thermal annealing

• Wet annealing• Dry annealing

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT, °

C

Operation years

PTS limit

Do nothingFuel management

Shielding

Wet annealing

Dry annealing

Annealing - most powerful solution

Irradiation embrittlement mitigation by thermal annealing

www.secnrs.ru www.secnrs.ru 29

High temperature (> 400 °C)

“Dry” annealing

www.secnrs.ru www.secnrs.ru 30

High temperature (> 400 °C)

Removal of internals and primary water

“Dry” annealing

www.secnrs.ru www.secnrs.ru 31

High temperature (> 400 °C)

Removal of internals and primary water

Plant-specific evaluations for supports, primary coolant piping, pipe supports, concrete, insulation, etc.

“Dry” annealing

www.secnrs.ru www.secnrs.ru 32

High temperature (> 400 °C)

Removal of internals and primary water

Plant-specific evaluations for supports, primary coolant piping, pipe supports, concrete, insulation, etc.

20 VVER-440 RPVs annealed in 1987 - 2019 (Russia, Eastern Europe , Finland ):Standard regime: 460-490 °C, 100-168 hours

“Dry” annealing

www.secnrs.ru www.secnrs.ru 33

High temperature (> 400 °C)

Removal of internals and primary water

Plant-specific evaluations for supports, primary coolant piping, pipe supports, concrete, insulation, etc.

20 VVER-440 RPVs annealed in 1987 - 2019 (Russia, Eastern Europe , Finland ):Standard regime: 460-490 °C, 100-168 hours

1st VVER-1000 RPV annealed in Russia in 2018:550-580 °C, 100 hours

“Dry” annealing

www.secnrs.ru www.secnrs.ru 34

“Dry” annealing

Extensive and expensive procedure

~20 RPV VVER, 1987 – 2019 (460-490 ⁰C, 100-150 h.)

www.secnrs.ru www.secnrs.ru 35

• Temperatures ≤ 343°C based on maximum allowable pressure“Wet” annealing

www.secnrs.ru www.secnrs.ru 36

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

“Wet” annealing

www.secnrs.ru www.secnrs.ru 37

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

“Wet” annealing

www.secnrs.ru www.secnrs.ru 38

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

“Wet” annealing

www.secnrs.ru www.secnrs.ru 39

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

• Wet annealing : SM-1A (US Army, Alaska, 1967)

“Wet” annealing

www.secnrs.ru www.secnrs.ru 40

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

• Wet annealing : SM-1A (US Army, Alaska, 1967) BR3 (Belgium, 1984)

“Wet” annealing

www.secnrs.ru www.secnrs.ru 41

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

• Wet annealing : SM-1A (US Army, Alaska, 1967) BR3 (Belgium, 1984)

o Both RPV welds contain high Cu contents

“Wet” annealing

www.secnrs.ru www.secnrs.ru 42

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

• Wet annealing : SM-1A (US Army, Alaska, 1967) BR3 (Belgium, 1984)

o Both RPV welds contain high Cu contents

• Recovery of mechanical properties ~ 20-40 %

“Wet” annealing

www.secnrs.ru www.secnrs.ru 43

• Temperatures ≤ 343°C based on maximum allowable pressure

• Very much less expensive and complicated than “dry” annealing

• Reactor coolant water is heated by circulation pumps

• No need to remove internals from the reactor vessel

• Wet annealing : SM-1A (US Army, Alaska, 1967) BR3 (Belgium, 1984)

o Both RPV welds contain high Cu contents

• Recovery of mechanical properties ~ 20-40 %

“Wet” annealing

Conclusion in the 80s – “wet” annealing is not effective for high Cu steels

www.secnrs.ru www.secnrs.ru 44

0

20

40

60

80

100

120

140

160

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

ΔTre

s, °C

Cu, % wt

ΔTres vs Cu content

Residual after annealing (at 343ºC) Tk shift depends on Cu content(PWR steels)

www.secnrs.ru www.secnrs.ru 45

0

20

40

60

80

100

120

140

160

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4

ΔTre

s, °C

Cu, % wt

ΔTres vs Cu content

Residual after annealing (at 343ºC) Tk shift depends on Cu content(PWR steels)

Wet annealing is effective for low Cu PWR RPV steels

46

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6

ΔТос

т, ⁰С

Cu +10 P, %

Residual after annealing (at 340ºC) Tk shift depends on Cu & P content(VVER steels)

47

0

20

40

60

80

100

120

0 0,1 0,2 0,3 0,4 0,5 0,6

ΔТос

т, ⁰С

Cu +10 P, %

Wet annealing is effective for low Cu & P VVER RPV steels

Residual after annealing (at 340ºC) Tk shift depends on Cu & P content(VVER steels)

www.secnrs.ru www.secnrs.ru 48

0

40

80

120

160

200

T ksh

ift

square root of fluence

Tk shift recovery due to “wet” annealing - matrix defect elimination

Matrix defects

www.secnrs.ru www.secnrs.ru 49

0

40

80

120

160

200

T ksh

ift

square root of fluence

Tk shift recovery due to “wet” annealing - matrix defect elimination

Cu precipitates

Matrix defects

www.secnrs.ru www.secnrs.ru 50

0

40

80

120

160

200

T ksh

ift

square root of fluence

Tk shift recovery due to “wet” annealing - matrix defect elimination

Cu precipitates

Total

Matrix defects

www.secnrs.ru www.secnrs.ru 51

0

40

80

120

160

200

T ksh

ift

square root of fluence

Tk shift recovery due to “wet” annealing - matrix defect elimination

Cu precipitates

Total

Annealing

www.secnrs.ru www.secnrs.ru 52

VVER-440 life time long operation

www.secnrs.ru www.secnrs.ru 53

RPV irradiation embrittlement

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT,

°C

Operation years

PTS limit

www.secnrs.ru www.secnrs.ru 54

RPV irradiation embrittlement

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80

RTN

DT,

°C

Operation years

PTS limit

www.secnrs.ru www.secnrs.ru 55

1960sVVER-440 RPV design fluence:• 2,4 1020 сm-2 for base metal• 1,8 1020 см-2 for weld

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 56

1960sVVER-440 RPV design fluence:• 2,4 1020 сm-2 for base metal• 1,8 1020 см-2 for weld1980sPNAE G-7-002-86, 1989

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 57

1960sVVER-440 RPV design fluence:• 2,4 1020 сm-2 for base metal• 1,8 1020 см-2 for weld1980sPNAE G-7-002-86, 1989NowМТ 1.2.1.15.0232-2014, Guideline for calculation of brittle fracture resistance ofVVER-440 RPV:

Fluence is less 3 х 1020 см-2

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 58

1960sVVER-440 RPV design fluence:2,4 1020 сm-2 for base metal1,8 1020 см-2 for weld1980sPNAE G-7-002-86, 1989NowМТ 1.2.1.15.0232-2014, Guideline for calculation of brittle fracture resistance ofVVER-440 RPV:

Fluence is less 3 х 1020 см-2

Modern requirement – lifetime 60-80 years

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 59

1960sVVER-440 RPV design fluence:2,4 1020 сm-2 for base metal1,8 1020 см-2 for weld1980sPNAE G-7-002-86, 1989NowМТ 1.2.1.15.0232-2014, Guideline for calculation of brittle fracture resistance ofVVER-440 RPV:

Fluence is less 3 х 1020 см-2

Modern requirement – lifetime 60-80 yearsOptions:• Thermal annealing

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 60

1960sVVER-440 RPV design fluence:2,4 1020 сm-2 for base metal1,8 1020 см-2 for weld1980sPNAE G-7-002-86, 1989NowМТ 1.2.1.15.0232-2014, Guideline for calculation of brittle fracture resistance ofVVER-440 RPV:

Fluence is less 3 х 1020 см-2

Modern requirement – lifetime 60-80 yearsOptions:• Thermal annealing• Validation of Tk vs fluence dependences for flunce more 3х1020 сm-2

VVER RPV-440 life time long term operation

www.secnrs.ru www.secnrs.ru 61

Objective – VVER-440 RPV integrity validationat neutron fluence up to 5х1020 сm-2 (~ 80 years operation)

www.secnrs.ru www.secnrs.ru 62

The highest contents of impurities and fluence values both in the worldwide used RPV steels and in the IAEA Database

Reactor type Cu max,wt %

P max,wt %

Ni max,wt %

Mn max,wt %

Fluence max, n/cm2

PWR 0.42 0.025 1.2 2.1 3.7 x 1019, E>1 MeV

VVER 0.20 0.042 1.9 1.3 2.4 x 1020, E>0.5 MeV

Surveillance data 0.35 0.035 1.9 2.1 ~15 x 1020, E>0.5 MeV

Research programme data

0.4 0.045 2.8 2.0 ~20 x 1020, E>0.5 MeV

www.secnrs.ru www.secnrs.ru 63

IAEA database for VVER-440 RPV surveillance test results№ Country NPP Unit 1 Armenia Mezhamor 22 Russia Kola 33 Russia Kola 44 Ukraine Rovno 15 Ukraine Rovno 26 Hungary Paks 17 Hungary Paks 28 Hungary Paks 39 Hungary Paks 4

10 Slovak Republic Bohunice 311 Slovak Republic Bohunice 412 Czech Republic Dukovany 113 Czech Republic Dukovany 214 Czech Republic Dukovany 315 Czech Republic Dukovany 4

www.secnrs.ru www.secnrs.ru 6464

Rovno 2 base metal surveillance results

www.secnrs.ru www.secnrs.ru 65

Analysis of highly irradiated surveillance specimens results

Group of steels Phosphorus content Cupper content“Clean” P ≤ 0,012%, Сu ≤ 0,07%

www.secnrs.ru www.secnrs.ru 66

Analysis of highly irradiated surveillance specimens results

Group of steels Phosphorus content Cupper content“Clean” P ≤ 0,012%, Сu ≤ 0,07%Almost “clean” 0,017% ≥ P ≥ 0,012%, 0,14% ≥ Cu ≥ 0,07%

www.secnrs.ru www.secnrs.ru 67

Analysis of highly irradiated surveillance specimens results

Group of steels Phosphorus content Cupper content“Clean” P ≤ 0,012%, Сu ≤ 0,07%Almost “clean” 0,017% ≥ P ≥ 0,012%, 0,14% ≥ Cu ≥ 0,07%

“Dirty” 0,036% ≥ P ≥ 0,028%, Cu ≥ 0,13%

www.secnrs.ru www.secnrs.ru 68

Analysis of highly irradiated surveillance specimens results

Group of steels Phosphorus content Cupper content“Clean” P ≤ 0,012%, Сu ≤ 0,07%Almost “clean” 0,017% ≥ P ≥ 0,012%, 0,14% ≥ Cu ≥ 0,07%

“Dirty” 0,036% ≥ P ≥ 0,028%, Cu ≥ 0,13%

Highly “dirty” P > 0,036%, Cu > 0,13%

www.secnrs.ru www.secnrs.ru 69

Irradiation embrittlement of VVER-440 RPV steels

0

50

100

150

200

250

300

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

∆Tk,

o C

F, 1x1020 cм-2

P > 0,036%,Cu > 0,13%

0,036 %≥ P ≥ 0,028%, Cu ≥ 0,13%

0,017% ≥ P ≥ 0,012%, 0,14 %≥ Cu ≥ 0,07%

P ≤ 0,012%, Cu ≤ 0,07%

www.secnrs.ru www.secnrs.ru 70

Irradiation embrittlement of VVER-440 RPV steels

0

50

100

150

200

250

300

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

∆Tk,

o C

F, 1x1020 cм-2

P > 0,036%,Cu > 0,13%

0,036 %≥ P ≥ 0,028%, Cu ≥ 0,13%

0,017% ≥ P ≥ 0,012%, 0,14 %≥ Cu ≥ 0,07%

P ≤ 0,012%, Cu ≤ 0,07%

www.secnrs.ru www.secnrs.ru 71

Irradiation embrittlement of VVER-440 RPV steels

0

50

100

150

200

250

300

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

∆Tk,

o C

F, 1x1020 cм-2

P > 0,036%,Cu > 0,13%

0,036 %≥ P ≥ 0,028%, Cu ≥ 0,13%

0,017% ≥ P ≥ 0,012%, 0,14 %≥ Cu ≥ 0,07%

P ≤ 0,012%, Cu ≤ 0,07%

www.secnrs.ru www.secnrs.ru 72

Irradiation embrittlement of VVER-440 RPV steels

0

50

100

150

200

250

300

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

∆Tk,

o C

F, 1x1020 cм-2

P > 0,036%,Cu > 0,13%

0,036 %≥ P ≥ 0,028%, Cu ≥ 0,13%

0,017% ≥ P ≥ 0,012%, 0,14 %≥ Cu ≥ 0,07%

P ≤ 0,012%, Cu ≤ 0,07%

www.secnrs.ru www.secnrs.ru 73

Results of highly irradiated surveillance data analysis

• Тк shift is not more 100 -130 °С for low Cu и Р steels

www.secnrs.ru www.secnrs.ru 74

Results of highly irradiated surveillance data analysis

• Тк shift is not more 100 -130 °С for low Cu и Р steels

• Lifetime of VVER-440 RPV could be validated up to fluence 5 х 1020 см-2

(~ 80 years operation) without thermal annealing

www.secnrs.ru www.secnrs.ru 75

www.secnrs.ru www.secnrs.ru 76

LYRA

High Flux Reactor (HFR) -PSF

Joined JRC – NRG projectirradiation in HFR, Petten

www.secnrs.ru www.secnrs.ru 77

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 78

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 79

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

• Conclusion of “IAEA High Ni” CRP, 2000-2004

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 80

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

• Conclusion of “IAEA High Ni” CRP, 2000-2004

• 12 model steels and 8 submerged arc welds

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 81

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

• Conclusion of “IAEA High Ni” CRP, 2000-2004

• 12 model steels and 8 submerged arc welds

• Ni and Mn variations cover the range between minimum and maximum found inPWR and VVER

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 82

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

• Conclusion of “IAEA High Ni” CRP, 2000-2004

• 12 model steels and 8 submerged arc welds

• Ni and Mn variations cover the range between minimum and maximum found inPWR and VVER

• Target fluence 6x1019 cm-2 (60-80 years of PWR operation)

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 83

Key point: establishment of synergistic interactions between Ni and Mnfor low Cu RPV steels at high fluence

• Conclusion of “IAEA High Ni” CRP, 2000-2004

• 12 model steels and 8 submerged arc welds

• Ni and Mn variations cover the range between minimum and maximum found inPWR and VVER

• Target fluence 6x1019 cm-2 (60-80 years of PWR operation)

• Irradiation in HFR finished in January 2018

Project aim – validation of irradiation embrittlement assessmentfor RPV long term operation

www.secnrs.ru www.secnrs.ru 84

Mn 1.5%

Mn 0.4% Mn 0.8%

Ni 2%

Cr 2%Cu 0.10%Si 0.35%

Mn 0.4%

Ni 1%

Ni 0.1%

Mn 1.5%

Mn 0.4%

Mn 0.8%Mn 1.5%Si 0.6%

8 model steelsNi & Mn variations in VVER RPVs

Mn 1.5%Mn 0.8%Ni 2%

Cr 0.1%Cu 0.06%Si 0.35%

Mn 0.8%

Ni 1%

Ni 0.6%

Mn 0.8%

4 model steelsNi & Mn variations in PWR RPVs

www.secnrs.ru www.secnrs.ru 86

8 submerged arc weldsNi & Mn variations in low Cu RPV welds

Mn 1.1%

Mn 0.6%Mn 0.7%

Ni 1.9%

Cu 0.06%

Mn 1.1%

Mn 0.6%

Ni 1.3%

Ni 1.6%

Mn 1.1%

Mn 0.6%

Mn 0.9%

www.secnrs.ru www.secnrs.ru 87

• Skoda Plzen plant in Czech Republic• 8 single V-preparation submerged arc welds in 190 mm thick plate

KLST and tensile specimens, Charpy (4 welds), slices 6x10x0.5 mm for microstructural examination

8 Low Cu high Ni&Mn submerged arc welds

www.secnrs.ru www.secnrs.ru 88

Project participantsResearch centres:• EC JRC (EU)• NRG (The Netherlands)• HZDR (Germany)• VTT (Finland)• Fraunhofer Institute for Nondestructive Testing (Germany)• CIEMAT (Spain)• UJV Rzez (Czech Republic)• Hungarian Academy of Science Centre for Energy Research (Hungary)• Bay Zoltan Nonprofit Ltd (Hungary)• University of Manchester (UK)• Kiev Institute for Nuclear Research (Ukraine)• VUJE (Slovakia)• Slovak University (Slovakia)Regulators:• STUK (Finland)• United Kingdom Atomic Energy Authority• SEC NRS (Russia)• Analytical Research Bureau for NPP Safety (Ukraine)

SEC NRS role – scientific support of STRUMAT post irradiation examination

www.secnrs.ru www.secnrs.ru 89

ConclusionsRadiation damage - most important RPV ageing mechanism

10

www.secnrs.ru www.secnrs.ru 90

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

10

www.secnrs.ru www.secnrs.ru 91

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

Irradiation embrittlement together with material initial properties determines RPV lifetime

10

www.secnrs.ru www.secnrs.ru 92

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

Irradiation embrittlement together with material initial properties determines RPV lifetime

Thermal annealing – most effective instrument to mitigate irradiation embrittlement

10

www.secnrs.ru www.secnrs.ru 93

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

Irradiation embrittlement together with material initial properties determines RPV lifetime

Thermal annealing – most effective instrument to mitigate irradiation embrittlement

“Wet” annealing is effective for RPV steels with low P & Cu contents

www.secnrs.ru www.secnrs.ru 94

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

Irradiation embrittlement together with material initial properties determines RPV lifetime

Thermal annealing – most effective instrument to mitigate irradiation embrittlement

“Wet” annealing is effective for RPV steels with low P & Cu contents

End of lifetime fluence of VVER-440 RPV could be extended up to 5х1020 сm-2

www.secnrs.ru www.secnrs.ru 95

ConclusionsRadiation damage - most important RPV ageing mechanism

RPV lifetime controlled by radiation damage of RPV beltline materials

Irradiation embrittlement together with material initial properties determines RPV lifetime

Thermal annealing – most effective instrument to mitigate irradiation embrittlement

“Wet” annealing is effective for RPV steels with low P & Cu contents

End of lifetime fluence of VVER-440 RPV could be extended up to 5х1020 сm-2

Basic resent event in ageing mechanism area - STRUMAT project aimed to validation of irradiation embrittlement for RPV long term operation