dr ian r. manchester - pws.yazd.ac.ir · pdf file3 transient performance and the s-plane ... 6...

20
Dr Ian R. Manchester

Upload: lykhanh

Post on 17-Mar-2018

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Dr Ian R. Manchester

Page 2: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 2 Dr. Ian R. Manchester Amme 3500 : Introduction

Week Content Notes

1 Introduction

2 Frequency Domain Modelling

3 Transient Performance and the s-plane

4 Block Diagrams

5 Feedback System Characteristics Assign 1 Due

6 Root Locus

7 Root Locus 2 Assign 2 Due

8 Bode Plots

9 Bode Plots 2

10 State Space Modeling Assign 3 Due

11 State Space Design Techniques

12 Advanced Control Topics

13 Review Assign 4 Due

Page 3: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 3

•  Review mathematical justification for

feedback over open loop control

•  Introduce the PID controller

•  Performance specification: steady-state error

•  Introduction to parameter sensitivity aka

“robustness”

Dr Ian R. Manchester

Page 4: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 4

Desired

Value Output +

-

Feedback

Signal

error

Controller Plant

Control

Signal

r(t)

e(t) = r(t) − y(t)Error:

Dr Ian R. Manchester

(Assuming perfect measurement)

Page 5: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 5

•  Perfect feed-forward controller: Gn

•  Output and error:

•  Only zero when:

(Perfect Knowledge)

(No load or disturbance)

Dr Ian R. Manchester

Page 6: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 6

r

d

unity feedback

controller plant

reference output

A sensor

disturbance

y =GK

1+KGr −

G

1+GKd

Reference to Output

Transfer Function

Disturbance to Output

Transfer Function

Dr Ian R. Manchester

Page 7: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 7

rd

Equivalent Open Loop Block Diagram

Dr Ian R. Manchester

y =GK

1+KGr −

G

1+GKd

Reference to Output

Transfer Function

Disturbance to Output

Transfer Function

Page 8: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 8

•  Simplest possible feedback control

•  useful for thermostats, similarly simple problems

•  Often results in oscillations

•  Rapid changes in control input are often infeasible

•  Nonlinear: can be very difficult to analyse Dr Ian R. Manchester

Page 9: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 9

•  A very large number (at least 95%) of feedback controllers used in practice have the following simple form:

•  This is called a “PID”

–  Proportional (P) term feeds back on the current error

–  Integral (I) feedback can eliminate steady state error

–  derivative (D) term can improve dynamic response

Dr Ian R. Manchester

u(t) = KPe +K

Ie(τ)dτ

0

t

∫ +KD

˙ e

Page 10: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 10

•  Suppose we just use the “P” term, i.e. proportional control

•  We have seen how this form of feedback is able to minimize the effect of disturbances by increasing K

•  This may adversely affect other performance, in particular overshoot

K

-

+

R(s) E(s) C(s) G(s)

Dr Ian R. Manchester

Page 11: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 11

•  Let’s compute an example of a torsional mass-spring-damper system with proportional control

•  J = 1 N m, k = 5 N m/rad and b = 6 N m s/rad

b = 6 N m s/rad

* N.S. Nise (2004) �

Control Systems Engineering

Wiley & Sons

k = 5 N m s/rad

Dr Ian R. Manchester

Page 12: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 12

•  Recall the differential equation

•  The transfer function is

•  The closed loop response is

K

- +

R(s) E(s) C(s) G(s)

J ˙ ̇ θ + b ˙ θ + kθ = τ

Dr Ian R. Manchester

Page 13: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 13

K=5

K=10

K=100

K=1000

Dr Ian R. Manchester

Page 14: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 14

•  Proportional (P) control acts like a spring

pulling the output towards the reference.

•  A very stiff spring (large gain K) can result in

highly oscillatory response.

•  Why not add damping? This is PD control

Dr Ian R. Manchester

u(t) = KPe +K

D˙ e Kp+Kds

- +

R(s) E(s) C(s) G(s)

U(s)

Page 15: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 15 Dr Ian R. Manchester

•  D term adds damping and differentiates the reference

Page 16: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 16 Dr Ian R. Manchester

P control:

K=100

PD control:

K=100+20s

•  Note the anticipatory “kick” at the beginning,

and the damping of oscillations

Same torsional setup as

before

Page 17: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 17

•  We have looked at transient response for second order systems

•  This can be defined by

–  Rise time, Tr

–  Settling time, Ts

–  Peak time, Tp

–  Percentage overshoot.

•  These can all be specified by PD control

cfinal=steady state response

* N.S. Nise (2004)

Control Systems Engineering

Wiley & Sons

Dr Ian R. Manchester

Page 18: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 18

•  Why use integral control? (The “I” part

in PID)

•  Another important characteristic of

systems in general is their steady state

performance

•  Steady-state error is the difference

between the reference input and output

for a particular input as t→∞ time

output

input

Steady state

error

Dr Ian R. Manchester

Page 19: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 43

•  Intuitively: if the controller continues to see an

error signal over a long time, then the integral

term “builds up”, and increases control signal

•  Slowly it builds up to the level required to

completely kill the error

Dr Ian R. Manchester

u(t) = KPe +K

Ie(τ)dτ

0

t

∫ +KD

˙ e

Page 20: Dr Ian R. Manchester - pws.yazd.ac.ir · PDF file3 Transient Performance and the s-plane ... 6 Root Locus 7 Root Locus 2 Assign 2 Due 8 Bode Plots ... Slide 17 • We have

Slide 44

•  For a PD controller, if the error and its

derivative are both zero, then

•  So, a zero-steady-state-error response to a step

must result in zero control input.

•  This is not possible if there is some force (e.g.

a spring, or gravity, or wind) pulling the

system away from the reference Dr Ian R. Manchester

u = KPe +K

D˙ e = 0