dr Łukasz kruszewski

23
Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN dr Łukasz Kruszewski

Upload: ismail

Post on 11-Feb-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN. dr Łukasz Kruszewski. Bruker axs D8 ADVANCE. VÅNTEC-1 LPS detector. V ÅNTEC vs scintillation det .: ca . 100x better resolution . very good peak-to-background intensity ratio. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: dr Łukasz Kruszewski

Complex analysis of waste and industrial materials in the Laboratory of X-Ray Diffraction of ING PAN

dr Łukasz Kruszewski

Page 2: dr Łukasz Kruszewski

Bruker axs D8 ADVANCE

Page 3: dr Łukasz Kruszewski

• Linear Position Sensitive (superfast) detector

VÅNTEC-1 LPS detector

• VÅNTEC vs scintillation det.: ca. 100x better resolution • very good peak-to-background intensity ratio• 1s/step „standard” counting time 416s/step for VÅNTEC

Page 4: dr Łukasz Kruszewski

Bruker axs D8 ADVANCE• standard qualitative analysis of complex mixtures (ca. 3 min. analysis)• quantitative analysis of simple and complex mixtures incl. fly ash, magnetic separates, clinkers, bricks, pyrometallurgic slags etc. (mainly Rietveld method in TOPAS)• determination of crystallinity degree and amorphous (glass) phase content; unit cell parameters

• transmission geometry analysis of polytypes

• grazing incidence surface facture characteristics

• thermal chamber real-time phase transition analysis

Page 5: dr Łukasz Kruszewski

Holders etc.

Page 6: dr Łukasz Kruszewski

Calibration standards

LaB6

Page 7: dr Łukasz Kruszewski

Additional equipment

Page 8: dr Łukasz Kruszewski

Additional equipment

Page 9: dr Łukasz Kruszewski

TOPAS – a complex tool for PXRD data analysis• TOtal Powder Pattern decomposition (math. deconvolution)• peak shape and whole profile fitting („repairing”)• background corrections (Chebychev polynomials, 1/x function)• sample preparation and sample-derived errors (sample displacement, absorption, preferred orientation)• instrument-derived errors (zero error, tangential correction, untypical geometry)

LaB6 and Si – based calibration:

Page 10: dr Łukasz Kruszewski

TOPAS – precise phase input data• hkl phase Pawley or LeBail method (unit cell parameters, general fitting)

• structure phase full structure data (Rietveld quantitative analysis, precise unit cell parameters calculation)

• peaks phase amorphous phase content determination

Page 11: dr Łukasz Kruszewski

TOPAS – quantitative analysis – iron-oxide-rich paralava of burning post coal-mining dump

calculated unit cell and other parameters

Very good fitting result

full quantitative result for 11 crystalline species

Good background statistics

low error

Page 12: dr Łukasz Kruszewski

TOPAS – quantitative analysis – crystallinity degree amorphous phase content

Precise calculation statistics information

Goodness of Fit (χ2)

Residual – weighted pattern Durbin-Watson statistics

Page 13: dr Łukasz Kruszewski

TOPAS – quantitative analysis – full text reportQuantitative Analysis - Rietveld Phase 1 : "Fayalite magnesian" 30(410) % Phase 2 : Diopside 7(86) % Phase 3 : Hercynite 20(210) % Phase 4 : Hematite 4(51) % Phase 5 : "Bytownite An85" 6(250) % Phase 6 : Magnesioferrite 1(1200) % Phase 7 : Quartz 4(56) % Phase 8 : "Mullite 3:2" 3(33) % Phase 9 : "Tridymite low" 2(22) % Phase 10 : Maghemite 20(230) % Phase 11 : Indialite_KCa 6(85) %

Background One on X 1(140000) Chebychev polynomial, Coefficient 0 2400(3600) 1 -200(1800) 2 50(440) 3 20(100) 4 -13(23)

Corrections Specimen displacement -0.117(11) LP Factor 0 Absorption (1/cm) 24.5(40)

Structure 1 Phase name Fayalite magnesian R-Bragg 0.661 Spacegroup 62 Scale 0.000568(16) Cell Mass 741.5(57) Cell Volume (Å^3) 305.587(76) Wt% - Rietveld 30(410) Crystallite Size Cry Size Lorentzian (nm) 176(20) Crystal Linear Absorption Coeff. (1/cm) 216.1(17) Crystal Density (g/cm^3) 4.029(31) Preferred Orientation (Dir 1 : 3 0 -1) 0.918(14) Lattice parameters a (Å) 10.4423(15) b (Å) 6.07677(92) c (Å) 4.81578(65)

Site Np x y z Atom Occ Beq s1 4 0.00000 0.00000 0.00000 FE+2 0.605(37) 0.41 MG+2 0.395(37) 0.41s2 4 0.28000 0.25000 0.98610 FE+2 0.812(26) 0.36 MG+2 0.188(26) 0.36s3 4 0.09720 0.25000 0.43070 SI+4 1 0.27s4 4 0.09200 0.25000 0.76680 O-2 1 0.43s5 4 0.45310 0.25000 0.21030 O-2 1 0.48s6 8 0.16530 0.03630 0.28810 O-2 1 0.52

Page 14: dr Łukasz Kruszewski

TOPAS – quantitative analysis – white clinker (porcellanite) from post coal-mining burning dump

Page 15: dr Łukasz Kruszewski

TOPAS – quantitative analysis – synthetic mixture: Muscovite70Kaolinite10Quartz20

special peak type function used for kaolinite and muscovite: PV_MOD

Page 16: dr Łukasz Kruszewski

mri Thermal Chamber add

Page 17: dr Łukasz Kruszewski

mri Thermal Chamber add – RESEARCH

(Bruker axs example)

Page 18: dr Łukasz Kruszewski

Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supportednatural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317

mri Thermal Chamber add – RESEARCH

Page 19: dr Łukasz Kruszewski

Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supportednatural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317

mri Thermal Chamber add – RESEARCH

Page 20: dr Łukasz Kruszewski

Bouna, L. and Rhouta, B. and Amjoud, M. and Maury, Francis and Lafont, Marie-Christine and Jada, A. and Senocq, François and Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supportednatural palygorskite microfibers. (2011) Applied Clay Science, vol. 52 (n°3). pp. 301-311. ISSN 0169-1317

mri Thermal Chamber add – RESEARCH

Page 21: dr Łukasz Kruszewski

FATIGUE BEHAVIOR OF PIEZOELECTRIC CERAMICS MATERIAL - Riffat Asim Pasha03-UET/PhD-ME-03

mri Thermal Chamber add – RESEARCH

Page 22: dr Łukasz Kruszewski

RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181

mri Thermal Chamber add – RESEARCH

Page 23: dr Łukasz Kruszewski

RONALD C. PETERSON AND ALAN H. GRANT 2005: DEHYDRATION AND CRYSTALLIZATION REACTIONS OF SECONDARY SULFATE MINERALS FOUND IN MINE WASTE: IN SITU POWDER-DIFFRACTION EXPERIMENTS. The Canadian Mineralogist, Vol. 43, pp. 1171-1181

mri Thermal Chamber add – RESEARCH