dr. monika konnert

26
Genetic variability of important forest tree species in Southern Germany as revealed by isozyme and DNA-markers; consequences for a sustainable forest management in view of climate change Dr. Monika Konnert Bavarian Institution for Forest Seeding and Planting (ASP) at Teisendorf, Germany Treebreedex – feb. 2010 Bucarest, Romania

Upload: amanda

Post on 12-Jan-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Treebreedex – feb. 2010 Bucarest, Romania. Genetic variability of important forest tree species in Southern Germany as revealed by isozyme and DNA-markers; consequences for a sustainable forest management in view of climate change. Dr. Monika Konnert - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dr. Monika Konnert

Genetic variability of important forest tree species in Southern Germany as revealed by isozyme and DNA-

markers; consequences for a sustainable forest management in view of climate change

Dr. Monika Konnert

Bavarian Institution for Forest Seeding and Planting (ASP) at Teisendorf, Germany

Treebreedex – feb. 2010 Bucarest, Romania

Page 2: Dr. Monika Konnert

Since 1991 – isozyme analysis

since 1998 – DNA – analysis

over 25 different species;

most important:

Abies, Fagus, Picea, Acer, Quercus, Douglas fir

Practical implications:

- provenance recommandations

- provenance control

- gene conservation

- genetically sustainable forest management

Treebreedex – feb. 2010 Bucarest, Romania

Page 3: Dr. Monika Konnert

Why genetic studies on Abies alba ?

- A. alba is an important component of mixed forests with high adaptability

- By nature A. alba is the most important conifer in Bavaria. Today it has a small fraction of only 2 % of the growing stock

- Its dramatic decrease has changed the genetic composition and reduced the genetic diversity

- A. alba is considered one of the most important species under climate change

Douglasie1%

Lärche2%

Tanne2%

Fichte44%

Edellaubhölzer, sonstiges Laubholz

14%

Eiche6%

Buche12%

Kiefer19%

Baumartenzusammensetzung in Bayern

So far more than 250 Abies populations have been analyzed –

18 isozyme loci, 10 nSSR loci, 3 cpSSR loci

Species composition in Bavarian forests

Treebreedex – feb. 2010 Bucarest, Romania

Page 4: Dr. Monika Konnert

Results

- Geographic clines in allele frequency at several gene-loci

0,10 – 0,250,25 – 0,35> 0,35

Frequencies of allele IDH-B3 in A. alba populations from Southern Germany

0

5

10

15

20

25

30

35

40

45

South

ern

Bla

ckfo

rest

Nort

hern

Bla

ckfo

rest

Sw

abia

n-

Fra

nkonia

n F

ore

st

South

west

Bavaria

South

east

Bavaria

Nort

heast

Bavaria

Mitte

lfra

nken

Thüringen

- Clinal variation of diversity

Genetic diversity (vgam) of fir populations from Southern Germany

Treebreedex – feb. 2010 Bucarest, Romania

Page 5: Dr. Monika Konnert

Distinct genetic groups throughout Bavaria

Bavarian Alps.

Northeast Bavaria

Southeast Bavaria

Treebreedex – feb. 2010 Bucarest, Romania

Results

Page 6: Dr. Monika Konnert

Haplotype

Nordhalben Oberammergau Bodenmais Berchtesgaden

E-131-D 25,0 0,0 0,0 0,0

G-140-D 0,0 34,0 0,0 0,0

X-136-F 0,0 0,0 13,0 0,0

X-131-D 0,0 0,0 0,0 13,5

Frequency (%) in reference sample from seed lot.

Frequencies of singular haplotypes in reference samples from Abies alba seed lots

Singular haplotypes in seed lots from Bavarian stands

Treebreedex – feb. 2010 Bucarest, Romania

Results

Page 7: Dr. Monika Konnert

Why genetic studies on Fagus sylvatica ?

- F. sylvatica is the most common broadleaved tree species in Bavaria

- In view of climate change F. sylvatica will be one of the most important tree species for future forest ecosystems in Bavaria

- As far as possible F. sylvatica is regenerated naturally – influence of management practices

- It is increasingly planted on conversion sites. The genetic composition of the plant material used is of great importance

Douglasie1%

Lärche2%

Tanne2%

Fichte44%

Edellaubhölzer, sonstiges Laubholz

14%

Eiche6%

Buche12%

Kiefer19%

Baumartenzusammensetzung in Bayern

So far more than 300 beech populations have been analyzed –

20 isozyme loci, 7 nSSR loci

Species composition in Bavarian forests

Treebreedex – feb. 2010 Bucarest, Romania

Page 8: Dr. Monika Konnert

Genetic Parameters

min max min max

Multiplicity (A/L) 2,25 2,94 2,47 2,75

Diversity (ne) 1,27 1,45 1,32 1,40

vgam 88 307 155 275

Heterozygosity a 0,21 0,32 0,24 0,29

Differentiation betweenpopulations

Managed stand Natural reserve(unmanaged)

5,0 % 4,8 %

Genetic variation of beech in managed and unmanaged stands from Bavaria

Frequency of allele PGM-A2 in beech stand from different regions

Results

Treebreedex – feb. 2010 Bucarest, Romania

Page 9: Dr. Monika Konnert

0

50

100

150

200

250

300

350

Scheßlitz Beilngries Bad Steben Ebrach

Altbestand

VerjüngungDiversität (Vgam)

Genetic diversity in 4 old beech stands (red) and their natural regeneration (green) in Bavaria

Results

Treebreedex – feb. 2010 Bucarest, Romania

Page 10: Dr. Monika Konnert

Why genetic studies on Picea abies ?

- P. abies is one of the most important tree species in forest ecosystems from Bavaria.

- P. abies consists largely of non-autochthonous

(planted) material of unknown origin

- P.abies is more and more damaged (bark beetle) and affected by storms.

- Even under climate change P. abies will remain an important component of Alpine forest ecosystems.

Douglasie1%

Lärche2%

Tanne2%

Fichte44%

Edellaubhölzer, sonstiges Laubholz

14%

Eiche6%

Buche12%

Kiefer19%

Baumartenzusammensetzung in Bayern

So far now more than 100 populations have been analyzed –

23 isozyme loci, 14 STS loci

Species composition in Bavarian forests

Treebreedex – feb. 2010 Bucarest, Romania

Page 11: Dr. Monika Konnert

Results

Multiplicity

Transect Altitude

Adult juvenile Adult juvenile Adult juvenile Adult juvenile

D1 1200m 2,35 2,22 1,23 1,23 242,1 285,1 0,179 0,185

Oberammer- 1500m 2,35 2,47 1,24 1,23 280,4 280,5 0,189 0,167

gau 1800m 2,26 xx 1,22 xx 202,3 xx 0,167 xx

D2 1000m 2,30 2,43 1,25 1,24 388,4 334,4 0,199 0,194

Berch- 1500m 2,26 2,56 1,25 1,24 410,1 343,6 0,193 0,193

tesgaden 1750 m 2,22 2,13 1,25 1,24 440,8 330,9 0,202 0,190

A/L ne

Heterozygosity

obs., Ha vgam

Diversity

Genetic variation in adult and juvenile populations from alpine transects

Treebreedex – feb. 2010 Bucarest, Romania

Page 12: Dr. Monika Konnert

Results

Population

Isozymes STS Isozymes STS Isozymes STS

Weißenhorn 2,5 2,7 1,23 1,56 17,5 33,9

Oberhamersbach 2,3 2,6 1,23 1,48 18,1 32,9

Bad Schussenried 2,4 2,8 1,23 1,51 19,0 33,6

Bodenmais 2,2 2,6 1,22 1,52 17,4 36,2

Altötting 2,2 2,9 1,22 1,47 17,7 33,7

Sonthofen 2,5 2,6 1,23 1,51 16,7 32,5

Multiplicity (A/L) Diversity (ne) Heterozygosity (Ho) (&)

Genetic variation in 6 Norway spruce populations determined by isozyme and STS-markers

Population Weißenhorn Oberhamers- Bad Schus- Bodenmais Altötting Sonthofen

bach senried

Weißenhorn xxx 2,4 3,2 2,7 2,6 3,2

Oberhamersbach 7,1 xxx 3,2 3,1 2,1 3,6

Bad Schussenried 8,7 7,9 xxx 2,5 2,4 4,1

Bodenmais 5,9 5,3 5,5 xxx 2,8 3,6

Altötting 8,4 5,3 8,2 7,4 xxx 2,6

Sonthofen 7,4 6,1 8,4 7,6 7,7 xxx

Genetic distances determined by means of isozymes (above diagonal) and STS-markers (below diagonal).

Treebreedex – feb. 2010 Bucarest, Romania

Page 13: Dr. Monika Konnert

Why genetic studies on Acer pseudoplatanus ?

- A. pseudoplatanus is the most important noble hardwood from Bavaria.

- A. pseudoplatanus is often harvested and planted for reforestation.

- A. pseudoplatanus is favored under climate change.

Douglasie1%

Lärche2%

Tanne2%

Fichte44%

Edellaubhölzer, sonstiges Laubholz

14%

Eiche6%

Buche12%

Kiefer19%

Baumartenzusammensetzung in Bayern

So far more than 40 populations have been analyzed –

14 isozyme loci, 7 nSSR loci, 8 cpSSR loci

Species composition in Bavarian forests

Treebreedex – feb. 2010 Bucarest, Romania

- A. pseudoplatanus is an important species in mixed mountain forests and in subalpine spruce forests

Page 14: Dr. Monika Konnert

Results

Treebreedex – feb. 2010 Bucarest, Romania

Map33 Allel 166

15,518,1

6,4

2,2

31,8 31,5

0

5

10

15

20

25

30

35

R1 Kö R3 Kö R1 We R3 We R1 Ho R3 Ho

Partien im Vergleich

Auftr

eten

des

Alle

ls in

%

R1 Kö R3 Kö R1 We R3 We R1 Ho R3 Ho

Map2 Allel 160

42,7

35,8

7,3 7,3

13,516,7

0

5

10

15

20

25

30

35

40

45

R1 Kö R3 Kö R1 We R3 We R1 Ho R3 Ho

Partien im Vergleich

Auftr

eten

der

Alle

le in

%

R1 Kö R3 Kö R1 We R3 We R1 Ho R3 Ho

Frequencies of specific alleles in 3 mature stands and seed harvested in the stand

Page 15: Dr. Monika Konnert

Results

Treebreedex – feb. 2010 Bucarest, Romania

Distribution of length variants of the chloroplast microsatellite marker ccmp10 in Bavaria

Page 16: Dr. Monika Konnert

Why genetic studies on Douglas fir ?

- Douglas fir is one of the most interesting non- autochtonous species in Bavaria from an ecological and economical point of view

- Growth performance in Douglas fir is highly provenance dependent

Douglasie1%

Lärche2%

Tanne2%

Fichte44%

Edellaubhölzer, sonstiges Laubholz

14%

Eiche6%

Buche12%

Kiefer19%

Baumartenzusammensetzung in Bayern

So far now more than 150 populations have been analyzed –

16 isozyme loci

Species composition in Bavarian forests

Treebreedex – feb. 2010 Bucarest, Romania

- Under climate change Douglas fir is considered an adequate replacement for spruce, which is rather instable

Page 17: Dr. Monika Konnert

16%

75%

9%0%

33%

67%

Allel 1

Allel 3

Allel 6

„green“ Douglas fir (coastal type) „grey“ Douglas fir (inland type)

Differentiation and identification of races of Douglas fir on the basis of allele frequencies at locus 6PGDH-A

Results

Treebreedex – feb. 2010 Bucarest, Romania

0

10

20

30

40

50

60

70

80

90

100

Alt NVJ Sa Alt NVJ Sa Alt NVJ Sa

Schnaittenbach (20 EB) Freising (23 EB) Mittenfels (20 EB)

Vgam

Page 18: Dr. Monika Konnert

• Pollen dispersal distance 5 – 120m

• Number of effective pollen donors 12 to 26

• Proportion fullsibs: 8,4% bzw. 3,9%

• Selfing: 1 %

Gene flow

a) Pollen flow (e.g. beech) b) Seed dispersal (e.g. fir )

• Seed dispersal distance: 80 – 280 m

• No drift

• High seed dispersal even in closed stands.

Cremer 2009

Treebreedex – feb. 2010 Bucarest, Romania

Page 19: Dr. Monika Konnert

Diversity of silver fir in „Plenter“ forests in comparison with evenaged forests

Red = „Plenter“ forests, Yellow = evenaged forests blue = mean value

Management regime

- genetic diversity and heterozygosity lower in unevenaged stands

- more rare alleles in „Plenter“ forests; better conservation of genetic multiplicity over a long time period        

Treebreedex – feb. 2010 Bucarest, Romania

Page 20: Dr. Monika Konnert

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

NR Seed SO SG NR Seed SO SG NR Seed SO SG

A2

A3

Beilngries Füssen Regen

freq

uenc

ies

The local genetic information of the natural regeneration (NR) of beech, here illustrated as genetic structure at gene locus Genort PGM-A, is maintained in the seed and in the seedlings raised in open seedbeds (SO) and in the greenhouse (SG).

Artificial regeneration –

Influence of growing conditions on the genetic structure of beech seedlings

Treebreedex – feb. 2010 Bucarest, Romania

Page 21: Dr. Monika Konnert

Provenance regions of silver fir in Germany

Recommendations for provenance use – e.g. Silver fir

Treebreedex – feb. 2010 Bucarest, Romania

Page 22: Dr. Monika Konnert

by legal regulations (Law on FRM)

plausibility checks on documents

Baumschule Grün Baumschulenweg 1, 11111 Irgendwo

Ihr Partner für mehr Natur Tel.: 0321-580-0Fax: 0321-580-19

Inh.: Harry Hirsch Mobil: 0171-1234567E-Mail:

USt-Id-Nr DE 123 456 789 [email protected]

EWG-Pflanzenpaß-Nr D-MV2-123456FoVG-Betriebs-Nr. 131 0099 3

Baumschule Grün Baumschulenweg 1 11111 Irgendwo LieferscheinNummer 001/05Datum 11.11.05

Kunden-Nr 12345

Blatt 1

FirmaOtto MeyerForstbaumschulenLehmweg 100

99999 Modderdorf

Pos. Menge Artikel Größe

01 10.000 Stück Quercus robur 2+0817 02 Ostsee-Küstenraum nicht autochthonStammzertifikat-Nr. D-01001 10015 03Ausgewähltes VermehrungsgutErntebestand für multifunktionale Forstwirtschaft011-81702-069-2

50-80

02 10.000 Stück Quercus robur 2+0AG 817 02 Ostsee-Küstenraum nicht autochthonD-01001 10015 03EB FoWi 011-81702-069-2

50-80

03 500 Stück Prunus spinosa lStr 40-70

04 1.000 Stück Carpinus betulus 2+0nicht unter dem FoVG erzeugtes Vermehrungsgut

40-60

05 1.000 Stück Acer platanoides 1+1800 01 Norddeutsches TieflandD-01001 10001 03Autochthonie unbekanntQG nicht für forstliche Zwecke

60-100

06 25,0 kg Fagus sylvatica

?

Control of forest reproductive material

New possibilities of control by means of molecular markers

Treebreedex – feb. 2010 Bucarest, Romania

Page 23: Dr. Monika Konnert

Tree No Needles Endosperm1 G-138-E G-138-E

2/20/12/15/18 C-131-F C-131-F3/13/19/20 F-131-D F-131-D

11/17 D-130-D D-130-D16 D-136-F D-136-F

7/14 E-131-D E-131-D5 E-132-F E-132-F8 F-136-D F-136-D9 G-138-D G-138-D

4/6 X-136-F X-136-F

Haplotype Haplotypes in the seed lot

G-138-E 12,5 %C-131-F 40,0 % F-131-D 12,5 % D-130-D 5,0 % D-136-F 2,5 % E-131-D 7,5 % E-132-F 5,0 % F-136-D 5,0 %

X-136-F 10 %

Proof of identity of seed lots through discrimination of cpDNA-microsatellite haplotypes in silver fir

- 3 cpDNA- microsatellite loci; endosperm analysis

- x seeds from the seed lot

Only haplotypes from mother trees should be found!

Control of forest reproductive material

Treebreedex – feb. 2010 Bucarest, Romania

Page 24: Dr. Monika Konnert

Seed harvest

Reference sample R1mixture

Reference sample R2Single tree samples

Mixture of seed harvests

Refernce sample R4Sample from the seed

mixture

Plant production

Plant sample P

Drawn in the forest, during harvest .

Samples from seedlings are drawn when plants are delivered to the owner

Comparison seed sample – (R1, R2,R4)

- seedling sample

by means of genetic markers (DNA, isozymes)

Treebreedex – feb. 2010 Bucarest, Romania

Control of forest reproductive material

Page 25: Dr. Monika Konnert

- recognize the importance of forest genetic diversity in mitigating the impacts of climate change

- promote forest management practices that support the maintenance and increase of genetic diversity;

- accelerate adaptation of forest trees through tree breeding and provenance transfer

- adaptation strategies to climate change cannot rely only on self-regulation of ecosystems; human interference is necessary

- conserve genetic resources – need for a common action plan

Concluding remarks

- based on knowledge on the genetic variation and

funtioning of the genetic system of forest tree

Treebreedex – feb. 2010 Bucarest, Romania

Page 26: Dr. Monika Konnert

Thank you for your attention!

Treebreedex – feb. 2010 Bucarest, Romania