draft - sourceforgesnl-efdc.sourceforge.net/efdc-hydro_manual.pdf · this document comprises volume...

201
Draft USER’S MANUAL for ENVIRONMENTAL FLUID DYNAMICS CODE Hydro Version (EFDC-Hydro) Release 1.00 for U.S. Environmental Protection Agency Region 4 Atlanta, GA by Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, Virginia 22030 August 1, 2002

Upload: lamphuc

Post on 27-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

Draft

USER’S MANUALfor

ENVIRONMENTAL FLUID DYNAMICS CODE

Hydro Version(EFDC-Hydro)

Release 1.00

for

U.S. Environmental Protection AgencyRegion 4

Atlanta, GA

by

Tetra Tech, Inc.10306 Eaton Place, Suite 340

Fairfax, Virginia 22030

August 1, 2002

Page 2: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

ii

Preface

This document comprises Volume I of the first release of a user’s manual for the Environmental Fluid

Dynamic Code, EFDC. A special version of named EFDC-Hydro has been developed for U.S. EPA

Region 4. EFDC-Hydro contains only the hydrodynamic, temperature, dye, and sediment transport

routines. In this manual, the terminology EFDC and EFDC-Hydro are considered synonymous.

Volume I, comprised of 12 chapters and two appendices discusses the general structure of the EFDC

model, grid generation and preprocessing, construction of input files, and post processing of output files.

Volume II of the manual contains Appendix C , which is devoted to specific model applications. It is

anticipated that the user’s manual may be updated from time-to-time as significant features are added to

the code. This manual will be released as an Adobe PDF electronic file.

Page 3: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

iii

Acknowledgments

The primary support for the initial development of the Environmental Fluid Dynamics Code was

provided by the Commonwealth of Virginia by a special initiative appropriation to the Virginia Institute

of Marine Science, The College of William and Mary. Prior to 1996, additional funding for the

continued development of the EFDC model was provided by the U.S. Environmental Protection

Agency, Exploratory Research Program through a grant to the Virginia Institute of Marine Science.

Subsequent to 1996, primary support for the development and maintenance of EFDC has been

provided by various USEPA programs and by Tetra Tech, Inc. The development of EFDC Hydro and

this user’s manual was supported by the U.S. Environmental Protection Agency, Region 4, under

contract 68-C-99-249.

Page 4: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

iv

Disclaimer

The EFDC model is capable of simulating a diverse range of environment flow and transport problems,

often addressing critical questions related to both human health and safety and the health of natural

ecosystems. However since the EFDC model is considered public domain and freely distributed, the

author, the Virginia Institute of Marine Science, the College of William and Mary, the U.S.

Environmental Protection Agency, and Tetra Tech, Inc., disclaim any and all liability which may be

incurred by the use of the EFDC code for engineering, environmental assessment, and management

purposes.

Page 5: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

v

Table of Contents

Page

Preface ii

Acknowledgment iii

Disclaimer iv

Contents v

List of Figures vii

List of Tables ix

1. Introduction 1-1

2. General Structure of the EFDC Modeling System 2-1

3. Grid Generation and Preprocessing 3-1

4. The Master Input File 4-1

5. Additional Input Files 5-1

6. Compiling and Executing the Code 6-1

7. Diagnostic Options and Output 7-1

8. Time Series Output and Analysis 8-1

9. Two-Dimensional Graphics Output and Visualization 9-1

10. Three-Dimensional Graphics Output and Visualization 10-1

11. Miscellaneous Output Files 11-1

12. References 12-1

Appendix A: EFDC Subroutines and Their Functions A-1

Appendix B: Grid Generation Examples B-1

Page 6: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

vi

List of Figures

Page

1. Representation of a circular basin and entrance channel by a 22 water cellgrid.

3-2

2. File cell.inp corresponding to the grid shown in Figure 1. 3-3

3. File celllt.inp corresponding to the cell.inp file shown in Figure 1, with fourentry channel cells removed.

3-3

4. File dxdy.inp for grid shown in Figure 1. 3-5

5. File lxly.inp for grid shown in Figure 1. 3.7

6. Format of the file depdat.inp. 3-8

7. File gridext.inp for grid shown in Figure 1. 3-8

8. General Structure of the EFDC Modeling System. 3-9

9. Sample output in the dxdy.diag file. 3-18

10. Sample output in the gefdc.log file. 3-18

B1. Physical and computational domain grid of Lake Okeechobee, Florida. B-2

B2. File cell.inp for Lake Okeechobee Grid. B-3

B3. File gefdc.inp for Lake Okeechobee. B-4

B4. FORTRAN program for generation of the gridext.inp file for the LakeOkeechobee grid shown in Figure B1.

B-5

B5. Physical domain grid of Kings Creek and Cherry Stone Inlet, Virginia. B-7

B6. File cell.inp for Kings Creek and Cherry Stone Inlet. B-8, B-9

B7. File gefdc.inp for Kings Creek and Cherry Stone Inlet. B-10

B8. FORTRAN program for generation of gridext.inp file. B-12

B9. Physical domain grid of Rose Bay, Florida. B-13

Page 7: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

vii

B10. File cell.inp for Rose Bay. B-14

B11. File gefdc.inp for Rose Bay. B-15 - B-18

B12. Grid of a section of the Indian River Lagoon near Melbourne, FL. B-20

B13. File cell.inp for the Indian River Lagoon grid shown in Figure B12. B-21, B-22

B14. File gefdc.inp for the Indian River Lagoon grid shown in Figure B12. B-23

B15. Subgrid 1 of the Indian River Lagoon grid shown in Figure B12. B-24

B16. File gefdc.inp for subgrid 1, shown in Figure B15. B-25

B17. Subgrid 2 of the Indian River Lagoon grid shown in Figure B12. B-26

B18. File gefdc.inp for subgrid 2, shown in Figure B17. B-27 - B-30

B19. Subgrid 3 of the Indian River Lagoon grid shown in Figure B12. B-31

B20. File gefdc.inp for subgrid 3, shown in Figure B19. B-32, B-33

B21. Subgrid 4 of the Indian River Lagoon grid shown in Figure B12. B-34

B22. File gefdc.inp for subgrid 4, shown in Figure B21, generated with NTYPE = 0. B-35

B23. Subgrid 5 of the Indian River Lagoon grid shown in Figure B12. B-36

B24. File gefdc.inp for subgrid 5, shown in Figure B23, generated with NTYPE = 5. B-37, B-38

B25. Physical domain grid of SFWMD’s Water Conservation Area 2A. B-40

B26. File cell.inp for WCA2A Grid shown in Figure B25. B-41

B27. File gefdc.inp for WCA2A grid shown in Figure B23. B-42

B28. File cell.inp for WCA2A grid shown in Figure B25. B-43, B-44

B29. Square cell Cartesian grid representing same region as shown in Figure B25. B-45

B30. FORTRAN function subroutine for physical domain true east or X coordinate.,along beginning I boundary.

B-46

B31 FORTRAN function subroutine for physical domain true east or X coordinate,along ending I boundary.

B-47

Page 8: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

viii

B32. FORTRAN function subroutine for physical domain true north or Ycoordinate, along beginning J boundary.

B-48

B33. FORTRAN function subroutine for physical domain true north or Ycoordinate, along ending J boundary.

B-49

B34. Physical and computational domain grid of the Chesapeake Bay. B-50

B35. File cell.inp for the Chesapeake Bay grid shown in Figure B34. B-51 - B-53

B36. File gefdc.inp for Chesapeake Bay grid shown in Figure B34. B-54

Page 9: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

ix

List of Tables

Page

1. Input files for the efdc.f code. 2-1

2. Input files grouped by function. 2-3

3. Definition of cell types in the cell.inp file. 3-2

4. Input files for the gefdc.f grid generating preprocessor. 3-7

5. Output files for the gefdc.f code. 3-17

6. FORTRAN implementation of Control Structures. 5-19

Page 10: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

1 - Introduction

1-1

1. Introduction

The EFDC (Environmental Fluid Dynamics Code) model was developed at the Virginia Institute of

Marine Science (Hamrick, 1992a). The model has been applied to Virginia’s James and York River

estuaries (Hamrick, 1992b, 1995a) and the entire Chesapeake Bay estuarine system (Hamrick,

1994a). It is currently being used for a wide range of environmental studies in the Chesapeake Bay

system including: simulations of pollutant and pathogenic organism transport and fate from point and

nonpoint sources (Hamrick, 1991, 1992c), simulation of power plant cooling water discharges (Kuo

and Hamrick, 1995), simulation of oyster and crab larvae transport, and evaluation of dredging and

dredge spoil disposal alternatives (Hamrick, 1992b, 1994b, 1995b). The EFDC model has been used

for a study of high fresh water inflow events in the northern portion of the Indian River Lagoon, Florida,

(Moustafa and Hamrick, 1994, Moustafa, et. al., 1995) and a flow through high vegetation density-

controlled wetland systems in the Florida Everglades (Hamrick and Moustafa, 1995a,b; Moustafa and

Hamrick, 1995).

The physics of the EFDC model and many aspects of the computational scheme are equivalent to the

widely used Blumberg-Mellor model (Blumberg & Mellor, 1987) and U. S. Army Corps of Engineers’

Chesapeake Bay model (Johnson, et al, 1993). The EFDC model solves the three-dimensional,

vertically hydrostatic, free surface, turbulent averaged equations of motions for a variable density fluid.

The model uses a stretched or sigma vertical coordinate and Cartesian or curvilinear, orthogonal

horizontal coordinates. Dynamically coupled transport equations for turbulent kinetic energy, turbulent

length scale, salinity and temperature are also solved. The two turbulence parameter transport

equations implement the Mellor-Yamada level 2.5 turbulence closure scheme (Mellor & Yamada,

1982) as modified by Galperin et al (1988). An optional bottom boundary layer submodel allows for

wave-current boundary layer interaction using an externally specified high frequency surface gravity

wave field. The EFDC model also simultaneously solves an arbitrary number of Eulerian transport-

transformation equations for dissolved and suspended materials. A complimentary Lagrangian particle

transport-transformation scheme is also implemented in the model. The EFDC model also allows for

drying and wetting in shallow areas by a mass conservative scheme. A number of alternatives are in

place in the model to simulate general discharge control structures such as weirs, spillways and culverts.

For nearshore surf zone simulation, the EFDC model can incorporate externally specified radiation

stresses due to high frequency surface gravity waves. Externally specified wave dissipation due to

Page 11: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

1 - Introduction

1-2

wave breaking and bottom friction can also be incorporated in the turbulence closure model as source

terms. For the simulation of flow in vegetated environments, the EFDC model incorporates both two

and three-dimensional vegetation resistance formulations (Hamrick and Moustafa, 1995a). The model

provides output formatted to yield transport fields for water quality models, including WASP5

(Ambrose, et. al., 1993) and CE-QUAL-IC (Cerco and Cole, 1993).

The numerical scheme employed in EFDC to solve the equations of motion uses second order accurate

spatial finite difference on a staggered or C grid. The model’s time integration employs a second order

accurate three time level, finite difference scheme with an internal-external mode splitting procedure to

separate the internal shear or baroclinic mode from the external free surface gravity wave or barotropic

mode. The external mode solution is semi-implicit, and simultaneously computes the two-dimensional

surface elevation field by a preconditioned conjugate gradient procedure. The external solution is

completed by the calculation of the depth averaged barotropic velocities using the new surface elevation

field. The model’s semi-implicit external solution allows large time steps which are constrained only by

the stability criteria of the explicit central difference or upwind advection scheme used for the nonlinear

accelerations. Horizontal boundary conditions for the external mode solution include options for

simultaneously specifying the surface elevation only, the characteristic of an incoming wave (Bennett &

McIntosh, 1982), free radiation of an outgoing wave (Bennett, 1976; Blumberg & Kantha, 1985) or

the normal volumetric flux on arbitrary portions of the boundary. The EFDC model’s internal

momentum equation solution, at the same time step as the external, is implicit with respect to vertical

diffusion. The internal solution of the momentum equations is in terms of the vertical profile of shear

stress and velocity shear, which results in the simplest and most accurate form of the baroclinic pressure

gradients and eliminates the over determined character of alternate internal mode formulations. Time

splitting inherent in the three time level scheme is controlled by periodic insertion of a second order

accurate two time level trapezoidal step. The EFDC model is also readily configured as a two-

dimensional model in either the horizontal or vertical planes.

The EFDC model implements a second order accurate in space and time, mass conservation fractional

step solution scheme for the Eulerian transport equations at the same time step or twice the time step of

the momentum equation solution (Smolarkiewicz and Margolin, 1993). The advective step of the

transport solution uses either the central difference scheme used in the Blumberg-Mellor model or a

hierarchy of positive definite upwind difference schemes. The highest accuracy upwind scheme, second

order accurate in space and time, is based on a flux corrected transport version of Smolarkiewicz’s

Page 12: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

1 - Introduction

1-3

multidimensional positive definite advection transport algorithm (Smolarkiewicz, 1984; Smolarkiewicz

& Clark, 1986; Smolarkiewicz & Grabowski, 1990) which is monotone and minimizes numerical

diffusion. The horizontal diffusion step, if required, is explicit in time, while the vertical diffusion step is

implicit. Horizontal boundary conditions include time variable material inflow concentrations, upwinded

outflow, and a damping relaxation specification of climatological boundary concentration. For the heat

transport equation, the NOAA Geophysical Fluid Dynamics Laboratory’s atmospheric heat exchange

model (Rosati & Miyakoda, 1988) is implemented. The Lagrangian particle transport-transformation

scheme implemented in the model utilizes an implicit trilinear interpolation scheme (Bennett & Clites,

1987). To interface the Eulerian and Lagrangian transport-transformation equation solutions with near

field plume dilution models, internal time varying volumetric and mass sources may be arbitrarily

distributed over the depth in a specified horizontal grid cell. The EFDC model can be used to drive a

number of external water quality models using internal linkage processing procedures described in

Hamrick (1994a).

The EFDC model is implemented in a generic form requiring no internal source code modifications for

application to specific study sites. The model includes a preprocessor system which generates a

Cartesian or curvilinear-orthogonal grid (Mobley and Stewart, 1980; Ryskin & Leal, 1983), and

interpolates bathymetry and initial salinity and temperature input fields from observed data. The model’s

input system features an interactive user’s manual with extensive on-line documentation of input

variables, files and formats. A menu driven, windows based, implementation of the input system is

under development. The model produces a variety of real time messages and outputs for diagnostic

and monitoring purposes as well as a restart file. For postprocessing, the model has the capability for

inplace harmonic and time series analysis at user specified locations. A number of options exist for

saving time series and creating time sequenced files for horizontal and vertical sliced contour, color

shaded and vector plots. The model also outputs a variety of array file formats for three-dimensional

vector and scalar field visualization and animation using a number of public and inexpensive private

domain data visualization packages (Rennie and Hamrick, 1992). The EFDC model is coded in

standard FORTRAN 77, and is designed to economize mass storage by storing only active water cell

variables in memory. Particular attention has also been given to minimizing logical operations with the

code being 99.8 per cent vectorizable for floating point operations and benchmarked at a sustained

performance of 380 MFLOPS on a single Cray Y-MP C90 processor. The EFDC model is currently

operational on VAX-VMS systems, Sun, HP-Apollo, Silicon Graphics, Convex, and Cray UNIX

Page 13: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

1 - Introduction

1-4

systems, IBM PC compatible DOS systems (Lahey EM32 FORTRAN) and Macintosh 68K and

Power PC systems (LSI and Absoft FORTRAN).

The theoretical and computational basis for the model is documented in Hamrick (1992a). Extensions to

the model formulation for the simulation of vegetated wetlands are documented in Hamrick and Moustafa

(1995a,b) and Hamrick and Moustafa and Hamrick (1995a). Model formulations for computation of

Lagrangian particle trajectories and Lagrangian mean transport fields are described in Hamrick (1994a)

and Hamrick and Yang (1995).

The general organization of this manual is as follows. Chapter 2 presents the general structure of the EFDC

modeling system focusing on the structure of the EFDC code and the sequence of steps in setting up and

executing the model and processing and interpreting the computational results. Chapters 3 through 10

essentially follow the sequence of steps in the application of the model to a specific environmental flow

system. Chapter 3 describes the specification of the horizontal spatial configuration of the system being

modeled using the GEFDC grid generating preprocessor code. Chapter 4 describes the configuration of

the master input file efdc.inp which controls the overall execution of a model simulation. Chapter 5

documents additional input files necessary to specify the simulation. Guidelines for compiling and executing

the model on UNIX workstations and super computers, IBM compatible PC systems and Macintosh

systems are presented in Chapter 6. Chapter 7 describes options for diagnosing execution failures using

EFDC’s internal diagnostic options and a number of compiler option diagnostic tools. Chapter 8 describes

time series output options and formats as well a number of generic and custom, application specific, time

series analysis techniques. Two-dimensional horizontal and vertical plane graphics output and visualization

options are presented in Chapter 9, while Chapter 10 presents similar material for three-dimensional

graphics and visualization. Appendix A contain a list of the source code subroutines and their functions.

Appendix B contains a number of example grids and input files for the gefdc.f grid generating preprocessor.

Page 14: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

2 - General Structure of the EFDC Modeling System

2-1

2. General Structure of the EFDC Modeling System

The primary component of the EFDC modeling system is the FORTRAN 77 source code efdc.f and

two include files: efdc.cmn, which contains common block declarations and arrayed variable

dimensions, and efdc.par, which contains a parameter statement specifying the dimensions of arrayed

variables. The source code efdc.f and the common file, efdc.cmn, are universal for all model

applications or configurations. The parameter file, efdc.par, is configured for a particular model

application to minimize memory requirements during model execution. Details of configuring the

parameter file, efdc.par, and compiling the source code efdc.f are presented in Chapter 6. The source

code, efdc.f, is comprised of a main program and 136 subroutines. A list of the subroutines and a brief

description of their functions is found in Appendix A.

Model configuration and environmental data for a particular application are provided in the following

sequence of input files (in alphabetical order).

Table 1. Input files for the EFDC model.

File Name Type of Input Data

aser.inp Atmospheric forcing time series file.

cell.inp Horizontal cell type identifier file.

celllt.inp Horizontal cell type identifier file for saving mean mass transport.

depth.inp File specifying depth, bottom elevation, and bottom roughness for Cartesian

grids only.

dser.inp Dye concentration time series file.

Page 15: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

2 - General Structure of the EFDC Modeling System

2-2

dxdy.inp File specifying horizontal grid spacing or metrics, depth, bottom elevation,

bottom roughness and vegetation classes for either Cartesian or curvilinear-

orthogonal horizontal grids.

dye.inp File with initial dye distribution for cold start simulations.

efdc.inp Master input file.

fldang.inp File specifying the CCW angle to the flood axis of the local M2 tidal ellipses.

gcellmap.inp File specifying a Cartesian grid overlay for a curvilinear-orthogonal grid.

gwater.inp File specifying the characteristic of a simple soil moisture model.

lxly.inp File specifying horizontal cell center coordinates and cell orientations for either

Cartesian or curvilinear-orthogonal grids.

mappgns.inp Specifies configuration of the model grid to represent a periodic region in the

north-south or computational y direction.

mask.inp File specifying thin barriers to block flow across specified cell faces.

modchan.inp Subgrid scale channel model specification file.

moddxdy.inp File specifying modification to cell sizes (used primarily for calibration

adjustment of subgrid scale channel widths)

pser.inp Open boundary water surface elevation time series file.

qctl.inp Hydraulic control structure characterization file.

qser.inp Volumetric source-sink time series file.

Page 16: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

2 - General Structure of the EFDC Modeling System

2-3

restart.inp File for restarting a simulation.

restran.inp File with arbitrary time interval averaged transport fields used to drive mass

transport only simulations.

salt.inp File with initial salinity distribution for cold start, salinity stratified flow

simulations.

sdser.inp Suspended sediment concentration time series file.

show.inp File controlling screen print of conditions in a specified cell during simulation

runs.

sser.inp Salinity time series file.

sfser.inp Shellfish release time series file.

sfbser.inp Shellfish behavior time series file.

tser.inp Temperature time series file.

vege.inp Vegetation resistance characterization file.

wave.inp Specifies a high frequency surface gravity wave field require to activate the

wave-current boundary layer model and/or wave induced current model.

The input files listed in Table 1 above can be classified in four groups as indicated in Table 2 below.

Table 2. Input files grouped by function.

(1) Horizontal grid specification files:

cell.inp celllt.inp depth.inp dxdy.inp

gcellmap.inp lxly.inp mappgns.inp mask.inp

Page 17: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

2 - General Structure of the EFDC Modeling System

2-4

(2) General data and run control files:

efdc.inp show.inp

(3) Initialization and restart files:

salt.inp dye.inp restart.inp restran.inp

(4) Physical process specification files:

gwater.inp modchan.inp moddxdy.inp qctl.inp

vege.inp wave.inp

(5) Time series forcing and boundary condition files:

aser.inp dser.inp pser.inp qser.inp

sdser.inp sfser.inp sfbser.inp sser.inp

tser.inp

The recommended sequence for the construction of the input files for configuration of the model and set

up for a simulation generally corresponds to the above file group classes. The files, dxdy.inp and lxly.inp,

which specify the model grid geometry and topography or bathymetry, and the file, gcellmap.inp, which

specifies an optional graphics overlay grid, can be automatically generated by an auxiliary grid generating

preprocessor code GEFDC (FORTRAN 77 source file gefdc.f). The use of GEFDC is discussed in

Chapter 3. The master input file, efdc.inp, is discussed in detail in Chapter 4, while the structure of the

remaining input files are described in Chapter 5.

The EFDC modeling system produces five classes of output: 1) diagnostic output files; 2) restart and

transport field files; 3) time series, point samples and least squares harmonic analysis output files; 4) two-

dimensional graphics and visualization files; and 5) three-dimensional graphics and visualization files. The

activation and control of these output classes is specified in the master input file efdc.inp, as will be

discussed in Chapter 4. Guidance for activating and analyzing diagnostic output options is discussed in

Chapter 7, while Chapters 8, 9, and 10 describe the formats and processing procedures for time series,

two-dimensional and three-dimensional model outputs.

Page 18: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-1

3. Grid Generation and Preprocessing

The first step in the setup or configuration of the EFDC modeling system is defining the horizontal plane

domain of the region being modeled. The horizontal plane domain is approximated by a set of discrete

quadrilateral and optional triangular cells. The terminology grid or grid lines refers to the lines defining

the faces of the quadrilateral cells. (Triangular cells are defined by one of four possible regions resulting

from diagonal division of a quadrilateral cell.) Since the EFDC model solves the hydrodynamic

equations in a horizontal coordinate system that is curvilinear and orthogonal, the grid lines also

correspond to lines having a constant value of one of the horizontal coordinates. In the following

discussions, x and y, as well as I and J will be used to identify the two horizontal coordinate directions

in the so-called computation domain. The terminology east and north, when associated with the

curvilinear x and y coordinates respectively, will also be used to specify relative locations. The

terminology true east and true north will be associated with a set of horizontal map coordinates, x* and

y*, respectively, which may represent longitude-latitude, east and north state plane (SP) or universal

transverse mercator (UTM) coordinates, or any local set of map coordinates defined by the user.

Since the efdc.f code uses the MKS (meters, kilograms and seconds unit system internally), the writer

tends to favor the use of localized UTM coordinates (true zonal UTM coordinates localized to an origin

southwest of the region to be modeled).

The horizontal grid of cells is defined by a cell type array which is specified by the file cell.inp. To

illustrate the definition of the horizontal model domain and the form of the cell.inp file, consider a simple

circular basin with an entrance channel to the East, as shown in Figure 1. The region is coarsely

approximated by 18 square cells and 4 right triangular cells as shown in Figure 1. The cell.inp file

corresponding to the 22 water cell grid is shown in Figure 2. The cell.inp file has four header lines,

followed by an image of the cell type array, IJCT(I,J), where I and J are the cell indexes in the

computational or curvilinear x and y directions respectively. In the lines following the header lines, the

first three columns (I3 format) specify the value of J decreasing from a maximum of 6 to 1, followed by

two blank spaces (2X format). The remaining columns across the row specify the cell type

identification number entered in the array, IJCT(I,J) for I increasing from 1 to 9. Seven identification

numbers are used to define the cell type. They are as follows:

Page 19: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-2

0 dry land cell not bordering a water cell on a side or corner1 triangular water cell with land to the northeast2 triangular water cell with land to the southeast3 triangular water cell with land to the southwest4 triangular water cell with land to the northwest5 quadrilateral water cell9 dry land cell bordering a water cell on a side or corner or a fictitious dry land cell

bordering an open boundary water cell on a side or a corner.

Table 3. Definition of cell types in the cell.inp file.

Figure 1. Representation of a circular basin and entrance channel by a 22 water cell grid.

Page 20: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-3

C cell.inp file, i columns and j rows, for Figure 1C 0 1C 1234567890C 6 999999000 5 945519999 4 955555559 3 955555559 2 935529999 1 999999000CC 1234567890C 0 1

Figure 2. File cell.inp corresponding to the grid shown in Figure 1.

C celllt.inp file, i columns and j rows, for Figure 1C 0 1C 1234567890C 6 999999000 5 945519900 4 955555900 3 955555900 2 935529900 1 999999000CC 1234567890C 0 1

Figure 3. File celllt.inp corresponding to the grid shown in Figure 1, with four entry channel cellsremoved.

The type 9 dry land or fictitious dry land cell type is used in the specification of no flow boundary conditions

and in graphics masking operations. For purposes of assigning adjacent type 9 cells, triangular water cells

are treated identically to quadrilateral water cells. The file celllt.inp may be identical to the file cell.inp or

specify a subset of the water cells in the cell.inp file. In specifying the subset, the following rules apply.

Type 0 cells remain unchanged, type 9 cells may be changed only to type 0, and type 1-5 cells may be

changed only to types 0 or 9. Figure 3 illustrates a celllt.inp file corresponding to the cell.inp file in Figure

2 with four of the entry channel cells removed.

To specify the horizontal geometric and topographic properties and other related characteristics of the

region, the files dxdy.inp and lxly.inp are preferably used. (An older model option used the depth.inp file

Page 21: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-4

for this purpose. However this is not recommended). For this simple grid, these files, shown in Figure 4

and 5, can be readily constructed by hand. Both files, which are read into the model execution in free

format, begin with four header lines defining the columns. The file dxdy.inp provides the physical x and

y dimensions of a cell, dx and dy, the initial water depth, the bottom elevation, and the roughness height

(log law zo). These quantities should generally be specified in meters, although units conversion options can

be specified in the master input file, efdc.inp. The last column contains an integer vegetation type class

identifier. This column is read only when the vegetation resistance option is activated in the master input

file efdc.inp. The file lxly.inp provides cell center coordinates and the components of a rotation matrix.

The cell center coordinates are used only in graphics output and can be specified in the most convenient

units for graphical display such as decimal degrees, feet, miles, meters or kilometers. The rotation matrix

is used to convert pseudo east and north (curvilinear x and y) horizontal velocities to true east and north

for graphics vector plotting, according to:

u

v

C C

C C

u

v

te

tn

cue cve

cun cvn

co

co

=

(1)

where the subscripts te and tn denote true east and true north, while the subscripts co denote the

curvilinear-orthogonal horizontal velocity components. The inverse of the rotation matrix is used to

compute horizontal curvilinear components of the surface wind stress from true east and north components,

according to:

ττ

ττ

sx co

sy co

cue cve

cun cvn

sx te

sy tn

C C

C C

,

,

,

,

=

−1

(2)

For the example shown in Figure 4, the horizontal grid is Cartesian and aligns with true east and north.

Page 22: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-5

C dxdy.inp file, in free format across columnsCC I J DX DY DEPTH BOTTOM ELEV ZROUGH VEG TYPE C 2 2 100.0 100.0 5.0 -5.0 0.02 0 3 2 100.0 100.0 5.0 -5.0 0.02 0 4 2 100.0 100.0 5.0 -5.0 0.02 0 5 2 100.0 100.0 5.0 -5.0 0.02 0 6 2 100.0 100.0 5.0 -5.0 0.02 0 7 2 100.0 100.0 5.0 -5.0 0.02 0 8 2 100.0 100.0 5.0 -5.0 0.02 0 2 3 100.0 100.0 5.0 -5.0 0.02 0 3 3 100.0 100.0 5.0 -5.0 0.02 0 4 3 100.0 100.0 5.0 -5.0 0.02 0 5 3 100.0 100.0 5.0 -5.0 0.02 0 6 3 100.0 100.0 5.0 -5.0 0.02 0 7 3 100.0 100.0 5.0 -5.0 0.02 0 8 3 100.0 100.0 5.0 -5.0 0.02 0 2 4 100.0 100.0 5.0 -5.0 0.02 0 3 4 100.0 100.0 5.0 -5.0 0.02 0 4 4 100.0 100.0 5.0 -5.0 0.02 0 5 4 100.0 100.0 5.0 -5.0 0.02 0 6 4 100.0 100.0 5.0 -5.0 0.02 0 7 4 100.0 100.0 5.0 -5.0 0.02 0 8 4 100.0 100.0 5.0 -5.0 0.02 0 2 5 100.0 100.0 5.0 -5.0 0.02 0 3 5 100.0 100.0 5.0 -5.0 0.02 0 4 5 100.0 100.0 5.0 -5.0 0.02 0 5 5 100.0 100.0 5.0 -5.0 0.02 0 6 5 100.0 100.0 5.0 -5.0 0.02 0 7 5 100.0 100.0 5.0 -5.0 0.02 0 8 5 100.0 100.0 5.0 -5.0 0.02 0 CC I ARRAY INDEX IN X DIRECTIONC J ARRAY INDEX IN Y DIRECTIONC DX CELL DIMENSION IN X DIRECTION, METERSC DY CELL DIMENSION IN Y DIRECTION, METERSC DEPTH INITIAL WATER DEPTH, METERSC BOTTOM ELEV BOTTOM BED ELEVATION, METERSC ZROUGH LOG LAW ROUGHNESS HEIGHT, ZO, METERSC VEG TYPE VEGETATION TYPE CLASS, INTEGER VALUEC

Figure 4. File dxdy.inp for grid shown in Figure 1.

Page 23: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-6

C lxly.inp file, in free format across columnsC C I J XLNUTME YLTUTMN CCUE CCVE CCUN CCVN C 2 2 250.0 250.0 1.0 0.0 0.0 1.0 3 2 350.0 250.0 1.0 0.0 0.0 1.0 4 2 450.0 250.0 1.0 0.0 0.0 1.0 5 2 550.0 250.0 1.0 0.0 0.0 1.0 6 2 650.0 250.0 1.0 0.0 0.0 1.0 7 2 750.0 250.0 1.0 0.0 0.0 1.0 8 2 850.0 250.0 1.0 0.0 0.0 1.0 2 3 250.0 350.0 1.0 0.0 0.0 1.0 3 3 350.0 350.0 1.0 0.0 0.0 1.0 4 3 450.0 350.0 1.0 0.0 0.0 1.0 5 3 550.0 350.0 1.0 0.0 0.0 1.0 6 3 650.0 350.0 1.0 0.0 0.0 1.0 7 3 750.0 350.0 1.0 0.0 0.0 1.0 8 3 850.0 350.0 1.0 0.0 0.0 1.0 2 4 250.0 450.0 1.0 0.0 0.0 1.0 3 4 350.0 450.0 1.0 0.0 0.0 1.0 4 4 450.0 450.0 1.0 0.0 0.0 1.0 5 4 550.0 450.0 1.0 0.0 0.0 1.0 6 4 650.0 450.0 1.0 0.0 0.0 1.0 7 4 750.0 450.0 1.0 0.0 0.0 1.0 8 4 850.0 450.0 1.0 0.0 0.0 1.0 2 5 250.0 550.0 1.0 0.0 0.0 1.0 3 5 350.0 550.0 1.0 0.0 0.0 1.0 4 5 450.0 550.0 1.0 0.0 0.0 1.0 5 5 550.0 550.0 1.0 0.0 0.0 1.0 6 5 650.0 550.0 1.0 0.0 0.0 1.0 7 5 750.0 550.0 1.0 0.0 0.0 1.0 8 5 850.0 550.0 1.0 0.0 0.0 1.0CCC I ARRAY INDEX IN X DIRECTIONC J ARRAY INDEX IN Y DIRECTIONC XLNUTME X CELL CENTER COORDINATE, LONGITUDE, METERS, OR KMC YLTUTMN Y CELL CENTER COORDINATE, LONGITUDE, METERS, OR KMC CCUE ROTATION MATRIX COMPONENTC CCVE ROTATION MATRIX COMPONENTC CCUN ROTATION MATRIX COMPONENTC CCVN ROTATION MATRIX COMPONENTC

Figure 5. File lxly.inp for grid shown in Figure 1.

For realistic model applications, the grid generating preprocessor code, gefdc.f, is used to generate the

horizontal grid and form the dxdy.inp and lxly.inp files. The gefdc.f code requires the input files listed

in Table 4:

Page 24: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-7

Table 4. Input files for the gefdc.f grid generating preprocessor.

cell.inp Cell type file as shown in Figure 2.

depdat.inp File specifying depth or bottom topography (optional if depth interpolation isnot specified).

gcell.inp Optional auxiliary file with cell.inp format which specifies an auxiliary squareCartesian grid for rectangular array graphics when the actual computational gridis curvilinear.

gridext.inp File of water cell corner coordinates for used with NTYPE = 0 grid generationoption.

gefdc.inp Master input file for gefdc.f.

vege.inp File specifying vegetation type classes.

zrough.inp File specifying bottom roughness (log law zo).

The format of the cell.inp file has already been discussed. The depdat.inp file is a three column ASCII

text file with no header, as shown in Figure 6. The first two columns are true east and true north

coordinates, in meters or kilometers, with the depth or bottom elevation given in the third column. The

origin of the true east and north coordinates is arbitrary, but should generally be related to an accepted

geographic coordinate system such as longitude-latitude, state plane, or universal transverse mercator. The

optional file gcell.inp has the same format as the cell.inp file, but specifies an auxiliary, square cell,

Cartesian grid corresponding to the curvilinear grid specified by the cell.inp file. When the option to

process the gcell.inp file is activated in the gefdc.inp file, a correspondence table between the curvilinear

grid and the auxiliary, square cell, Cartesian grid is generated. The correspondence table, output as file

gcellmap.inp, is used by the efdc.f code to generated two and three-dimensional rectangular arrays of

graphics visualization, as will be subsequently discussed. The file gridext.inp is used for generation of a

grid constructed external to the gefdc.f code. This file is a four column free format ASCII text file with no

header. The four columns correspond to the I indices, J indices, true east coordinates, and true north

coordinates of the water cell corners. The lower left (pseudo southwest relative to the cell center) cell

corners carry the same I and J indices as the cell. The gridext.inp file corresponding to the simple grid in

Figure 1 is shown in Figure 7. Triangular cells must be specified as equivalent quadrilaterals in the

Page 25: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-8

4.2798 6.9175 3.2309

4.2785 6.9175 3.2309

4.4509 6.7880 3.1090

4.4409 6.7927 3.1090

4.4222 6.7995 3.1090

4.4133 6.8028 3.1090

Figure 6. Format of the file depdat.inp.

2 2 200. 200.

3 2 300. 200.

4 2 400. 200.

5 2 500. 200.

6 2 600. 200.

2 3 200. 300.

3 3 300. 300.

4 3 400. 300.

5 3 500. 300.

6 3 600. 300.

7 3 700. 300.

8 3 800. 300.

9 3 900. 300.

2 4 200. 400.

3 4 300. 400.

4 4 400. 400.

5 4 500. 400.

6 4 600. 400.

7 4 700. 400.

8 4 800. 400.

9 4 900. 400.

2 5 200. 500.

3 5 300. 500.

4 5 400. 500.

5 5 500. 500.

6 5 600. 500.

7 5 700. 500.

8 5 800. 500.

9 5 900. 500.

2 6 200. 600.

3 6 300. 600.

4 6 400. 600.

5 6 500. 600.

Figure 7. File gridext.inp for grid shown in Figure 1.

gridext.inp file. The files vege.inp and zrough.inp have the same format as the depdat.inp file, with the

exception that the third column of the vege.inp file has an integer value corresponding to a vegetation class.

The third column of the zrough.inp file has values of the log law bottom roughness height, zo, (preferably

in meters, however unit conversion may be specified in the master input file efdc.f).

Page 26: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-9

C1 TITLE C1 (LIMITED TO 80 CHARACTERS) ’gefdc.inp corresponding to example in figure 1’C2 INTEGER INPUTC2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC 0 0 1 9 1 6 9 6 C3 GRAPHICS GRID INFORMATIONC3 ISGG IGM JGM DXCG DYCG NWTGG 0 0 0 0. 0. 1C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATAC4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3 0. 0. 0. 0. 0. 0. C5 INTEGER INPUTC5 ITRXM ITRHM ITRKM ITRGM NDEPSM DEPMIN 100 100 100 100 4000 1.0C6 REAL INPUTC6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM 1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12C7 COORDINATE SHIFT PARAMETERSC7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO 0. 0. 1. 1. 15.0C8 INTERPOLATION SWITCHESC8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ 1 0 0 0C9 NTYPE = 7 SPECIFID INPUTC9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAXC10 NTYPE = 7 SPECIFID INPUTC10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)C11 DEPTH INTERPOLATION SWITCHESC11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP 0 0 2. .5 2 4.0 0 0 0C12 LAST BOUNDARY POINT INFORMATIONC12 ILT JLT X(ILT,JLT) Y(ILT,JLT) 1 1 0. 0.C13 BOUNDARY POINT INFORMATIONC13 I J X(I,J) Y(I,J)

Figure 8. Example of the gefdc.inp, master input file for the gefdc.f code.

The execution of the gefdc.f code is controlled by its master input file, gefdc.inp. An example of the

gefdc.inp file for the grid in Figure 1 is shown in Figure 8. The file is essentially a sequence of ’card images’

or input lines. Each input line is preceded by card number lines beginning with ’C’ followed by a number

corresponding the card image or data input line and text defining the data type and the actual data

parameters. To fully discuss the options in the execution of the gefdc.f code, it is useful to consider each

’card image’ or input line sequence. The following discussion will sequentially present the header and data

lines in Monaco text with definitions of data parameters following in Monaco text. Additional discussion

Page 27: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-10

then follows in plain text. In the discussions, reference will be made to six grid generation examples in

Appendix B, which illustrate specific options as well as showing the resulting grid.

Card Image 1

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

’ENR GRID’

This 80-character title simply serves to identify the particular application.

Card Image 2C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 0 1 50 1 55 50 55

Card Image 2 parameter definitions are as follows:

NTYPE = PROBLEM TYPE

0, READ IN FILE ’cell.inp’ AND WATER GRID CELL CORNER

COORDINATES FROM FILE ’gridext.inp’ TO GENERATE

INPUT FILES FOR AN EXTERNALLY GENERATED ORTHOGONAL GRID

1-5 GENERATE AN ORTHOGONAL GRID AND INPUT FILES USING

THE METHOD OF RYSKIN AND LEAL, J. COMP. PHYS. V50,

71-100 (1983) WITH SYMMETRIC REFLECTIONS AS SUGGESTED BY

CHIKHLIWALA AND YORTSOS, J. COMP. PHYS. V57, 391-402 (1985).

1, RL-CY EAST REFLECTION

2, RL-CY NORTH REFLECTION

3, RL-CY WEST REFLECTION

4, RL-CY SOUTH REFLECTION

5, RL NO REFLECTION

6, GENERATE GRID AND INPUT FILES USING THE AREA-ORTHOGONALITY

METHOD OF KNUPP, J. OF COMP PHYS. V100, 409-418 (1993)

ORTHOGONALITY IS NOT GUARANTEED

7, GENERATE GRID ORTHOGONAL GRID AND INPUT FILES USING THE

QUASI-CONFORMAL METHOD OF MOBLEY AND STEWART, J. OF COMP

PHYS. V24, 124-135 (1980) REQUIRES USER SUPPLIED FUNCTION

SUBROUTINES FIB,FIE,GJB,GJE

8, DEPTH INTERPOLATION TO CARTESIAN GRID SPECIFIED

BY cell.inp AND GENERATE dxdy.inp AND lxly.inp FILES

9, DEPTH INTERPOLATION TO CARTESIAN GRID AS FOR 8

CONVERTING INPUT COORDINATE SYSTEM FROM

LONG,LAT TO UTMBAY (VIMS PHYS OCEAN CHES BAY REF)

NBPP = NUMBER OF INPUT BOUNDARY POINTS (NTYPE = 1-6)

IMIN,IMAX = RANGE OF I GRID INDICES

JMIN,JMAX = RANGE OF J GRID INDICES

IC = NUMBER OF CELLS IN I DIRECTION

JC = NUMBER OF CELLS IN J DIRECTION

Page 28: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-11

The NTYPE parameter controls the type of grid generated by the gefdc.f code. NTYPE = 0 corresponds

to an external specification of the grid by the gridext.inp file, see Figure 7, with gefdc.f only generating

input files for the efdc.f code. Example of NTYPE = 0 grids are given in Appendices B.1, B.2, and B.4.

The NTYPE options 1-5 generate curvilinear-orthogonal grids using the method or Ryskin and Leal

(1983). NTYPE options 1-4 require that one of the boundaries of the grid to be a straight line and use

reflection extensions of Ryskin and Leal’s method proposed by Chikhliwala and Yortsos (1985). The

NTYPE = 5 option is generally recommended. A simple NTYPE = 2 grid generation example is given in

Appendix B.3. A more complicated composite grid composed of NTYPE 0 and 5 subgrids is discussed

in Appendix B.4. The NTYPE = 7 option generates a quasi-conformal grid using the method of Mobley

and Stewart (1980). When the NTYPE = 7 option is used, the computational domain must be rectangular

(i.e. the physical domain is mapped into a rectangular region). An example of a NTYPE = 7 grid is

presented in Appendix B.5. The NTYPE = 8 option generates a square cell Cartesian grid using only the

cell.inp file and information on Card Image 4. The NTYPE = 9 option generates an approximately square

cell Cartesian grid using the cell.inp file and information on Card Image 4. However, the coordinate

information on Card Image 4 must correspond to longitude and latitude, which is internally converted to

a universal transverse mercator (UTM) coordinate system localized to the Chesapeake Bay region. An

example NTYPE = 9 grid is presented in Appendix B.6. The NTYPE = 6 option implements the area-

orthogonal method of Knupp (1992). Since this method does not guarantee an orthogonal grid, it should

be used with extreme care. For NTYPE = 1-6, NBPP coordinate pairs specifying the grid points (water

cell corner points) around the boundary of the domain must be specified (see Card Images 12 and 13).

Card Image 3C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 0 0 1. 1. 1

Card Image 3 parameter definitions are as follows

ISGG = 1, READ IN gcell.inp WHICH DEFINES THE CARTESIAN OR

GRAPHICS GRID OVERLAY

IGM MAXIMUM X OR I CELLS IN CARTESIAN OR GRAPHICS GRID

JGM MAXIMUM Y OF J CELLS IN CARTESIAN OR GRAPHICS GRID

DXCG X GRID SIZE OF CARTESIAN OR GRAPHICS GRID

DYCG Y GRID SIZE OF CARTESIAN OF GRAPHICS GRID

NWTGG NUMBER OF WEIGHTED COMP CELLS USED TO INTERPOLATE

TO THE GRAPHICS GRID (MUST EQUAL 1)

Page 29: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-12

Activation of ISGG = 1, allows for a square cell Cartesian grid to be simultaneously generated whenNTYPE = 1-7. This Cartesian grid is used by efdc.f to output the results of a 3D curvilinearcoordinate computation in a 3D rectangular array for visualization and graphics. The relation betweenthe I and J indices of the Cartesian grid, specified by gcell.inp, and the global coordinates (true eastand true north) defining the curvilinear grid in physical space are defined by input on Card Image 4. The gcell.inp file has the same format as the cell.inp file. The gefdc.inp files shown in Figure B14 andB27 are examples where the ISGG = 1 option is activated.

Card Image 4C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

-77.5 1.25 -0.625 36.7 1.0 -0.5

Card Image 4 parameter definitions are as follows:

CDLON1: 6 CONSTANTS TO GIVE CELL CENTER LAT AND LON OR OTHER

CDLON2: COORDINATES FOR CARTESIAN GRIDS USING THE FORMULAE

CDLON3: DLON(L)=CDLON1+(CDLON2*FLOAT(I)+CDLON3)/60.

CDLAT1: DLAT(L)=CDLAT1+(CDLAT2*FLOAT(J)+CDLAT3)/60.

CDLAT2:

CDLAT3:

The information on this card image defines the global coordinates (true east and true north) of Cartesiancell centers corresponding to the I and J indices in the gcell.inp file for the Cartesian graphics grid overlaywhen NTYPE = 1-7 is specified (see gefdc.inp files in Figure B14 and B27). When NTYPE = 8 or 9 isspecified, the information defines the cell center coordinates corresponding to I and J indices in the cell.inpfile (see the gefdc.inp file in Figure B34). When NTYPE = 9, DLON and DLAT must correspond tolongitude and latitude, otherwise DLON and DLAT can also correspond to a true east and true northcoordinate system in meters or kilometers.

Card Image 5C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM DEPMIN

500 500 500 500 4000 1.0

Card Image 5 parameter definitions are as follows:

ITRXM = MAXIMUM NUMBER OF X,Y SOLUTION ITERATIONS

ITRHM = MAXIMUM NUMBER OF HI,HJ SOLUTION ITERATIONS

ITRKM = MAXIMUM NUMBER OF KJ/KI SOLUTION ITERATIONS

ITRGM = MAXIMUM NUMBER OF GRID SOLUTION ITERATIONS

NDEPSM = NUMBER SMOOTHING PASSES TO FILL MISSING DEP DAT

DEPMIN = MINIMUM DEPTH PASSING DEPDAT.INP DATA

Page 30: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-13

The first four parameters on Card Image 5 control the number of iterations for the various curvilinear gridgeneration schemes, based on successive over relaxation (SOR) solutions of elliptic equations, in gefdc.f.The value of 500 is recommended as a maximum for each of the these parameters based on the writer’sexperience that if the successive over relaxation (SOR) solution schemes do not converge after 500iterations they are not converging at all. The value of 4000 for NDEPSM is the recommended number ofsmoothing passes used to fill in missing depth or bottom elevation data when the ISIDEP = 1 option onCard Image 11 is activated.

Card Image 6C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

Card Image 6 parameter definitions are as follows:

RPX,RPK,RPH = RELAXATION PARAMETERS FOR X,Y; KI/KJ; AND HI,HJ

SOR SOLUTIONS

RSQXM,RSQKM,RSQHM = MAXIMUM RESIDUAL SQUARED ERROR IN SOR

SOLUTION FOR X,Y; KJ/KI; AND HI,HJ

RSQKIM = CONVERGENCE CRITERIA BASED ON KI/KJ (NOT ACTIVE)

RSQHIM = CONVERGENCE CRITERIA BASED ON HI (NOT ACTIVE)

RSQHJM = CONVERGENCE CRITERIA BASED ON HJ (NOT ACTIVE)

The values of the first three parameters should not be changed, since they have been determined to thenear optimum for the SOR solution schemes in gefdc.f. The remaining parameters are residual squarederror criteria for stopping the SOR solutions. The values shown are rough estimates. For very largegrids they can be decreased in magnitude to approximately 1.E-6.

Card Image 7C7 COORDINATE SHIFT PARAMETERS AND ANGULAR ERROR

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.0

Card Image 7 parameter definitions are as follows:

XSHIFT,YSHIFT = X,Y COORDINATE SHIFT X,Y=X,Y+XSHIFT,YSHIFT

HSCALE = SCALE FACTOR FOR HII AND HJJ WHEN PRINTED TO dxdy.out

RKJDKI = ANISOTROPIC STRETCHING OF J COORDINATE (USE 1.)

ANGORO = ANGULAR DEVIATION FROM ORTHOGONALITY IN DEG USED

AS CONVERGENCE CRITERIA

The first two parameters allow for a coordinate translation of input coordinate data, which is generallynot recommended. The scale factor is used to convert the input coordinate units to meters. Forexample, if the input coordinates are in kilometers, 1000 is necessary for DX and DY in the dxdy.inp

Page 31: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-14

file to be properly specified in meters. Note the cell center coordinates in the lxly.inp file will remain inthe same units as the input coordinates. The final parameter, ANGORO, specifies the maximumdeviation from orthogonal in the final grid. If the specified maximum deviation is not achieved, thegeneration procedure will execute the maximum number of iterations.

Card Image 8C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

Card Image 8 parameter definitions are as follows:

ISIRKI = 1, SOLUTION BASED ON INTERPOLATION OF KJ/KI TO

INTERIOR

JSIRKI = 1, INTERPOLATE KJ/KI TO INTERIOR WITH CONSTANT

COEFFICIENT DIFFUSION EQUATION

ISIHIHJ =1, SOLUTION BASED ON INTERPOLATION OF HI AND HJ TO

INTERIOR, AND THEN DETERMINING KJ/KI=HI/HJ

JSIHIHJ = 1, INTERPOLATE HI AND HJ TO INTERIOR WITH CONSTANT

COEFFICIENT DIFFUSION EQUATION

The configuration shown above is recommended for Card Image 8.

Card Image 9C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

Card Image 9 parameter definitions are as follows

IB = BEGINNING I INDEX MS METHOD

IE = ENDING I INDEX MS METHOD

JB = BEGINNING J INDEX MS METHOD

JE = ENDING J INDEX MS METHOD

N7RELAX= MAXIMUM RELAXATION PER INIT LOOP, NTYPE = 7

NXYIT = NUMBER OF ITERS ON EACH X,Y SWEEP, NTYPE = 7

ITN7MAX= MAXIMUM GENERATION ITERS, NTYPE = 7

IJSMD = 1, CALCULATE GLOBAL CONFORMAL MODULE

ISMD = A VALUE IB.LE.ISMD.LE.IE, CALCULATE CONFORMAL

MODULE ALONG LINE I=ISMD

JSMD = A VALUE JB.LE.JSMD.LE.JE, CALCULATE CONFORMAL

MODULE ALONG LINE J=JSMD

RP7 = SOR RELAXATION PARAMETER, NTYPE = 7

SERRMAX= MAXIMUM CONFORMAL MODULE ERROR, NTYPE = 7

Data is necessary for Card Image 9 only if NTYPE = 7. The indices IB and IE define the beginningand ending I grid lines of the rectangular (in the computational domain) grid generated by the quasi-

Page 32: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-15

conformal mapping technique implemented for NTYPE = 7. The indices JB and JE likewise define thebeginning and ending J indices. Recommended values for the remaining parameter in this card imageare shown in Figure B27 in Appendix B.

Card Image 10C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

Card Image 10 parameter definitions are as follows:

XIBJB,YIBJB = IB,JB COORDINATES

XIEJB,YIEJB = IE,JB COORDINATES

XIBJE,YIBJE = IB,JE COORDINATES

XIEJE,YIEJE = IE,JE COORDINATES

Data is necessary on this line only if NTYPE = 7, with the x and y coordinates specified correspondingto the true east and north physical domain coordinates of the four corners of the rectangular region inthe computational domain.

Card Image 11C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 11564 2. .5 2 4.0 0 0 0

Card Image 11 parameter definitions are as follows:

ISIDEP = 1, READ depdat.inp FILE AND INTERPOLATE DEPTH, BOTTOM

ELEVATION AND BOTTOM ROUGHNESS DATA IN THE dxdy.inp FILE

NDEPDAT = NUMBER OF X, Y, DEPTH FIELDS IN DEPDAT.INP FILE

CDEP = WEIGHTING COEFFICIENT IN DEPTH INTERPOLATION SCHEME

RADM = CONSTANT MULTIPLIER FOR DEPTH INTERPOLATION RADIUS

ISIDPTYP = 1, ASSUMES DEPDAT.INP CONTAINS POSITIVE DEPTHS

TO A BOTTOM BELOW A SEA LEVEL DATUM AND THE BOTTOM

ELEVATION IS THE NEGATIVE OF THE DEPTH

2, ASSUMES DEPDAT.INP CONTAINS POSITIVE BOTTOM ELEVATIONS,

LOCAL INITIAL DEPTH IS THEN DETERMINED BY DEPTH=SURFELV-BELB

3, ASSUMES DEPDAT.INP CONTAINS POSITIVE BOTTOM

ELEVATIONS WHICH ARE CONVERTED TO NEGATIVE VALUES,

LOCAL INITIAL DEPTH IS THEN DETERMINED BY DEPTH=SURFELV-BELB

SURFELV = INITIALLY FLAT SURFACE ELEVATION FOR USE WHEN ISIDPTYP=2 OR 3

ISVEG = 1, READ AND INTERPOLATE VEGETATION DATA

NVEGDAT = NUMBER OF X,Y,VEGETATION CLASS DATA POINTS

NVEGTYP = NUMBER OF VEGETATION TYPES OR CLASSES

Setting ISIDEP = 1 activates depth or bottom elevation interpolation to the grid using NDEPDATdepth or bottom elevation data points. The depth or bottom elevation data within a radius of

Page 33: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-16

RDM*Min(dx,dy) of a cell center to determine a weighted average cell center or cell mean depth usingan inverse distance weighting if CDEP = 1 or an inverse square weighting is CDEP = 2. If no data iswithin RDM*Min(dx,dy) of the cell center, the cell is flagged as having missing depth or bottomelevation data. Missing depth or bottom elevation data is determined using a Laplace equation fillingtechnique which preserves values of the depth and bottom elevation in the unflagged cells. Vegetationclass interpolation is activated by ISVEG = 1. For vegetation class interpolation, the predominant classis selected if more than on vegetation class data point falls within a cell. Since there is no fill option forthe vegetation class interpolation, cells not having vegetation data points within their boundaries areassigned the null class 0. The null class is then replaced by hand in the dxdy.inp file, using classinformation from surrounding cells.

Card Image 12C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 0. 0.

Card Image 12 parameter definitions are as follows:

LAST PAIR OF GRID COORDINATES ON BOUNDARY USED FOR NTYPE = 1 through 6

The last I,J index and true east and north coordinates X,Y for the last point in the clockwise sequence ofgrid points around the domain is specified. See the example in Appendix B.

Card Image 13C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Card Image 13 parameter definitions are as follows:

SEQUENCE OF GRID COORDINATES CLOCKWISE AROUND THE BOUNDARY

USED FOR NTYPE = 1 THROUGH 6

The sequence of I,J index and true east and north coordinates X,Y clockwise around the domain isspecified with one set of I,J,X,Y points per line, see the example in Appendix B. In the NTYPE = 1-4options are specified, grid reflection occurs about the line joining the first and last points.

The gefdc.f code generates a number of output files, including the dxdy.inp and lxly.inp files for input into

the efdc.f code. (These files are actually output as dxdy.out and lxly.out and must be renamed for use

by efdc.f. The other output files and their purposes and content are defined in Table 5 below:

Page 34: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-17

Table 5. Output files from the gefdc.f code.

depint.log A file containing the I,J indices and true x,y coordinates of cells having no depthor bottom elevation data in their immediate vicinity (depths and bottomelevations are determined by a smoothing interpolation).

dxdy.dia A file containing diagnostics for curvilinear-orthogonal grids. See following textand Figure 9.

gefdc.log A file containing a log of the execution of the gefdc.f code. The contents of thisfile are also written to the screen during execution. See following text andFigure 10.

gefdc.out This contain a listing of the cell.inp file, the KSGI array specifying interior gridpoints, the initial x,y grid coordinates, and the final x,y grid coordinates.

grid.cor A file containing sequence of grid line coordinates with character variablesseparating sequences of constant I or J lines. Contents can be used for plottinggrid.

grid.dxf A dxf (CADD drawing exchange file) of the final grid which can be plotted withany CADD or graphics software capable of importing the dxf format.

grid.ini A dxf (CADD drawing exchange file) of the initial grid which can be plottedwith any CADD or graphics software capable of importing the dxf format.

grid.ixy Similar to grid.cord, but contains only constant I lines

grid.jxy Similar to grid.cord, but contains only constant J lines

grid.mas A file containing a clockwise sequence of the true x,y coordinates of grid pointsalong the land-water boundary. This file can be used in masking or defining theregion for horizontal plane contour plotting by contouring software such asNCAR Graphic or Surfer.

gridext.out A file containing the I,J indices and true x,y coordinates of all water cell gridpoints. This file can be renamed gridext.inp and used for NTYPE = 0 gridgeneration. A number of gridext.out files form subgrids that can be combinedinto a single gridext.inp to generate a composite grid. See example in SectionB.4 of Appendix B.

Page 35: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-18

I J HII HJJ HIIHJJ JACOBIAN ANG ERROR

39 6 0.1968E+02 0.2962E+02 0.5827E+03 0.5827E+03 0.3120E+00 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ASQRTG= 0.3305E+06 ASHIHJ= 0.3311E+06 AERR= 0.1973E-02 NWCELLS= 325

Figure 9. Sample output in the dxdy.dia file.

DIFF INITIAL X&Y, ITER = 100 RSX,RSY = 0.4439E-10 0.4383E-11

DIFFUSE RKI, ITERATION = 69 RSK = 0.9475E-12

DIFF X & Y, ITER = 81 RSX,RSY = 0.9747E-12 0.8887E-12

GRID GENERATION LOOP ITERATION = 1

GLOBAL RES SQ DIFF IN RKI= 0.3978E+00

MIN AND MAX DEVIATION FROM ORTHO = 0.3837E-02 0.1008E+02

. . . . . . . . . .

NWCELLS= 325 N999 = 0 DEPMAX = 0.30678E+01

Figure 10. Sample output in the gefdc.log file.

salt.inp This file is a template of the salt.inp input file for the efdc.f code. Salinity valuesare set to zero and may be filled with data (see Chapter 5).

Page 36: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

3 - Grid Generation and Preprocessing

3-19

The file dxdy.dia, Figure 9, contains the primary diagnostics of the curvilinear-orthogonal grid

generation process. For each water cell, the file lists the computed orthogonal metric factors HI and

HG (which are also dx and dy, the curvilinear cell dimensions). For true orthogonality, the product

HII*HJJ is the horizontal area of the cell. The actual area of the cell, which is also the Jacobian of the

general curvilinear coordinate transformation, is also shown, and should agree with HII*HJJ to within a

few percent. The angular error for each cell is a measure of deviation from numerical orthogonality, and

should be small. The orthogonality of the grid can be improved by identifying cells along the land water

boundary with the largest angular errors and adjusting their land bounding grid corner coordinate points

on Card Image 13 in the gefdc.inp file. At the end of the dxdy.dia file, the exact area of the grid,

ASQRTG, is printed for comparison with the sum of the HII*HJJ product for all water cells. The

relative error between these two quantities, AERR, is also printed, as well as the total number of water

cells in the grid. The gefdc.log file, shown in Figure 10, summarizes the computational steps in the grid

generation. The initialization of the grid, referred to as diffuse x and y, since the generation scheme is

similar to the solution of a steady state diffusion or elliptic equation, is followed by a summary of each

grid generation iteration. The iteration involves diffusing the boundary metric ratios, RKI, to the interior

and then the diffusion of the x and y coordinates to the interior. The residuals for these diffusion or

elliptic equation solutions by successive over relaxation are the small quantities beginning with R. The

minimum and maximum deviations from orthogonality, in degree, at the end of the iteration is then

printed. After the grid generation has converged or executed the specified number of maximum

iterations, the equivalent contents of the dxdy.out (inp) file is also written in gefdc.log. The file ends

with a summary of the number of water cells, the number of cells where depth or bottom topography

failed to be determined, and the maximum initial water depth in the grid.

Page 37: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-1

4. EFDC Master Input File (efdc.inp)

This chapter describes the master input, efdc.inp, which contains 90 card images. The information in

efdc.inp provides run control parameters, output control, and physical information describing the model

domain and external forcing functions. The file is internally documented, in essence providing a template

or menu for setting up a simulation. The file consists of card image sections, with each section having

header lines which define the relevant input parameter in that section. The function of the various card

image sections is best illustrated by a sequential discussion of each section. Card Image sections and input

parameters which are judged to be clearly explained in the efdc.inp files internal documentation will not be

discussed specifically. Before proceeding, a number of conventions should be discussed. Many options

in the code are activated by integer switches (most beginning with either IS or JS). Unless otherwise noted,

setting theses switches to zero deactivates the option. Options are normally activated by specifying nonzero

integer values. A number of options described in the file are classified as for research purposes. This

classification indicates that the option may involve an experimental and not fully tested numerical scheme

or that it involves rather complex internal analysis or flow field data extraction. Note: A number of the

card images are not functional in the EFDC-Hydro version of the model and are so noted below.

However, it is important that the card images remain in the input file as space holders otherwise

the model will encounter a read error during execution.

Card Image 1C01 TITLE FOR RUN

C

C TITLE OR IDENTIFIER FOR THIS INPUT FILE AND RUN

C

C01 (LIMIT TO 80 CHARACTERS LENGTH)

’Rectangular Basin - Test002’

This 80-character title simply serves to identify the particular application.

Card Image 2C02 RESTART, GENERAL CONTROL AND AND DIAGNOSTIC SWITCHES

C

C ISRESTI: 1 FOR READING INITIAL CONDITIONS FROM FILE restart.inp

C -1 AS ABOVE BUT ADJUST FOR CHANGING BOTTOM ELEVATION

C 2 INTIALIZES A KC LAYER RUN FROM A KC/2 LAYER RUN FOR KC.GE.4

C 10 FOR READING IC’S FROM restart.inp WRITTEN BEFORE 8 SEPT 92

C ISRESTO:-1 FOR WRITING RESTART FILE restart.out AT END OF RUN

C N INTEGER.GE.0 FOR WRITING restart.out EVERY N REF TIME PERIODS

Page 38: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-2

C ISRESTR: 1 FOR WRITING RESIDUAL TRANSPORT FILE restran.out

C ISLOG: 1 FOR WRITING LOG FILE efdc.log

C ISPAR: 0 FOR EXECUTION OF CODE ON A SINGLE PROCESSOR MACHINE

C 1 FOR PARALLEL EXECUTION, PARALLELIZING PRIMARILY OVER LAYERS

C 2 FOR PARALLEL EXECUTION, PARALLELIZING PRIMARILY OVER

C NDM HORIZONTAL GRID SUBDOMAINS, SEE CARD CARD C9

C ISDIVEX: 1 FOR WRITING EXTERNAL MODE DIVERGENCE TO SCREEN

C ISNEGH: 1 FOR SEARCHING FOR NEGATIVE DEPTHS AND WRITING TO SCREEN

C ISMMC: 1 FOR WRITING MIN AND MAX VALUES OF SALT AND DYE

C CONCENTRATION TO SCREEN

C ISBAL: 1 FOR ACTIVATING MASS, MOMENTUM AND ENERGY BALANCES AND

C WRITING RESULTS TO FILE bal.out

C ISHP: 1 FOR CALLING HP 9000 S700 VERSIONS OF CERTAIN SUBROUTINES

C ISH0W: 1 TO SHOW RUN-TIME RESULTS ON SCREEN; 2=FORMATTED FOR MSDOS

C

C02 ISRESTI ISRESTO ISRESTR ISPAR ISLOG ISDIVEX ISNEGH ISMMC ISBAL ISHP ISHOW

0 1 0 0 2 0 2 0 0 0 2

Card Image 2, specifies the mode of model startup, either a cold start, with the flow field initialized to zero,

or a restart.inp using initial conditions corresponding to the conditions at the end of a previous simulation.

The ISRESTO switch controls the frequency of outputting restart information to the file restart.out (which

is renamed restart.inp to launch a run). The file restran.out contains the time averaged transport file,

which may be used to execute the efdc.f code in a transport only mode. The switch ISPAR allows

implementation of internal code options for execution on multiple processor or parallel machines. These

options are currently supported on multiple vector processor Cray supercomputers, and on Silicon Graphic

and Sparc (Sun and clones) based symmetric multiprocessor UNIX workstations. The choice of ISPAR

equal to 1 or 2, depends on both the grid structure and the number of processors on which the code will

execute. Portions of the code capable of being parallelized over vertical layers or horizontal grid

subdomains are parallelized over vertical layers when ISPAR is set to 1. For layer parallelization, the

number of layers must be an integer multiple of the number of processors on which the code will execute.

For grids consistent with layer parallelization, portions of the code allowing either mode of parallelization

are generally more efficient in the layer parallelization mode. Certain portions of the code may be

parallelized only overly horizontal subdomains, with this mode being active for ISPAR equal 1 or 2. For

ISPAR = 2, all parallelization is over horizontal subdomains. See Card C9 and chapter 6 for additional

details regarding parallel execution of EFDC. The switch ISLOG activates the creation of a log file

(ISLOG=2, recommended) which is deleted and reopened after each reference time period. The contents

and interpretation of the material in file efdc.log will be discussed in the diagnostics chapter. The switches,

ISDIVEX, ISNEGH, and ISMMC, activate diagnostic checks on volume conservation, identify negative

solution depths, and check mass conservation of transport materials, activation of these switches (IS=1)

Page 39: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-3

produces identical output to the screen and efdc.log file. The use of these options for diagnostic purposes

is discussed in the diagnostics chapter. The switch ISHP allows use of Hewlett-Packard 9000 series 700

vector libraries. The vector library calls are currently commented out with CDHP in the source code. The

procedure for activating this option and accessing the HP vector library may be obtained from the writer.

The switch ISBAL activates an internal volume, mass, momentum and energy balance procedure. The

switch ISHOW activates a screen print of flow field conditions in a specified horizontal location during the

run, with more details given with the description of the file show.inp in the next chapter.

Card Image 3C03 EXTERNAL MODE SOLUTION OPTION PARAMETERS AND SWITCHES

C

C RP: OVER RELAXATION PARAMETER

C RSQM: TRAGET SQUARE RESIDUAL OF ITERATIVE SOLUTION SCHEME

C ITERM: MAXIMUN NUMBER OF ITERARTIONS

C IRVEC: 0 STANDARD RED-BLACK SOR SOLUTION

C 1 MORE VECTORIZABLE RED-BLACK SOR (FOR RESEARCH PURPOSES)

C 2 RED-BLACK ORDERED CONJUGATE GRADIENT SOLUTION

C 3 REDUCED SYSTEM R-B CONJUGATE GRADIENT SOLUTION

C 9 NON-DRYING CON GRADIENT SOLUTION WITH MAXIMUM DIAGNOSTICS

C RPADJ: RELAXATION PARAMETER FOR AUXILLARY POTENTIAL ADJUSTME

C OF THE MEAN MASS TRANSPORT ADVECTION FIELD

C (FOR RESEARCH PURPOSES)

C RSQMADJ: TRAGET SQUARED RESIDUAL ERROR FOR ADJUSTMENT

C (FOR RESEARCH PURPOSES)

C ITRMADJ: MAXIMUM ITERARTIONS FOR ADJUSTMENT(FOR RESEARCH PURPOSES)

C ITERHPM: MAXIMUM ITERATIONS FOR STRONGLY NONLINER DRYING AND WETTING

C SCHEME (ISDRY=3 OR OR 4) ITERHPM.LE.4

C IDRYCK: ITERATIONS PER DRYING CHECK (ISDRY.GE.1) 2.LE.IDRYCK.LE.20

C ISDSOLV: 1 TO WRITE DIAGNOSTICS FILES FOR EXTERNAL MODE SOLVER

C FILT: FILTER COEFFICIENT FOR 3 TIME LEVEL EXPLICIT ( 0.0625 )

C 1.E-3

C03 RP RSQM ITERM IRVEC RPADJ RSQMADJ ITRMADJ ITERHPM IDRYCK ISDSOLV FILT

1.8 1.E-8 200 9 1.8 1.E-16 1000 0 20 0 0.0625

The information input on Card Image 3 primarily controls the external or barotropic mode solution in efdc.f.

The over-relaxation parameter of 1.8 should not be changed. The RSQM parameter is the residual

squared error in the external mode solution. It is generally set between 1E-6 and 1E-15, with the small

values corresponding several hundred cells and a small time step (10-100 seconds) and the larger value

corresponding a large number of cells (1000-10,000) and a large time step (100-1000 seconds). It

RSQM is set to a small value, a simulation may crash due to accumulated roundoff error. RSQM should

be adjusted such that the number of iterations shown in the efdc.log file is between approximately 10 and

40. The maximum iteration count in the external solution ITERM is set such that execution stops if the

Page 40: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-4

external solution does not converge in the maximum number of iterations. The parameter IRVEC controls

the type of linear equation solver used in the external mode solution. The original successive over relaxation

solver has been supplemented with two conjugate gradient solvers, a diagonally preconditioned solver,

IRVEC = 2, and a red-black ordered, reduced system, conjugate gradient solver, IRVEC = 3. The

options IRVEC = 0 or IRVEC = 3 is recommended if drying and wetting is not active, while the option,

IRVEC = 2, is required when drying and wetting is activated. The remaining parameters are for research

purposes, and generally not used in standard applications, or are self-explanatory.

Card Image 4C04 LONGTERM MASS TRANSPORT INTEGRATION ONLY SWITCHES

C

C ISLTMT: 1 FOR LONG-TERM MASS TRANSPORT ONLY (FOR RESEARCH PURPOSES)

C ISSSMMT: 0 WRITES MEAN MASS TRANSPORT TO restran.out AFTER EACH

C AVERAGING PERIOD (FOR RESEARCH PURPOSES)

C 1 WRITES MEAN MASS TRANSPORT TO restran.out AFTER LAST

C AVERAGING PERIOD (FOR RESEARCH PURPOSES)

C ISLTMTS: 0 ASSUMES LONG-TERM TRANSPORT SOLUTION IS TRANSIENT

C (FOR RESEARCH PURPOSES)

C 1 ASSUMES LONG-TERM TRANSPORT SOLUTION IS ITERATED TOWARD

C STEADY STATE (FOR RESEARCH PURPOSES)

C ISIA: 1 FOR IMPLICIT LONG-TERM ADVECTION INTEGRATION FOR ZEBRA

C VERTICAL LINE R-B SOR (FOR RESEARCH PURPOSES)

C RPIA: RELAXATION PARAMETER FOR ZEBRA SOR(FOR RESEARCH PURPOSES)

C RSQMIA: TRAGET RESIDUAL ERROR FOR ZEBRA SOR (FOR RESEARCH PURPOSES)

C ITRMIA: MAXIMUM ITERATIONS FOR ZEBRA SOR (FOR RESEARCH PURPOSES)

C

C04 ISLTMT ISSSMMT ISLTMTS ISIA RPIA RSQMIA ITRMIA

0 1 0 0 1.8 1.E-10 100

The EFDC model has the capability to function in a transport only mode using advective and diffusive

transport specified in the file restran.inp. The first parameter, ISLTMT, actives this mode. The second

parameter ISSSMMT controls the creation of the restran.inp file, output as restran.out, during normal

execution. The frequency of graphical output of residual fields is also controlled by this parameter. The

third parameter determines whether the transport only mode with be integrated to steady state or integrated

for a transient residual transport field. The remaining four parameters are for research purposes, however,

ISIA should be set to zero.

Card Image 5C05 MOMENTUM ADVEC AND HORIZ DIFF SWITCHES AND MISC SWITCHES

Page 41: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-5

C

C ISCDMA: 1 FOR CENTRAL DIFFERENCE MOMENTUM ADVECTION

C 0 FOR UPWIND DIFFERENCE MOMENTUM ADVECTION

C 2 FOR EXPERIMENTAL UPWIND DIFF MOM ADV (FOR RESEACH PURPOSES)

C ISHDMF: 1 TO ACTIVE HORIZONTAL MOMENTUM DIFFUSION

C ISDISP: 1 CALCULATE MEAN HORIZONTAL SHEAR DISPERSION TENSOR OVER LAST

C MEAN MASS TRANSPORT AVERAGING PERIOD

C ISWASP: 4 or 5 TO WRITE FILES FOR WASP4 or WASP5 MODEL LINKAGE

C ISDRY: GREATER THAN 0 TO ACTIVE WETTING & DRYING OF SHALLOW AREAS

C 1 CONSTANT WETTING DEPTH SPECIFIED BY HWET ON CARD 11

C WITH NONLINEAR ITERATIONS SPECIFIED BY ITERHPM ON CARD C3

C 2 VARIABLE WETTING DEPTH CALCULATED INTERNALLY IN CODE

C WITH NONLINEAR ITERATIONS SPECIFIED BY ITERHPM ON CARD C3

C 11 SAME AS 1, WITHOUT NONLINEAR ITERATION

C 12 SAME AS 2, WITHOUT NONLINEAR ITERATION

C 3 DIFFUSION WAVE APPROX, CONSTANT WETTING DEPTH (NOT ACTIVE)

C 4 DIFFUSION WAVE APPROX, VARIABLE WETTING DEPTH (NOT ACTIVE)

C ISQQ: 1 TO USE STANDARD TURBULENT INTENSITY ADVECTION SCHEME

C ISRLID: 1 TO RUN IN RIGID LID MODE (NO FREE SURFACE)

C ISVEG: 1 TO IMPLEMENT VEGETATION RESISTANCE

C 2 IMPLEMENT WITH DIAGNOSTICS TO FILE cbot.log

C ISVEGL: 1 TO INCLUDE LAMINAR FLOW OPTION IN VEGETATION RESISTANCE

C ISITB: 1 FOR IMPLICIT BOTTOM & VEGETATION RESISTANCE IN EXTERNAL MODE

C FOR SINGLE LAYER APPLICATIONS (KC=1) ONLY

C ISEVER: 1 TO DEFAULT TO EVERGLADES HYDRO SOLUTION OPTIONS

C

C05 ISCDMA ISHDMF ISDISP ISWASP ISDRY ISQQ ISRLID ISVEG ISVEGL ISITB ISEVER

0 0 0 0 0 1 0 0 0 0 0

This card image controls various options for integration of the advective and diffusive portions of the

momentum equations as well as the activation of additional physical process representations and optional

output processing. The parameter ISCDMA controls the finite difference representation of momentum

advection, with the zero default value corresponding to upwind difference, and the values of 1 and 2

corresponding respectively to a central-difference and an experimental upwind-difference scheme. The

central-difference option is generally recommended only for smooth or idealized bottom topography and

lateral boundaries. The second parameter ISAHMF activates horizontal moment diffusion. It should be

activated when using central difference advection or when simulating wave induced currents. For wave

induced currents, the horizontal diffusion is specified in terms of the wave energy dissipation due to wave

breaking in the surf zone. The options ISDISP and ISWASP respectively control the creation of shear

dispersion coefficient file disp.out and a WASP water quality model transport files waspX.out. The

parameter ISDRY activates drying and wetting and the value 11 is recommended. The parameter ISQQ

should remain set to unity. The parameter ISRLID implements a rigid free surface simulation and is

generally used only for research purposes. The next three parameters activate the vegetation resistance

model. The last parameter ISITB should be activated only in single layer or depth integrated simulations.

Page 42: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-6

The remaining parameter ISWAVE activates the wave-current boundary layer model and the wave induced

current model, using an external specification of high frequency surface wave conditions in the input file

wave.inp.

Card Image 6C06 DISSOLVED AND SUSPENDED CONSTITUENT TRANSPORT SWITCHES

C TURB INT=0,SAL=1,TEM=2,DYE=3,SFL=4,TOX=5,SED=6,SND=7,CWQ=8

C

C ISTRAN: 1 OR GREATER TO ACTIVATE TRANSPORT

C ISTOPT: NONZERO FOR TRANSPORT OPTIONS, SEE USERS MANUAL

C ISCDCA: 0 FOR STANDARD DONOR CELL UPWIND DIFFERENCE ADVECTION

C 1 FOR CENTRAL DIFFERENCE ADVECTION FOR THREE TIME LEVEL STEPS

C 2 FOR EXPERIMENTAL UPWIND DIFFERENCE ADVECTION (FOR RESEARCH)

C ISADAC: 1 TO ACTIVATE ANTI-NUMERICAL DIFFUSION CORRECTION TO

C STANDARD DONOR CELL SCHEME

C ISFCT: 1 TO ADD FLUX LIMITING TO ANTI-NUMERICAL DIFFUSION CORRECTION

C ISPLIT: 1 TO OPERATOR SPLIT HORIZONTAL AND VERTICAL ADVECTION

C (FOR RESEARCH PURPOSES)

C ISADAH: 1 TO ACTIVATE ANTI-NUM DIFFUSION CORRECTION TO HORIZONTAL

C SPLIT ADVECTION STANDARD DONOR CELL SCHEME (FOR RESEARCH)

C ISADAV: 1 TO ACTIVATE ANTI-NUM DIFFUSION CORRECTION TO VERTICAL

C SPLIT ADVECTION STANDARD DONOR CELL SCHEME (FOR RESEARCH)

C ISCI: 1 TO READ CONCENTRATION FROM FILE restart.inp

C ISCO: 1 TO WRITE CONCENTRATION TO FILE restart.out

C

C06 ISTRAN ISTOPT ISCDCA ISADAC ISFCT ISPLIT ISADAH ISADAV ISCI ISCO

1 0 0 0 0 0 0 0 0 0 !turb 0

0 1 0 1 1 0 0 0 1 1 !sal 1

0 0 0 1 1 0 0 0 0 0 !tem 2

0 0 0 1 1 0 0 0 1 1 !dye 3

0 0 0 1 1 0 0 0 0 0 !sfl 4

0 0 0 1 1 0 0 0 0 0 !tox 5

0 0 0 1 1 0 0 0 0 0 !sed 6

0 0 0 1 1 0 0 0 0 0 !snd 7

0 0 0 1 1 0 0 0 0 0 !cwq 8

Card Image 6 controls the advective transport and source sink options for transported scalar fields. The

seven lines of active input represent in order, turbulent intensity, salinity, temperature, a dye tracer,

suspended sediment, shellfish larvae, and water quality variables. The first switch, ISTRAN activates

advective transport and sources and sinks. On the first line, corresponding to the turbulence model, only

ISTRAN should be set to unity with the remaining parameters set to zero. For water quality, ISTRAN=1,

activates the embedded water quality model WQ3D (Park et al., 1995) which has additional input files not

documented in this manual. The second parameter ISTOPT sets options for a number of the transport

scalar fields. Current active options are:

Page 43: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-7

Salinity

ISTOPT=1: Read initial salinity distribution from file salt.inp (ISRESTI=0, only)

Temperature

ISTOPT=1: Full surface and internal heat transfer calculation using data from file

aser.inp.

ISTOPT=2: Transient equililibrium surface heat transfer calculation using external

equilibrium temperature and heat transfer coefficient data from file

aser.inp.

ISTOPT=3: Equilibrium surface heat transfer calculation using constant equilibrium

temperature and heat transfer coefficient (HEQT) from Card Image 46.

Initial isothermal temperature (TEMO) for cold starts (ISRESTI=0) is

read on Card Image 46. See Cerco and Cole (1993) for a discussion

of the equilibrium temperature surface heat transfer approach.

Dye Tracer

ISTOPT=1: Read initial dye tracer distribution from file dye.inp (ISRESTI=0, only).

Linear or first order dye decay (RKDYE) specified on Card Image 46.

Suspended Sediment

ISTOPT=1: Suspended sediment is cohesive. Settling, deposition and resuspension

calculated in subroutine CALSED

ISTOPT=2: Suspended sediment is cohesive. Settling, deposition and resuspension

calculated in subroutine CALSED2

ISTOPT=3: Suspended sediment is noncohesive. Settling, deposition and

resuspension calculated in subroutine CALSED3

ISTOPT=4: Suspended sediment is noncohesive. Settling, deposition and

resuspension calculated in subroutine CALSED3 after wave wave-

current boundary layer or wave induced forcing have been gradually

introduced.

Sediment settling, resuspension, and deposition data is read on card images 39 and 41.

Page 44: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-8

Shellfish Larvae [not active in EFDC-Hydro]

No options available

Water Quality Constituents [not active in EFDC-Hydro]

ISTOPT=1: Specifies 22 water column state variables.

ISTOPT=2: Specifies 14 water column state variables.

ISTOPT=3: Specifies 8 water column state variables.

The third parameter, ISCDCA, specifies the advection scheme with the zero default values

corresponding to donor cell upwind difference. Values of 1 and 2 specify central difference (not

recommended) and an experimental first order upwind difference scheme, respectively. The parameter

ISADAC=1 activates an antidiffusion advective flux correction (Smolarkiewicz and Clark, 1986) for

ISCDCA equals 0 or 1. The parameter ISFCT=1, implements the antidiffusion correction in the flux

corrected transport form (Smolarkiewicz and Grabowski, 1990). The three parameters ISPLIT,

ISADAH, and ISADAV activate an experimentally operated split antidiffusive upwind difference

scheme and should remain set to 0. The parameters ISCI and ISCO when set to 1 read and write,

respectively, the specified field from and to the files restart.inp and restart.out. Turbulence quantities

are by default read from and written to the restart files.

Card Image 7C07 TIME-RELATED INTEGER PARAMETERS

C

C NTC: NUMBER OF REFERENCE TIME PERIODS IN RUN

C NTSPTC: NUMBER OF TIME STEPS PER REFERENCE TIME PERIOD

C NLTC: NUMBER OF LINEARIZED REFERENCE TIME PERIODS

C NTTC: NUMBER OF TRANSITION REF TIME PERIODS TO FULLY NONLINEAR

C NTCPP: NUMBER OF REFERENCE TIME PERIODS BETWEEN FULL PRINTED OUTPUT

C TO FILE efdc.out

C NTSTBC: NUMBER OF REFERENCE TIME PERIODS BETWEEN TWO TIME LEVEL

C TRAPEZOIDAL CORRECTION TIME STEP

C NTCNB: NUMBER OF REFERENCE TIME PERIODS WITH N0 BUOYANCY FORCING

C NTCVB: NUMBER OF REF TIME PERIODS WITH VARIABLE BUOYANCY FORCING

C NTSMMT: NUMBER OF NUMBER OF REF TIME TO AVERAGE OVER TO OBTAIN

C RESIDUAL OR MEAN MASS TRANSPORT VARIABLES

C NFLTMT: USE 1 (FOR RESEARCH PURPOSES)

C NDRYSTP: MIN NO. OF TIME STEPS A CELL REMAINS DRY AFTER INTIAL DYRING

C

C07 NTC NTSPTC NLTC NTTC NTCPP NTSTBC NTCNB NTCVB NTSMMT NFLTMT NDRYSTP

35 1440 0 2 800 4 0 2 1 1 16

Page 45: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-9

Card Images 7 and 8 provide time controls for the simulation with card image 7 providing integer

parameters. The EFDC code executes of a specified number of time cycles, NTC. The actual length of

the time cycle in seconds is specified by TREF on card image 8. For example, a 35 day simulation would

correspond to NTC = 35 and TREF = 86400 seconds. The time step is specified as the number of time

steps per reference time period, NTSPTC. For the values shown, the actual time step is 60.0 seconds

(86400.0/1440). The parameter NLTC allows for NLTC time periods with no nonlinear terms in the

momentum equations, while NTTC allows for a gradual introduction of the nonlinear terms of NTC

reference time periods. These two options may be useful for cold starts (ISRESTI=0) or diagnostic

purposes. The NTCPP controls the frequency of printed output to efdc.out. The printed output is

primarily in the form of line printer contour plots which may be useful in situations where graphics

postprocessing capabilities are not readily available. Given the extensive options currently available in the

code to generate graphical output, NTCPP is usually specified large enough such that the printed output

is not generated. The parameter, NTSTBC is extremely important in that it specifies the frequency of

insertion of a two time level trapezoidal correction step into the three-time level integration (see Hamrick,

1992a). Generally NTSTBC should be between 4 and 12, increasing if NTSPTC increases. The

parameters NTCNB and NTCVB control the introduction of buoyancy forcing into the momentum

equations in a similar manner as described for NLTC and NTTC. The parameter NTSMMT specifies the

number of time steps for the calculation of time averaged or residual output variables and also the output

frequency to the "r" class output files. If NTSMMT is greater than or equal to NTSPTC, the averaging

includes calculation of the Lagrangian mean transport fields (Hamrick, 1994a). The parameter NFLTMT

should remain set to 1. The parameter NDRYSTP specifies the number of time steps a cell must remain

dry before wetting is allowed when the drying and wetting option is activated.

Card Image 8C08 TIME-RELATED REAL PARAMETERS

C

C TCON: CONVERSION MULTIPLIER TO CHANGE TBEGIN TO SECONDS

C TBEGIN: TIME ORIGIN OF RUN

C TREF: REFERENCE TIME PERIOD IN SEC (ie 44714.16s or 86400s)

C CORIOLIS: CONSTANT CORIOLIS PARAMETER IN 1/SEC

C ISCORV: 1 TO READ VARIABLE CORIOLIS COEFFICIENT FROM lxly.inp FILE

C ISCCA: WRITE DIAGNOSTICS FOR MAX CORIOLIS-CURV ACCEL TO FILEefdc.log

C ISCFL: 1 WRITE DIAGNOSTICS OF MAX THEORETICAL TIME STEP TO cfl.out

C GT 1 TIME STEP ONLY AT INTERVAL ISCFL FOR ENTIRE RUN

C ISCFLM: 1 TO MAP LOCATIONS OF MAX TIME STEPS OVER ENTIRE RUN

C 0.0

Page 46: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-10

C08 TCON TBEGIN TREF CORIOLIS ISCORV ISCCA ISCFL ISCFLM

86400. 1.0 86400. 0.0000 0 0 0 0

This card image specifies a number of real time related parameters as well as activating timestep related

diagnostics. TBEGIN specifies the start time of the runs in units of seconds, minutes, hours, or days, with

TCON being the multiplier factor which would convert TBEGIN to seconds. The reference time period

must always be specified in seconds. The EFDC model currently is based on an f-plane formulation for

the Coriolis accelerations, with the variable CORIOLIS being the value of f in 1/seconds units. The

maximum stable time step is constrained by the 0.5/f and the CFL criteria for advection (Hamrick, 1992a).

Activation of ISDCCA causes the maximum effective Coriolis parameter to be printed to the log file

efdc.log at each time step. Activation of ISCFL=1 writes the limiting time step, and the cell in which it

occurs, based on the CFL condition to the file cfl out at each time step. Since the CFL condition is based

on linear stability analysis of a constant coefficient, three-dimensional advection equation, a good rule for

real world applications with spatial and temporal varying advective fields is to use a time step on the order

of 1/4 to 1/2 the limiting CFL time step written to cfl.out. Since both of the time step diagnostics involve

logic searches, they should only be activated during the start up of a new model application.

Card Image 9C09 SPACE-RELATED AND SMOOTHING PARAMETERS

C

C KC: NUMBER OF VERTICAL LAYER

C IC: NUMBER OF CELLS IN I DIRECTION

C JC: NUMBER OF CELLS IN J DIRECTION

C LC: NUMBER OF ACTIVE CELLS IN HORIZONTAL + 2

C LVC: NUMBER OF VARIABLE SIZE HORIZONTAL CELLS

C ISCO: 1 FOR CURVILINEAR-ORTHOGONAL GRID (LVC=LC-2)

C NDM: NUMBER OF DOMAINS FOR HORIZONTAL DOMAIN DECOMPOSITION

C ( NDM=1, FOR MODEL EXECUTION ON A SINGLE PROCESSOR SYSTEM OR

C NDM=MM*NCPUS, WHERE MM IS AN INTEGER AND NCPUS IS THE NUMBER

C OF AVAILABLE CPU’s FOR MODEL EXECUTION ON A PARALLEL

C MULTIPLE PROCESSOR SYSTEM )

C LDW: NUMBER OF WATER CELLS PER DOMAIN

C ( LDW=(LC-2)/NDM, FOR MULTIPE VECTOR PROCESSORS, LWD MUST BE

C AN INTEGER MULTIPLE OF THE VECTOR LENGTH OR STRIDE NVEC

C THUS CONSTRAINING LC-2 TO BE AN INTEGER MULTIPLE OF NVEC )

C ISMASK: 1 FOR MASKING WATER CELL TO LAND OR ADDING THIN BARRIERS

C USING INFORMATION IN FILE mask.inp

C ISPGNS: 1 FOR IMPLEMENTING A PERIODIC GRID IN COMP N-S DIRECTION OR

C CONNECTING ARBITRATY CELLS USING INFO IN FILE mappgns.inp

C NSHMAX: NUMBER OF DEPTH SMOOTHING PASSES

C NSBMAX: NUMBER OF INITIAL SALINITY FIELD SMOOTHING PASSES

C WSMH: DEPTH SMOOTHING WEIGHT

Page 47: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-11

C WSMB: SALINITY SMOOTHING WEIGHT

C

C09 KC IC JC LC LVC ISCO NDM LDW ISMASK ISPGNS NSHMX NSBMX WSMH WSMB

2 33 25 502 500 1 1 500 0 0 1 0 0.0625 0.0625

Card image 9 specifies the spatial structure of the model grid, with KC denoting the number of layers and

IC and JC denoting the number of cells in the computational x and y directions as discussed in the previous

chapter on grid generation. Internally, the EFDC code uses a single horizontal index, L, rather than the two

indices I and J. The use of the single index L allows only for computation on and storage of only active

water cells. The parameter LC is the number of active or water cells in the grid plus 2. The two additions

to the L sequence at L=1 and L=LC are used for boundary condition implementation with computational

loops ranging from L=2,LC-1. The parameter LVC is equal to LC-2 if the ISCLO switch is set to 1. The

ISCLO switch is set to 1 for curvilinear grids, variable spaced Cartesian grids and Cartesian grids which

are specified entirely by the cell.inp, dxdy.inp and lxly.inp files. The parameters NDM and LDM specify

a domain decomposition of the horizontal grid for execution of EFDC on parallel or multiple processor

systems. For parallel execution, NDM should equal the number of processors the code will execute on.

For multiple processor systems, such as symmetric multiprocessor UNIX work stations, with no vector

capability, LDM should be equal to the number of water cells in the grid, LC-2, divided by NDM, ensuring

load balancing across the processors. The same rule should also be followed for parallel vector

processors, however for optimum performance, LDM should also the an integer multiple of the vector

stride (usually 64 or 128). This may require the additional cells to be added to the grid. The additional

cells may be in the form of one-dimensional, in the horizontal, closed channels, which do not influence the

solution of the actual problem. The input shown above could be modified for execution on a 4 processor

system by setting NDM equal to 4 and LDM equal to 256, which is also an integer multiple of 64 and 128.

The ISMASK switch activates the “curtain of no flow” barriers on cell faces specified in the file mask.inp.

The switch ISPGNS configures all or portions of north and south open boundaries to represent periodic

domains in the computational y direction, using information in the file mappgns.inp. This option is useful

in shelf and near-shore applications. The parameter NSHMAX specifies the number of smoothing passes

applied to the input depth and bottom elevation fields with WSMH being the smoothing parameter, which

must be less than 0.25. The smoother has the form:

H L H L WSMHH LS H LW H LE

H LN H Lnew old

old old old

old old( ) ( ) *

( ) ( ) ( )

( ) * ( )= +

+ ++ −

4(1)

Page 48: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-12

Likewise the parameter NSBMAX specifies the number of smoothing passes to be applied to a salinity field

initialized by the salt.inp file. The salinity smoother can also be used to interpolate sparse salinity data to

create a smooth initial salinity field. In this case, the vertical salinity profiles in the salt.inp file must be set

with zero values, except at locations where nonzero values are supplied. Setting NSBMAX to a large

number, which must be greater than 10, and should usually be on the order of 2000, interpolates the salinity

over the entire grid with the nonzero input data unmodified. In an estuary application, specifying small

values at the limit of salinity intrusion will prevent the diffusive interpolation scheme from progressing

upstream.

Card Image 10C10 LAYER THICKNESS IN VERTICAL

C

C THICKNESS OF EACH VERTICAL LAYER, 1 = BOTTOM

C LAYER THICKNESS MUST SUM TO 1.0

C

C10 LAYER NUMBER DIMENSIONLESS LAYER THICKNESS

1 0.5

2 0.5

This card specifies the dimensional thickness of the vertical layers, which do not have to be equal, but do

need to sum to 1.0. Layer 1 is the bottom layer.

Card Image 11C11 GRID, ROUGHNESS AND DEPTH PARAMETERS

C

C DX: CARTESIAN CELL LENGTH IN X OR I DIRECTION

C DY: CARTESIAN CELL LENGTH IN Y OR J DIRECTION

C DXYCVT: MULTIPLY DX AND DY BY TO OBTAIN METERS

C IMD: GREATER THAN 0 TO READ MODDXDY.INP FILE

C ZBRADJ: LOG BDRY LAYER CONST OR VARIABLE ROUGH HEIGHT ADJ IN METERS

C ZBRCVT: LOG BDRY LAYER VARIABLE ROUGHNESS HEIGHT CONVERT TO METERS

C HMIN: MINIMUM DEPTH OF INPUTS DEPTHS IN METERS

C HADJ: ADJUSTMENT TO DEPTH FIELD IN METERS

C HCVRT: CONVERTS INPUT DEPTH FIELD TO METERS

C HDRY: DEPTH AT WHICH CELL OR FLOW FACE BECOMES DRY

C HWET: DEPTH AT WHICH CELL OR FLOW FACE BECOMES WET

C BELADJ: ADJUSTMENT TO BOTTOM BED ELEVATION FIELD IN METERS

C BELCVRT: CONVERTS INPUT BOTTOM BED ELEVATION FIELD TO METERS

C

C11 DX DY DXYCVT IMD ZBRADJ ZBRCVT HMIN HADJ HCVT HDRY HWET BELADJ BELCVT

1. 1. 1. 0 0.05 0.0 0.5 0.0 1.0 0.11 0.16 0.0 1.00

Page 49: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-13

Card image 11 specifies horizontal grid, bottom roughness and bathymetric parameters. The parameters

DX and DY are used to specify constantly spaced Cartesian cell sizes for grids specified by the cell.inp

and depth.inp files when ISCLO equals 0. The conversion factor DXYCVT can be used to convert the

units of DX and DY in the dxdy.inp to the required internal unit of meters. The parameters ZBRADJ and

ZBRCVT are used to adjust and convert the log law, zo, bottom roughness specified in either the dxdy.inp

or depth.inp files. The conversion equation is of the form:

ZBR = ZBRADJ + ZBRCVT*ZBR

The parameter HMIN is used to specify a minimum depth, over-riding input values. The parameters HADJ

and HCVRT and BEADJ and BECVRT provide for adjustments and conversions to the initial depth and

bottom elevation inputs in the same format as that for bottom roughness. The parameter HDRY specifies

the water depth at which a cell becomes dry, while HWET specifies the depth at which the cell become

wet.

Card Image 12C12 TURBULENT DIFFUSION PARAMETERS

C

C AHO: CONSTANT HORIZONTAL MOMENTUM AND MASS DIFFUSIVITY M*M/S

C AHD: DIMESIONLESS HORIZONTAL MOMENTUM DIFFUSIVITY

C AVO: BACKGROUND, CONSTANT OR MOLECULAR KINEMATIC VISCOSITY M*M/S

C ABO: BACKGROUND, CONSTANT OR MOLECULAR DIFFUSIVITY M*M/S

C AVMN: MINIMUM KINEMATIC EDDY VISCOSITY M*M/S

C ABMN: MINIMUM EDDY DIFFUSIVITY M*M/S

C AVBCON: EQUALS ZERO FOR CONSTANT VERTICAL VISCOSITY AND DIFFUSIVITY

C WHICH ARE SET EQUAL TO AVO AND ABO OTHERWISE SET TO 1.0

C ISAVBMN: SET TO 1 TO ACTIVATE MIN VIS AND DIFF OF AVMN AND ABMN

C ISFAVB: SET TO 1 OR 2 TO AVG OR SQRT FILTER AVV AND AVB

C ISINWV: SET TO 1 TO ACTIVATE PARAMETERIZATION OF INTERNAL WAVE

C GENERATED TURBULENCE

C 1.E-6 1.E-9 1.E-6 1.E-9

C12 AHO AHD AVO ABO AVMN ABMN AVBCON ISAVBMN ISFAVB ISINWV

90.0 0.0 1.E-6 1.E-8 1.E-6 1.E-8 1.0 0 1 0

Card image 12 provides information for horizontal and vertical momentum and mass diffusion. A spatially

constant horizontal diffusion is specified by a constant value AHO. A variable horizontal diffusion may be

added to the constant value by specifying a non-zero value of AHD, which is the dimensionless constant

in the Smagorinsky subgrid scale horizontal diffusion formulation (Smagorinsky, 1963). The background

molecular kinematic viscosity and diffusivity are specified by AVO and ABO respectively. When

Page 50: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-14

AVBCON is set to 0, the turbulence model is deactivated and the vertical viscosity and diffusivity are set

to AVO and ABO respectively. Using this option and setting AVO and ABO to larger values representing

turbulent flow readily allows model results to be compared with constant viscosity and diffusivity analytical

solutions for vertical current structure. Setting the parameter ISFAVB to 1 activates a square root

smoother for both the vertical turbulent viscosity and diffusivity of the form:

AVO(n+1) = SQRT( AVO(n+1)*AVO(n) )

where n indicates the time step. The smoother is particularly useful for flows having strong surface wind

stress forcing.

Card Image 13C13 TURBULENCE CLOSURE PARAMETERS

C

C VKC: VON KARMAN CONSTANT

C CTURB1: TURBULENT CONSTANT (UNIVERSAL)

C CTURB2: TURBULENT CONSTANT (UNIVERSAL)

C CTE1: TURBULENT CONSTANT (UNIVERSAL)

C CTE2: TURBULENT CONSTANT (UNIVERSAL)

C CTE3: TURBULENT CONSTANT (UNIVERSAL)

C QQMIN: MINIMUM TURBULENT INTENSITY SQUARED

C QQLMIN: MINIMUM TURBULENT INTENSITY SQUARED TIME MACRO-SCALE

C DMLMIN: MINIMUM DIMENSIONLESS MACRO-SCALE

C

C13 VKC CTURB1 CTURB2 CTE1 CTE2 CTE3 QQMIN QQLMIN DMLMIN

0.4 16.6 10.1 1.8 1.33 0.53 1.E-8 1.E-12 1.E-4

The turbulence closure parameters on this line should not be modified without consulting the author.

Card Image 14C14 TIDAL & ATMOSPHERIC FORCING, GROUND WATER AND SUBGRID CHANNEL PARAMETERS

C

C MTIDE: NUMBER OF PERIOD (TIDAL) FORCING CONSTITUENTS

C NWSER: NUMBER OF WIND TIME SERIES (0 SETS WIND TO ZERO)

C NASER : NUMBER OF ATMOSPHERIC CONDITION TIME SERIES (0 SETS ALL ZERO)

C ISGWI: 1 TO ACTIVATE SOIL MOISTURE BALANCE WITH DRYING AND WETTING

C ISCHAN: 1 ACTIVATE SUBGRID CHANNEL MODEL AND READ MODCHAN.INP

C ISWAVE 1 FOR WAVE CURRENT BOUNDARY LAYER REQUIRES FILE wave.inp

C 2 FOR WCBL AND WAVE INDUCED CURRENTS REQUIRES FILE wave.inp

C

C14 MTIDE NWSER NASER ISGWI ISCHAN ISWAVE ITIDASM

Page 51: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-15

1 1 1 0 0 0 0

Card image 14 provides basic data for specifying periodic water surface elevation forcings on open

boundaries as well as controlling the optional internal least squares harmonic analysis of modeling

predictions. MTIDE specifies the number of periodic constituents. ISLSHA activates the least squares

harmonic analysis at MLLSHA user specified horizontal locations over NTCLSHA reference time periods.

The analysis assumes a steady component or a linear trend component if ISLSRT is set to 1. The switch

ISHTA should only be activated if MTIDE is equal to 1, with a single period constituent least squares

harmonic analysis activated for the entire free surface displacement and horizontal velocity field.

Card Image 15C15 PERIODIC FORCING (TIDAL) CONSTITUENT SYMBOLS AND PERIODS

C

C SYMBOL: FORCING SYMBOL (CHARACTER VARIABLE) FOR TIDES, THE NOS SYMBOL

C PERIOD: FORCING PERIOD IN SECONDS

C

C15 SYMBOL PERIOD

’M2’ 44714.1643936 1

Card image 15 specifies user defined symbols or standard NOAA tidal constituent symbols and forcing

periods for the MTIDE constituents.

Card Image 16C16 SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITION PARAMETERS

C

C NPBS: NUMBER OF SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITIONS

C CELLS ON SOUTH OPEN BOUNDARIES

C NPBW: NUMBER OF SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITIONS

C CELLS ON WEST OPEN BOUNDARIES

C NPBE: NUMBER OF SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITIONS

C CELLS ON EAST OPEN BOUNDARIES

C NPBN: NUMBER OF SURFACE ELEVATION OR PRESSURE BOUNDARY CONDITIONS

C CELLS ON NORTH OPEN BOUNDARIES

C NPFOR: NUMBER OF HARMONIC FORCINGS

C NPSER: NUMBER OF TIME SERIES FORCINGS

C PDGINIT: ADD THIS CONSTANT ADJUSTMENT GLOBALLY TO THE SURFACE ELEVATION

C

C16 NPBS NPBW NPBE NPBN NPFOR NPSER PDGINIT

0 0 20 0 1 0 0.0

Page 52: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-16

This card image specifies the number of open boundary cells on south, west, east and north open

boundaries in the computational grid, as well as the number of periodic forcing functions, the number of

surface elevation time series to be used for open boundary forcings and an initial adjustment to the water

surface elevation. If NPSER is greater than zero, NPSER surface elevation time series are read from the

pser.inp file. The adjustment factor should in general not be used without consultation with the writer.

Note that south and north boundary cells paired to implement the periodic domain configuration in the

computation y direction should not be included in the NPBS and NPBN counts.

Card Image 17C17 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE BOUNDARY COND. FORCINGS

C

C NPFOR: FORCING NUMBER

C SYMBOL: FORCING SYMBOL (FOR REFERENCE HERE ONLY)

C AMPLITUDE: AMPLITUDE IN M (PRESSURE DIVIDED BY RHO*G)

C PHASE: FORCING PHASE RELATIVE TO TBEGIN IN SECONDS

C

C17 NPFOR SYMBOL AMPLITUDE PHASE

1 ’M2’ 0.5 0.0

Card image 17 specifies NPFOR forcing functions, each having MTIDE constituents, with the first column

set to the forcing number for user reference. Constituents for each forcing should be in the order sequence

defined on card image 15. The phase is specified in seconds consistent with the representation:

ζ ζπ

ζtot nn

n

n

N

serT

t t t= −

+=

∑ cos ( ) ( )2

1

(2)

where ζ and τ are the amplitude and phase of the n constituent and ζser is an additive time series

specification of the surface elevation. The time origin for the phase should be consistent with the time origin

for the simulation. For example, TBEGIN on card image 8 is in Julian hours relative to midnight, January

1 of a given year. For this case, then the phase should also be relative to midnight January 1 of the same

year. For the analysis of field records, to accomplish this synchronization, a stand alone least square

harmonic analysis program lsqhs.f is available from the author. The null forcing function 2 might be used

on an open boundary with only outgoing wave propagation, to be discussed below.

Card Image 18C18 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON SOUTH OPEN BOUNDARIES

Page 53: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-17

C

C IPBS: I CELL INDEX OF BOUNDARY CELL

C JPBS: J CELL INDEX OF BOUNDARY CELL

C ISPBS: 1 FOR RADIATION-SEPARATION CONDITION

C 0 FOR ELEVATION SPECIFIED

C NPFORS: APPLY HARMONIC FORCING NUMBER NPFORS

C NPSERS: APPLY TIME SERIES FORCING NUMBER NPSERS

C

C18 IPBS JPBS ISPBS NPFORS NPSERS

See discussion following card image 21.

Card Image 19C19 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON WEST OPEN BOUNDARIES

C

C IPBW: SEE CARD 19

C JPBW:

C ISPBW:

C NPFORW:

C NPSERW:

C

C19 IPBW JPBW ISPBW NPFORW NPSERW

See discussion following card image 21.

Card Image 20C20 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON EAST OPEN BOUNDARIES

C

C IPBE: SEE CARD 19

C JPBE:

C ISPBE:

C NPFORE:

C NPSERE:

C

C20 IPBE JPBE ISPBE NPFORE NPSERE

30 3 0 1 0

30 4 0 1 0

30 5 0 1 0

30 6 0 1 0

30 7 0 1 0

30 8 0 1 0

30 9 0 1 0

Page 54: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-18

30 10 0 1 0

30 11 0 1 0

30 12 0 1 0

30 13 0 1 0

30 14 0 1 0

30 15 0 1 0

30 16 0 1 0

30 17 0 1 0

30 18 0 1 0

30 19 0 1 0

30 20 0 1 0

30 21 0 1 0

30 22 0 1 0

See discussion following card image 21.

Card Image 21C21 PERIODIC FORCING (TIDAL) SURF ELEV OR PRESSURE ON NORTH OPEN BOUNDARIES

C

C IPBN: SEE CARD 19

C JPBN:

C ISPBN:

C NPFORN:

C NPSERN:

C

C21 IPBN JPBN ISPBN NPFORN NPSERN

Card images 18 through 21 specify the open boundary conditions for the four directional faces of the

horizontal computational domain. Because of the similarity of the four data sets, they will be discussed

in a generic fashion. To provide background on the discussion of the model’s operation at open

boundaries, it is useful to summarize the treatment of open boundary conditions in the EFDC model.

The EFDC model provides for two types of hydrodynamic open boundary conditions. The first type is

the standard specification of water surface elevation using combinations of harmonic constituents and

time series. The second type of open boundary conditions is referred to as a radiation-separation

boundary condition in that the incoming wave at an open boundary is separated from the outgoing wave

(Bennett and McIntosh, 1982). For outgoing waves the condition functions as a radiation condition

with a phase speed equal to the square root of gh, where h is the mean or undisturbed depth along the

open boundary. For incoming waves, 1/2 of the characteristic of the incoming wave is specified. As an

example, consider an east open boundary, with the model domain to the west in the negative x direction

Page 55: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-19

and the unmodeled region to the east in the positive x direction. The incoming characteristic for the

linear one-dimensional shallow water equation (Bennett, 1976), is:

ζ −hu

gh(3)

where ζ is the free surface displacement, h is the water depth and u is the x component of velocity,

with the overbar denoting depth-averaged or external-mode velocity. For a purely progressive wave

propagating in the negative x direction, incoming toward the east open boundary:

ζ ζ ω= +

ox

ghtcos (4)

hu

gh

x

ghto= − +

ζ ωcos (5)

Inserting (6) and (7) into (5) gives

ζ ζ ω ζ− = +

=hu

gh

x

ghto2 2cos (6)

Thus 1/2 of the characteristic of the purely progressive incoming wave is the wave surface

displacement.

Open boundary cells are defined by the type 5 cell type in the cell.inp file but are presumed to be

external to the computation in that the continuity equation is not solved in the open boundary cell.

Tangential velocities (i.e., the u or x velocity component in a south or north open boundary cell and the

v or y velocity component in an east or west open boundary cell) are also not currently computed in

open boundary cells. Due to the placement definition of u on west cell faces and v on south cell faces,

the u is computed for east open boundary cells and v is computed for north open boundary cells. The

first two parameters on each card image specify the I and J indices of the open boundary cells. The I

and J indices sequence does not need to be continuous since a model domain may have multiple

opening on either of the four directional face normals. The ISPBS (ISPBW, ISPBE, ISPBN) switch is

Page 56: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-20

set to zero for direct specification of the open boundary cell surface elevation or to 1 for the

implementation of a radiation-separation boundary condition. For ISPBS set to zero, the open

boundary cell water surface elevation is directly specified by the sum of the periodic forcing function

(NPFORS,W,E,N) and the surface elevation time series (NPSERS,W,E,N) where NPSER_ identifies

one of the NPSER surface elevation time series in the pser.inp file. The radiation-separation boundary

condition specifies the linear characteristic of an assumed normal incident incoming wave as twice the

surface elevation specified by the sum of the periodic and time series forcing. By default, the outgoing

characteristic is left undefined allowing waves generated interior to the model domain to pass outward

across the boundary with no reflection. Since the normal incident criteria is somewhat idealized, care

should be used in the use of the radiation separation boundary condition. A more sophisticated

radiation-separation open boundary condition (relaxing the normal incident criteria the imposition of

zero tangential velocity) is under development.

Card Image 22

C22 SPECIFY NUM OF SEDIMENT AMD TOXICS AND NUM OF CONCENTRATION TIME SERIES

C

C NTOX: NUMBER OF TOXIC CONTAMINANTS (DEFAULT = 1)

C NSED: NUMBER OF COHESIVE SEDIMENT SIZE CLASSES (DEFAULT = 1)

C NSND: NUMBER OF NON-COHESIVE SEDIMENT SIZE CLASSES (DEFAULT = 1)

C NSSER: NUMBER OF SALINITY TIME SERIES

C NTSER: NUMBER OF TEMPERATURE TIME SERIES

C NDSER: NUMBER OF DYE CONCENTRATION TIME SERIES

C NSFSER: NUMBER OF SHELLFISH LARVAE CONCENTRATION TIME SERIES

C NTXSER: NUMBER OF TOXIC CONTAMINANT CONCENTRATION TIME SERIES

C EACH TIME SERIES MUST HAVE DATA FOR NTOX TOXICICANTS

C NSDSER: NUMBER OF COHESIVE SEDIMENT CONCENTRATION TIME SERIES

C EACH TIME SERIES MUST HAVE DATA FOR NSED COHESIVE SEDIMENTS

C NSNSER: NUMBER OF NON-COHESIVE SEDIMENT CONCENTRATION TIME SERIES

C EACH TIME SERIES MUST HAVE DATA FOR NSND NON-COHESIVE SEDIMENTS

C ISDBAL: SET TO 1 FOR SEDIMENT MASS BALANCE

C

C22 NTOX NSED NSND NSSER NTSER NDSER NSFSER NTXSER NSDSER NSNSER ISSBAL

1 1 1 0 0 0 0 0 0 0 0

Card Image 23

C23 VELOCITY, VOLUME SOURCE/SINK, FLOW CONTROL, AND WITHDRAWAL/RETURN DATA

C

C NVBS: NUMBER OF VELOCITY BC’S ON SOUTH OPEN BOUNDARIES

Page 57: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-21

C NUBW: NUMBER OF VELOCITY BC’S ON WEST OPEN BOUNDARIES

C NUBE: NUMBER OF VELOCITY BC’S ON EAST OPEN BOUNDARIES

C NVBN: NUMBER OF VELOCITY BC’S ON NORTH OPEN BOUNDARIES

C NQSIJ: NUMBER OF CONSTANT AND/OR TIME SERIES SPECIFIED SOURCE/SINK

C LOCATIONS (RIVER INFLOWS, ETC)

C NQJPIJ: NUMBER OF CONSTANT AND/OR TIME SERIES SPECIFIED SOURCE

C LOCATIONS TREATED AS JETS/PLUMES

C NQSER: NUMBER OF VOLUME SOURCE/SINK TIME SERIES

C NQCTL: NUMBER OF PRESSURE CONTROLLED WITHDRAWAL/RETURN PAIRS

C NQCTLT: NUMBER OF PRESSURE CONTROLLED WITHDRAWAL/RETURN TABLES

C NQWR: NUMBER OF CONSTANT OR TIME SERIES SPECIFIED WITHDRAWL/RETURN

C PAIRS

C NQWRSR: NUMBER OF TIME SERIES SPECIFYING WITHDRAWAL, RETURN AND

C CONCENTRATION RISE SERIES

C ISDIQ: SET TO 1 TO WRITE DIAGNOSTIC FILE, diaq.out

C

C23 NVBS NUBW NUBE NVBN NQSIJ NQJPIJ NQSER NQCTL NQCTLT NQWR NQWRSR ISDIQ

0 0 0 0 0 0 0 0 0 0 0 0

Card image 23 specifies basic information on volumetric sources and sinks. The first four parameters

on this card are currently inactive. Volumetric source and sink representation in the EFDC model falls

within three classes. The first class is constant or time varying volumetric sources and sinks at NQSIJ

horizontal grid locations. The second class is pressure or surface elevation controlled hydraulic

structures occurring as NQCTL source and sink pairs. The third class is constant or time variable flow

withdrawal and return sources and sinks occurring as NQWR pairs. The sources and sinks associated

with NQSIJ and NQWR may have constant flow rates, specified in this file or time variable flow rates

as specified by one of NQSER flow time series read from the qser.inp file. For positive NQSIJ

sources, inflow concentrations of the various transported scalar constituents may be associated with the

flow. For negative NQSIJ sinks, mass loss of transport scalar constituents is accounted for. The

withdrawal-return source sink class provides for a constant or time variable concentration rise between

the withdrawal and return cells. The NQWR options is designed to power plant and industrial cooling

systems. The final switch ISDIQ activates diagnostics of allowable classes of volumetric source and

sink flows to be written to the file diaq.out. Since this file can become quite large, this option is

recommended to be used only for debugging. Generally when activated, the model should be allowed

to run only a few time steps, and then manually killed by the user.

Card Image 24

C24 VOLUMETRIC SOURCE/SINK LOCATIONS, MAGNITUDES, AND CONCENTRATION SERIESCC IQS: I CELL INDEX OF VOLUME SOURCE/SINK

Page 58: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-22

C JQS: J CELL INDEX OF VOLUME SOURCE/SINKC QSSE: CONSTANT INFLOW/OUTFLOW RATE IN M*M*M/SC NQSMUL: MULTIPLIER SWITCH FOR CONSTANT AND TIME SERIES VOL S/SC = 0 MULT BY 1. FOR NORMAL IN/OUTFLOW (L*L*L/T)C = 1 MULT BY DY FOR LATERAL IN/OUTFLOW (L*L/T) ON U FACEC = 2 MULT BY DX FOR LATERAL IN/OUTFLOW (L*L/T) ON V FACEC = 3 MULT BY DX+DY FOR LATERAL IN/OUTFLOW (L*L/T) ON U&V FACESC NQSMFF: IF NON ZERO ACCOUNT FOR VOL S/S MOMENTUM FLUXC = 1 MOMENTUM FLUX ON NEG U FACEC = 2 MOMENTUM FLUX ON NEG V FACEC = 3 MOMENTUM FLUX ON POS U FACEC = 4 MOMENTUM FLUX ON POS V FACEC NQSERQ: ID NUMBER OF ASSOCIATED VOLUMN FLOW TIME SERIESC NSSERQ: ID NUMBER OF ASSOCIATED SALINITY TIME SERIESC NTSERQ: ID NUMBER OF ASSOCIATED TEMPERATURE TIME SERIESC NDSERQ: ID NUMBER OF ASSOCIATED DYE CONC TIME SERIESC NSFSERQ: ID NUMBER OF ASSOCIATED SHELL FISH LARVAE RELEASE TIME SERIESC NTXSERQ: ID NUMBER OF ASSOCIATED TOXIC CONTAMINANT CONC TIME SERIESC NSDSERQ: ID NUMBER OF ASSOCIATED COHEASIVE SEDIMENT CONC TIME SERIESC NSNSERQ: ID NUMBER OF ASSOCIATED NONCOHEASIVE SED CONC TIME SERIESCC24 IQS JQS QSSE NQSMUL NQSMFF NQSERQ NS- NT- ND- NSF- NTX- NSD- NSN-

Card image 24 provides information for the NQSIJ class of volumetric source sink flows, with the first two

parameters specifying the location by I and J indices. The third parameter, QSSE is used to specify a time

invariant inflow rate (outflows or sinks simply have negative signs) in either cubic meters per second or

cubic meters per second per meter. The adjustment factor NQMUL specifies how volumetric flows per

unit length are converted to true volumetric flows. The control parameter NQMF indicates if the volumetric

source or sink is to have an associated momentum flux and which face of the source cell the momentum

flux is assigned. Time variable flows are defined by entering a flow time series identifier number (less than

or equal to NQSER) under NQSERQ. The remaining five columns allow the specification of a scalar

constituent concentration time series associated with the flow time series only. Constant concentrations

associated with the constant QSSE flows are defined on card image 25, below. The constant flowrate

source and sinks are distributed uniformly over the vertical layers, while the time series specification of

source and sink flows allows arbitrary distribution over the vertical layers.

Card Image 25

C25 TIME CONSTANT INFLOW CONCENTRATIONS FOR TIME CONSTANT VOLUMETRIC SOURCESCC SAL: SALT CONCENTRATION CORRESPONDING TO INFLOW ABOVEC TEM: TEMPERATURE CORRESPONDING TO INFLOW ABOVEC DYE: DYE CONCENTRATION CORRESPONDING TO INFLOW ABOVEC SFL: SHELL FISH LARVAE CONCENTRATION CORRESPONDING TO INFLOW ABOVEC TOX: NTOX TOXIC CONTAMINANT CONCENTRATIONS CORRESPONDING TO

Page 59: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-23

C INFLOW ABOVE WRITTEN AS TOXC(N), N=1,NTOX A SINGLE DEFAULTC VALUE IS REQUIRED EVEN IF TOXIC TRANSPORT IS NOT ACTIVECC25 SAL TEM DYE SFL TOX1-20

The time-constant inflow concentrations (salinity, temperature, dye, shellfish, and toxic) for the

volumetric sources defined on card image 24 are specified here.

Card Image 26

C26 TIME CONSTANT INFLOW CONCENTRATIONS FOR TIME CONSTANT VOLUMETRIC SOURCES

C

C SED: NSED COHESIVE SEDIMENT CONCENTRATIONS CORRESPONDING TO

C INFLOW ABOVE WRITTEN AS SEDC(N), N=1,NSED. I.E., THE FIRST

C NSED VALUES ARE COHESIVE A SINGLE DEFAULT VALUE IS REQUIRED

C EVEN IF COHESIVE SEDIMENT TRANSPORT IS INACTIVE

C SND: NSND NON-COHESIVE SEDIMENT CONCENTRATIONS CORRESPONDING TO

C INFLOW ABOVE WRITTEN AS SND(N), N=1,NSND. I.E., THE LAST

C NSND VALUES ARE NON-COHESIVE. A SINGLE DEFAULT VALUE IS

C REQUIRED EVEN IF NON-COHESIVE SEDIMENT TRANSPORT IS INACTIVE

C

C26 SED1 SND1

The time-constant concentrations (cohesive and non-cohesive sediment) for the volumetric sources defined

on card image 24 are specified here.

Card Image 27 [not active in EFDC-Hydro]

C27 JET/PLUME SOURCE LOCATIONS, GEOMETRY AND ENTRAINMENT PARAMETERS

C

C ID: ID COUNTER FOR JET/PLUME

C ICAL: 1 ACTIVE, 0 BYPASS

C IQJP: I CELL INDEX OF JET/PLUME

C JQJP: J CELL INDEX OF JET/PLUME

C KQJP: K CELL INDEX OF JET/PLUME (DEFAULT, QJET=0 OR JET COMP DIVERGES)

C XJET: LOCAL EAST JET LOCATION RELATIVE TO DISCHARGE CELL CENTER (M)

C YJET: LOCAL NORTH JET LOCATION RELATIVE TO DISCHARGE CELL CENTER (M)

C ZJET: ELEVATION OF DISCHARGE (M)

C PHJET: VERTICAL JET ANGLE POSITIVE FROM HORIZONTAL (DEGREES)

C THJET: HORIZONTAL JET ANGLE POS COUNTER CLOCKWISE FROM EAST (DEGREES)

C DJET: DIAMETER OF DISCHARGE PORT (M)

C CFRD: ADJUSTMENT FACTOR FOR FROUDE NUMBER

C DJPER: ENTRAINMENT ERROR CRITERIA

C

Page 60: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-24

C27 ID ICAL IQJP JQJP KQJP XJET YJET ZJET PHJET THJET DJET CFRD DJPER

The source locations for the jet-plume discharges are specified on this card image.

Card Image 28 [not active in EFDC-Hydro]

C28 JET/PLUME SOLUTION CONTROL AND OUTPUT CONTROL PARAMETERS

C

C ID: ID COUNTER FOR JET/PLUME

C NJEL: MAXIMUM NUMBER OF ELEMENTS ALONG JET/PLUME LENGTH

C NJPMX: MAXIMUM NUMBER OF ITERATIONS

C ISENT: 0 USE MAXIMUM OF SHEAR AND FORCED ENTRAINMENT

C 1 USE SUM OF SHEAR AND FORCED ENTRAINMENT

C ISTJP: 0 STOP AT SPECIFIED NUMBER OF ELEMENTS

C 1 STOP WHEN CENTERLINE PENETRATES BOTTOM OR SURFACE

C 2 STOP WITH BOUNDARY PENETRATES BOTTOM OR SURFACE

C NUDJP: FREQUENCY FOR UPDATING JET/PLUME (NUMBER OF TIME STEPS)

C IOJP: 1 FOR FULL ASCII, 2 FOR COMPACT ASCII OUTPUT AT EACH UPDATE

C 3 FOR FULL AND COMPACT ASCII OUTPUT, 4 FOR BINARY OUTPUT

C IPJP: NUMBER OF SPATIAL PRINT/SAVE POINT IN VERTICAL

C ISDJP: 1 WRITE DIAGNOSTIC TO jplog__.out

C

C28 ID NJEL NJPMX ISENT ISTJP NUDJP IOJP IPJP ISDJP

The solution control and output control parameters for the jet-plume discharges are specified here.

Card Image 29 [not active in EFDC-Hydro]

C29 JET/PLUME SOURCE PARAMETERS AND DISCHARGE/CONCENTRATION SERIES IDS

C

C ID: ID COUNTER FOR JET/PLUME

C QQJP: CONSTANT JET/PLUME FLOW RATE IN M*M*M/S

C NQSERJP: ID NUMBER OF ASSOCIATED VOLUMN FLOW TIME SERIES

C NSSERJP: ID NUMBER OF ASSOCIATED SALINITY TIME SERIES

C NTSERJP: ID NUMBER OF ASSOCIATED TEMPERATURE TIME SERIES

C NDSERJP: ID NUMBER OF ASSOCIATED DYE CONC TIME SERIES

C NSFSERJP: ID NUMBER OF ASSOCIATED SHELL FISH LARVAE RELEASE TIME SERIES

C NTXSERJP: ID NUMBER OF ASSOCIATED TOXIC CONTAMINANT CONC TIME SERIES

C NSDSERJP: ID NUMBER OF ASSOCIATED COHESIVE SEDIMENT CONC TIME SERIES

C NSNSERJP: ID NUMBER OF ASSOCIATED NON-COHESIVE SED CONC TIME SERIES

C

C29 ID QQJP NQSERJP NS- NT- ND- NSF- NTX- NSD- NSN-

The source parameters and concentrations for the jet-plume discharges are specified here.

Page 61: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-25

Card Image 30 [not active in EFDC-Hydro]

C30 TIME CONSTANT INFLOW CONCENTRATIONS FOR TIME CONSTANT JET/PLUME SOURCES

C

C SAL: SALT CONCENTRATION CORRESPONDING TO INFLOW ABOVE

C TEM: TEMPERATURE CORRESPONDING TO INFLOW ABOVE

C DYE: DYE CONCENTRATION CORRESPONDING TO INFLOW ABOVE

C SFL: SHELL FISH LARVAE CONCENTRATION CORRESPONDING TO INFLOW ABOVE

C TOX: NTOX TOXIC CONTAMINANT CONCENTRATIONS CORRESPONDING TO

C INFLOW ABOVE WRITTEN AS TOXC(N), N=1,NTOX A SINGLE DEFAULT

C VALUE IS REQUIRED EVEN IF TOXIC TRANSPORT IS NOT ACTIVE

C

C30 SAL TEM DYE SFL TOX1-20

The time constant inflow concentrations for salinity, temperature, dye, shellfish larvae, and toxicants for

the jet-plume discharges are specified here.

Card Image 31 [not active in EFDC-Hydro]

C31 TIME CONSTANT INFLOW CONCENTRATIONS FOR TIME CONSTANT JET/PLUME SOURCES

C

C SED: NSED COHESIVE SEDIMENT CONCENTRATIONS CORRESPONDING TO

C INFLOW ABOVE WRITTEN AS SEDC(N), N=1,NSED. I.E., THE FIRST

C NSED VALUES ARE COHESIVE A SINGLE DEFAULT VALUE IS REQUIRED

C EVEN IF COHESIVE SEDIMENT TRANSPORT IS INACTIVE

C SND: NSND NON-COHESIVE SEDIMENT CONCENTRATIONS CORRESPONDING TO

C INFLOW ABOVE WRITTEN AS SND(N), N=1,NSND. I.E., THE LAST

C NSND VALUES ARE NON-COHESIVE. A SINGLE DEFAULT VALUE IS

C REQUIRED EVEN IF NON-COHESIVE SEDIMENT TRANSPORT IS INACTIVE

C

C31 SED1 SND1 SND2 SND3

The time constant inflow concentrations for the cohesive and non-cohesive sediment classes for the jet-

plume discharges are specified here.

Card Image 32

C32 SURFACE ELEV OR PRESSURE DEPENDENT FLOW INFORMATION

C

C IQCTLU: I INDEX OF UPSTREAM OR WITHDRAWAL CELL

C JQCTLU: J INDEX OF UPSTREAM OR WITHDRAWAL CELL

Page 62: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-26

C IQCTLD: I INDEX OF DOWNSTREAM OR RETURN CELL

C JQCTLD: J INDEX OF DOWNSTREAM OR RETURN CELL

C NQCTYP: FLOW CONTROL TYPE

C = 0 HYDRAULIC STRUCTURE: INSTANT FLOW DRIVEN BY ELEVATION

C OR PRESSURE DIFFERENCE TABLE

C = 1 ACCELERATING FLOW THROUGH TIDAL INLET

C NQCTLQ: ID NUMBER OF CONTROL CHARACTERIZATION TABLE

C NQCMUL: MULTIPLIER SWITCH FOR FLOWS FROM UPSTREAM CELL

C = 0 MULT BY 1. FOR CONTROL TABLE IN (L*L*L/T)

C = 1 MULT BY DY FOR CONTROL TABLE IN (L*L/T) ON U FACE

C = 2 MULT BY DX FOR CONTROL TABLE IN (L*L/T) ON V FACE

C = 3 MULT BY DX+DY FOR CONTROL TABLE IN (L*L/T) ON U&V FACES

C NQCMFU: IF NON ZERO ACCOUNT FOR FLOW MOMENTUM FLUX IN UPSTREAM CELL

C = 1 MOMENTUM FLUX ON NEG U FACE

C = 2 MOMENTUM FLUX ON NEG V FACE

C = 3 MOMENTUM FLUX ON POS U FACE

C = 4 MOMENTUM FLUX ON POS V FACE

C NQCMFD: IF NON ZERO ACCOUNT FOR FLOW MOMENTUM FLUX IN DOWNSTREAM CELL

C = 1 MOMENTUM FLUX ON NEG U FACE

C = 2 MOMENTUM FLUX ON NEG V FACE

C = 3 MOMENTUM FLUX ON POS U FACE

C = 4 MOMENTUM FLUX ON POS V FACE

C BQCMFU: UPSTREAM MOMENTUM FLUX WIDTH (M)

C BQCMFD: DOWNSTREAM MOMENTUM FLUX WIDTH (M)

C

C32 IQCTLU JQCTLU IQCTLD JQCTLD NQCTYP NQCTLQ NQCMUL NQC_U NQC_D BQC_U BQC_D

This card image specifies the location and properties of source-sink pairs representing hydraulic control

structures. The notation of upstream (sink) and downstream (source) is used for the hydraulic control

structure pairs, which allow flow in only one direction. For structures such as culverts, which allow bi-

directional flow, two control structure pairs are necessary to account for both flow directions. The first

four parameters on this card image define the horizontal locations by the I and J indices of the upstream

and downstream cells. Structures whose flow rates depend only on the surface elevation in the

upstream cell (i.e., spillways and weirs) can discharge out of the computational domain by specifying

the null indices 0,0 for the downstream cell. The parameter NQCTYP specifies the form of the flow

dependence on the surface elevation difference between the upstream and downstream cell, (with only

the 0 option currently active). The parameter NQCTLQ identifies control table number characterizing

the structure. The control tables are input in the file qctl.inp.

Card Image 33

C33 FLOW WITHDRAWAL, HEAT OR MATERIAL ADDITION, AND RETURN DATA

C

Page 63: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-27

C IWRU: I INDEX OF UPSTREAM OR WITHDRAWAL CELL

C JWRU: J INDEX OF UPSTREAM OR WITHDRAWAL CELL

C KWRU: K INDEX OF UPSTREAM OR WITHDRAWAL LAYER

C IWRD: I INDEX OF DOWNSTREAM OR RETURN CELL

C JWRD: J INDEX OF DOWNSTREAM OR RETURN CELL

C KWRD: J INDEX OF DOWNSTREAM OR RETURN LAYER

C QWRE: CONSTANT VOLUME FLOW RATE FROM WITHDRAWAL TO RETURN

C NQWRSERQ: ID NUMBER OF ASSOCIATED VOLUMN WITHDRAWAL-RETURN FLOW AND

C CONCENTRATION RISE TIME SERIES

C NQWRMFU: IF NON ZERO ACCOUNT FOR WITHDRAWAL FLOW MOMENTUM FLUX

C = 1 MOMENTUM FLUX ON NEG U FACE

C = 2 MOMENTUM FLUX ON NEG V FACE

C = 3 MOMENTUM FLUX ON POS U FACE

C = 4 MOMENTUM FLUX ON POS V FACE

C NQWRMFD: IF NON ZERO ACCOUNT FOR RETURN FLOW MOMENTUM FLUX

C = 1 MOMENTUM FLUX ON NEG U FACE

C = 2 MOMENTUM FLUX ON NEG V FACE

C = 3 MOMENTUM FLUX ON POS U FACE

C = 4 MOMENTUM FLUX ON POS V FACE

C BQWRMFU: UPSTREAM MOMENTUM FLUX WIDTH (M)

C BQWRMFD: UPSTREAM MOMENTUM FLUX WIDTH (M)

C 23.1

C33 IWRU JWRU KWRU IWRD JCWRD KWRD QWRE NQW_RQ NQWR_U NQWR_D BQWR_U BQWR_D

Card image 33 provides information for the NQWR volumetric source-sink class with the location of

the upstream (withdrawal) and downstream (return) flow cell pairs specified by their I and J indices.

The remaining parameters specify a constant flow rate and time series identified for variable flow rates

and concentration rises. Time constant concentration rises associated with the constant flow rate are

specified as shown below on card image 34.

Card Image 34

C34 TIME CONSTANT WITHDRAWAL AND RETURN CONCENTRATION RISES

C

C SAL: SALTINITY RISE

C TEM: TEMPERATURE RISE

C DYE: DYE CONCENTRATION RISE

C SFL: SHELLFISH LARVAE CONCENTRATION RISE

C TOX#: NTOX TOXIC CONTAMINANT CONCENTRATION RISES

C

C34 SALT TEMP DYEC SFLC TOX1

Page 64: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-28

The time constant concentration rise for salinity, temperature, dye, shellfish larvae, and toxicants for the

withdrawal and return flows are specified here.

Card Image 35

C35 TIME CONSTANT WITHDRAWAL AND RETURN CONCENTRATION RISES

C

C SED#: NSEDC COHESIVE SEDIMENT CONCENTRATION RISE

C SND#: NSEDN NONCOHESIVE SEDIMENT CONCENTRATION RISE

C

C35 SED1 SND1 SND2

The time constant concentration rise for cohesive and non-cohesive sediment for the withdrawal and

return flows are specified here.

Card Image 36

C36 SEDIMENT INITIALIZATION AND WATER COLUMN/BED REPRESENTATION OPTIONS

C DATA REQUIRED EVEN IF ISTRAN(6) AND ISTRAN(7) (CARD 6) ARE 0

C

C ISEDINT: 0 FOR CONSTANT INITIAL CONDITIONS

C 1 FOR SPATIALLY VARIABLE WATER COLUMN INITIAL CONDITIONS

C FROM sedw.inp AND sndw.inp

C 2 FOR SPATIALLY VARIABLE BED INITIAL CONDITIONS

C FROM sedb.inp AND sndb.inp

C 3 FOR SPATIALLY VARIABLE WATER COL AND BED INITIAL CONDITIONS

C ISEDBINT: 0 FOR SPATIALLY VARYING BED INITIAL CONDITIONS IN MASS/AREA

C 1 FOR SPATIALLY VARYING BED INITIAL CONDITIONS IN MASS FRACTION

C OF TOTAL SEDIMENT MASS (REQUIRES BED LAYER THICKNESS

C FILE bedlay.inp)

C ISEDWC: 0 COHESIVE SED WC/BED EXCHANGE BASED ON BOTTOM LAYER CONDITIONS

C 1 COHESIVE SED WC/BED EXCHANGE BASED ON WAVE/CURRENT/SEDIMENT

C BOUNDARY LAYERS EMBEDDED IN BOTTOM LAYER

C ISMUD: 1 INCLUDE COHESIVE FLUID MUD VISCOUS EFFECTS USING EFDC

C FUNCTION CSEDVIS(SEDT)

C ISNDWC: 0 NONCOH SED WC/BED EXCHANGE BASED ON BOTTOM LAYER CONDITIONS

C 1 NONCOH SED WC/BED EXCHANGE BASED ON WAVE/CURRENT/SEDIMENT

C BOUNDARY LAYERS EMBEDDED IN BOTTOM LAYER

C ISEDVW: 0 FOR CONSTANT OR SIMPLE CONCENTRATION DEPENDENT

C COHESIVE SEDIMENT SETTLING VELOCITY

C >1 CONCENTRATION AND/OR SHEAR/TURBULENCE DEPENDENT COHESIVE

C SEDIMENT SETTLING VELOCITY. VALUE INDICATES OPTION TO BE USED

C IN EFDC FUNCTION CSEDSET(SED,SHEAR,ISEDVWC)

C 1 HUANG AND METHA - LAKE OKEECHOBEE

C 2 SHRESTA AND ORLOB - FOR KRONES SAN FRANCISCO BAY DATA

C 3 ZIEGLER AND NESBIT - FRESH WATER

Page 65: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-29

C ISNDVW: 0 USE CONSTANT SPECIFIED NONCHOESIVE SED SETTLING VELOCITIES

C OR CALCULATE FOR CLASS DIAMETER IS SPECIFIED VALUE IS NEG

C >1 FOLLOW OPTION 0 PROCEDURE BUT APPLY HINDERED SETTLING

C CORRECTION. VALUE INDICATES OPTION TO BE USED WITH EFDC

C FUNCTION CSNDSET(SND,SDEN,ISNDVW) VALUE OF ISNDVW INDICATES

C EXPONENTIAL IN CORRECT (1-SDEN(NS)*SND(NS)**ISNDVW

C KB: MAXIMUM NUMBER OF BED LAYERS (EXCLUDING ACTIVE LAYER)

C ISEDAL: 1 TO ACTIVATE STATIONARY COHESIVE MUD ACTIVE LAYER

C ISNDAL: 1 TO ACTIVATE NONCOHESIVE ARMORING LAYER ACTIVE LAYER

C 3

C36 ISEDINT ISEDBINT ISEDWC ISMUD ISNDWC ISEDVW ISNDVW KB ISEDAL ISNDAL

0 0 0 0 0 5 0 1 0 0

This card image specifies parameters for sediment initialization as well as options for representing the

water column and bed conditions.

Card Image 37

C37 BED MECHANICAL PROPERTIES PARAMETER SET 1

C DATA REQUIRED EVEN IF ISTRAN(6) AND ISTRAN(7) ARE 0

C

C IBMECH: 0 TIME INVARIANT CONSTANT BED MECHANICAL PROPERITES

C 1 SIMPLE CONSOLIDATION CALCULATION WITH CONSTANT COEFFICIENTS

C 2 SIMPLE CONSOLIDATION WITH VARIABLE COEFFICIENTS DETERMINED

C EFDC FUNCTIONS CSEDCON1,2,3(IBMECH)

C 3 COMPLEX CONSOLIDATION WITH VARIABLE COEFFICIENTS DETERMINED

C EFDC FUNCTIONS CSEDCON1,2,3(IBMECH). IBMECH > 0 SETS THE

C C38 PARAMETER ISEDBINT=1 AND REQUIRES INITIAL CONDITIONS

C FILES bedlay.inp, bedbdn.inp and bedddn.inp

C IMORPH: 0 CONSTANT BED MORPHOLOGY (IBMECH=0, ONLY)

C 1 ACTIVE BED MORPHOLOGY: NO WATER ENTRAIN/EXPULSION EFFECTS

C 2 ACTIVE BED MORPHOLOGY: WITH WATER ENTRAIN/EXPULSION EFFECTS

C HBEDMAX: TOP BED LAYER THICKNESS (M) AT WHICH NEW LAYER IS ADDED OR IF

C KBT(I,J)=KB, NEW LAYER ADDED AND LOWEST TWO LAYERS COMBINED

C BEDPORC: CONSTANT BED POROSITY (IBMECH=0, OR NSED=0)

C ALSO USED AS POROSITY OF DEPOSITION NONCOHESIVE SEDIMENT

C SEDMDMX: MAXIMUM FLUID MUD COHESIVE SEDIMENT CONCENTRATION (mg/l)

C SEDMDMN: MINIMUM FLUID MUD COHESIVE SEDIMENT CONCENTRATION (mg/l)

C SEDVDRD: VOID RATIO OF DEPOSITING COHESIVE SEDIMENT

C SEDVDRM: MINIMUM COHESIVE SEDIMENT BED VOID RATIO (IBMECH > 0)

C SEDVDRT: BED CONSOLODATION RATED CONSTANT (1/SEC) (IBMECH = 1,2)

C

C37 IBMECH IMORPH HBEDMAX BEDPORC SEDMDMX SEDMDMN SEDVDRD SEDVDRM SEDVRDT

0 0 2.0 0.5 1.1E5 4000. 20. 4. 1.E-5

The first set of bed mechanics properties are defined on this card image.

Page 66: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-30

Card Image 38

C38 BED MECHANICAL PROPERTIES PARAMETER SET 2

C DATA REQUIRED EVEN IF ISTRAN(6) AND ISTRAN(7) ARE 0

C

C BMECH1: BED MECHANICS FUNCTION COEFFICIENT

C BMECH2: BED MECHANICS FUNCTION COEFFICIENT

C BMECH3: BED MECHANICS FUNCTION COEFFICIENT

C BMECH4: BED MECHANICS FUNCTION COEFFICIENT

C BMECH5: BED MECHANICS FUNCTION COEFFICIENT

C BMECH6: BED MECHANICS FUNCTION COEFFICIENT

C

C38 BMECH1 BMECH2 BMECH3 BMECH4 BMECH5 BMECH6

0.0 0. 0. 0. 0. 0.

The second set of bed mechanics properties are defined on this card image.

Card Image 39

C39 COHESIVE SEDIMENT PARAMETER SET 1 REPEAT DATA LINE NSED TIMES

C DATA REQUIRED EVEN IF ISTRAN(6) AND ISTRAN(7) ARE 0

C

C SEDO: CONSTANT INITIAL COHESIVE SEDIMENT CONC IN WATER COLUMN

C (mg/liter=gm/m**3)

C SEDBO: CONSTANT INITIAL COHESIVE SEDIMENT IN BED PER UNIT AREA

C (gm/sq meter) IE 1CM THICKNESS BED WITH SSG=2.5 AND

C N=.6,.5 GIVES SEDBO 1.E4, 1.25E4

C SDEN: SEDIMENT SPEC VOLUME (IE 1/2.25E6 m**3/gm)

C SSG: SEDIMENT SPECIFIC GRAVITY

C WSEDO: CONSTANT OR REFERENCE SEDIMENT SETTLING VELOCITY

C IN FORMULA WSED=WSEDO*( (SED/SEDSN)**SEXP )

C SEDSN: NORMALIZING SEDIMENT CONC (COHESIVE SED TRANSPORT) (gm/m**3)

C SEXP: EXPONENTIAL (COHESIVE SED TRANSPORT)

C TAUD: BOUNDARY STRESS BELOW WHICH DEPOSITION TAKES PLACE ACCORDING

C TO (TAUD-TAU)/TAUD

C ISEDSCOR: 1 TO CORRECT BOTTOM LAYER CONCENTRATION TO NEAR BED CONC

C

C39 SEDO SEDBO SDEN SSG WSEDO SEDSN SEXP TAUD ISEDSCOR

65.0 1.0E4 4.4E-7 2.25 1.E-4 1.0 0. 1.E-6 0

See discussion following card image 42a.

Card Image 40

C40 COHESIVE SEDIMENT PARAMETER SET 2 REPEAT DATA LINE NSED TIMES

C DATA REQUIRED EVEN IT ISTRAN(6) AND ISTRAN(7) ARE 0

C

C IWRSP: 0 USE RESUSPENSION RATE AND CRITICAL STRESS BASED ON PARAMETERS

Page 67: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-31

C ON THIS DATA LINE

C >1 USE BED PROPERTIES DEPENDEDNT RESUSPENSION RATE AND CRITICAL

C STRESS GIVEN BY EFDC FUNCTIONS CSEDRESS,CSEDTAUS,CSEDTAUB

C FUNCTION ARGUMENSTS ARE (BDENBED,IWRSP)

C 1 HWANG AND METHA - LAKE OKEECHOBEE

C WRSPO: REF SURFACE EROSION RATE IN FORMULA

C WRSP=WRSP0*( ((TAU-TAUR)/TAUN)**TEX ) (gm/m**2-sec)

C TAUR: BOUNDARY STRESS ABOVE WHICH SURFACE EROSION OCCURS (m/s)**2

C TAUN: NORMALIZING STRESS (EQUAL TO TAUR FOR COHESIVE SED TRANS)

C TEXP: EXPONENTIAL (COH SED)

C

C40 IWRSP WRSPO TAUR TAUN TEXP

0 0.005 2.75E-4 2.75E-4 1.

See discussion following card image 42a.

Card Image 41

C41 NON-COHESIVE SEDIMENT PARAMETER SET 1 REPEAT DATA LINE NSND TIMES

C DATA REQUIRED EVEN IT ISTRAN(6) AND ISTRAN(7) ARE 0

C

C SNDO: CONSTANT INITIAL NON-COHESIVE SEDIMENT CONC IN WATER COLUMN

C (mg/liter=gm/m**3)

C SNDBO: CONSTANT INITIAL NON-COHESIVE SEDIMENT IN BED PER UNIT AREA

C (gm/sq meter) IE 1CM THICKNESS BED WITH SSG=2.5 AND

C N=.6,.5 GIVES SNDBO 1.E4, 1.25E4

C SDEN: SEDIMENT SPEC VOLUME (IE 1/2.65E6 m**3/gm)

C SSG: SEDIMENT SPECIFIC GRAVITY

C SNDDIA: REPRESENTATIVE DIAMETER OF SEDIMENT CLASS

C WSNDO: CONSTANT OR REFERENCE SEDIMENT SETTLING VELOCITY

C IF WSNDO < 0, SETTLING VELOCITY INTERNALLY COMPUTED

C SNDN: MAX MASS/TOT VOLUME IN BED (NON-COHESIVE SED TRANS) (gm/m**3)

C SEXP: DIMENSIONLESS RESUSPENSION PARAMETER GAMMA ZERO

C TAUD: DUNE BREAK POINT STRESS (m/s)**2

C ISNDSCOR: 1 TO CORRECT BOTTOM LAYER CONCENTRATION TO NEAR BED CONC

C

C41 SNDO SNDBO SDEN SSG SNDDIA WSNDO SNDN SEXP TAUD ISNDSCOR

1.0 1.E4 3.8E-7 2.65 1.8E-4 0.01 1.E6 1.E-3 7.E-5 0

See discussion following card image 42a.

Card Image 42

C42 NONCOHESIVE SEDIMENT PARAMETER SET 2 REPEAT DATA LINES NSND TIMES

C DATA REQUIRED EVEN IF ISTRAN(6) AND ISTRAN(7) ARE 0

C

C ISNDEQ: >1 CALCULATE ABOVE BED REFERENCE NONCHOHESIVE SEDIMENT

Page 68: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-32

C EQUILIBRIUM CONCENTRATION USING EFDC FUNCTION

C CSNDEQC(SNDDIA,SSG,WS,TAUR,TAUB,SIGPHI,SNDDMX,IOTP)

C WHICH IMPLEMENT FORMULATIONS OF

C 1 GRACIA AND PARKER

C 2 SMITH AND MCLEAN

C 3 VAN RIJN

C ISBDLD: 0 BED LOAD PHI FUNCTION IS CONSTANT, SBDLDP

C 1 VAN RIJN PHI FUNCTION

C 2 OHTER PHI FUNCTION

C 3 OHTER PHI FUNCTION

C ISBDLD: 0 BED LOAD PHI FUNCTION IS CONSTANT

C TAUR: CRITICAL SHIELDS STRESS IN (m/s)**2 (ISNDEQ=2)

C NOTE: IF TAUR < 0, THEN TAUR, TAUN, AND TEXP ARE INTERNALLY

C COMPUTED USING VAN RIJN’S FORMULAS

C TAUN: EQUAL TO TAUR FOR NONCHOESIVE SED TRANS (ISNDEQ=2)

C TEXP: CRITICAL SHIELDS PARAMETER (ISNDEQ=2)

C

C42 ISNDEQ ISBDLD TAUR TAUN TEXP

1 0 -1.E+6 -1.E+6 -0.2

See discussion following card image 42a.

Card Image 42a

C42a NONCOHESIVE SEDIMENT PARAMETER SET 3 (BED LOAD FORMULA PARAMETERS)

C DATA REQUIRED EVEN IT ISTRAN(6) AND ISTRAN(7) ARE 0

C

C SBDLDA: ALPHA EXPONENTIAL FOR BED LOAD FORMULA

C SBDLDB: BETA EXPONENTIAL FOR BED LOAD FORMULA

C SBDLDG: GAMMA CONSTANT FOR BED LOAD FORMULA

C SBDLDP: CONSTANT PHI FOR BED LOAD FORMULA

C

C42a SBDLDA SBDLDB SBDLDG SBDLDP

2.1 0. 0. 0.

Card images 39 and 40 specify information for the transport of suspended cohesive sediment, and Card

images 41-42a specify information for the transport of non-cohesive suspended sediment. The EFDC

model allows for the transport of multiple sediment classes with the information of this card image

repeated for each class (NSED classes). The various parameters on these card image have different

meanings for cohesive and non-cohesive sediment. For both types of sediment, the units are chosen

such that sediment concentrations in the water column will have units of mg per liter and the mass per

unit area of sediment on the bed will be grams per square meter. These units remain consistent if

velocities are specified in meters per second and stresses are expressed in kinematic units of square

meters per square seconds (i.e., stresses are squared shear velocities). On card images 39 and 41, the

Page 69: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-33

first two parameters for both sediment types are the initial sediment concentration in the water column

and the initial mass of sediment per unit area on the bed which are used to initialize the entire model

domain for cold starts or when restarting with no sediment information in the restart.inp file for cold

starts. The third parameter is the sediment specific volume and is used only to introduce the effect of

suspended sediment into the buoyancy distribution by:

B(L,K) = B(L,K)*(1.-SDEN*SED(L,K))+(SSG-1.)*SDEN*SED(L,K)

where B is the buoyancy ((mixture density-ref water density)/ref water density) and SED is the

sediment concentration in mg/l. The parameter SSG is the sediment specific gravity. For noncohesive

sediment, WSEDO represents a constant settling velocity in m/s. For cohesive sediment, a

concentration dependent settling velocity of the form:

WSED = WSDEO*( (SED/SEDN)**SEXP )

where SEDN is a reference or normalizing sediment concentration and SEXP is a dimensionless

quantity. For non-cohesive sediment SEDN is the maximum sediment concentration defined as the

sediment mass per unit total volume in the bed (sediment density in mg/l times the bed porosity). For

non-cohesive sediment, SEXP is a dimensionless coefficient in an empirical formula for the reference

near bed sediment concentration. For cohesive sediment, TAUD is a probability of deposition stress in

the depositional flux expression:

FLUXD = WSED*SED*(TAUD-TAU)/TAUD: TAU .LT. TAUD

FLUXD = 0 TAU .GE. TAUD

where TAU is the magnitude of the bottom boundary or bed stress. For non-cohesive sediment,

TAUD is the bottom boundary stress at which ripples or dunes begin to decay and is determined from a

Shields’ parameter ratio according to Grant and Madsen (1982) (also see Glenn and Grant, 1987).

The parameter WRSPO is used only for cohesive sediment transport to specify the sediment

resuspension rate according to:

WRSP = WRSPO*( ((TAU-TAUR)/TAUN)**TEXP ): TAU .GT. TAUR

WRSP = 0: TAU .LE. TAUR

Page 70: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-34

The units of WRSPO are (m/s)*(mg/liter). For cohesive sediment transport, the next three parameters

are as defined in the above resuspension formula. For non-cohesive sediment, TAUR and TAUN are

both equal to the critical stress for incipient sediment motion and are determined from the critical

Shields’ parameter. For non-cohesive sediment transport, TEXP is the critical Shields’ parameter. For

both sediment classes, the parameter SDBLV is used to determine bottom bed elevation changes in

response to deposition and resuspension according to:

BELV(N+1) = BELV(N)-DT*SDBLV*SEDF(L,0)

where BELV is the bed elevation at time level N+1 or N and SEDF is the bed flux defined as positive for

resuspension. For fine sand, SDBLV=0.58E-6 in units such that BELV is in meters, DT is in seconds, and

SEDF is in (m/s)*(mg/liter).

Card Image 43

C43 TOXIC CONTAMINANT INITIAL CONDITIONS AND PARAMETERS

C USER MAY CHANGE UNITS OF WATER AND SED PHASE TOX CONCENTRATION

C AND PARTITION COEFFICIENT ON C44 - C46 BUT CONSISTENT UNITS MUST

C MUST BE USED FOR MEANINGFUL RESULTS

C DATA REQUIRED EVEN IT ISTRAN(5) IS 0

C

C NTOXN: TOXIC CONTAMINANT NUMBER ID (1 LINE OF DATA BY DEFAULT)

C ITXINT: 0 FOR SPATIALLY CONSTANT WATER COL AND BED INITIAL CONDITIONS

C 1 FOR SPATIALLY VARIABLE WATER COLUMN INITIAL CONDITIONS

C 2 FOR SPATIALLY VARIABLE BED INITIAL CONDITIONS

C 3 FOR SPATIALLY VARIABLE WATER COL AND BED INITIAL CONDITION

C ITXBDUT: SET TO 0 FOR CONST INITIAL BED GIVEN BY TOTAL TOX (ug/liter)

C SET TO 1 FOR CONST INITIAL BED GIVEN BY

C SORBED MASS TOX/MASS SED(mg/kg)

C TOXINTW: INIT WATER COLUMN TOT TOXIC VARIABLE CONCENTRATION (ug/liter)

C TOXINTB: INIT SED BED TOXIC CONC SEE ITXBDUT

C RKTOXW: FIRST ORDER WATER COL DECAY RATE FOR TOX VARIABLE IN 1/SEC

C TKTOXW: REF TEMP FOR 1ST ORDER WATER COL DECAY DEG C

C RKTOXB: FIRST ORDER SED BED DECAY RATE FOR TOX VARIABLE IN 1/SEC

C TKTOXB: REF TEMP FOR 1ST ORDER SED BED DECAY DEG C

C ck blw kevin uses 6.0

C43 NTOXN ITXINT ITXBDUT TOXINTW TOXINTB RKTOXW TKTOXW RKTOXB TRTOXB COMMENTS

1 0 0 1. 1. 0. 0. 0. 0. DUMMY

Toxic contaminant parameters are specified here.

Page 71: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-35

Card Image 44

C44 ADDITIONAL TOXIC CONTAMINANT PARAMETERS

C DATA REQUIRED EVEN IT ISTRAN(5) IS 0

C

C NTOXN: TOXIC CONTAMINANT NUMBER ID (1 LINE OF DATA BY DEFAULT)

C VOLTOX: WATER SURFACE VOLITALIZATION RATE MULTIPLIER (0. OR 1.)

C RMOLTX: MOLECULAR WEIGHT FOR DETERMINING VOLATILIZATION RATE

C RKTOXP: REFERENCE PHOTOLOYSIS DECAY RATE 1/SEC

C SKTOXP: REFERENCE SOLAR RADIATION FOR PHOTOLOYSIS (WATTS/M**2)

C DIFTOX: DIFFUSION COEFF FOR TOXICANT IN SED BED PORE WATER (M**2/S)

C

C44 NTOXN VOLTOX RMOLTX RKTOXP SKTOXP DIFTOX COMMENTS

1 0. 0. 0. 0. 1.E-9 DUMMY

Additional toxic contaminant parameters are specified here.

Card Image 45

C45 TOXIC CONTAMINANT SEDIMENT INTERACTION PARAMETERS

C 2 LINES OF DATA REQUIRED EVEN IT ISTRAN(5) IS 0

C

C NTOXN: TOXIC CONTAMINANT NUMBER ID. NSEDC+NSEDN LINES OF DATA

C FOR EACH TOXIC CONTAMINANT (DEFAULT = 2)

C NSEDN/NSNDN: FIRST NSED LINES COHESIVE, NEXT NSND LINES NON-COHESIVE.

C REPEATED FOR EACH CONTAMINANT

C ITXPARW: EQUAL 1 FOR SOLIDS DEPENDENT PARTITIONING (WC) GIVEN BY

C TOXPAR=PARO*(CSED**CONPAR)

C TOXPARW: WATER COLUMN PARO (ITXPARW=1) OR EQUIL TOX CON PART COEFF BETWEEN

C EACH TOXIC IN WATER AND ASSOCIATED SEDIMENT PHASES (liters/mg)

C CONPARW: EXPONENT IN TOXPAR=PARO*(CSED**CONPARW) IF ITXPARW=1

C ITXPARB: EQUAL 1 FOR SOLIDS DEPENDENT PARTITIONING (BED)

C TOXPARB: SEDIMENT BED PARO (ITXPARB=1) OR EQUIL TOX CON PART COEFF BETWEEN

C EACH TOXIC IN WATER AND ASSOCIATED SEDIMENT PHASES (liters/mg)

C CONPARB: EXPONENT IN TOXPAR=PARO*(CSED**CONPARB) IF ITXPARB=1

C 1 0.8770 -0.943 0.025

C45 NTOXN NSEDN ITXPARW TOXPARW CONPARW ITXPARB TOXPARB CONPARB COMMENTS

1 1 0 1. 0. 0 1. 0. DUMMY FOR NSED=1

1 2 0 1. 0. 0 1. 0. DUMMY FOR NSND=1

Toxic contaminant sediment interaction parameters are specified here.

Card Image 46

C46 BUOYANCY, TEMPERATURE, DYE DATA AND CONCENTRATION BC DATA

C

C BSC: BUOYANCY INFLUENCE COEFFICIENT 0 TO 1, BSC=1. FOR REAL PHYSICS

Page 72: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-36

C TEMO: REFERENCE, INITIAL, EQUILIBRUM AND/OR ISOTHERMAL TEMP IN DEG C

C HEQT: EQUILIBRUM TEMPERTURE TRANSFER COEFFICIENT M/SEC

C RKDYE: FIRST ORDER DECAY RATE FOR DYE VARIABLE IN 1/SEC

C NCBS: NUMBER OF CONCENTRATION BOUNDARY CONDITIONS ON SOUTH OPEN

C BOUNDARIES

C NCBW: NUMBER OF CONCENTRATION BOUNDARY CONDITIONS ON WEST OPEN

C BOUNDARIES

C NCBE: NUMBER OF CONCENTRATION BOUNDARY CONDITIONS ON EAST OPEN

C BOUNDARIES

C NCBN: NUMBER OF CONCENTRATION BOUNDARY CONDITIONS ON NORTH OPEN

C BOUNDARIES

C

C46 BSC TEMO HEQT RKDYE NCBS NCBW NCBE NCBN

1.0 25.0 0.E-6 0. 0 0 0 0

This card image is used to specify scalar constituent concentration informative on open boundaries as well

as to provide additional scalar variable information. The parameter BSC controls the buoyancy forcing in

the momentum equations. The temperature TEMO (in degrees C) is used as the initial temperature for cold

starts or the isothermal temperature. When the temperature transport option ISTOPT on card image 6 is

specified as 3, TEMO is the time invariant equilibrium temperature. The parameter HEQT is the

equilibrium surface heat transfer coefficient, in square meters per second, and is used only when the

temperature option ISTOPT=3 on card image 6. The parameter RKDYE is a first order decay rate of the

dye tracer variable and must have units of 1/seconds. The last four parameters (NCBS, NCBW, NCBE,

and NCBN) specify the number of concentration open boundary cells on the South, West, East, and North

computational grid direction faces, and should be identical to the values of the first four parameters on card

image 16.

Card Image 47

C47 LOCATION OF CONC BC’S ON SOUTH BOUNDARIES

C

C ICBS: I CELL INDEX

C JCBS: J CELL INDEX

C NTSCRS: NUMBER OF TIME STEPS TO RECOVER SPECIFIED VALUES ON CHANGE

C TO INFLOW FROM OUTFLOW

C NSSERS: SOUTH BOUNDARY CELL SALINITY TIME SERIES ID NUMBER

C NTSERS: SOUTH BOUNDARY CELL TEMPERATURE TIME SERIES ID NUMBER

C NDSERS: SOUTH BOUNDARY CELL DYE CONC TIME SERIES ID NUMBER

C NSFSERS: SOUTH BOUNDARY CELL SHELLFISH LARVAE TIME SERIES ID NUMBER

C NTXSERS: SOUTH BOUNDARY CELL TOXIC CONTAMINANT CONC TIME SERIES ID NUM.

C NSDSERS: SOUTH BOUNDARY CELL COHESIVE SED CONC TIME SERIES ID NUMBER

C NSNSERS: SOUTH BOUNDARY CELL NONCOHESIVE SED CONC TIME SERIES ID NUMBER

C

C47 IBBS JBBS NTSCRS NSSERS NTSERS NDSERS NSFSERS NTXSERS NSDSERS NSNSERS

Page 73: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-37

See description following card image 66.

Card Image 48

C48 TIME CONSTANT BOTTOM CONC ON SOUTH CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING BOTTOM LAYER SALINITY

C TEM: ULTIMATE INFLOWING BOTTOM LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING BOTTOM LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING BOTTOM LAYER SHELLFISH LARVAE CONCENTRAION

C TOX: NTOX ULTIMATE INFLOWING BOTTOM LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C48 SAL TEM DYE SFL TOX1

See description following card image 66.

Card Image 49

C49 TIME CONSTANT BOTTOM CONC ON SOUTH CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING BOTTOM LAYER COHESIVE SEDIMENT

C CONCENTRAIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING BOTTOM LAYER NONCOHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C49 SED1 SND1 SND2 SND3

See description following card image 66.

Card Image 50

C50 TIME CONSTANT SURFACE CONC ON SOUTH CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING SURFACE LAYER SALINITY

C TEM: ULTIMATE INFLOWING SURFACE LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING SURFACE LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING SURFACE LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING SURFACE LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

Page 74: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-38

C

C50 SAL TEM DYE SFL TOX1

See description following card image 66.

Card Image 51

C51 TIME CONSTANT SURFACE CONC ON SOUTH CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING SURFAC LAYER COHESIVE SEDIMENT

C CONCENTRAIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING SURFAC LAYER NONCOHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C51 SED1 SND1 SND2 SND3

See description following card image 66.

Card Image 52

C52 LOCATION OF CONC BC’S ON WEST BOUNDARIES AND SERIES IDENTIFIERS

C

C ICBW: I CELL INDEX

C JCBW: J CELL INDEX

C NTSCRW: NUMBER OF TIME STEPS TO RECOVER SPECIFIED VALUES ON CHANGE

C TO INFLOW FROM OUTFLOW

C NSSERW: WEST BOUNDARY CELL SALINITY TIME SERIES ID NUMBER

C NTSERW: WEST BOUNDARY CELL TEMPERATURE TIME SERIES ID NUMBER

C NDSERW: WEST BOUNDARY CELL DYE CONC TIME SERIES ID NUMBER

C NSFSERW: WEST BOUNDARY CELL SHELLFISH LARVAE TIME SERIES ID NUMBER

C NTXSERW: WEST BOUNDARY CELL TOXIC CONTAMINANT CONC TIME SERIES ID NUM.

C NSDSERW: WEST BOUNDARY CELL COHESIVE SED CONC TIME SERIES ID NUMBER

C NSNSERW: WEST BOUNDARY CELL NON-COHESIVE SED CONC TIME SERIES ID NUMBER

C

C52 IBBW JBBW NTSCRW NSSERW NTSERW NDSERW NSFSERW NTXSERW NSDSERW NSNSERW

See description following card image 66.

Card Image 53

Page 75: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-39

C53 TIME CONSTANT BOTTOM CONC ON WEST CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING BOTTOM LAYER SALINITY

C TEM: ULTIMATE INFLOWING BOTTOM LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING BOTTOM LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING BOTTOM LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING BOTTOM LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C53 SAL TEM DYE SFL TOX1

See description following card image 66.

Card Image 54

C54 TIME CONSTANT BOTTOM CONC ON WEST CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING BOTTOM LAYER COHESIVE SEDIMENT

C CONCENTRAIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING BOTTOM LAYER NONCOHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C54 SED1 SND1

See description following card image 66.

Card Image 55

C55 TIME CONSTANT SURFACE CONC ON WEST CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING SURFACE LAYER SALINITY

C TEM: ULTIMATE INFLOWING SURFACE LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING SURFACE LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING SURFACE LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING SURFACE LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C55 SAL TEM DYE SFL TOX1

See description following card image 66.

Page 76: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-40

Card Image 56

C56 TIME CONSTANT SURFACE CONC ON WEST CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING SURFACE LAYER COHESIVE SEDIMENT

C CONCENTRATIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING SURFACE LAYER NON-COHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C56 SED1 SND1

See description following card image 66.

Card Image 57

C57 LOCATION OF CONC BC’S ON EAST BOUNDARIES AND SERIES IDENTIFIERS

C

C ICBE: I CELL INDEX

C JCBE: J CELL INDEX

C NTSCRE: NUMBER OF TIME STEPS TO RECOVER SPECIFIED VALUES ON CHANGE

C TO INFLOW FROM OUTFLOW

C NSSERE: EAST BOUNDARY CELL SALINITY TIME SERIES ID NUMBER

C NTSERE: EAST BOUNDARY CELL TEMPERATURE TIME SERIES ID NUMBER

C NDSERE: EAST BOUNDARY CELL DYE CONC TIME SERIES ID NUMBER

C NSFSERE: EAST BOUNDARY CELL SHELLFISH LARVAE TIME SERIES ID NUMBER

C NTXSERE: EAST BOUNDARY CELL TOXIC CONTAMINANT CONC TIME SERIES ID NUM.

C NSDSERE: EAST BOUNDARY CELL COHESIVE SED CONC TIME SERIES ID NUMBER

C NSNSERE: EAST BOUNDARY CELL NON-COHESIVE SED CONC TIME SERIES ID NUMBER

C

C57 IBBE JBBE NTSCRE NSSERE NTSERE NDSERE NSFSERE NTXSERE NSDSERE NSNSERE

See description following card image 66.

Card Image 58

C58 TIME CONSTANT BOTTOM CONC ON EAST CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING BOTTOM LAYER SALINITY

C TEM: ULTIMATE INFLOWING BOTTOM LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING BOTTOM LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING BOTTOM LAYER SHELLFISH LARVAE CONCENTRTAION

C TOX: NTOX ULTIMATE INFLOWING BOTTOM LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C58 SAL TEM DYE SFL TOX1

Page 77: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-41

See description following card image 66.

Card Image 59

C59 TIME CONSTANT BOTTOM CONC ON EAST CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING BOTTOM LAYER COHESIVE SEDIMENT

C CONCENTRATIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING BOTTOM LAYER NON-COHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C59 SED1 SND1

See description following card image 66.

Card Image 60

C60 TIME CONSTANT SURFACE CONC ON EAST CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING SURFACE LAYER SALINITY

C TEM: ULTIMATE INFLOWING SURFACE LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING SURFACE LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING SURFACE LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING SURFACE LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C60 SAL TEM DYE SFL TOX1

See description following card image 66.

Card Image 61

C61 TIME CONSTANT SURFACE CONC ON EAST CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING SURFACE LAYER COHESIVE SEDIMENT

C CONCENTRATIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING SURFACE LAYER NON-COHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C61 SED1 SND1

Page 78: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-42

See description following card image 66.

Card Image 62

C62 LOCATION OF CONC BC’S ON NORTH BOUNDARIES AND SERIES IDENTIFIERS

C

C ICBN: I CELL INDEX

C JCBN: J CELL INDEX

C NTSCRN: NUMBER OF TIME STEPS TO RECOVER SPECIFIED VALUES ON CHANGE

C TO INFLOW FROM OUTFLOW

C NSSERN: NORTH BOUNDARY CELL SALINITY TIME SERIES ID NUMBER

C NTSERN: NORTH BOUNDARY CELL TEMPERATURE TIME SERIES ID NUMBER

C NDSERN: NORTH BOUNDARY CELL DYE CONC TIME SERIES ID NUMBER

C NSFSERN: NORTH BOUNDARY CELL SHELLFISH LARVAE TIME SERIES ID NUMBER

C NTXSERN: NORTH BOUNDARY CELL TOXIC CONTAMINANT CONC TIME SERIES ID NUM.

C NSDSERN: NORTH BOUNDARY CELL COHESIVE SED CONC TIME SERIES ID NUMBER

C NSNSERN: NORTH BOUNDARY CELL NON-COHESIVE SED CONC TIME SERIES ID NUMBER

C

C62 IBBN JBBN NTSCRN NSSERN NTSERN NDSERN NSFSERN NTXSERN NSDSERN NSNSERN

See description following card image 66.

Card Image 63

C63 TIME CONSTANT BOTTOM CONC ON NORTH CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING BOTTOM LAYER SALINITY

C TEM: ULTIMATE INFLOWING BOTTOM LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING BOTTOM LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING BOTTOM LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING BOTTOM LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C63 SAL TEM DYE SFL TOX1-20

See description following card image 66.

Card Image 64

C64 TIME CONSTANT BOTTOM CONC ON NORTH CONC BOUNDARIES

C

Page 79: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-43

C SED: NSED ULTIMATE INFLOWING BOTTOM LAYER COHESIVE SEDIMENT

C CONCENTRATIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING BOTTOM LAYER NON-COHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C64 SED1 SED2 SND1 SND2 SND3

See description following card image 66.

Card Image 65

C65 TIME CONSTANT SURFACE CONC ON NORTH CONC BOUNDARIES

C

C SAL: ULTIMATE INFLOWING SURFACE LAYER SALINITY

C TEM: ULTIMATE INFLOWING SURFACE LAYER TEMPERATURE

C DYE: ULTIMATE INFLOWING SURFACE LAYER DYE CONCENTRATION

C SFL: ULTIMATE INFLOWING SURFACE LAYER SHELLFISH LARVAE CONCENTRATION

C TOX: NTOX ULTIMATE INFLOWING SURFACE LAYER TOXIC CONTAMINANT

C CONCENTRATIONS NTOX VALUES TOX(N), N=1,NTOX

C

C65 SAL TEM DYE SFL TOX1-20

See description following card image 66.

Card Image 66

C66 TIME CONSTANT SURFACE CONC ON NORTH CONC BOUNDARIES

C

C SED: NSED ULTIMATE INFLOWING SURFACE LAYER COHESIVE SEDIMENT

C CONCENTRATIONS FIRST NSED VALUES SED(N), N=1,NSND

C SND: NSND ULTIMATE INFLOWING SURFACE LAYER NON-COHESIVE SEDIMENT

C CONCENTRATIONS LAST NSND VALUES SND(N), N=1,NSND

C

C66 SED1 SED2 SND1 SND2 SND3

Card images 47 through 66 specify scalar inflowing concentrations on South, West, East, and North open

boundaries. The open boundary condition for salinity, temperature and other transported constituents is

based on the specification of inflowing values. The inflowing values may be specified as depth dependent

and either time constant or time variable, if concentration time series are available at open boundaries.

Outflowing values are calculated using upwinded values immediately inside the open boundary. When the

Page 80: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-44

flow at the open boundary changes from outflow to inflow, the model provides for a linear interpolation of

inflowing concentration, over a user specified number of timesteps, (NTSCRx on card images 47, 52, 57,

and 62) between the last outflowing value and the ultimate inflowing value of concentration, which allows

for a smooth transition of concentration values at the open boundary. The ultimate inflowing concentration

is the sum of a time constant value and a time series specified inflowing concentration value (either of which

may be zero). Card images 47, 52, 57, and 62 define the location of open boundary cells by the indices

ICBx and JCBx. The next parameter on these four card images, NTSCRx, defines the number of time

steps to recover the specified boundary concentration value after the change from outflow to inflow. For

tidal flows, NTSCRx might typically be the number of time steps corresponding to one hour. Alternately

NTSCRx can be adjusted during model calibration. The remaining five parameters on these four cards

specify scalar concentration time series identifier numbers if the inflow concentrations are to be specified

by time series. The time series specification of inflowing concentrations allows a unique concentration in

each layer of the boundary cell. When the open boundary inflow concentrations are specified by constant

values, bottom layer values on the four computational domain face directions are specified on card images

48-49, 53-54, 58-59, and 63-64, while surface layer values are specified on card images 50-51, 56-57,

60-61, and 65-66. If the number of layers exceeds two, values for the interior layers are linearly

interpolated between the bottom and surface layer values.

Card Image 66a

C66a CONCENTRATION DATA ASSIMILATION

C

C NLCDA: NUMBER OF HORIZONTAL LOCATIONS FOR DATA ASSIMILATION

C TSCDA: WEIGHTING FACTOR, 0.-1., 1. = FULL ASSIMILATION

C ISCDA: 1 FOR CONCENTRATION DATA ASSIMILATION (NC=1,7 VALUES)

C

C66a NLCDA TSCDA ISCDA

0 0.5 0 0 0 0 0 0 0

Concentration data assimilation parameters are specified here.

Card Image 66b

C66b CONCENTRATION DATA ASSIMILATION

C

C ICDA: 1 FOR CONCENTRATION DATA ASSIMILATION

C JCDA: NUMBER OF HORIZONTAL LOCATIONS FOR DATA ASSIMILATION

Page 81: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-45

C NS: WEIGHTING FACTOR, 0.-1., 1. = FULL ASSIMILATION

C

C66b ICDA JCDA NS NT ND NSF NTX NSD NSN

Concentration data assimilation parameters are specified here.

Card Image 67 [not active in EFDC-Hydro]

C67 DRIFTER DATA (FIRST 4 PARAMETER FOR SUB DRIFER, SECOND 6 FOR SUB LAGRES)

C

C ISPD: 1 TO ACTIVE SIMULTANEOUS RELEASE AND LAGRANGIAN TRANSPORT OF

C NEUTRALLY BUOYANT PARTICLE DRIFTERS AT LOCATIONS INPUT ON C44

C NPD: NUMBER OF PARTICLE DIRIFERS

C NPDRT: TIME STEP AT WHICH PARTICLES ARE RELEASED

C NWPD: NUMBER OF TIME STEPS BETWEEN WRITING TO TRACKING FILE

C drifter.out

C ISLRPD: 1 TO ACTIVATE CALCULATION OF LAGRANGIAN MEAN VELOCITY OVER TIME

C INTERVAL TREF AND SPATIAL INTERVAL ILRPD1<I<ILRPD2,

C JLRPD1<J<JLRPD2, 1<K<KC, WITH MLRPDRT RELEASES. ANY AVERGE

C OVER ALL RELEASE TIMES IS ALSO CALCULATED

C 2 SAME BUT USES A HIGER ORDER TRAJECTORY INTEGRATION

C ILRPD1 WEST BOUNDARY OF REGION

C ILRPD2 EAST BOUNDARY OF REGION

C JLRPD1 NORTH BOUNDARY OF REGION

C JLRPD2 SOUTH BOUNDARY OF REGION

C MLRPDRT NUMBER OF RELEASE TIMES

C IPLRPD 1,2,3 WRITE FILES TO PLOT ALL,EVEN,ODD HORIZ LAG VEL VECTORS

C

C67 ISPD NPD NPDRT NWPD ISLRPD ILRPD1 ILRPD2 JLRPD1 JLRPD2 MLRPDRT IPLRPD

0 0 0 12 0 6 47 6 17 12 1

This card image activates and controls two types of Lagrangian particle trajectory calculations, which may

be activated simultaneously. The first Lagrangian trajectory calculation, activated by setting ISPD=1,

releases NPD particles at time step NPDRT. The released particles are then tracked for the remainder

of the model simulation, with the nearest cell center positions (I,J,K) written to the file drifter.out every

NWPD time steps. The initial position of the NPD particles is specified on card image 68, shown below.

The second Lagrangian trajectory calculation, activated by ISLRD greater than zero, releases particles at

active water cell centers for all vertical layers, in the region of the computational grid bound in the x or I

direction by (ILRD1 .LE. I .LE. ILRD2), and in the y or J direction by (JLRD1 .LE. J .LE. JLRD2).

MLRPDRT releases, evenly spaced in the reference time period (card image 8), occur during the next to

last reference time period of the model simulation (i.e., NTC .GE. 2). Each group of particles is tracked

for one reference time period and their net vector displacements from their release positions are

Page 82: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-46

determined. The net vector displacements are then divided by the reference time period to give Lagrangian

mean velocity vectors (Hamrick, 1994a), which are written to the file lmvvech.out. The average

Lagrangian mean of the MLRPDRT release times is also calculated and written to the file almvvech.out.

For ISLRD equal to 1 or 2, the Lagrangian mean velocity vectors are associated with their release positions

for plotting. For ISLRD equal to 3 or 4, the Lagrangian mean velocity vectors are associated with the

mean position of the corresponding particle during its trajectory. To assure a uniform distribution of vectors

for plotting, the trajectory centroid located vectors are interpolated back to the cell centers and the results

written to the file lmvech.out for the MLRPDRT releases with the average of the releases written to the

file almvech.out. Values of 1 or 3 for ISLRD implement first order explicit forward Euler integrator for

the trajectory calculation, while values of 2 and 4 implement a second order implicit trapezoidal integrator

(Bennett and Clites, 1987) incurring increased computational time. If the trajectory calculation is executed

over the entire grid for 10 to 12 release times, the computational effort for the last two time cycles is

increased by approximately 20 to 40 percent.

Card Image 68 [not active in EFDC-Hydro]

C68 INITIAL DRIFTER POSITIONS (FOR USE WITH SUB DRIFTER)

C

C RI: I CELL INDEX IN WHICH PARTICLE IS RELEASED IN

C RJ: J CELL INDEX IN WHICH PARTICLE IS RELEASED IN

C RK: K CELL INDEX IN WHICH PARTICLE IS RELEASED IN

C

C68 RI RJ RK

Initial drifter I, J, and K indices are specified on this card for NPD locations.

Card Image 69

C69 CONSTANTS FOR CARTESION GRID CELL CENTER LONGITUDE AND LATITUDE

C

C CDLON1: 6 CONSTANTS TO GIVE CELL CENTER LAT AND LON OR OTHER

C CDLON2: COORDINATES FOR CARTESIAN GRIDS USING THE FORMULAS

C CDLON3: DLON(L)=CDLON1+(CDLON2*FLOAT(I)+CDLON3)/60.

C CDLAT1: DLAT(L)=CDLAT1+(CDLAT2*FLOAT(J)+CDLAT3)/60.

C CDLAT2:

C CDLAT3:

C

C69 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

0.0 0.0 0.0 0.0 0.0 0.0

Page 83: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-47

This card image allows cell center coordinates for graphics output files to be generated for Cartesian grids

where the grid, bathymetric and roughness are specified in the cell.inp and depth.inp files.

Card Image 70 [not active in EFDC-Hydro]

C70 CONTROLS FOR WRITING ASCII OR BINARY DUMP FILES

C

C ISDUMP: GREATER THAN 0 TO ACTIVATE

C 1 SCALED ASCII INTEGER (0<VAL<65535)

C 2 SCALED 16BIT BINARY INTEGER (0<VAL<65535) OR (-32768<VAL<32767)

C 3 UNSCALED ASCII FLOATING POINT

C 4 UNSCALED BINARY FLOATING POINT

C ISADMP: GREATER THAN 0 TO APPEND EXISTING DUMP FILES

C NSDUMP: NUMBER OF TIME STEPS BETWEEN DUMPS

C TSDUMP: STARTING TIME FOR DUMPS (NO DUMPS BEFORE THIS TIME)

C TEDUMP: ENDING TIME FOR DUMPS (NO DUMPS AFTER THIS TIME)

C ISDMPP: GREATER THAN 0 FOR WATER SURFACE ELEVATION DUMP

C ISDMPU: GREATER THAN 0 FOR HORIZONTAL VELOCITY DUMP

C ISDMPW: GREATER THAN 0 FOR VERTICAL VELOCITY DUMP

C ISDMPT: GREATER THAN 0 FOR TRANSPORTED VARIABLE DUMPS

C IADJDMP: 0 FOR SCALED BINARY INTEGERS (0<VAL<65535)

C -32768 FOR SCALED BINARY INTEGERS (-32768<VAL<32767)

C

C70 ISDUMP ISADMP NSDUMP TSDUMP TEDUMP ISDMPP ISDMPU ISDMPW ISDMPT IADJDMP

0 0 864 0. 731. 0 0 0 1 -32768

Controls for writing ASCII or binary dump files are specified here.

Card Image 71 [not active in EFDC-Hydro]

C71 CONTROLS FOR HORIZONTAL PLANE SCALAR FIELD CONTOURING

C

C ISSPH: 1 TO WRITE FILE FOR SCALAR FIELD CONTOURING IN HORIZONTAL PLANE

C NPSPH: NUMBER OF WRITES PER REFERENCE TIME PERIOD

C ISRSPH: 1 TO WRITE FILE FOR RESIDUAL SALINITY PLOTTING IN

C HORIZONTAL

C ISPHXY: 0 DOES NOT WRITE I,J,X,Y IN ***cnh.out and r***cnh.out FILES

C 1 WRITES I,J ONLY IN ***cnh.out and r***cnh.out FILES

C 2 WRITES I,J,X,Y IN ***cnh.out and r***cnh.out FILES

C DATA LINE REPEATS 7 TIMES FOR SAL, TEM, DYE, SFL, TOX, SED, SND

C

C71 ISSPH NPSPH ISRSPH ISPHXY

0 12 0 1 !SAL

0 6 0 1 !TEM

0 12 0 1 !DYE

0 6 0 1 !SFL

Page 84: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-48

0 6 0 1 !TOX

0 6 0 1 !SED

0 6 0 1 !SND

This card image activates the creation of output files xxxconh.out and rxxxconh.out (where xxx is sal, tem,

dye, sfl, sed, snd, or tox) for horizontal plane contour plotting of surface and bottom layer scalar field

distributions. For sediment (sed and snd) and shellfish larvae (sfl) bottom bed concentrations are also

output. The switch ISSPH generated the non-r-prefixed files for transport scalar fields at NPSPH times

during the last time cycle of the model run. The switch ISRSPH activates the output of time averaged or

residual fields representing an average over NTSMMT time steps (see card image 7). If ISSSMMT=0

on card image 4, residual fields are written for each averaging period in the model run, while a value of

ISSSMMT=1 results in writing the results of only the last averaging period.

Card Image 72 [not active in EFDC-Hydro]

C72 CONTROLS FOR HORIZONTAL SURFACE ELEVATION OR PRESSURE CONTOURING

C

C ISPPH: 1 TO WRITE FILE FOR SURFACE ELEVATION OR PRESSURE CONTOURING

C IN HORIZONTAL PLANE

C NPPPH: NUMBER OF WRITES PER REFERENCE TIME PERIOD

C ISRPPH: 1 TO WRITE FILE FOR RESIDUAL SURFACE ELEVATION CONTOURNG IN

C HORIZONTAL PLANE

C

C72 ISPPH NPPPH ISRPPH

0 6 0

This card image controls output for contour plotting instantaneous and residual or averaged water surface

elevation fields to files surfconh.out and rsurfconh.out. The control switches have similar definitions as

those for card image 73.

Card Image 73 [not active in EFDC-Hydro]

C73 CONTROLS FOR HORIZONTAL PLANE VELOCITY VECTOR PLOTTING

C

C ISVPH: 1 TO WRITE FILE FOR VELOCITY PLOTTING IN HORIZONTAL PLANE

C NPVPH: NUMBER OF WRITES PER REFERENCE TIME PERIOD

C ISRVPH: 1 TO WRITE FILE FOR RESIDUAL VELOCITY PLOTTING IN

C HORIZONTAL PLANE

C

C73 ISVPH NPVPH ISRVPH

0 12 0

Page 85: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-49

This card image activates the creation of the output file velvech.out, containing instantaneous surface and

bottom horizontal velocity vectors for ISVPH = 1, 2, or 3 at NPVPH times during the last reference time

period for vector plotting. The switch ISRVPH = 1, 2, or 3 activates the creation of three files,

xvelconh.out (where x is r, p, or m) containing surface and bottom layer residual velocity vectors

corresponding to the Eulerian mean transport velocity (r prefix), the nondivergent component of the Stokes’

drift (p prefix) and the first order Lagrangian mean or mean mass transport velocity (m prefix) for horizontal

plane vector plotting. If ISSSMMT=0 on card image 4, residual fields are written for each averaging

period in the model run, while a value of 1 results in writing the results of only the last averaging period.

The choice of 1, 2, or 3 for ISVPH and ISRVPH writes all cell vectors, (I+J) is even vectors, or (I+J) is

odd vectors. For grids with a large number of cells, the 2 or 3 options often result plots that are less dense

and more pleasing to the eye.

Card Image 74 [not active in EFDC-Hydro]

C74 CONTROLS FOR VERTICAL PLANE SCALAR FIELD CONTOURING

C

C ISECSPV: N AN INTEGER NUMBER OF VERTICAL SECTIONS (N.LE.9) TO WRITE

C N FILES FOR SCALAR FIELD CONTOURING

C NPSPV: NUMBER OF WRITES PER REFERENCE TIME PERIOD

C ISSPV: 1 TO ACTIVATE INSTANTANEOUS SCALAR FIELDS

C ISRSPV: 1 TO ACTIVATE FOR RESIDUAL SCALAR FIELDS

C ISHPLTV: 1 FOR VERTICAL PLANE PLOTTING FOR MSL DATUMS, ZERO OTHERWISE

C DATA LINE REPEATS 7 TIMES FOR SAL, TEM, DYE, SFL, TOX, SED, SND

C ISECSPV IS DETERMINED FOR ALL 7 VARIABLES BY VALUE ON FIRST DATA LINE

C

C74 ISECSPV NPSPV ISSPV ISRSPV ISHPLTV

1 6 0 0 1 !SAL

1 6 0 0 1 !TEM

1 6 0 0 1 !DYE

1 6 0 0 1 !SFL

1 6 0 0 1 !TOX

1 6 0 0 1 !SED

1 6 0 0 1 !SND

This card image activates output of information for vertical plane scalar field contouring for ISCESPV

vertical sections or transects. The switch ISSPV activates output of instantaneous values NPSPV times

during the last reference time period to the files xxxcnvN.out (xxx equals sal, tem, dye, sed, or sfl, and N

represents the section number currently limited to a maximum of 9). The switch ISRSPV activates output

of time-averaged or residual variables to similar r-prefixed files after each averaging period (ISSSMMT

Page 86: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-50

= 0) or only the last averaging period (ISSMMT = 1) with the time steps in the averaging period defined

by NTSMMT on card image 7. The last parameter configures the plotting information for tidal or other

datums. Additional information is specified on card images 75 and 76.

Card Image 75 [not active in EFDC-Hydro]

C75 MORE CONTROLS FOR VERTICAL PLANE SCALAR FIELD CONTOURING

C

C ISECSPV: SECTION NUMBER

C NIJSPV: NUMBER OF CELLS OR I,J PAIRS IN SECTION

C SEC ID: CHARACTER FORMAT SECTION TITLE

C

C75 ISECSPV NIJSPV SEC ID

0 0 ’0’

This card image provides information to define the vertical plane transects. A line of data is required for

each vertical section. The maximum number of vertical sections is currently limited to 9. The first

parameter identifies the section number, the second parameter specifies the number of cells comprising the

section, and the last character string provides an identifier which is also written to the output files.

Card Image 76 [not active in EFDC-Hydro]

C76 I,J LOCATIONS FOR VERTICAL PLANE SCALAR FIELD CONTOURING

C

C ISECSPV: SECTION NUMBER

C ISPV: I CELL

C JSPV: J CELL

C

C76 ISECSPV ISPV JSPV

This card image defines the sequence of cells comprising the section, with the first parameter being for user

identification. The other two parameters define the section sequenced by I and J cell indices. It is noted

that cells in the sequence do not need to be adjacent, nor do they need to follow a straight line. For

example, they may represent instrument locations, longitudinal moving survey locations, or interesting cross

sections of the flow field or a typical longitudinal section up an estuary.

Page 87: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-51

Card Image 77 [not active in EFDC-Hydro]

C77 CONTROLS FOR VERTICAL PLANE VELOCITY VECTOR PLOTTING

C

C ISECVPV: N AN INTEGER NUMBER (N.LE.9) OF VERTICAL SECTIONS

C TO WRITE N FILES FOR VELOCITY PLOTTING

C NPVPV: NUMBER OF WRITES PER REFERENCE TIME PERIOD

C ISVPV: 1 TO ACTIVATE INSTANTANEOUS VELOCITY

C ISRSPV: 1 TO ACTIVATE FOR RESIDUAL VELOCITY

C

C77 ISECVPV NPVPV ISVPV ISRSPV

0 6 0 0

This card image activates output of information for three types of vector plotting in ISECVPV (currently

limited to 9) vertical planes. The switch ISVPV activates output of instantaneous data at NPVPV times

during the reference time period, while ISRSPV activates output of time averaged or residual data after

each averaging period (ISSSMMT = 0), defined by NTSMMT on card image 7, or the last averaging

period (ISSSMMT = 1). The first class of output files provides data for plotting vectors tangential to the

vertical plane. Instantaneous data are written to the files velvcvN.out, while residual data are written to the

files rvelvcvN.out, pvelvcvN.out, mvelvcvN.out, lmvvcvN.out, and almvvcvN.out, where N indicates the

second number. The last two files are written only if ISLRD is not zero. The second class of output files

provides data for contour plotting the component of the horizontal velocity normal to the vertical planes.

Instantaneous data are written to the files velcnvN.out, while residual data are written to the files

rvelcnvN.out, pvelcnvN.out, mvelcnvN.out, lmvcnvN.out, and almvcnvN.out. The last two files are written

only if ISLRD is not zero. The final class of output files provides data for contour plotting the component

of the horizontal residual velocities tangential to the vertical plane. Time-averaged or residual data are

written to the files rvelcvtN.out, pvelcvtN.out, mvelcvtN.out, lmvcvtN.out, and almvcvtN.out, again with

the last two files written to as ISLRD is not zero.

Card Image 78 [not active in EFDC-Hydro]

C78 MORE CONTROLS FOR VERTICAL PLANE VELOCITY VECTOR PLOTTING

C

C ISCEVPV: SECTION NUMBER

C NIJVPV: NUMBER IS CELLS OR I,J PAIRS IN SECTION

C ANGVPV: CCW POSITIVE ANGLE FROM EAST TO SECTION NORMAL

C SEC ID: CHARACTER FORMAT SECTION TITLE

C

C78 ISECVPV NIJVPV ANGVPV SEC ID

Page 88: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-52

This card image provides additional information to specify the vertical planes for plotting velocity vectors

and contours, with the first parameter identifying the section number and the second parameter specifying

the number of horizontal cells defining the section. The third parameter, ANGVPV defines the angle

counterclockwise from east to the section normal. For meaningful results, the sequence of cells defining

the vertical plane should approximate a straight line. For a section oriented at 45 degrees CC from east,

the normal angle could be defined as 135 degrees or -45 degrees. For these two choices, the definitions

of the positive normal and tangential directions are reversed. The remaining character parameter defines

a title to be written on the output file headers.

Card Image 79 [not active in EFDC-Hydro]

C79 CONTROLS FOR VERTICAL PLANE VELOCITY PLOTTING

C

C ISECVPV: SECTION NUMBER (REFERENCE USE HERE)

C IVPV: I CELL INDEX

C JVPV: J CELL INDEX

C

C79 ISECVPV IVPV JVPV

This card image specifies the I and J indices defining the vertical plane sections selected by the user for

plotting.

Card Image 80 [not active in EFDC-Hydro]

C80 CONTROLS FOR 3D FIELD OUTPUT

C

C IS3DO: 1 TO WRITE TO 3D ASCI INTEGER FORMAT FILES, JS3Dvar.LE.2 SEE

C 1 TO WRITE TO 3D ASCI FLOAT POINT FORMAT FILES, JS3Dvar.EQ.3 C57

C 2 TO WRITE TO 3D CHARACTER ARRAY FORMAT FILES (NOT ACTIVE)

C 3 TO WRITE TO 3D HDF IMAGE FORMAT FILES (NOT ACTIVE)

C 4 TO WRITE TO 3D HDF FLOATING POINT FORMAT FILES (NOT ACTIVE)

C ISR3DO: SAME AS IS3DO EXCEPT FOR RESIDUAL VARIABLES

C NP3DO: NUMBER OF WRITES PER LAST REF TIME PERIOD FOR INST VARIABLES

C KPC: NUMBER OF UNSTRETCHED PHYSICAL VERTICAL LAYERS

C NWGG: IF NWGG IS GREATER THAN ZERO, NWGG DEFINES THE NUMBER OF !2877

C WATER CELLS IN CARTESIAN 3D GRAPHICS GRID OVERLAY OF THE

C CURVILINEAR GRID. FOR NWGG>0 AND EFDC RUNS ON A CURVILINEAR

C GRID, I3DMI,I3DMA,J3DMI,J3DMA REFER TO CELL INDICES ON THE

C ON THE CARTESIAN GRAPHICS GRID OVERLAY DEFINED BY FILE

C gcell.inp. THE FILE gcell.inp IS NOT USED BY EFDC, BUT BY

Page 89: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-53

C THE COMPANION GRID GENERATION CODE GEFDC.F. INFORMATION

C DEFINING THE OVERLAY IS READ BY EFDC.F FROM THE FILE

C gcellmp.inp. IF NWGG EQUALS 0, I3DMI,I3DMA,J3DMI,J3DMA REFER

C TO INDICES ON THE EFDC GRID DEFINED BY cell.inp.

C ACTIVATION OF THE REWRITE OPTION I3DRW=1 WRITES TO THE FULL

C GRID DEFINED BY cell.inp AS IF cell.inp DEFINES A CARTESIAN

C GRID. IF NWGG EQ 0 AND THE EFDC COMP GRID IS CO, THE REWRITE

C OPTION IS NOT RECOMMENDED AND A POST PROCESSOR SHOULD BE USED

C TO TRANSFER THE SHORT FORM, I3DRW=0, OUTPUT TO AN APPROPRIATE

C FORMAT FOR VISUALIZATION. CONTACT DEVELOPER FOR MORE DETAILS

C I3DMI: MINIMUM OR BEGINNING I INDEX FOR 3D ARRAY OUTPUT

C I3DMA: MAXIMUM OR ENDING I INDEX FOR 3D ARRAY OUTPUT

C J3DMI: MINIMUM OR BEGINNING J INDEX FOR 3D ARRAY OUTPUT

C J3DMA: MAXIMUM OR ENDING J INDEX FOR 3D ARRAY OUTPUT

C I3DRW: 0 FILES WRITTEN FOR ACTIVE CO WATER CELLS ONLY

C 1 REWRITE FILES TO CORRECT ORIENTATION DEFINED BY gcell.inp

C AND gcellmp.inp FOR CO WITH NWGG.GT.O OR BY cell.inp IF THE

C COMPUTATIONAL GRID IS CARTESIAN AND NWGG.EQ.0

C SELVMAX: MAXIMUM SURFACE ELEVATION FOR UNSTRETCHING (ABOVE MAX SELV )

C BELVMIN: MINIMUM BOTTOM ELEVATION FOR UNSTRETCHING (BELOW MIN BELV)

C

C80 IS3DO ISR3DO NP3DO KPC NWGG I3DMI I3DMA J3DMI J3DMA I3DRW SELVMAX BELVMIN

0 0 0 1 0 1 42 1 132 0 15.0 -315.

This card image controls the output of three-dimensional data for graphics and visualization. The switches

IS3D and ISR3D activate output of instantaneous data at NP3D times during the last reference time period

and time averaged or residual data respectively. The residual data is output after each averaging period

(ISSSMMT = 0), defined by NTSMMT on card image 7, or only the last averaging period (ISSMMT =

1). However, the current configuration allows only 24 averaged output files, and if the number of averaging

periods for a run exceeds 24, only the last 24 periods are output. The only currently active option (IS3D=1

and ISR3D=1) writes output as eight bit ASCII integers (0 to 255). This choice was made for flexibility

and the minimization of disk storage. A post processor is available via ftp to translate the 8-bit ASCII

integer data to a number of alternate forms including 8 bit ASCII character data, 8-bit binary, and HDF

image or floating point format for compatibility with various visualization software. Although the 8-bit three-

dimensional integer array files may be very large, they can be efficiently compressed on most systems. On

UNIX systems, the UNIX .Z compressed version of the output files may be up to a factor 10 times smaller.

The output format is a three-dimensional array which can be conceptualized as a stack of KPC layers, of

equal thickness, which slice the model domain at constant elevation plane, progressing from above the

maximum water surface elevation to below the minimum bottom elevation. Each layer (or plane) comprises

a two-dimensional array with a true east-north alignment. The most rapid variation in the two-dimensional

Page 90: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-54

plane is from west to east analogous to the columns of a spread sheet. The sequence of columns is written

from north to south analogous to the rows of a spread sheet. Thus if a layer of the 3 matrix is viewed in

a spread sheet type form, it will have the proper geographic orientation. The KPC constant elevation slices

are generated by constant elevation interpolation equivalent to an unstretching of the model’s internal

stretched or sigma coordinate system. The upper bounding elevation of the first layer is specified by

elevation SELVMAX, which should be slightly larger than the maximum water surface elevation during the

entire data sampling period. The lower bounding elevation of the last layer is specified by BELVMIN,

which should correspond to an elevation slightly below the bottom of the deepest cell in the model domain.

The values SELVMAX and BELVMIN shown in the example data line above are referenced to a sea level

datum, hence the negative value of BELVMIN. For constant spacing Cartesian grids, the rectangular two-

dimensional arrays or matrices corresponding to the constant elevation layers directly coincide with the

model grid.

For curvilinear, or variable-spacing, Cartesian grids, a Cartesian graphics grid overlay, which can be

generated by the preprocessor code GEFDC, and is input into EFDC by the file gcellmap.inp and is used

to define the horizontal layers. The parameter NWGG defines the number of water cells in the Cartesian

graphic grid. If NWGG is zero, the computation grid is assumed to be Cartesian, while a nonzero value

indicates an overlay and activates the reading of the file gcellmap.inp. The input file gcellmap.inp includes

information from interpolating the curvilinear grid data to the Cartesian graphic grid. The extent of the

horizontal region over which three-dimensional data is to be extracted is defined by I3DMI<IG< I3DMA,

and J3DMI<JG< J3DMA, where IG and JG are east and north indices in the Cartesian graphics grid

overlay or the I and J indices of an equal spacing Cartesian computational grid. The parameter I3DRW

allows the three-dimensional output to be written in a temporary compressed form. If I3DRW is set to 1,

the output files are in the three-dimensional array structure described above. However, from many model

applications to irregular regions, a large percent of the three-dimensional output matrix represents dry land.

Setting I3DRW to zero results in output of information for active water cells in either the graphics overlay

or computation grid. This output can later be expanded into the aforementioned fully three-dimensional

format by a post processing utility, available via ftp.

Card Image 81 [not active in EFDC-Hydro]

C81 OUTPUT ACTIVATION AND SCALES FOR 3D FIELD OUTPUT

C

C VARIABLE: DUMMY VARIABLE ID (DO NOT CHANGE ORDER)

Page 91: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-55

C IS3(VARID): 1 TO ACTIVATE THIS VARIABLES

C JS3(VARID): 0 FOR NO SCALING OF THIS VARIABLE

C 1 FOR AUTO SCALING OF THIS VARIABLE OVER RANGE 0<VAL<255

C AUTO SCALES FOR EACH FRAME OUTPUT IN FILES out3d.dia AND

C rout3d.dia OUTPUT IN I4 FORMAT

C 2 FOR SCALING SPECIFIED IN NEXT TWO COLUMNS WITH OUTPUT

C DEFINED OVER RANGE 0<VAL<255 AND WRITTEN IN I4 FORMAT

C 3 FOR MULTIPLIER SCALING BY MAX SCALE VALUE WITH OUTPUT

C WRITTEN IN F7.1 FORMAT (IS3DO AND ISR3DO MUST BE 1)

C

C81 VARIABLE IS3D(VARID) JS3D(VARID) MAX SCALE VALUE MIN SCALE VALUE

’U VEL’ 0 3 100.0 -1.0

’V VEL’ 0 3 100.0 -1.0

’W VEL’ 0 0 1000.0 -1.0E-3

’SALINITY’ 0 3 1.0 0.0

’TEMP’ 0 3 1.0 10.0

’DYE’ 0 0 1000.0 0.0

’COH SED’ 0 3 1000.0 0.0

’NCH SED’ 0 3 1000.0 0.0

’TOX CON’ 0 3 1000.0 0.0

This card image controls the fields for three-dimensional data output. Current fields for output,

corresponding to the data lines above include the true east and north horizontal velocity vectors, the

physical vertical velocity vector, (as opposed to the internally used stretched coordinate vertical velocity),

and the salinity, temperature, dye tracer, cohesive sediment concentration, non-cohesive sediment

concentration, and toxic concentration scalar fields. The switch IS3D activates the output of the particular

variable, while the switch JS3D defines its conversion to 8-bit integer form. If the option JS3D equals 2,

then the minimum and maximum values correspond to 1 and 255 (recommended). Dry land positions in

the three-dimensional array are by default set to 0. The output filenames corresponding to the data lines

on this card image are:

Output Variable Instantaneous Residual

U VEL uuu3dNN.asc ruuu3dNN.asc

V VEL vvv3dNN.asc rvvv3dNN.asc

W VEL www3dNN.asc rwww3dNN.asc

SALINITY sal3dNN.asc rsal3dNN.asc

TEMP tem3dNN.asc rtem3dNN.asc

DYE dye3dNN.asc rdye3dNN.asc

SEDIMENT COHESIVE sed3dNN.asc rsed3dNN.asc

Page 92: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-56

SEDIMENT NON-COHESIVE snd3dNN.asc rsnd3dNN.asc

TOXIC tox3dNN.asc rtox3dNN.asc

where NN represents a two digit time sequence identified between 1 and 24. Two additional files,

out3d.dia and rout3d.dia, provide summary information including the actual minimum and maximum values

of each variable for the output files.

Card Image 82 [not active in EFDC-Hydro]

C82 INPLACE HARMONIC ANALYSIS PARAMETERS

C

C ISLSHA: 1 FOR IN PLACE LEAST SQUARES HARMONIC ANALYSIS

C MLLSHA: NUMBER OF LOCATIONS FOR LSHA

C NTCLSHA: LENGTH OF LSHA IN INTEGER NUMBER OF REFERENCE TIME PERIODS

C ISLSTR: 1 FOR TREND REMOVAL

C ISHTA : 1 FOR SINGLE TREF PERIOD SURFACE ELEV ANALYSIS

C 90

C82 ISLSHA MLLSHA NTCLSHA ISLSTR ISHTA

0 0 7 0 0

This card in conjunction with Card Image 83 provides the controls for an in place least squares harmonic

analysis procedure.

Card Image 83 [not active in EFDC-Hydro]

C83 HARMONIC ANALYSIS LOCATIONS AND SWITCHES

C

C ILLSHA: I CELL INDEX

C JLLSHA: J CELL INDEX

C LSHAP: 1 FOR ANALYSIS OF SURFACE ELEVATION

C LSHAB: 1 FOR ANALYSIS OF SALINITY

C LSHAUE: 1 FOR ANALYSIS OF EXTERNAL MODE HORIZONTAL VELOCITY

C LSHAU: 1 FOR ANALYSIS OF HORIZONTAL VELOCITY IN EVERY LAYER

C CLSL: LOCATION AS A CHARACTER VARIABLE

C

C83 ILLSHA JLLSHA LSHAP LSHAB LSHAUE LSHAU CLSL

This card image specifies the I and J cell indices at which multiple constituent least squares harmonic

analysis is to be performed. The following four switches activate the analysis for surface elevation, salinity,

Page 93: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-57

the barotropic or depth integrated horizontal velocity and the horizontal velocity in each layers. The

character string identifies the analysis location in the output file lsha.out.

Card Image 84

C84 CONTROLS FOR WRITING TO TIME SERIES FILES

C

C ISTMSR: 1 OR 2 TO WRITE TIME SERIES OF SURF ELEV, VELOCITY, NET

C INTERNAL AND EXTERNAL MODE VOLUME SOURCE-SINKS, AND

C CONCENTRATION VARIABLES, 2 APPENDS EXISTING TIME SERIES FILES

C MLTMSR: NUMBER HORIZONTAL LOCATIONS TO WRITE TIME SERIES OF SURF ELEV,

C VELOCITY, AND CONCENTRATION VARIABLES, MAXIMUM LOCATIONS = 9

C NBTMSR: TIME STEP TO BEGIN WRITING TO TIME SERIES FILES

C NSTMSR: TIME STEP TO STOP WRITING TO TIME SERIES FILES

C NWTSER: WRITE INTERVAL FOR WRITING TO TIME SERIES FILES

C NTSSTSP: NUMBER OF TIME SERIES START-STOP SCENARIOS, 1 OR GREATER

C TCTMSR: UNIT CONVERSION FOR TIME SERIES TIME. FOR SECONDS, MINUTES,

C HOURS,DAYS USE 1.0, 60.0, 3600.0, 86400.0 RESPECTIVELY

C IDUM: 2 DUMMY INTEGER VARIABLES REQUIRED, BOTH = 0

C

C84 ISTMSR MLTMSR NBTMSR NSTMSR NWTMSR NTSSTSP TCTMSR IDUM IDUM

1 9 1 2000000 60 1 86400. 0 0

Card image 84 activates and controls the writing of time series files. The parameter ISTMSR = 1 activates

the creation of new time series files, while ISTMSR = 2 writes to the end of existing time series files and

is useful in certain cases where the model is restarted to continue a long simulation. Instantaneous data for

various model variables may be output at MLTMSR locations (the current limit is 99 locations). The

parameters NBTMSR and NSTMSR specify the beginning and ending time steps of a time interval where

data is output at every NWTMSR time steps. The conversion factor TCTMSR specifies the time units for

the time column in the time series output files. The parameter NTSSTSP defines the number of start-stop

scenarios, in other words, the time-series data can be written to the output files for a specified period, then

the writing can be stopped for another period, and resumed again, etc. The start and stop times are

controlled in Card Images 85 and 86.

Card Image 85

C85 CONTROLS FOR WRITING TO TIME SERIES FILES

C

C ITSSS: START-STOP SCENARIO NUMBER 1.GE.ISSS.LE.NTSSTSP

C MTSSTSP: NUMBER OF STOP-START PAIRS FOR SCENARIO ISSS

C

Page 94: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-58

C85 ITSSS MTSSTSP

1 1 !FULL SAVE

Start-stop controls for writing to time series files are specified here.

Card Image 86

C86 CONTROLS FOR WRITING TO TIME SERIES FILES

C

C ITSSS: START-STOP SCENARIO NUMBER 1.GE.ISSS.LE.NTSSTSP

C MTSSS: NUMBER OF STOP-START PAIRS FOR SCENARIO ISSS

C TSSTRT: STARTING TIME FOR SCENARIO ITSSS, SAVE INTERVAL MTSSS

C TSSTOP: STOPING TIME FOR SCENARIO ITSSS, SAVE INTERVAL MTSSS

C

C86 ISSS MTSSS TSSTRT TSSTOP USER COMMENT

1 1 -1000. 10000. ! FULL SAVE

Start-stop controls for writing to time series files are specified here.

Card Image 87

C87 CONTROLS FOR WRITING TO TIME SERIES FILES

C

C ILTS: I CELL INDEX

C JLTS: J CELL INDEX

C NTSSSS: WRITE SCENARIO FOR THIS LOCATION

C MTSP: 1 FOR TIME SERIES OF SURFACE ELEVATION

C MTSC: 1 FOR TIME SERIES OF TRANSPORTED CONCENTRATION VARIABLES

C MTSA: 1 FOR TIME SERIES OF EDDY VISCOSITY AND DIFFUSIVITY

C MTSUE: 1 FOR TIME SERIES OF EXTERNAL MODE HORIZONTAL VELOCITY

C MTSUT: 1 FOR TIME SERIES OF EXTERNAL MODE HORIZONTAL TRANSPORT

C MTSU: 1 FOR TIME SERIES OF HORIZONTAL VELOCITY IN EVERY LAYER

C MTSQE: 1 FOR TIME SERIES OF NET EXTERNAL MODE VOLUME SOURCE/SINK

C MTSQ: 1 FOR TIME SERIES OF NET EXTERNAL MODE VOLUME SOURCE/SINK

C CLTS: LOCATION AS A CHARACTER VARIALBLE

C

C87 ILTS JLTS NTSSSS MTSP MTSC MTSA MTSUE MTSUT MTSU MTSQE MTSQ CLTS

7 3 1 1 0 0 0 0 1 0 0 ’station 1’

16 3 1 1 0 0 0 0 1 0 0 ’station 2’

23 3 1 1 0 0 0 0 1 0 0 ’station 3’

7 12 1 1 0 0 0 0 1 0 0 ’station 4’

16 12 1 1 0 0 0 0 1 0 0 ’station 5’

23 12 1 1 0 0 0 0 1 0 0 ’station 6’

7 20 1 1 0 0 0 0 1 0 0 ’station 7’

16 20 1 1 0 0 0 0 1 0 0 ’station 8’

23 20 1 1 0 0 0 0 1 0 0 ’station 9’

Page 95: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-59

Card image 87 specifies the I and J indices of horizontal locations for writing time series data and the class

of data. The generic file names created by the activation of the output switches are:

Switch File Name

MTSP seltmsrNN.out

MTSC saltmsrNN.outtemtmsrNN.outdyetmsrNN.outsedtmsrNN.outsfltmsrNN.out

MTSA avvtmsrNN.outavbtmsrNN.out

MTSUE uvetmsrNN.out

MTSUT uvttmsrNN.out

MTSU u3dtmsrNN.outv3dtmsrNN.out

MTSQE qqetmsrNN.out

MTSQ q3dtmsrNN.out

with NN, between 01 and 99, indicating the location. The last column (CLTS) provides a character string

identifier for the location, which is written to the output file header.

Card Image 88 [not active in EFDC-Hydro]

C88 CONTROLS FOR EXTRACTING INSTANTANEOUS VERTICAL SCALAR FIELD PROFILES

C

C ISVSFP: 1 FOR EXTRACTING INSTANTANEOUS VERTICAL FIELD PROFILES

C MDVSFP: MAXIMUM NUMBER OF DEPTHS FOR SAMPLING VALUES

C MLVSFP: NUMBER OF HORIZONTAL SPACE-TIME LOCATION PAIRS TO BE SAMPLED

C TMVSFP: MULTIPLIER TO CONVERT SAMPLING TIMES TO SECONDS

C TAVSFP: ADDITIVE ADJUSTMENT TO SAMPLING TIME BEFORE CONVERSION TO SEC

C 200max 1600max

C88 ISVSFP MDVSFP MLVSFP TMVSFP TAVSFP

0 0 0 86400. 0.0

Card image 88 provides for the extraction of instantaneous vertical scalar field profiles at specified times

an locations. This option is designed to mimic field sampling surveys and produce a smaller volume of

output data than the time series output option. The switch ISVSFP = 1 activates the option. The

Page 96: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

4 - EFDC Master Input File (efdc.inp)

4-60

parameter MDVSFP specifies the maximum number of depths (measured downward from the

instantaneous free surface for sampling, while MLVSFP specifies the number of discrete time and space

locations for sampling. The parameter TMVSFP converts the sampling times specified on card image 89

to seconds. The time origin for specifying sampling should be consistent with information specified on card

image 8. The parameter TAVSFP is an additive adjustment to the sampling times on card image 90, and

is useful for dealing with sampling times recorded during daylight savings conditions. Output for this option

is written to the file vsfp.out.

Card Image 89 [not active in EFDC-Hydro]

C89 SAMPLING DEPTHS FOR EXTRACTING INST VERTICAL SCALAR FIELD PROFILES

C

C MMDVSFP: Mth SAMPLING DEPTH

C DMSFP: SAMPLING DEPTH BELOW SURFACE, IN METERS

C

C89 MMDVSFP DMVSFP

Card image 89 specifies the MDVSFP sampling depths below the water surface at the specified times and

locations. If the local depth to the bottom is less than a sample depth, output data is not written for that

depth.

Card Image 90 [not active in EFDC-Hydro]

C90 HORIZONTAL SPACE-TIME LOCATIONS FOR SAMPLING

C

C MMLVSFP: Mth SPACE TIME SAMPLING LOCATION

C TIMVSFP: SAMPLING TIME

C IVSFP: I HORIZONTAL LOCATION INDEX

C JVSFP: J HORIZONTAL LOCATION INDEX

C

C90 MMLVSFP TIMVSFP IVSFP JVSFP

Card image 90 specifies the times and I and J cell indices for sampling.

Page 97: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-1

5. Additional Input Files

This chapter describes additional input files required to run the EFDC model. Before describing the

various files, it is useful to summarize them, noting the conditions and model options under which the

model will need the file to execute.

File Name Comments

aser.inp Atmospheric time-series data. Required for all model runs for whichatmospheric conditions are needed (i.e., when NASER=1 on cardimage 14)..

cell.inp Required for all model runs

celllt.inp Required for all model runs

depth.inp Note: this file is no longer used by EFDC. The cell depths are nowcontained in the dxdy.inp file.

dser.inp Required if NDSER .GE. 1 on card image 22 of file efdc.inp

dxdy.inp Required if ISCLO=1 or if ISCLO=0 and (LC-LVC) .GT. 2 on cardimage 9 of file efdc.inp

dye.inp Required if ISTOPT=1 on line 4, card image 6 of file efdc.inp

efdc.inp Required for all model runs

efdc.wsp Required if ISWASP .GE.1 on card image 5 of file efdc.inp

fldang.inp Required if ISSFLFE=1 on file sfbser.inp; reads in the counter-clockwise angle from east specifying the principal flood flow directionfor shellfish larvae simulations.

gcellmap.inp Not Required if ISCLO=0 on card image 9, or if NWGG=0 on cardimage 80 of file efdc.inp

gwater.inp Required for all model runs if ISGWI .GT. 0 on card image 14 of fileefdc.inp..

lxly.inp Required if ISCLO=1 or if ISCLO=0 and (LC-LVC) .GT. 2 on cardimage 9 of file efdc.inp

Page 98: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-2

mappns.inp Required if ISPGNS=1 on card image 9 of file efdc.inp

mask.inp Required if ISMASK=1 on card image 9 of file efdc.inp

modchan.inp Required if ISCHAN=1 on card image 14 of file efdc.inp

moddxdy.inp Required if IMD=1 on card image 11 of file efdc.inp

pser.inp Required if NPSER .GE.1 on card image 16 of file efdc.inp

qctl.inp Required if NQCTL .GE.1 on card image 23 of file efdc.inp

qser.inp Required if NQSER .GE.1 on card image 23 of file efdc.inp

restart.inp Required if ISRESTI =1 on card image 2 of file efdc.inp

restran.inp Required if ISLTMT = 1 on card image 4 of file efdc.inp

salt.inp Required if ISTOPT = 1 on line 2, card image 6 of file efdc.inp

sdser.inp Required if NSDSER .GE.1 on card image 22 of file efdc.inp

show.inp Required if ISHOW > 1 on card image 2 of file efdc.inp

sser.inp Required if NSSER .GE.1 on card image 22 of file efdc.inp

sfser.inp Required if NSFSER .GE.1 on card image 22 of file efdc.inp

sfbser.inp Required if ISTRAN .EQ. 1 on data line 6, card image 6 of fileefdc.inp

tser.inp Required if NTSER .GE.1 on card image 22 of file efdc.inp

vege.inp Required if ISVEG .GE.1 on card image 5 of file efdc.inp

wave.inp Required if ISWAVE .GE.1 on card image 14 of file efdc.inp

The files cell.inp, celllt.inp, dxdy.inp and lxly.inp have been discussed and illustrated in Chapter 2, and

the reader should refer to that chapter. The field depth.inp was used in early versions of the model and

its functions has been superseded by the dxdy.inp; therefore it will not be discussed. Examples of the

remaining input files will now be presented and discussed in alphabetical order.

Page 99: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-3

5.1 Input file aser.inp

The input file aser.inp specifies atmospheric, wind and thermal forcings as well as precipitation and

evapotranspiration. For ISTOPT = 1 on line 3 of card image 6, the full set of environmental parameters

for an internal-to-the-model calculation of thermal sources and sinks is specified in the file. An example

of the aser.inp file for this case is:

# ASER.INP: Mashapaug Pond, 01/01/2001 - 12/31/2001 (hourly data)# solar radiation based on 1960-91 observations at Providence, RI (WBAN14765)# SRadj = SRmin + (SRmax - SRmin)*(1.0-CL) where CL=cloud cover (0-1)# ATMOSPHERIC FORCING FILE, USE WITH 28 JULY 96 AND LATER VERSIONS OF EFDC# MASER =NUMBER OF TIME DATA POINTS# TCASER =DATA TIME UNIT CONVERSION TO SECONDS# TAASER =ADDITIVE ADJUSTMENT OF TIME VALUES SAME UNITS AS INPUT TIMES# IRELH =0 VALUE TWET COLUMN VALUE IS TWET, =1 VALUE IS RELATIVE HUMIDITY# RAINCVT =CONVERTS RAIN TO M/SEC, inch/day=0.00254/86400=2.94E-7m/d=7.0556E-6m/h# EVAPCVT =CONVERTS EVAP TO UNITS OF M/SEC, IF EVAPCVT<0 EVAP IS INTERNALLY COMPUTED# SOLRCVT =CONVERTS SOLAR SW RADIATION TO JOULES/SQ METER# CLDCVT =MULTIPLIER FOR ADJUSTING CLOUD COVER# IASWRAD =O DISTRIBUTE SW SOL RAD OVER WATER COL AND INTO BED, =1 ALL TO SURF LAYER# REVC =1000*EVAPORATIVE TRANSFER COEF, REVC<0 USE WIND SPD DEPD DRAG COEF# RCHC =1000*CONVECTIVE HEAT TRANSFER COEF, REVC<0 USE WIND SPD DEPD DRAG COEF# SWRATNF =FAST SCALE SOLAR SW RADIATION ATTENUATION COEFFICIENT 1./METERS# SWRATNS =SLOW SCALE SOLAR SW RADIATION ATTENUATION COEFFICIENT 1./METERS# FSWRATF =FRACTION OF SOLSR SW RADIATION ATTENUATED FAST 0<FSWRATF<1# DABEDT =DEPTH OR THICKNESS OF ACTIVE BED TEMPERATURE LAYER, METERS# TBEDIT =INITIAL BED TEMPERATURE# HTBED1 =CONVECTIVE HT COEFFICIENT BETWEEN BED AND BOTTOM WATER LAYER NO DIM# HTBED2 =HEAT TRANS COEFFICIENT BETWEEN BED AND BOTTOM WATER LAYER M/SEC# PATM =ATM PRESS MILLIBAR# TDRY/TEQ =DRY ATM TEMP ISOPT(2)=1 OR EQUIL TEMP ISOPT(2)=2# TWET/RELH =WET BULB ATM TEMP IRELH=0, RELATIVE HUMIDITY IRELH=1# RAIN =RAIN FALL RATE LENGTH/TIME# EVAP =EVAPORATION RATE IF EVAPCVT>0.# SOLSWR =SOLAR SHORT WAVE RADIATION AT WATER SURFACE ENERGY FLUX/UNIT AREA# CLOUD =FRACTIONAL CLOUD COVER## MASER TCASER TAASER IRELH RAINCVT EVAPCVT SOLRCVT CLDCVT## IASWRAD REVC RCHC SWRATNF SWRATNS FSWRATF DABEDT TBEDIT HTBED1 HTBED2## TASER(M) PATM(M) TDRY(M) TWET(M) RAIN(M) EVAP(M) SOLSWR(M) CLOUD(M)# /TEQ /RELH /HTCOEF 8761 86400. 0. 1 7.05556E-06 -1. 1.0 1.00 2 1.5 1.5 1.0 0.0 1.0 10000.0 2.0 0.000 2.0E-6 0.00000 1007.79 0.30 0.68 0.000 0.000 0.0 0.25 1.03542 1007.79 0.30 0.68 0.000 0.000 0.0 0.25 1.07708 1008.80 0.30 0.68 0.000 0.000 0.0 0.05 1.11875 1009.82 0.30 0.71 0.000 0.000 0.0 0.05 ...etc.

Page 100: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-4

Parameters on the first data line specify the number of time points (MASER), a factor to convert the time

units to seconds (TCASER), a constant time to be added before unit conversion (TAASER), a factor to

convert wind speed to meters/second (WINDSCT), and factors to convert rainfall and evapotranspiration

rates to meters per second (RAINCVT, EVAPCVT). Each time lines data has in order: time (TASER),

wind speed (WINDS), wind direction (WINDD) in bearing angle to the direction the wind is blowing

(oceanographic as opposed to meteorological convention), atmospheric pressure (PATM) in millibars, dry

and wet bulb temperature (TDRY, TWET) in degrees C, rainfall rate (RAIN), evapotranspiration rate

(EVAP) and incident solar short-wave radiation (SOLSWR) in Joules per second per square meter. For

ISTOPT = 2 on line 3 of card image 6, a time variable equilibrium temperature surface heat exchange

formulation is implemented in the model. The form of the aser.inp file for this case is identical to that above,

except that now the equilibrium temperature (degrees C) is entered under the TDRY column and the net

surface heat exchange coefficient in square meters per second is entered under the SOLSWR column.

Data entered under PATM and TWET are not used for this case. For ISTOPT=3 on line 3 of card image

6, a time-invariant equilibrium temperature surface heat exchange formulation is implemented with a

constant equilibrium temperature and heat exchange coefficient provided on card image 46 of the file

efdc.inp. In this case, wind speed and direction data and rainfall and evapotranspiration data form the

aser.inp file used by the model.

Page 101: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-5

5.2 Input Files dser.inp, sser.inp, sdser.inp, sfser.inp, and tser.inp

The scalar constituent time series files have identical formats, and thus it suffices to discuss them in a generic

sense. An example of the sser.inp time series file containing one time series is shown below.

C sser.inp file, salt is nc=1 conc, in free format across line, C repeats ncser(1) times, test caseC C ISTYP MCSER(NS,1) TCCSER(NS,1) TACSER(NS,1) RMULADJ(NS,1) ADDADJ(NS,1)CC if istyp.eq.1 then read depth weights and single value of CSERC C (WKQ(K),K=1,KC)CC TCSER(M,NS,1) CSER(M,NS,1) !(mcser(ns,1) sets ns=1,ncser(1) series)CC else read a value of qser for each layerCC TCSER(M,NS,1) (CSER(M,K,NS,1),K=1,KC) !(mcser(ns,1) pairs)C 0 7 86400. 0.0 1.0 0.0 35.791668 29.57 29.57 29.57 29.57 29.57 29.57 29.57 29.57 35.833336 29.93 29.93 29.93 29.93 29.93 29.93 29.93 29.93 35.875000 29.88 29.88 29.88 29.88 29.88 29.88 29.88 29.88 35.916668 30.89 30.89 30.89 30.89 30.89 30.89 30.89 30.89 35.958336 31.24 31.24 31.24 31.24 31.24 31.24 31.24 31.24 36.000000 31.12 31.12 31.12 31.12 31.12 31.12 31.12 31.12 36.041668 31.28 31.28 31.28 31.28 31.28 31.28 31.28 31.28

A concentration time series input file may contain multiple time series. Each time series set begins with the

single data line specifying ISTYP (the time series format identifier), MCSER (the number of time data

points), TCCSER (a multiplying conversion factor changing the input time units to seconds), TACSER (an

additive time adjustment, applied before unit conversion), RMULADJ (a multiplying conversion for the

concentration), and ADDADJ (an additive conversion for concentration, applied before the multiplier).

If the ISTYP parameter is 0, the MCSER time data points must have a concentration value for each layer.

If ISTYP=1, an additional line of data providing interpolating factors is read, and the time data lines should

have only one concentration value. An example of an ISTYP=1 file is the dye time-series, dser.inp, shown

below in which the dye is added only to the surface layer of a 6-layer system:

C dser.inp file, dye is nc=3 conc, in free format across line,C repeats ncser(3) times, test caseC C ISTYP MCSER(NS,3) TCCSER(NS,3) TACSER(NS,3) RMULADJ(NS,3) ADDADJ(NS,3) C

Page 102: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-6

C if istyp.eq.1 then read depth weights and single value of CSERC C (WKQ(K),K=1,KC)CC TCSER(M,NS,3) CSER(M,NS,3) !(mcser(ns,3) sets ns=3,ncser(3) serseries)CC else read a value of dser for each layerCC TCSER(M,NS,3) (CSER(M,K,NS,3),K=1,KC) !(mcser(ns,3) pairs)C 1 10 3600.0 0. 1. 0. 0.0 0.00 0.00 0.00 0.00 1.00 -200.00 0.00 713.39 0.00 713.41 2263374.5 726.89 2263374.5 726.91 0.00 7076.49 0.00 7076.51 2657004.85 7087.99 2657004.85 7088.01 0.00 10000.00 0.00

This example specifies 6 weights (for a 6 layer model) on the second data line, which is read when

ISTYP=1. The weights are read from the bottom (left) to the top layer (right). For the example shown

above, the dye is being released into the surface layer (see the qser.inp file below for the corresponding

dye release flow rate formulation).

Page 103: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-7

5.3 Input Files dye.inp and salt.inp

The input files dye.inp and salt.inp are used to initialize the dye and salinity fields for cold start runs if an

appropriate ISTOPT switch is set on card image 6 of the efdc.inp file. An example of a portion of the

salt.inp field is shown below.

C salt.inp file, in free format across line, for IRLTC Final GridC first data line ISALTYP =0 no L,I,J =1 read L,I,J C L=2,LA rows of SALINIT(L,K),K=1,KC across columns C 1 1 40 2 30.62 30.62 30.62 30.62 30.62 30.62 30.62 30.62 2 41 2 30.62 30.62 30.62 30.62 30.62 30.62 30.62 30.62 3 42 2 30.62 30.62 30.62 30.62 30.62 30.62 30.62 30.62 4 43 2 30.62 30.62 30.62 30.62 30.62 30.62 30.62 30.62 5 40 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 41 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 42 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 43 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The file has four header lines, followed by a line specifying the format type switch, ISALTYP. If ISALTYP

is equal to 1, LC-2 data lines follow in the order L=2,LA, which is the single index sequence of active

water cells. For ISALTYP=1, the first three columns give L (the single horizontal internal cell index), and

I and J (the two external indices). These are then followed by KC (the number of model layers) values of

salinity read from the bottom to the surface. For ISALTYP=0, the L, I, and J indices are absent from the

data lines. A template for the salt.inp file, of ISALTYP=1 form, is generated by GEFDC. However, the

four header lines and ISALTYP=1 must be manually added. The ISALTYP=0 format is carried over from

older versions of the model. To allow conversion from older versions, the EFDC model outputs a file,

newsalt.inp, of the ISALTYP=1, form.

Page 104: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-8

5.4 Input File efdc.wsp

The file efdc.wsp provides data for controlling the linkage of EFDC and the WASP water quality model

(Ambrose, et. al. 1993) writing WASP format input files specifying cell volumes, flow and diffusion

linkages and flow files in either generic or DYNHYD format. An example of the efdc.wsp input file is

shown below.

C1 CELL VOLUME PARAMETERS for WASP-EFDC Linkage

C1 IVOPT IBDEV SCALV CONVV VMULT VEXP DMULT DEXP

2 0 1.0 1.0 1.0 0. 1.0 0.

C2 DIFFUSION AND DISPERSION PARAMETERS

C2 NRFLD SCALR CONVR ISNKH

2 1.0 1.0 1

C3 ADVECTION PARAMETERS (iqopt=3 ASCII HYD, =4 for binary HYD file)

C3 IQOPT NFIELD SCALQ CONVQ HYDFIL ISWASPD ISDHD

3 5 1.0 1.0 ’NORWALK.HYD’ 0 0

C4 DEPTH OF SEDIMENT LAYER (METERS)

C4 DEPSED TDINTS SEDIFF WSS1 WSS2 WSS3

0.1 366 2.315E-09 0.05 0.10 0.15

The parameters on card images 1 and 2 are identical to those defined in the WASP user’s manuals. Card

images 3 and 4 provide information for the flow and diffusive transport fields and the sediment submodel.

EFDC users considering activating the WASP linkage option should contact the author for further

information and guidance.

Page 105: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-9

5.5 Input File fldang.inp

The file fldang.inp is used to specify the direction of tidal flood flow and is used in shellfish larvae transport

simulations (see file sfbser.inp) to cue larvae swimming behavior. It is a headerless file with LC-2 lines of

data. The first few lines of an example are shown below.

98 3 131.46 133.67

99 3 166.15 165.82

100 3 173.50 175.51

101 3 210.48 211.48

96 4 148.08 144.86

97 4 166.50 161.98

98 4 149.75 145.43

99 4 169.05 167.36

The data on each line correspond to the I and J horizontal cell indices, followed by a bottom and surface

layer flood direction angle. The angles, measured counter clockwise (CCW) from east specify the

maximum tidal flood flow direction determined by an analysis of bottom and surface layer tidal velocity

ellipses for a single dominant tidal constituent (usually M2 on the U. S. east coast). Tidal ellipse directions

are obtained from the output files tidelkb.out and tidelkc.out generated by a preliminary model run.

Contact the author for software to generate the fldang.inp file from the tidelkb.out and tidelkc.out files.

Page 106: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-10

5.6 Input File gcellmap.inp

The input file gcellmap.inp is read if NWGG on card image 56 of the efdc.inp file is greater than zero. The

gcellmap.inp file specifies a square cell Cartesian graphic grid overlay of a horizontal curvilinear grid. The

file is used in the generation of three-dimensional graphics and visualization output in 3D array form. The

file is optionally generated by GEFDC (also see efdc.inp file, card image 56 description). The file has four

header lines, followed by a single data line specifying IG and JG, the number of I and J cells in the Cartesian

graphics grid. This line is then followed by NWGG lines of data specifying the water cell indices

IGRAPHIC and JGRAPHIC, in the graphics grid and the corresponding indices ICOMP and JCOMP

in the curvilinear computational grid. An example of a portion of the gcellmap.inp file is shown below.

C gcellmap.inp file, in free format across columns

C

C IGRAPHIC JGRAPHIC ICOMP JCOMP

C

50 92

40 3 16 2

41 3 17 2

39 4 16 2

40 4 16 2

41 4 17 2

42 4 18 2

43 4 19 2

Page 107: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-11

5.7 Input File gwater.inp

A simple soil moisture model (Hamrick and Moustafa, 1995a) is activated by the input file gwater.inp,

shown below.

C gwater.inp file, in free format across columns

C ISGWIE

C gt.1 for on

C DAGWZ RNPOR RIFTRM

C dep act gw eff porosity max infilt rate

C

1

0.4 0.3 0.0001

The soil moisture model is generally implemented for wetland simulations (Moustafa and Hamrick, 1995).

The switch ISGWIE activates a simple soil moisture mass balance, which does not include horizontal flow.

The soil moisture mass balance is calculated in an active zone which extends to a depth DAGWZ (in

meters) below the bottom of each horizontal cell. The maximum available soil water, in volume of soil

water per unit total volume is specified by the effective porosity, RNPOR, which is the physical porosity

reduced by a factor accounting for capillary retention under unsaturated conditions. If the overlying water

cell is wet, and the soil moisture is less than its maximum available value, infiltration occurs at a maximum

rate RIFTRM (in meters per second). If the overlying water cell is dry, and soil moisture is available, the

soil moisture is reduced at each time step by evapotranspiration. For a cold start run, the soil moisture is

set to its maximum available value below wet cells. Below dry cells, an initial value is set using the mean

of the water surface elevation in the wet cells of the simulated region.

Page 108: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-12

5.8 Input File mappgns.inp

The input file mappgns.inp is used to configure the EFDC model for the simulations of regions presumed

to be periodic or infinite in the computational y or north-south direction, the prime example being an infinite

continental shelf or near-shore region, or the same region under the assumption of spatially periodic forcing.

An example of a portion of the file is shown below.

C ISPNS,JSPNS = I,J INDICES OF A SOUTH CELL

C INPNS,JNPNS = I,J INDICES OF A CORRESPONDING NORTH CELL

C NPNSBP

C ISPNS JSPNS INPNS JNPNS (REPEATED NPNSBP TIMES)

C

4

2 2 2 126

3 2 3 126

4 2 4 126

5 2 5 126

The parameter NPNSBP specifies the number of north-south pairs. This is followed by NPNSBP pairs

of south and north I and J indices. North and south open boundary conditions must not be specified for

these cell pairs in the efdc.inp file.

Page 109: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-13

5.9 Input File mask.inp

The file mask.inp is used to insert thin barriers, which block flow across specified cell faces. This option

is useful to simulate structural obstacles such as breakwaters and causeways locally aligning with the model

grid, but have widths much less than the cell size or grid spacing in one direction. An example of the

mask.inp file is shown below.

C mask.inp file, in free format across line, MMASK LINES

C

C MMASK

C

C I J MTYPE

C

3

53 5 1 ! Block flow across west ( u face )

38 28 2 ! Block flow across south ( v face )

36 56 3 ! Block flow across all four cell faces

The parameter MMASK identifies the number of data lines. Each data line consists of the I and J indices

of the cell to be masked, while the parameter MTYPE identifies the face to be blocked. The mask option

can be activated on both cold starts and restarts (with no previous masking).

Page 110: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-14

5.10 Input File modchan.inp

The input file modchan.inp is used to activate and specify data for a subgrid scale channel model. The

subgrid scale channel model (Hamrick and Moustafa, 1995a,b; Moustafa and Hamrick, 1995) allows

narrow channels (one-dimensional in the horizontal plane) to pass through larger scale cells (two-

dimensional in the horizontal) referred to as host cells. Up to two subgrid channels at arbitrary orientations

may pass through a host cell. The two channels are referred to as u and v channel (the u and v notation

is arbitrary and does not define the alignment of the subgrid channels in an arbitrary direction). The subgrid

scale channels interact with the host cells through an exchange flow. If the host cell is wet, the exchange

flows are determined such that the water surface elevations in the host cell and the channel cells are

identical. If the host cell becomes dry, flow is allowed to continue in the subgrid scale channels. An

example of the modchan.inp file is shown below for 4 channel sections passing through 4 host cells.

C modchan.inp file, in free format across columns

C # host cells MDCHHD=1 wet host from chan MDCHHD2=1 dry ck first

C MDCHH MDCHHD MDCHHD2

C max iters MDCHHQ=1 int Q=0 QCHERR= abs error for flow cms

C MDCITM MDCHHQ QCHERR

C type i host j host i uchan j uchan i vchan j vchan

C MDCHTYP IMDCHH JMDCHH IMDCHU JMDCHU IMDCHV JMDCHH

C

4 1 1

40 2 0.001

1 2 4 6 31 1 1

1 3 4 7 31 1 1

1 4 4 8 31 1 1

1 5 4 9 31 1 1

The parameter MDCHH specifies the number of host cells, MDCHHD switches on wetting of a dry host

cell when the water surface elevation in the channel exceeds the bottom elevation in the host. MDCHHD2

specifies a drying iteration before the solution for the exchange flows. The maximum number of iterations

allowed in the solution for the exchange flows is specified by MDCITM. MDCHHQ = 0 initializes the

iterative exchange flow with its value at the previous time step, while MDCHHQ =1 initializes the iteration

with zero values for the exchange flows. QCHERR is the convergence criteria for determining the

exchange flows. The two lines of control parameters are followed by MDCHH lines of data defining the

host cell and subgrid channel linkage mapping. The first parameter MDCHTYP equals 1, 2, or 3 for a

single u orientation channel, a single v orientation channel, or two channels. IMDCHH and JMDCHH are

Page 111: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-15

the I and J indices of the host cell. IMDCHU and JMDCHU are the I and J indices of the u-type channel.

IMDCHV and JMDCHV are the I and J indices of the v-type channel. For MDCHTYP equals 1 or 2,

the indices 1,1 specified either null u or v type channels. The flow example data lines show a set of host

cells running for I equals 2 to 5 at a constant J of 4. These cells host a u type channel running from I equal

6 to 9 at a constant J equal to 31. The u-type subgrid channels are generally located along a constant J

index line in the computational grid, while the v-type channels are located along a constant I index line in

the computation grid.

5.11 Input File moddxdy.inp

The file moddxdy.inp allows for quick modification of cell sizes, specified as dx and dy in the dxdy.inp file.

Its primary use is for the quick adjustment of subgrid channel sections lengths and widths. The example

below is self-explanatory.

C moddxdy.inp file, in free format across columns

C NMDXDY = # of cells for DX(I,J)=RMDX*DX(I,J) & DY(I,J)=RMDX*DX(I,J)

C I J RMDX RMDY

C

4

6 31 1.0 2.5

7 31 1.0 2.5

8 31 1.0 2.5

9 31 1.0 2.5

Page 112: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-16

5.12 Input File pser.inp

The input file pser.inp is used to specify surface elevation time series primarily for use at open boundaries.

The file may contain multiple time series, each having a single control and conversion data line followed by

a sequence of MPSER time data lines. An example is shown below.

C pser.inp file, in free format across line, repeats npser times

C

C MPSER(NS) TCPSER(NS) TAPSER(NS) RMULADJ(NS) ADDADJ(NS)

C

C TPSER(M,NS) PSER(M,NS) !(mpser(ns) pairs for ns=1,npser series)

C

4 86400. 0. 1.0 0.0

265.00 4.90

270.00 4.90

273.00 4.90

275.00 2.06

The parameter MPSER specifies the number of time data lines. TCPSER and TAPSER provide for

adjustment and conversion of the time data units to seconds. RMULADJ and ADDADJ provide for

conversion and adjustment of the elevation data to meters.

Page 113: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-17

5.13 Input File qctl.inp

The input file qctl.inp specifies data to implement flow between pairs of cells controlled by hydraulic

structures or rating curves. The flow is unidirectional between an upstream and downstream cell. Bi-

directional flow is implemented by a control structure for each direction. An example of the file, which

contains data sequences for an arbitrary number of structures is shown below:

C qctl.inp file, in free format across line, repeats nqctl times

C

C ISTYP MQCTL(NS) HCTLUA HCTLUM HCTLDA HCTLDM RMULADJ ADDADJ

C

C if istyp.eq.1 then read depth weights and single value of QCTL

C

C (WKQ(K),K=1,KC)

C

C HDIFCTL(M,NS) QCTL(M,1,NS) !(mqctl(ns) pairs for ns=1,nqser series)

C

C else read a value of qser for each layer

C

C HDIFCTL(M,NS) (QCTL(M,K,NS),K=1,KC) !(mqctl(ns) pairs)

C

1 5 0.0 1.0 0.0 1.0 1.76E-05 0.0

1.0

0.0 0.0

0.0001 2.0

5.0 12.485

5.0001 0.0

1.E+12 0.0

The parameter ISTYPE is either zero or one, corresponding to a flow for each model layer or a set of layer

weights used to distribute a single flow over the layers. MQCTL specifies the number of data point in the

control table, which is essentially a flow versus head difference rating curve. HCTLUA and HCTLDA are

additive adjustments to the surface elevation in the upstream and downstream cells respectively. HCTLUM

and HCTLDM are multiplying factors applied to the adjusted upstream and downstream water surface

elevations respectively. ADDADJ and RMULADJ are additive and multiplier conversions applied directly

to the flow data and are useful for unit conversion. MQCTL data lines follow the one or two control data

lines. The data pairs are elevation difference and flow. The data in the above example implements the

formula:

Page 114: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-18

HDIFCTL = HCTLUM X (SELU + HCTLUA) - HCTLDM X (SELD + HCTLDA)

where SELU and SELD are the water surface elevations upstream and downstream of the control

structure. For example, a rating curve for flow over a spillway has only upstream control, and therefore,

HCTLDM would be set to zero. For a culvert, HCTLUM and HCTLDM would be set to one or a unit

conversion factor, if required. For a rating curve in terms of the flow depth, the HCTLUA adjustment

would be set to the negative of the channel bottom elevation. Likewise, for a spillway rating curve based

on upstream head above the spillway crest, HCTLUA would be set to the negative elevation of the spillway

crest elevation.

To illustrate the capabilities of the surface elevation or pressure flow control option it is convenient to

summarize the sequence of steps involved in calculating the flow between the upstream and downstream

cells. The FORTRAN statement sequence involves looping over all control structure pairs, NQCTL, and

is shown in Figure 5-1. The flow from the upstream cell to the downstream cell is determined by the

difference, DELH, between the upstream pressure plus elevation head, HUP relative to -HCTLUA,

adjusted by multiplying by HCTLUM, and the downstream pressure plus elevation head, HDW relative

to -HCTLDA, adjusted by multiplying by HCTLDM. For flows controlled entirely by surface elevation

differences, HCTLUA and HCTLDA would both be zero. For a spillway or weir, -HCTLUA would be

the spillway or weir crest elevation. For upstream only control, HCTLDM would be set to zero. Given

the adjusted head difference, DELH, which must be greater than zero, the discharge or discharge per unit

width, QCTLT, is determined from an interpolation table. A final multiplying adjustment, by RQCMUL,

is applied to convert discharge per unit width to discharge if required. The hydraulic control structure

option is also suitable for simulating water surface elevation controlled pump station operation.

Page 115: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-19

DO NCTL=1,NQCTL RQDW=1. IU=IQCTLU(NCTL) ! I CELL INDEX UPSTREAM JU=JQCTLU(NCTL) ! J CELL INDEX UPSTREAM LU=LIJ(IU,JU) ! L CELL INDEX UPSTREAM HUP=HP(LU)+BELV(LU)+HCTLUA(NCTL) ! UPSTREAM SUF ELEV + HCTLUA ID=IQCTLD(NCTL) ! I CELL INDEX DOWNSTREAM JD=JQCTLD(NCTL) ! J CELL INDEX DOWNSTREAM IF (ID.EQ.0.AND.JD.EQ.0) THEN LD=LC ! FLOW OUT OF MODEL DOMAIN HDW=0. ! WITH UPSTREAM FLOW RQDW=0. ! CONTROL ELSE LD=LIJ(ID,JD) ! L CELL INDEX DOWNSTREAM HDW=HP(LD)+BELV(LD)+HCTLDA(NCTL) ! UPSTREAM SUF ELEV + HCTLDA END IF DELH=HCTLUM(NCTL)*HUP-HCTLDM(NCTL)*HDW ! ADJUSTED DIFFERENCE IF (DELH.LE.0.) THEN ! NO FLOW DO K=1,KC QCTLT(K,NCTL)=0. END DO ELSE ! ENTER INTERPOLATION TABLE M1=0 ! TO DETERMINE FLOW IN M2=1 ! EACH LAYER AS A FUNCTION 500 M1=M1+1 ! OF DELH M2=M2+1 IF(DELH.GE.HDIFCTL(M1,NCTL).AND.DELH.LE.HDIFCTL(M2,NCTL))THEN TDIFF=HDIFCTL(M2,NCTL)-HDIFCTL(M1,NCTL) WTM1=(HDIFCTL(M2,NCTL)-DELH)/TDIFF WTM2=(DELH-HDIFCTL(M1,NCTL))/TDIFF DO K=1,KC QCTLT(K,NCTL)=WTM1*QCTL(M1,K,NCTL)+WTM2*QCTL(M2,K,NCTL) END DO ! FLOW ASSIGNED TO LAYERS,K ELSE GO TO 500 END IF END IF DO K=1,KC ! ADD CONTROL FLOW TO OTHERS QSUM(LU,K)=QSUM(LU,K)-RQCMUL(NCTL)*QCTLT(K,NCTL) QSUM(LD,K)=QSUM(LD,K)+RQCMUL(NCTL)*RQDW*QCTLT(K,NCTL) END DO END DOC HP( ): CELL CENTER DEPTH BELV( ): CELL CENTER BOTTOM ELEVATION NQCTL: NUMBER OF CONTROLLED FLOW SETS MQCTL: NUMBER OF DEPTH FLOW PAIRS IN SET NS HCTLUA: CONSTANT ADDED TO UPSTREAM ELEVATION HCTLUM: UPSTREAM MULTIPLIER HCTLDA: CONSTANT ADDED TO UPSTREAM ELEVATION HCTLDM: DONWSTREAM MULTIPLIER HDIFCTL: DEPTH AND QCTL: VOLUMETRIC FLOW PAIRS

Figure 6. FORTRAN implementation of control structures.

Page 116: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-20

5.14 Input File qser.inp

An example of the qser.inp file is shown below. The flows of the first time series correspond to the surface

dye release shown previously in the dser.inp file.

C qser.inp file, in free format across line, repeats nqser times

C

C ISTYP MQSER(NS) TCQSER(NS) TAQSER(NS) RMULADJ(NS) ADDADJ(NS)

C

C if istyp.eq.1 then read depth weights and single value of QSER

C

C (WKQ(K),K=1,KC)

C

C TQSER(M,NS) QSER(M,1,NS) !(mqser(ns) pairs for ns=1,nqser series)

C

C else read a value of qser for each layer

C

C TQSER(M,NS) (QSER(M,K,NS),K=1,KC) !(mqser(ns) pairs)

C

1 10 3600.0 0. 1. 0. 0

0.000 0.000 0.000 0.000 0.000 1.000

-200.00 0.00

713.39 0.00

713.41 0.001

726.89 0.001

726.91 0.00

7076.49 0.00

7076.51 0.001

7087.99 0.001

7088.01 0.00

10000.00 0.00

1 11 3600.0 0.0 1.0 0. 0

0.166 0.167 0.167 0.167 0.167 0.166

-200.0 260.3

708.0 260.3

732.0 243.3

756.0 230.2

780.0 215.9

804.0 202.3

828.0 192.9

852.0 181.1

876.0 182.9

900.0 173.5

10000.0 173,5

Page 117: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-21

5.15 Input File restart.inp

The file restart.inp is used to specify initial conditions for running the EFDC model in the restart mode (i.e.,

ISRESTI=1 on card image 2 of file efdc.inp). The file is obtained by renaming the restart.out file.

5.16 Input File restran.inp

The file restran.inp is used to specify advective and diffusive transport files when the EFDC model is

executed in the transport only mode. The file is obtained by renaming the restran.out file.

Page 118: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-22

5.17 Input File show.inp

The file show.inp, shown below, is used to control screen writing of information at the horizontal location

specified by the horizontal cell indices ISHOWC and JSHOWC. The variable ISHOW on card image 2

of file efdc.inp controls whether show.inp is read. If ISHOW=0, then show.inp is not read and no

information is displayed on the user’s screen. For MacIntosh , Unix, or other systems having column

widths greater than 80 characters, the user can set ISHOW=1. For users running the model in an 80-

character DOS window, setting ISHOW=2 will provide a more pleasing formatted screen display. The

parameter NSTYPE determines the type of screen display. For NSTYPE=1, the screen display emulates

a strip chart recording of water surface elevation and surface and bottom salinity. In this mode, and lower

and upper scale for the surface elevation, ZSSMIN and ZSSMAX and an upper scale for salinity,

SSALMAX must be specified on the third data line. A header is written to the screen every NSHOWR

time steps. Between re-writes of the header information, the show.inp file be edited if the user wishes to

revise the ISHOWC and JSHOWC output locations or the NSTYPE of display. For NSTYPE equal 2,

3, or 4, column-format data of time or time step, surface and bottom layer velocity, salinity or sediment

concentration, and vertical diffusion coefficients are displayed. NSTYPE = 2 displays timestep and salinity.

NSTYPE = 3 displays time in days and salinity. NSTYPE = 4 displays timestep and sediment

concentration. Activating this option is generally recommended for diagnostics of new applications and may

result in noticeable decreases in model execution speeds on systems with slow I/O capabilities. The

variable NSHFREQ controls the frequency (in time steps) at which the model results are written to the

screen. The use of a large value of NSHFREQ is recommended to speed up execution speed on systems

with slow I/O throughput.

C show.inp file, in free format across line

C

C NSTYPE NSHOWR ISHOWC JSHOWC NSHFREQ

C

C ZSSMIN ZSSMAX SSALMAX

C

3 22 10 12 60

-500. 500. 35.

Page 119: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-23

5.18 Input File sfbser.inp

The file sfbser.inp specifies behavioral information for shellfish larvae when the shellfish larvae transport

is activated. The header lines explain the meaning to the various time dependent behavior control

information.

C sfbser.inp file, shellfish larvae behavior time series in free format

C MSFSER=no of time data points. TCSFSER=converts time values to sec

C TASFSER=additive adjustment to time values

C TSRSF,TSSSF=times of sunrise and sun set as a fraction of 24 hours

C ISSFLDN=1 to activate daylight,darkness dependent behavior

C ISSFLFE=1 to activate flood,ebb dependent behavior

C TSFSER=time of data RKDSFL=first order decay rate in 1/sec

C WSFLST=settling velocity in m/s WSFLSM=vert swim velocity in m/s

C DSFLMN=minimum depth below surface in daylight, meters

C DSFLMX=maximum depth below surface in daylight, meters

C SFNTBE=restricts advection in bottom layer during ebb

C 0. equals full restriction, 1. equals no restriction

C SFATBT=1. allows larvae to settle to bottom and attach

C

C MSFSER TCSFSER TASFSER TSRSF TSSSF ISSFLDN ISSFLFE

C

C TSFSER RKDSFL WSFLST WSFLSM DSFLMN DSFLMX SFNTBE SFATBT

C

4 86400. 0. 0.25 0.84 1 1

-10000. 0. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0.

0.01 0. 0. 0. 0. 0. 0. 0.

10000. 0. 0. 0. 0. 0. 0. 0.

Page 120: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-24

5.19 Input File vege.inp

The input file vege.inp specifies information on vegetation resistance. An example is shown below.

C vege.inp file, in free format across line, WCA2A

C

C MVEGTYP(# vege classes) MVEGOW(open water class) UVEGSCL(vel scale)

C

C after reading MVEGTYP, MVEGOW and UVEGVSCL read MVEGTYP lines of vars

C

C M RDLPSQ BPVEG HPVEG ALPVEG BETVEG GAMVEG SCVEG

C typ# 1/m**2 meters meters no dim no dim no dim nodim

C

20 17 0.01

1 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

2 18.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

3 8.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

4 26.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

5 12.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

6 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

7 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

8 18.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

9 12.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

10 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

11 18.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

12 8.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

13 26.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

14 18.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

15 26.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

16 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

17 0.25 0.1E-0 2.5 0.7854 1.0 0.0 0.50

18 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

19 32.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

20 8.0 0.1E-0 2.5 0.7854 1.0 0.0 0.50

The parameter MVEGTYP specifies the number of vegetation types. The vegetation is represented as

cylindrical elements of height HPVEG and width or diameter BPVEG having a spatial density of RDLPSQ

resistance elements per square meter. The parameter ALPVEG, BETVEG, GAMVEG, and SCVEG are

dimensionless shape factors (see Hamrick and Moustafa, 1995a) with the values shown being typical of

cattail and sawgrass.

Page 121: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

5 - Additional Input Files

5-25

5.20 Input File wave.inp

The file wave.inp is used to specify forcings for modeling wave induced currents and wave-current

boundary layers. The definitions on the header lines define and explain the various data types. A

preprocessor is available from the author to generate the two layer data sets required in this file using the

output of various wave prediction and transformation models.

c file wave.inp to specify information for wave-current boundary layerc and wave induced flowcc *first line datac NWVDAT=number of cells receiving wave datac WVPRD=wave period in secsc CVTWHA=mult convert wave height to amplidute in mc ISWCBL=1 activates wave current boundary layer modelc ISWRSR=1 activates inclusion of rotational component of rad stressc ISWRSI=1 activates inclusion of irrotational component of rad stressc NWUPDT=number of time steps between updating wave forcingc NTSWV=number of time steps for gradual introduction of wave forcingc WVDISV=fraction of wave dissipation as source in vertical TKE closurec WVDISH=fraction of wave dissipation as source in horiz SSG closurec WVLSH=weight for depth as the horiz SSG eddy viscosity length scale c WVLSX=weight for sqrt(dxdy) as the horiz SSG eddy vis length scale c ISWVSD=1, include nondiverg wave stokes drift in mass transportc ISDZBR=1,write diagnos for effect wave current bndry layer roughnesscc *second NWVDAT lines datac I,J cell indicesc HMP,HMC cell center & corner depths for consistent disper evaluationc WVENE wave energy 0.5*g*abs(amp)*abs(amp)c SXX rotational depth integrated wave radiation stress <huu>c SYY rotational depth integrated wave radiation stress <hvv> c SXY rotational depth integrated wave radiation stress <huv>c WVDISP wave energy dissipation in (m/s)**3 cc *third NWVDAT lines datac I,J cell indicesc HMU,HMV cell u and v face depths for consistent disper evaluationc UWVRE real part of u component of wave orbital velocity magnitudec UWVIM imag part of u component of wave orbital velocity magnitudec VWVRE real part of v component of wave orbital velocity magnitudec VWVIM imag part of v component of wave orbital velocity magnitudecc NWVDAT WVPRD CVTWHA ISWCBL ISWRSR ISWRSI NWUPDT NTSWV WVDISV WVDISH continuation of first head (not sep line)\ WVLSH WVLSX ISWVSD ISDZBR c I J HMP HMC WVENE SXX SYY SXY WVDISPc I J HMU HMV UWVRE UWVIM VWVRE VWVIMc 5500 10.9 1.0 1 1 1 1000000 120 1.0 1.0 2 2 .001 .001 .5845E-05 .0000E+00 .1288E-09 .0000E+00 .0000E+00 3 2 .001 .001 .2276E-04 .1472E-04 .9844E-09 .8752E-07 .0000E+00

Page 122: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

6 - Compiling and Executing the Code

6-1

6. Compiling and Executing the Code

To compile the EFDC model, the FORTRAN 77 source code efdc.f and the include files efdc.cmn,

which contains global common blocks, and efdc.par, which contains a global parameter statement are

necessary and should reside in the same directory. Extensive efforts have been made to ensure cross-

platform compatibility of the EFDC model, however, a number of minor modifications are required for

various platforms. The source code efdc.f contains calls to the VMS time utility secnds. For compilers

which support the secnds function through systems libraries, (DEC and Hewlett-Packard UNIX

systems and Absoft and LSI Macintosh FORTRAN compilers), no modifications to the standard

source efdc.f are required if appropriate compiler options are specified. (To determine if your compiler

supports the secnds functions, look for secnds or VMS compatibility in the compiler reference

manuals.) For compilers which do not support the secnds function, (Cray cf77, Sun UNIX) the real

function subroutine secnds.f should be appended to the end of the standard source code. A somewhat

less desirable fix is to comment out calls to the secnds function. Many of the IO operations in the

efdc.f source code use the open file statement form:

OPEN(1,FILE=’fname’, STATUS=’UNKNOWN’,ACCESS=’APPEND’)

To the author’s knowledge, the only systems which do not support the ACCESS=’APPEND’ modifier

are Cray and IBM Risc6000 UNIX Systems. For Cray compilation, the ACCESS=’APPEND’ should

be globally replaced by POSITION=’APPEND’. A Cray-compatible version of the source, cefdc.f is

continually maintained and available by ftp as described in the foreword of this report.

Except for the optional function subroutine secnds.f, the source code consisting of approximately 112

subroutines at last count is maintained as a single text file, efdc.f or cefdc.f. A number of compilers,

including the Cray and Silicon Graphics UNIX compilers and the Lahey Intel based PC compiler, are

able to produce optimized executable code by operating on the entire source using, for example, the

Cray and SGI commands:

cf77 -Zv cefdc.f

Page 123: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

6 - Compiling and Executing the Code

6-2

f77 -O3 efdc.f

which produce the executable a.out. (Note the option -Zv for the Cray compilation produces optimum

vectorization, using -Zp would produce both optimum vectorization and autotasking). Other compilers,

such as the HP and SUN UNIX compilers and the Absoft and LSI Macintosh compilers, are capable

of producing only nonoptimized executables working with the entire source code. An example

command line for the HP is:

f77 -K +E1 -C -o hpefdcnopt efdc.f

which produces the nonoptimized executable hpefdcnopt. The options -K +E1 invoke support of the

secnds function, while -C implements array range checking. To produce optimized code on these

systems, recourse to makefiles or batch command files which compile each subroutine separately is

necessary. Batch command files for HP and SUN UNIX compilers and Makefiles for Absoft and LSI

Macintosh compilers are available via ftp.

To achieve minimum memory requirements for running a specific application, it is recommended that the

parameter file be customized for that application. The parameter file efdc.par is of the form:

C**********************************************************************CCC ** EFDC PARAMETER FILEC ** FOR USE WITH 31 August 2001 EFDC HYDRO CODE RELEASECC ** THIS FILE IS CONFIGURED FORC Lake Tenkiller (MRM 02/27/2002)C**********************************************************************CC ** RELDATE = release dateC COMPDATE = compile dateC COMPDESC = compile description, i.e., application notesC CHARACTER*30 RELDATE, COMPDATE, COMPDESCC 1 2 3C ’123456789012345678901234567890’ PARAMETER (RELDATE = ’31-AUG-2001 (Hydro version) ’) PARAMETER (COMPDATE = ’28-FEB-2002 ’) PARAMETER (COMPDESC = ’Lake Tenkiller, Oklahoma ’)CC ** HYDRODYNAMIC AND TRANSPORT PARMETER BLOCKC PARAMETER (KSM=10,KCM=11,KGM=11,KBM=11, LCM=200, ICM=30, JCM=50,

Page 124: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

6 - Compiling and Executing the Code

6-3

$ IGM=31, JGM=51, KPCM=10, NWGGM=200,NTSM=86400, NPDM=1, $ NPBSM=4, NPBWM=4, NPBEM=4, NPBNM=4, NPFORM=38, $ NBBSM=4, NBBWM=4, NBBEM=4, NBBNM=4, NLDAM=12, $ NVBSM=1, NVBNM=1, NUBWM=1, NUBEM=1, $ NGLM=2, LCGLM=2, LCMW=200, NPSERM=2, NDPSER=184, $ NQSIJM=50, NQSERM=366, NDQSER=1400, NQINFLM=66, $ NQCTLM=10, NQCTTM=10, NDQCLT=45, NDQCLT2=45, $ NQWRM=30, NQWRSRM=30, NDQWRSR=1400, NVEGTPM=1, NCHANM=1, $ NCSERM=20, NDCSER=1400, NASERM=2, NDASER=10400, $ NWSERM=1, NDWSER=10400,NQJPM=1, NJPSM=1, $ NJUNXM=1, NJUNYM=1, NXYSDATM=2, $ MTM=11, MLM=12, MGM=22, MLTMSRM=60, $ NTSSTSPM=99,MTSSTSPM=32, MDVSM=10, MTVSM=10, $ NSCM=1, NSNM=1, NSTM=2, NTXM=5, NSTVM=12)CC ** NSTVM=5+NSCM+NSNM+NTXMCC**********************************************************************CCC ** WATER QUALITY/EUTROPHICATION PARMETER BLOCKCC ** USE PARAMETER STATEMENT BELOW FOR INACTIVE WATER QUALITYC PARAMETER (NWQVM=22,NWQZM=2,NWQPSM=2,NWQTDM=2,NWQTSM=2, $ NTSWQVM=22,LCMWQ=2,NSMGM=2,NSMZM=2,NTSSMVM=2,NSMTSM=2, $ NWQCSRM=2,NDWQCSR=2,NWQPSRM=2,NDWQPSR=2)CCC ** USE PARAMETER STATEMENT BELOW FOR ACTIVE WATER QUALITYCc PARAMETER (NWQVM=22,NWQZM=2,NWQPSM=2,NWQTDM=2,NWQTSM=2,c $ NTSWQVM=22,LCMWQ=2,NSMGM=3,NSMZM=2,NTSSMVM=2NSMTSM=2,c $ NWQCSRM=4,NDWQCSR=2,NWQPSRM=2,NDWQPSR=2)CC**********************************************************************CCC ICM= MAXIMUM X OR I CELL INDEX TO SPECIFIC GRID IN FILE cell.inpC IGM= ICM+1C JCM= MAXIMUM Y OR J CELL INDEX TO SPECIFIC GRID INC FILE cell.inpC JGM= JCM+1C KBM= MAXIMUM NUMBER OF BED LAYERS, MAX LOOP INDEX KBC KCM= MAXIMUM NUMBER OF LAYERS, MAX LOOP INDEX KCC KGM= KCMC KSM= KCM-1C KPCM= MAXIMUM NUMBER OF CONSTANT ELEVATION LEVELS FORC THREE-DIMENSIONAL GRAPHIC OUTPUTC LCM= MAXIMUM NUMBER OF WATER CELLS + 2C OR 1 + THE MAX LOOP INDEX LAC LCMW= SET TO LCM IF ISWAVE.GE.1 OTHERWISE =2C LCGLM= SET TO LCM IF ISLRD.GE.1 OTHERWISE =2C LCMWQ= SET TO LCM IF WATER QUALITY TRANSPORT ISTRAN(8).EQ.1C MDVSM= MAXIMUM DEPTHS FOR VERTICAL SCALAR PROFILE SAMPLINGC MTVSM= MAXIMUM NUMBER OF SPACE-TIME LOCATIONS FOR VERTICAL SCALARC FIELD PROFILINGC MGM= 2*MTM

Page 125: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

6 - Compiling and Executing the Code

6-4

C MLM= MAXIMUN NUMBER OF HARMONIC ANALYSIS LOCATIONC MTM= MAXIMUM NUMBER OF PERIODIC FORCING CONSTITUENTSC MLTMSRM= MAXIMUM NUMBER OF TIME SERIES SAVE LOCATIONSC MTSSTSPM= MAX NUMBER OF TIMES SERIES START-STOP TIME PAIRSC NASERM= MAX NUMBER OF ATMOSPHERIC DATA TIME SERIESC NBBEM= NPBEMC NBBNM= NPBNMC NBBSM= NPBSMC NBBWM= NPBWMC NCSERM= MAXIMUM NUMBER OF CONCENTRATION TIME SERIES FORC ANY CONCENTRATION VARIABLEC NCHANM= MAXIMUM NUMBER OF HEC-TYPE 1D CHANNEL CELLSC NDASER= MAX NUMBER OF TIME DATA PTS IN ATMOSPHERIC TIME SERIESC NDQSER= MAXIMUM NUMBER OF TIME POINTS IN THE LONGEST TIME SERIESC NDQCLT= MAXIMUM NUMBER OF DATA PAIRS IN FLOW CONTROL TABLEC NDQCLT2= MAXIMUM NUMBER OF 2ND DATA PAIRS IN FLOW CONTROL TABLEC NDQWRSR= MAX NUMBER OF TIME DATA PTS IN WITH-RETURN TIME SERIESC NDWQCSR= MAX NUMBER OF TIME DATA PTS IN WQ CONCENTRATION SERIESC NDWQPSR= MAX NUMBER OF TIME DATA PTS IN WQ PSL TIME SERIESC NDWSER= MAX NUMBER OF TIME DATA PTS IN WIND TIME SERIESC NGLM= NUMBER OF ISLRD PARTICLE RELEASE TIMESC NJUNXM= MAX NUMBER OF X DIR 1D CHANNEL JUNCTIONSC NJUNYM= MAX NUMBER OF Y DIR 1D CHANNEL JUNCTIONSC NLDAM= MAXIMUM NUMBER OF LOCATIONS FOR CONCENTRATION DATAC ASSIMILATIONC NPBEM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIESC NPBNM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIESC NPBSM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIESC NPBWM= MAXIMUM NUMBER OF EAST OPEN SURFACE ELEV BOUNDARIESC NPDM= MAXIMUM NUMBER OF ISPD TYPE PARTICLE DRIFTERSC NPFORM= MAXIMUM NUMBER OF PERIODIC FORCING FUNCTIONSC NPSERM= MAXIMUM NUMBER OF SURFACE ELEVATION TIME SERIESC NQCTLM= MAXIMUM NUMBER OF FLOW CONTROL STRUCTURE LOCATIONC NQCTTM= MAXIMUM NUMBER OF FLOW CONTROL STRUCTURE TABLESC NQSERM= MAXIMUM NUMBER OF FLOW TIME SERIESC NQSIJM= MAXIMUM NUMBER OF NQSIJ VOLUMETRIC SOURCE-SINKSC NQJPM= MAXIMUM NUMBER OF JET/PLUME VOLUME AND MASS SOURCESC NJPSM= MAXIMUM NUMBER OF JET/PLUME SAVE POSITIONSC NQWRM= MAXIMUM NUMBER OF FLOW WITH-RETURN PAIRSC NQWRSRM= MAXIMUM NUMBER OF FLOW WITH-RETURN TIME SERIESC NSMGM=C NSMTSM= MAX SED DIAGENSIS MODEL TIME SERIES OUTPUT LOCATIONSC NSMZM= MAXIMUN NUMBER OF SEDIMENT DIAGENSIS MODEL ZONESC NTSM= MAXIMUM NUMBER OF TIME STEP PER REFERENCE TIME PERIODC NTSSMVM=C NTSWQVM= MAX NUMBER OF WATER QUALITY TIME SERIES OUTPUT VARIABLESC NTSSTSPM= MAXIMUM NUMBER OF TIME SERIES START-STOP SCEARIOSC NUBEM= 1C NUBWM= 1C NVBNM= 1C NVBSM= 1C NSCM = MAXIMUM NUMBER OF COHESIVE SEDIMENT SIZE CLASSESC NSNM = MAXIMUM NUMBER OF NON-COHESIVE SEDIMENT SIZE CLASSESC NSCM = TOTAL NUMBER OF SEDIMENT SIZE CLASSES NSCM+NSNMC NTOXM= MAXIMUM NUMBER OF TOXIC CONTAMINANTSC NVEGTPM= MAXIMUM NUMBER OF VEGETATION TYPE CLASSES

Page 126: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

6 - Compiling and Executing the Code

6-5

C NWGGM= NUMBER OF WATER CELLS IN CARTESIAN GRAPHIC OVERLAYC GRID, EQUAL TO LCM-2 FOR CARTESIAN GRIDSC NWQCSRM= MAX NUMBER OF WQ STATE VARIABLE TIME SERIESC NWQPSM= MAX NUMBER OF WQ POINT SOURCESC NWQPSRM= MAX NUMBER OF WQ POINT SOURCE LOAD TIME SERIESC NWQTDM= MAX NUMBER OF PTS IN WQ MODEL TEMPERATURE FUNCTION TABLESC NWQTSM= MAX NUMBER OF WQ MODEL TIME SERIES OUTPUT LOCATIONSC NWQVM= MAXIMUM NUMBER OF WQ VARIABLESC NWQZM= MAXIMUM NUMBER OF SURFACE WATER QUALITY ZONESC NWSERM= MAX NUMBER OF WIND TIME SERIESC NXYSDATM= MAXIMUM NUMBER OF DATA POINTS DEFINING HEC TYPE 1DC CHANNEL CROSS SECTION PROPERTIESCC**********************************************************************C

For a given model application, the parameters, which dimension arrays in efdc.cmn, should be set to the

lowest value that accommodates the grid and data for the application. When starting to run a new

application, it is recommended to use a nonoptimized executable compiled with the range checking option

(usually -C on UNIX compilers) to determine if arrayed variables are within the range specified by the

parameter dimensioned arrays. After it has been determined that the input files are configured properly,

then the model can be compiled without the range-checking option activated to improve execution speed.

Page 127: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

7 - Diagnostic Options and Output

7-1

7. Diagnostic Options and Output Files

File Description

adjmmt.dia

bal.out

balo.out

bale.out

buoy.dia

disdia.out

modchan.dia

rbcm.dia

sinval.out

efdc.log Errors encountered when reading the efdc.inp file are recorded in this file.

time.log The execution clock time is recorded in this file at the end of each NTCinterval.

drywet.log Diagnostics for grid cell wetting and drying processes are written to this file.

lijmap.out This is a file that maps the L-vector index to the cell I,J indices.

zvolbal.out

cfl.out Diagnostics of the maximum time step for each grid cell are written to this file.

eqcoef.out

eqterm.out

fp.out

Page 128: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

7 - Diagnostic Options and Output

7-2

eqcoef1.out

diaq.out

Page 129: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

8 - Time-Series Output and Analysis

8-1

8. Time-Series Output and Analysis Files

File Description

lsha.out Least squares harmonic analysis output file.

saltmsr01.out Salinity time-series output file for a single grid cell location.

temtmsr01.out Temperature time-series output file for a single grid cell location.

dyetmsr01.out Dye concentration time-series output file for a single grid cell location.

sedtmsr01.out Cohesive sediment concentration time-series output file for a single grid celllocation.

sndtmsr01.out Non-cohesive sediment concentration time-series output file for a single gridcell location.

sfltmsr01.out Shellfish larvae time-series output file for a single grid cell location.

avvtmsr01.out

avbtmsr01.out

uvetmsr01.out

uvttmsr01.out

u3dtmsr01.out

v3dtmsr01.out

qqetmsr01.out

q3dtmsr01.out

vsfp.out Vertical scalar field profiles output file (see example below).

INSTANTANEOUS VERTICAL SCALAR FIELD PROFILES

TIME = 3221.6001 N = 1665 I,J = 151 42

DEPTH BELOW SURFACE MODEL SALINITY

1.00 16.70

Page 130: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

8 - Time-Series Output and Analysis

8-2

3.00 17.27

5.00 17.79

7.00 18.09

9.00 18.21

11.00 18.24

13.00 18.25

TIME = 3222.0000 N = 1679 I,J = 140 46

DEPTH BELOW SURFACE MODEL SALINITY

1.00 17.36

3.00 17.37

5.00 17.37

7.00 17.37

9.00 17.39

11.00 17.42

13.00 17.43

15.00 17.44

17.00 17.44

19.00 17.45

TIME = 3222.3999 N = 1693 I,J = 124 59

DEPTH BELOW SURFACE MODEL SALINITY

1.00 13.51

3.00 13.51

5.00 14.53

7.00 14.93

9.00 14.93

Page 131: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

9 - Two-Dimensional Graphics Output and Visualization

9-1

9. Two-Dimensional Graphics Output and Visualization

9.1 Two-Dimensional Horizontal Plane Scalar Format

File Description

belvcon.out Bottom elevation contour output file.

wcustrh.out Wave current shear velocity

ccustrh.out Current shear velocity

zbreffh.out

surfamp.out

surfpha.out

majaxis.out

majapha.out

salconh.out Salinity instantaneous horizontal contour output file.

temconh.out Temperature instantaneous horizontal contour output file.

dyeconh.out Dye instantaneous horizontal contour output file.

sedconh.out Cohesive sediment instantaneous horizontal contour output file.

sflconh.out Shellfish larvae instantaneous horizontal contour output file.

rsalconh.out Residual salinity horizontal contour output file.

rtemconh.out Residual temperature horizontal contour output file.

rdyeconh.out Residual dye horizontal contour output file.

rsedconh.out Residual cohesive sediment horizontal contour output file.

rsflconh.out Residual shellfish larvae horizontal contour output file.

Page 132: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

9 - Two-Dimensional Graphics Output and Visualization

9-2

surfcon.out Water surface elevation instantaneous contour output file.

rsurfcon.out Residual water surface elevation contour output file.

Page 133: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

9 - Two-Dimensional Graphics Output and Visualization

9-3

9.2 Two-Dimensional Horizontal Plane Vector Format

File Description

tstvech.out

stvech.out

tauvech.out

tidelkc.out

tidelkb.out

velvech.out

rvelvech.out

pvelvech.out

mvelvech.out

lmvvech.out

almvvech.out

Page 134: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

9 - Two-Dimensional Graphics Output and Visualization

9-4

9.3 Two-Dimensional Vertical Plane Scalar Format

File Description

salcnv1.out

temcnv1.out

dyecnv1.out

sedcnv1.out

sflcnv1.out

rsalcnv1.out

rviscnv1.out

rvefcnv1.out

rsflcnv1.out

velcnv1.out

rvelcnv1.out

pvelcnv1.out

mvelcnv1.out

lmvcnv1.out

almvcnv1.out

rvelcvt1.out

pvelcvt1.out

mvelcvt1.out

lmvcvt1.out

almvcvt1.out

Page 135: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

9 - Two-Dimensional Graphics Output and Visualization

9-5

9.4 Two-Dimensional Vertical Plane Vector Format

File Description

velvcv1.out

rvelvcv1.out

pvelvcv1.out

mvelvcv1.out

lmvvcv1.out

almvvcv1.out

Page 136: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

10 - Three-Dimensional Graphics Output and Visualization

10-1

10. Three-Dimensional Graphics Output and Visualization

File Description

sal3d01.asc Instantaneous salinity (up to 24 files)

tem3d01.asc Instantaneous temperature

dye3d01.asc Instantaneous dye

sed3d01.asc Instantaneous cohesive sediment

uuu3d01.asc Instantaneous velocity (u-direction)

vvv3d01.asc Instantaneous velocity (v-direction)

www3d01.asc Instantaneous velocity (w-direction)

out3d.dia Diagnostics for instantaneous 3D output.

rsal3d01.asc Residual salinity (up to 24 files)

rtem3d01.asc Residual temperature

rdye3d01.asc Residual dye

rsed3d01.asc Residual cohesive sediment

ruuu3d01.asc Residual velocity (u-direction)

rvvv3d01.asc Residual velocity (v-direction)

rwww3d01.asc Residual velocity (w-direction)

rout3d.dia Diagnostics for residual 3D output.

Page 137: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

11 - Miscellaneous Output Files

11-1

11. Miscellaneous Output Files

File Description

efdc.out This is an echo of the efdc.inp file

avsel.out

gwelv.out

cell9.out File containing grid cell mapping information

drifter.out Lagrangian drifter output file

restran.out Residual transport output file

restart.out Restart file written at the end of each NTC interval or at end of model run.

waspp.out WASP horizontal position and layer information file

waspb.out WASP data group B

waspb.mrm WASP data group B (use this for Tetra Tech’s version of WASP5)

waspc.out WASP data group C

waspd.out WASP data group D

waspd.mrm WASP data group D (use this for Tetra Tech’s version of WASP5)

waspdhd.out WASP hydrodynamic diagnostic file (ASCII format)

waspdh.out WASP external hydrodynamic file

waspdhu.out WASP external hydrodynamic file (unformatted binary)

advmod.wsp

disten.out

uvtsc.out

Page 138: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

11 - Miscellaneous Output Files

11-2

uverv.out

Page 139: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

12 - References

12-1

12. References

Ambrose, R. B., T. A. Wool, and J. L. Martin, 1993. The water quality analysis simulation program,WASP5. U. S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA,210 pp.

Bennett, A. F., 1976. Open boundary conditions for dispersive waves. J. Atmos. Sci., 32, 176-182.

Bennett, A. F., and P. C. McIntosh, 1982. Open ocean modeling as an inverse problem: tidal theory. J.Phys. Ocean., 12, 1004-1018.

Bennett, J. R., and A. H. Clites, 1987. Accuracy of trajectory calculation in a finite-difference circulationmodel. J. Comp. Phys., 68, 272-282.

Blumberg, A. F., and L. H. Kantha, 1985. Open boundary condition for circulation models. J. Hydr.Engr., 111, 237-255.

Blumberg, A. F., and G. L. Mellor, 1987. A description of a three-dimensional coastal ocean circulationmodel. In: Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Science, Vol. 4. (Heaps,N. S., ed.) American Geophysical Union, pp. 1-19.

Chikhliwala, E. D., and Y. C. Yortsos, 1985. Application of orthogonal mapping to some two-dimensionaldomains. J. Comp. Phys., 57, 391-402.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, 1988. A quasi-equilibrium turbulent energy modelfor geophysical flows. J. Atmos. Sci., 45, 55-62.

Cerco, C. F., and T. Cole, 1993. Three-dimensional eutrophication model of Chesapeake Bay. J.Environ. Engnr., 119, 1006-1025.

Glenn, S. M., and W. D. Grant, 1987. A suspended sediment stratification correction for combined waveand current flows. J. Geophys. Res., 92, 8244-8264.

Grant, W. D., and O. S. Madsen, 1982. Movable bed roughness in unsteady oscillatory flow. J. Geophys.Res., 87, 469-482.

Hamrick, J. M., 1991. Analysis of mixing and dilution of process water discharged into the PamunkeyRiver, a Report to the Chesapeake Corp. The College of William and Mary, Virginia Institute of MarineScience, 50 pp.

Hamrick, J. M., 1992a. A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoreticaland Computational Aspects. The College of William and Mary, Virginia Institute of Marine Science.Special Report 317, 63 pp.

Page 140: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

12 - References

12-2

Hamrick, J. M., 1992b. Estuarine environmental impact assessment using a three-dimensional circulationand transport model. Estuarine and Coastal Modeling, Proceedings of the 2nd InternationalConference, M. L. Spaulding et al, Eds., American Society of Civil Engineers, New Yrok, 292-303.

Hamrick, J. M., 1992c. Preliminary analysis of mixing and dilution of discharges into the York River, aReport to the Amoco Oil Co. The College of William and Mary, Virginia Institute of Marine Science, 40pp.

Hamrick, J. M., 1994a. Linking hydrodynamic and biogeochemical transport models for estuarine andcoastal waters. Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference,M. L. Spaulding et al, Eds., American Society of Civil Engineers, New York, 591-608.

Hamrick, J. M., 1994b. Evaluation of island creation alternatives in the Hampton Flats of the James River.a report to the U. S. Army Corps of Engineers, Norfolk District.

Hamrick, J. M., 1995a. Calibration and verification of the VIMS EFDC model of the James River,Virginia. The College of William and Mary, Virginia Institute of Marine Science, Special Report, inpreparation.

Hamrick, J. M., 1995b. Evaluation of the environmental impacts of channel deepening and dredge spoildisposal site expansion in the lower James River, Virginia. The College of William and Mary, VirginiaInstitute of Marine Science, Special Report, in preparation.

Hamrick, J. M., and Z. Yang, 1995. Lagrangian mean descriptions of long-term estuarine mass transport.Proceeding of the 1994 International Conference on the Physics of Estuaries and Bays. D. Aubrey, Ed.,American Geophysical Union, in press.

Hamrick, J. M., and M. Z. Moustafa, 1995a. Development of the Everglades wetlands hydrodynamicmodel: 1. Model formulation and physical processes representation. submitted to Water ResourcesResearch.

Hamrick, J. M., and M. Z. Moustafa, 1995b. Development of the Everglades wetlands hydrodynamicmodel: 2. Computational implementation of the model. submitted to Water Resources Research.

Johnson, B. H., K. W. Kim, R. E. Heath, B. B. Hsieh, and H. L. Butler, 1993. Validation of three-dimensional hydrodynamic model of Chesapeake Bay. J. Hyd. Engrg., 119, 2-20.

Knupp, P. M., 1992. A robust elliptic grid generator. J. Comp. Phys., 100, 409-418.

Mellor, G. L., and T. Yamada, 1982. Development of a turbulence closure model for geophysical fluidproblems. Rev. Geophys. Space Phys., 20, 851-875.

Mobley, C. D., and R. J. Stewart, 1980. On the numerical generation of boundary-fitted orthogonalCurvilinear coordinate systems. J. Comp. Phys., 34, 124-135.

Page 141: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

12 - References

12-3

Moustafa, M. Z., and J. M. Hamrick, 1994. Modeling circulation and salinity transport in the Indian RiverLagoon. Estuarine and Coastal Modeling, Proceedings of the 3rd International Conference, M. L.Spaulding et al, Eds., American Society of Civil Engineers, New York, 381-395.

Moustafa, M. Z., and J. M. Hamrick, 1995. Development of the Everglades wetlands hydrodynamicmodel: 3. Model application to South Florida water conservation area 2a. submitted to Water ResourcesResearch.

Moustafa, M. Z., J. M. Hamrick, and M. R. Morton, 1995. Calibration and verification of a limited areacirculation and transport model of the Indian River Lagoon. submitted to Journal of HydraulicEngineering.

Park, K., A.Y. Kuo, J. Shen, and J.M. Hamrick, 1995. A three-dimensional hydrodynamic-eutrophicationmodel (HEM-3D): Description of water quality and sediment process submodels. Special Report inApplied Marine Science and Ocean Engineering No. 327. School of Marine Science, Virginia Instituteof Marine Science, College of William and Mary, Gloucester Point, VA.

Rennie, S., and J. M. Hamrick, 1992. Techniques for visualization of estuarine and coastal flow fields.Estuarine and Coastal Modeling, Proceedings of the 2nd International Conference, M. L. Spauldinget al, Eds., American Society of Civil Engineers, New York, 48-55.

Rosati, A. K., and K. Miyakoda, 1988. A general circulation model for upper ocean simulation. J. Phys.Ocean., 18, 1601-1626.

Ryskin, G. and L. G. Leal, 1983. Orthogonal mapping. J. Comp. Phys., 50, 71-100.

Smogorinsky, J., 1963. General circulation experiments with the primative equations, Part I: the basicexperiment. Mon. Wea. Rev., 91, 99-152.

Smolarkiewicz, P. K., 1984. A fully multidimensional positive definite advection transport algorithm withsmall implicit diffusion. J. Comp. Phys., 54, 325-362.

Smolarkiewicz, P. K., and T. L. Clark, 1986. The multidimensional positive definite advection transportalgorithm: further development and applications. J. Comp. Phys., 67, 396-438.

Smolarkiewicz, P. K., and W. W. Grabowski, 1990. The multidimensional positive definite advectiontransport algorithm: nonoscillatory option. J. Comp. Phys., 86, 355-375.

Smolarkiewicz, P. K., and L. G. Margolin, 1993. On forward-in-time differencing for fluids: extension toa curvilinear framework. Mon. Weather Rev., 121, 1847-1859.

Zalesak, S. T. , 1979. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comp.Phys., 31, 335-362.

Page 142: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-1

Appendix A. EFDC Source Code Subroutines and Functions

Subroutine Purpose

ADJMMT.f Adjust mean transport field for transport only simulations

AINIT.f Initializes Variables

ASOLVE.f Utility solver for bi-conjugate gradient solver

ATIMES.f Utility sparse matrix multiplier for bi-conjugate gradient solver

CALAVB.f Calculates vertical turbulent viscosity and diffusivity

CALBAL1.f Calculates mass, momentum and energy balances

CALBAL2.f Calculates mass, momentum and energy balances

CALBAL3.f Calculates mass, momentum and energy balances

CALBAL4.f Calculates mass, momentum and energy balances

CALBAL5.f Calculates mass, momentum and energy balances

CALBUOY.f Calculates buoyancy or density anomaly using UNESCO equation of state

CALCONC.f Calculates scalar field (concentration) transport

CALCSER.f Concentration time series processor

CALDIFF.f Calculates horizontal diffusion of scalar fields

CALDISP2.f Calculates time average horizontal shear dispersion tensor

CALDISP3.f Calculates time average horizontal shear dispersion tensor

CALEBI.f Calculates buoyancy integral in external mode equations

CALEXP.f Calculates explicit terms in momentum equations

CALFQC.f Calculates mass (scalar concentration field) sources and sinks

CALHDMF.f Calculates horizontal diffusion in momentum equations

Page 143: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-2

CALHEAT.f Calculates surface and internal heat sources and sinks

CALHTA.f Performs harmonic analysis for single frequency periodically forced flow

CALMMT.f Calculates time mean mass transport field including Stokes’ drift

CALPSER.f Processes surface elevation time series

CALPUV.f External mode solver for rigid lid or small surface displacement flows

CALPUV2.f External mode solver for larger surface displacements, but no drying orwetting

CALPUV5.f External mode solver for flows with drying and wetting and subgrid scalechannels

CALPUV7.f External mode solver for kinematic wave approximation

CALQQ1.f Calculates transport of turbulent kinetic energy and length scale

CALQQ2.f Calculates transport of turbulent kinetic energy and length scale (researchversion)

CALQVS.f Processes volumetric source and sink time series

CALSED.f Calculates cohesive sediment settling, deposition and resuspension

CALSED2.f Calculates cohesive sediment settling, deposition and resuspension

CALSED3.f Calculates noncohesive sediment settling, deposition and resuspension

CALSFT.f Calculates diffusion, sources and sinks and vertical migration of shellfishlarvae.

CALTBXY.f Calculates bottom drag coefficients for bottom stress calculation andcalculates certain vegetation resistance parameters.

CALTRAN.f Calculates explicitly advective transport of scalar field concentration)variables

CALTRANI.f Calculates implicit advective transport of scalar field concentration) variables

CALTRANQ.f Calculates advective transport of turbulent kinetic energy and length scale

CALTRWQ.f Calculates explicit advection of water quality variables

Page 144: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-3

CALTSXY.f Processes wind and atmospheric condition time series and calculates surfacewind stress.

CALUVW.f Solves the internal mode momentum equations and continuity equation

CALWQC.f Calculates diffusion and sources and sinks of water quality variables

CBALEV1.f Calculates mass, momentum and energy balances for even time steps

CBALEV2.f Calculates mass, momentum and energy balances for even time steps

CBALEV3.f Calculates mass, momentum and energy balances for even time steps

CBALEV4.f Calculates mass, momentum and energy balances for even time steps

CBALEV5.f Calculates mass, momentum and energy balances for even time steps

CBALOD1.f Calculates mass, momentum and energy balances for odd time steps

CBALOD2.f Calculates mass, momentum and energy balances for odd time steps

CBALOD3.f Calculates mass, momentum and energy balances for odd time steps

CBALOD4.f Calculates mass, momentum and energy balances for odd time steps

CBALOD5.f Calculates mass, momentum and energy balances for odd time steps

CELLMAP.f Maps I,J horizontal indexes to single L index

CELLMASK.f Inserts barriers across cell flow faces

CGRS.f Red-Black reduced system conjugated gradient solver for two-dimensionalHelmholtz equation

CONGRAD.f Diagonally preconditioned conjugated gradient solver for two-dimensionalHelmholtz equation

DEPPLT.f Generates file for bathymetry contouring in ASCII column format

DEPSMTH.f Smoothes bottom elevation and initial depth fields

DRIFTER.f Releases and tracks Lagrangian drifters at specified times and locations

EFDC.f Main program

FILTRAN.f Performs vertical filtering of mean mass transport field

Page 145: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-4

GLMRES.f Calculates generalized Lagrangian mean velocities

HDMT.f Controls hydrodynamic and mass transport solution

INPUT.f Processes input files

LAGRES.f Calculates Lagrangian mean velocities by forward trajectories

LINBCG.f Bi-conjugate gradient linear equation solver

LSQHARM.f Performs least squares harmonic analysis

LTMT.f Controls mass transport only solution

LUBKSB.f Back substitution utility for LU decomposition equation solver

LUDCMP.f LU decomposition equation solver

LVELPLTH.f Writes ASCII column files for visualization of Lagrangian mean velocity fieldin horizontal stretched layer

LVELPLTV.f Writes ASCII column files for visualization of Lagrangian mean velocity fieldin vertical transects

OUT3D.f Writes files for two-dimensional slice and three-dimensional volumevisualization of vector and scalar fields in 8 bit ASCII integer format or 8 bitHDF integer format

OUTPUT1.f Writes printer output files in crude printer character contouring form

OUTPUT2.f Writes printer output files in crude printer character contouring form

PPLOT.f Processes printer character contour plots

REDKC.f Reduces layers by 1/2 in mass transport only simulations (not active)

RELAX.f Solve two-dimensional Helmholtz equation by Red-Black SOR (successiveover relaxation)

RELAXV.f A more vectorizabe version of RELAX.f

RESTIN1.f Reads restart.inp file for restarting a run

RESTIN10.f Reads older versions of restart.inp

RESTIN2.f Reads a K layer restart.inp file to initialize a 2*K layer simulation

Page 146: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-5

RESTMOD.f Reads restart.inp field and deactivates specified horizontal cell

RESTOUT.f Writes restart file restart.out

RESTRAN.f Reads transport file restran.inp for transport only simulations

ROUT3D.f Writes files for two-dimensional slice and three-dimensional volumevisualization of time mean vector and scalar fields in 8 bit ASCII integerformat or 8 bit HDF integer format

RSALPLTH.f Writes ASCII column files for time means scalar field visualization inhorizontal stretched layers

RSALPLTV.f Writes ASCII column files for time mean scalar field visualization in verticaltransects

RSURFPLT.f Writes ASCII column file for visualization of time mean surface displacementfield

RVELPLTH.f Writes ASCII column files for visualization of time mean velocity field inhorizontal stretched layers

RVELPLTV.f Writes ASCII column files for visualization of time mean velocity field invertical transects

SALPLTH.f Writes ASCII column files for instantaneous scalar field visualization inhorizontal stretched layers

SALPLTV.f Writes ASCII column files for instantaneous scalar field visualization invertical transects

SALTSMTH.f Smoothes or interpolates an initial salinity field for cold start runs

SECNDS.f Emulates VMS library function secnds on compilers not supporting thisfunction. This is the only optional subroutine in the code and is normallyappended to the end of the efdc.f file for compilation on certain UNIX andIntel based PC compilers.

SETBCS.f Set horizontal boundary conditions

SHOWVAL.f Writes screen display of instantaneous conditions at a specified horizontal location

SNRM.f Computes error norm for bi-conjugate gradient equation solver

SURFPLT.f Writes ASCII column files for instantaneous surface displacement

Page 147: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

A-6

visualization

SVBKSB.f Back substitution utility of SVD equation solver

SVDCMP.f SVD (Singular value decomposition) linear equation solver

TMSR.f Writes time series files

VALKH.f Real function subroutine to solve high frequency surface gravity wavedispersion relationship for kh.

VELPLTH.f Writes ASCII column files for visualization of instantaneous velocity field inhorizontal stretched layer

VELPLTV.f Writes ASCII column files for visualization of instantaneous velocity field invertical transects

VMSLIB.f Library of VMS system subroutines for the function SECNDS (required forcompiling code on Power Macintosh Systems using Absoft FORTRANcompiler)

VSFP.f Extracts and writes files of vertical scalar field profiles at specified times andlocations to mimic field sampling

WASP4.f Writes grid and transport files to drive the WASP4 water quality simulationmodel

WASP5.f Writes grid and transport files to drive the WASP5 water quality simulationmodel

WASP6.f Writes grid and transport files to drive the WASP5 water quality simulationmodel as modified by Tetra Tech, Inc. Fairfax, VA.

WAVE.f Processes input high frequency surface gravity field specified in file wave.inpfor calculating near bottom wave velocities for the wave-current bottomboundary layer formulation and/or calculating the three-dimensional waveReynolds’ stress and wave Stokes’ drift for wave induced current simulation.

Page 148: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-1

Appendix B. EFDC Grid Generation Examples

This appendix contains a number of example grids generated by the gefdc.f grid generating

preprocessor code. Each sub section contains a plot of the grid in physical space and images of the

cell.inp and gefdc.inp files.

B.1 Lake Okeechobee, Florida

This section describes a 1 kilometer square cell Cartesian grid of Lake Okeechobee, Florida. The physical

domain grid is shown in Figure B1, the cell.inp file in Figure B2, and the gefdc.inp file in Figure B3. The

grid was generated with the NTYPE = 0, option by gefdc.f. A FORTRAN program for the generation

of the gridext.inp file is shown if Figure B4. It is noted that for square cell grids, the physical and

computational domains are geometrically identical and differ by a scale factor equal to the cell side length,

which in this case is 1 kilometer.

Page 149: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-2

Figure B1. Physical and computational domain grid of Lake Okeechobee, Florida. Grid spacing is 1000meters.

Page 150: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-3

C cell.inp file, i columns and j rows, for LAKE OKEECHOBEEC 1 2 3 4 5 C 123456789012345678901234567890123456789012345678901234C 62 000000000000000000000000000000000000000000000000000000 61 000000000000000000000000000000099990000000000000000000 60 000000000000000000000000000009994199990000000000000000 59 000000000000000000000000000099455555199000000000000000 58 000000000000000000000000000994555555519990000000000000 57 000000000000000000000000000945555555555199000000000000 56 000000000000000000000000009955555555555519900000000000 55 000000000000000000000000099455555555555551990000000000 54 000000000000000000000000094555555555555555199000000000 53 000000000000000000000000995555555555555555519000000000 52 000000000000000000000099955555555555555555559990000000 51 000000000000000000000994555555555555555555555199000000 50 000000000000000000009945555555555555555555555519000000 49 000000000000000000999455555555555555555555555559000000 48 000000000000000009945555555555555555555555555559000000 47 000000000000000009455555555555555555555555555559000000 46 000000000000000099555555555555555555555555555559900000 45 000000000000000994555555555555555555555555555551900000 44 000000000000009945555555555555555555555555555555990000 43 000000000000099455555555555555555555555555555555190000 42 000000000000994555555555555555555555555555555555590000 41 000000000009945555555555555555555555555555555555599000 40 000000000099455555555555555555555555555555555555519000 39 000000009994555555555555555555555555555555555555559900 38 000009999455555555555555555555555555555555555555551900 37 000999455555555555555555555555555555555555555555555900 36 009945555555555555555555555555555555555555555555555990 35 009455555555555555555555555555555555555555555555555190 34 099555555555555555555555555555555555555555555555555590 33 094555555555555555555555555555555555555555555555555590 32 095555555555555555555555555555555555555555555555555590 31 095555555555555555555555555555555555555555555555555590 30 095555555555555555555555555555555555555555555555555590 29 095555555555555555555555555555555555555555555555555590 28 095555555555555555555555555555555555555555555555555590 27 095555555555555555555555555555555555555555555555555290 26 095555555555555555555555555555555555555555555555555990 25 095555555555555555555555555555555555555555555555555900 24 093555555555555555555555555555555555555555555555552900 23 099555555555555555555555555555555555555555555555559900 22 009355555555555555555555555555555555555555555555529000 21 009935555555555555555555555555555555555555555555599000 20 000993555555555555555555555555555555555555555555290000 19 000099555555555555555555555555555555555555555552990000 18 000009935555555555555555555555555555555555555529900000 17 000000999355555555555555555555555555555555555299000000 16 000000009999999355555555555555555555555555552990000000 15 000000000000009935555555555555555555555555559900000000 14 000000000000000993555555555555555555555555559000000000 13 000000000000000099935555555555555555555555559900000000 12 000000000000000000993555555555555555555555551900000000 11 000000000000000000099355555555555555555555555900000000 10 000000000000000000009935555555555555555555555900000000 9 000000000000000000000999355555555555555555552900000000 8 000000000000000000000009993555555555555555529900000000 7 000000000000000000000000099935555555555555599000000000 6 000000000000000000000000000993555555555555290000000000 5 000000000000000000000000000099355555555555990000000000 4 000000000000000000000000000009935555555552900000000000 3 000000000000000000000000000000999999355559900000000000 2 000000000000000000000000000000000009999999000000000000 1 000000000000000000000000000000000000000000000000000000C 1 2 3 4 5 C 123456789012345678901234567890123456789012345678901234

Figure B2. Continuation of file cell.inp for Lake Okeechobee Grid.

Page 151: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-4

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

lake okeechobee

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 0 1 54 1 62 54 62

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 96 180 1850. 1850. 1

C4 CARTESION AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

-77.5 1.25 -0.625 36.7 1.0 -0.5

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM DEPMIN

100 100 100 100 4000 1.0

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 15.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFID INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 1799 2. .5 2 5.0 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

0 0 0.0 0.0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B3. File gefdc.inp for Lake Okeechobee.

Page 152: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-5

PROGRAM GENGRID

OPEN(1,FILE=’gridext.inp’,STATUS=’UNKNOWN’)

DO J=1,62

DO I=1,54

X=FLOAT(I-1)

Y=FLOAT(J-1)

WRITE(1,100)I,J,X,Y

END DO

END DO

100 FORMAT(2I5,2(2X,F12.3))

CLOSE(1)

STOP

END

Figure B4. FORTRAN program for generation of the gridext.inp file for the Lake Okeechobee gridshown in Figure B1.

Page 153: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-6

B.2 Kings Creek and Cherry Stone Inlet, Virginia

This section describes a rectangular Cartesian grid of Kings Creek and Cherry Stone Inlet, located on the

Eastern Shore of the Chesapeake Bay, north of Cape Charles, Virginia. The physical domain grid is shown

in Figure B5, the cell.inp file in Figure B6, and the gefdc.inp file, Figure B7. The grid was generated with

the NTYPE = 0, option by gefdc.f. The FORTRAN program for generation of the gridext.inp file is shown

in Figure B8.

Page 154: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-7

Figure B5. Physical domain grid of Kings Creek and Cherry Stone Inlet, Virginia. Grid spacing rangesfrom 40 to 100 Meters.

Page 155: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-8

C cell.inp file, i columns and j rows, for Kings Creek and Cherry Stone Inlet

C 1 2 3 4 5 6 7 7 9

C 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123

C

109 000000000000000000000000000000000000000009999900000000000000000000000000000000000000000000000

108 000000000000000000000000000000000000000009551900000000000000000000000000000000000000000000000

107 000000000000000000000000000000000000000099555900000000000000000000000000000000000000000000000

106 000000000000000000000000000000000000000094559900000000000000000000000000000000000000000000000

105 000000000000000000000000000000000000000095529000099900000000000000000000000000000000000000000

104 000000000000000000000000000000000000000095599999995999999000000000000000000000000000000000000

103 000000000000000000000000000000000000000095555194555194559000000000000000000000000000000000000

102 000000000000000000000000000000000000000095555555555555299000000000000000000000000000000000000

101 000000000000000000000000000000000000000999555555553555990000000000000000000000000000000000000

100 000000000000000000000000000000000000000945555555299355900000000000000000000000000000000000000

99 000000000000000000000000000000000000000955555529999999900000000000000000000000000000000000000

98 000000000000000000000000000000000000000955552999000000000000000000000000000000000000000000000

97 000000000000000000000000000000000000009955551900000000000000000000000000000000000000000000000

96 000000000000000000000000000000000000999455555900000000000000000000000000000000000000000000000

95 000000000000000000000000000000000009945555555990000000000000000000000000000000000000000000000

94 000000000000000000000000000000000009455555555199000000000000000000000000000000000000000000000

93 000000000000000000000000000000000009555555555519900000000000000000000000000000000000000000000

92 000000000000000000000000000000000009355555555551999999999990000000000000000000000000000000000

91 000000000000000000000000000000000009955555555555555555555590000000000000000000000000000000000

90 000000000000000000000000000000999999955555555555293555555590000000000000000000000000000000000

89 000000000000000000000000000000955555555555555555999999999990000000000000000000000000000000000

88 000000000000000000000000000000955555555555555555900000000000000000000000000000000000000000000

87 000000000000000000000000000009955555555555555555900000000000000000000000000000000000000000000

86 000000000000000000000000000009455555555555555552900000000000000000000000000000000000000000000

85 000000000000000000000999900099555555555555555559900000000000000000000000000000000000000000000

84 000000000000000000000955999994555555555555555529999990000000000000000000000000000000000000000

83 000000000000000000000955555555555555555555555555555599900000000000000000000000000000000000000

82 000000000000000000000995555555555555555529993559555555900000000000000000000000000000000000000

81 000000000000000000000995555555555555555599099999555295900000000000000000000000000000000000000

80 000000000000000000000945555555555555555559000095552995900000000000000000000000000000000000000

79 000000000000000000000955555555555555299959000095999995900000000000000000000000000000000000000

78 000000000000000000000955555555555999990959000099900095900000000000000000000000000000000000000

77 000000000000000009999955555555555900000959000000000099900000000000000000000000000000000000000

76 000000000000009999455555555555555900000959000000000000000000000000000000000000000000000000000

75 000000000000009455555555555555555900000999000000000000000000000000000000000000000000000000000

74 000000000000009555555555555555555900000000000000000000000000000000000000000000000000000000000

73 000000000000009555555555555555555900000000000000000000000000000000000000000000000000000000000

72 000000000000009555555555555555555990000000000000000000000000000000000000000000000000000000000

71 000000000000009555555555555555555599000000000000000000000000000000000000000000000000000000000

70 000000000000099555555555555555555559000000000000000000000000000000000000000000000000000000000

69 000000000000094555555555529999959959000000000000000000000000000000000000000000000000000000000

68 000000000000995555555555519000999959900000000000000000000000000000000000000000000000000000000

67 000000000000945555555555559000000955900000000000000000000000000000000000000000000000000000000

66 000000000000955555555555559000000995900000000000000000000000000000000000000000000000000000000

65 000000000000955555555555559000000099900000000000000000000000000000000000000000000000000000000

64 000099999999955555555555599000000000000000000000000000000000000000000000000000000000000000000

63 000095555555555555555555290000000000000000000000000000000000000000000000000000000000000000000

62 000095555555555555555552990000000000000000000000000000000000000000000000000000000000000000000

61 000095555555555555555299900000000000000000000000000000000000000000000000000000000000000000000

60 000095555555555555552990000000000000000000000000000000000000000000000000000000000000000000000

59 000095555555955555529900000000000000000000000000000000000000000000000000000000000000000000000

58 000095555555955555599000000000000000000000000000000000000000000000000000000000000000000000000

57 000095555555955555590000000000000000000000000000000000000000000000000000000000000000000000000

56 000095555555955555590000000000000000000000000000000000000000000000000000000000000000000000000

55 000095555555155555590000000000000000000000000000000000000000000000000000000000000000000000000

Figure B6a. File cell.inp for Kings Creek and Cherry Stone Inlet.

Page 156: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-9

54 000095555555555555599000000000000000000000000000000000000000000000000000000000000000000000000

53 000095555555555555519900000000000000999999999900000000000000000000000000000000000000000000000

52 000095555555555555551900000000000009941945555900000000000000000000000000000000000000000000000

51 000095555555555555555990000000000099455555299900000000000000000000000000000000000000000000000

50 000095555555555555555599000000000094593529990000000000000099900000000000000000000000000000000

49 000095555555555555555519000000000095599999000000000000000095900000000000000000000000000000000

48 000095555555555555555559000000000095519900000000000000000095900000000000000000099999999999990

47 000095555555555555555559000999999995551900000000000000000095900000000000000000994194555195590

46 000095555555555555555559009955555199455990000000000000000095900000000000000009945555555555990

45 000095555555555555555559099455555555555190000000000000000995900000000000000099455555535555999

44 000095555555555555555599994555555555555590000000000000000945900000000000000994555552999355559

43 000095555555555555555551945555555999555590000000999999000955900000000000000945552999909999999

42 000095555555555555555555555555559994555599999999945519909951990000999900000955559900000000000

41 000095555555555555555555555555299455555519951994555551999455199999951900009955299000000000000

40 000095555555555555555555555555994555555555555555555555994555514555555900099455990000000000000

39 000095555555555555555555555552945555555555555555555555995555555555555990094555900000000000000

38 000095555555555555555555555299955555555555555555555555145555555555555190995552900000000000000

37 000095555555555555555555552990955555555555555555555555555555555555555599945529900000000000000

36 000095555555555555555555529900935555555555555555529555555555552999955555555599000000000000000

35 000095555555555555555555299000999555555555555555295555555295559900955555555590000000000000000

34 000095555555555555555552990000099555555555555559995555529995559990993555555599999999999999900

33 000095555555555555555529900000991555555529993529093552599099955190099993555599455555555555900

32 000095555555555555555299000000955555299999099999099999990009455990000099355555529999999999900

31 000095555555555555552990000000955552959000000000000000000009555190000009999999999000000000000

30 000095555555555555529900000000955551459000000000000000000009999590000000000000000000000000000

29 000095555555555555299000000000999355529000000000000000000000009990000000000000000000000000000

28 000095555555555555990000000000009995599000000000000000000000000000000000000000000000000000000

27 000095555555555552900000000000000945519000000000000000000000000000000000000000000000000000000

26 000095555555555559900000000000000955529000000000000000000000000000000000000000000000000000000

25 000095555555555559000000000000000999999000000000000000000000000000000000000000000000000000000

24 000095555555555599000000000000000000000000000000000000000000000000000000000000000000000000000

23 000095555555555290000000000000000000000000000000000000000000000000000000000000000000000000000

22 000095555555559990000000000000000000000000000000000000000000000000000000000000000000000000000

21 000095555555559000000000000000000000000000000000000000000000000000000000000000000000000000000

20 000095555555559000000000000000000000000000000000000000000000000000000000000000000000000000000

19 000095555555529000000000000000000000000000000000000000000000000000000000000000000000000000000

18 000095555555599000000000000000000000000000000000000000000000000000000000000000000000000000000

17 000095555555590000000000000000000000000000000000000000000000000000000000000000000000000000000

16 000095555555590000000000000000000000000000000000000000000000000000000000000000000000000000000

15 000095555555590000000000000000000000000000000000000000000000000000000000000000000000000000000

14 000095555555290000000000000000000000000000000000000000000000000000000000000000000000000000000

13 000095555555990000000000000000000000000000000000000000000000000000000000000000000000000000000

12 000095555555900000000000000000000000000000000000000000000000000000000000000000000000000000000

11 000095555555900000000000000000000000000000000000000000000000000000000000000000000000000000000

10 000095555555900000000000000000000000000000000000000000000000000000000000000000000000000000000

9 000099999999900000000000000000000000000000000000000000000000000000000000000000000000000000000

8 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

7 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

6 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

5 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

3 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

2 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

C

C 1 2 3 4 5 6 7 7 9

C 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123

Figure B6b. Continuation of File cell.inp for Kings Creek and Cherry Stone Inlet.

Page 157: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-10

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Kings Creek and Cherry Stone Inlet

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 0 1 93 1 109 93 109

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM DEPMIN

100 100 100 100 4000 0.2

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 545 2. .5 1 0.0 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 0.0 0.0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B7. File gefdc.inp for Kings Creek and Cherry Stone Inlet.

Page 158: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-11

PROGRAM GVARCGRID

C

DIMENSION X(93,109),Y(93,109)

C

DO J=1,53

DO I=1,93

Y(I,J)=40.*FLOAT(J)+630.

END DO

END DO

C

DO I=1,93

Y(I,54)=2800.

Y(I,55)=2860.

Y(I,56)=2930.

Y(I,57)=3010.

END DO

C

DO J=58,109

DO I=1,93

Y(I,J)=100.*FLOAT(J-58)+3100.

END DO

END DO

C

DO J=1,109

DO I=1,14

X(I,J)=100.*FLOAT(I)

END DO

X(15,J)=1490.

X(16,J)=1580.

X(17,J)=1660.

X(18,J)=1730.

X(19,J)=1790.

X(20,J)=1840.

END DO

C

DO J=1,54

DO I=21,93

X(I,J)=40.*FLOAT(I-21)+1880.

END DO

END DO

C

DO J=55,109

X(21,J)=1890.

X(22,J)=1950.

X(23,J)=2020.

DO I=24,93

X(I,J)=100.*FLOAT(I-24)+2100.

END DO

END DO

Figure B8a. FORTRAN program for generation of gridext.inp file.

Page 159: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-12

C

OPEN (1,FILE=’gridext.inp’,STATUS=’UNKNOWN’)

DO J=1,109

DO I=1,93

X(I,J)=(X(I,J)/1000.)+408.

Y(I,J)=(Y(I,J)/1000.)+124.

WRITE(1,20)I,J,X(I,J),Y(I,J)

END DO

END DO

CLOSE(1)

C

OPEN (1,FILE=’maskij.dat’,STATUS=’UNKNOWN’)

OPEN (2,FILE=’shoremask’,STATUS=’UNKNOWN’)

OPEN (3,FILE=’shoredep’,STATUS=’UNKNOWN’)

DEP=0.1

DO N=1,337

READ(1,*)J,I

WRITE(2,2000)X(I,J),Y(I,J)

IF(I.NE.6.OR.J.NE.10) THEN

WRITE(3,3000)X(I,J),Y(I,J),DEP

XTMP=X(I,J)+.01

YTMP=Y(I,J)+.01

WRITE(3,3000)X(I,J),YTMP,DEP

WRITE(3,3000)XTMP,Y(I,J),DEP

XTMP=X(I,J)-.01

YTMP=Y(I,J)-.01

WRITE(3,3000)X(I,J),YTMP,DEP

WRITE(3,3000)XTMP,Y(I,J),DEP

END IF

END DO

CLOSE(1)

CLOSE(2)

CLOSE(3)

C

20 FORMAT(2I5,2X,F12.6,2X,F12.6)

2000 FORMAT(2X,F12.6,2X,F12.6)

3000 FORMAT(2X,F12.6,2X,F12.6,2X,F6.2)

C

STOP

END

C

Figure B8b. Continuation of FORTRAN program for generation of gridext.inp file.

Page 160: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-13

B.3 Rose Bay, Florida

This section describes a curvilinear orthogonal grid of Rose Bay, on the Halifax River, near New Smyrna

Beach, Florida. The physical domain grid is shown in Figure B9, the cell.inp file in Figure B10, and the

gefdc.inp file in Figure B11. The grid was generated with the NTYPE = 5, option by gefdc.f.

Figure B9. Physical domain grid of Rose Bay, Florida. Grid spacing ranges between approximately 20and 90 meters.

Page 161: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-14

C cell.inp file, i columns and j rows, for Rose Bay

C 1 2 3 4 5

C 12345678901234567890123456789012345678901234567890

C

25 00000000000000000000000000000000000000000000000000

24 00000000000000000000000000000000000000000000000000

23 00000000000000000000000000000000000000000000000000

22 00000009990000000000000000000000000000000000000000

21 00000009590000000000000000000000000000000000099900

20 00000009590999900000000000000000000000000000095900

19 00000009590914900000000000000000000000000000095900

18 00999999599955999999999999999999999999999999995900

17 00955555599455514555555555555555555555555555555900

16 00999955599555555555555555555555555555555555555900

15 00009555599555555555555555555555555555555555555900

14 00009555599555555555555555555555555555555555555900

13 00009555599555555555555555555555555555555555555900

12 00009325555555555555555555555555555555555555555900

11 00009995555555555555555523555555555555555555552900

10 00000099999999999999999999999999999999955555551900

9 00000000000000000000000000000000000009555555555999

8 00000000000000000000000000000000000009555555535559

7 00000000000000000000000000000000000009555555599999

6 00000000000000000000000000000000000009555555590000

5 00000000000000000000000000000000000009999999990000

4 00000000000000000000000000000000000000000000000000

3 00000000000000000000000000000000000000000000000000

2 00000000000000000000000000000000000000000000000000

1 00000000000000000000000000000000000000000000000000

C

C 1 2 3 4 5

C 12345678901234567890123456789012345678901234567895

Figure B10. File cell.inp for Rose Bay.

Page 162: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-15

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

rose bay

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

5 148 1 50 1 25 50 25

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 96 180 1850. 1850. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

-77.5 1.25 -0.625 36.7 1.0 -0.5

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM DEPMIN

100 100 100 100 1000 1.0

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1. 1. 9.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 62 2. .5 1 5.0 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

40 6 1456. 16.

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

39 6 1440.000 0.000

39 7 1420.000 20.000

39 8 1400.000 40.000

39 9 1380.000 60.000

39 10 1356.000 84.000

40 10 1372.000 100.000

40 11 1340.000 132.000

39 11 1308.480 112.080

38 11 1270.640 89.200

37 11 1218.480 60.400

Figure B11a. File gefdc.inp for Rose Bay.

Page 163: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-16

36 11 1116.000 40.000

35 11 1038.720 67.680

34 11 995.840 114.320

33 11 976.240 143.280

32 11 957.520 165.680

31 11 942.080 182.160

30 11 920.000 196.320

29 11 901.760 203.600

28 11 877.920 209.440

27 11 850.480 216.640

26 11 818.080 220.400

25 11 784.960 226.800

24 11 750.480 228.480

23 11 712.080 244.160

22 11 677.040 276.400

21 11 654.320 293.520

20 11 631.200 304.720

19 11 607.600 309.200

18 11 575.040 315.600

17 11 532.160 326.640

16 11 494.080 356.960

15 11 468.960 376.400

14 11 444.720 385.040

13 11 413.680 384.320

12 11 375.920 384.240

11 11 348.020 397.000

10 11 320.160 406.240

9 11 288.800 416.480

8 11 256.480 421.120

8 12 259.440 442.720

7 12 226.720 440.400

6 12 192.400 434.160

6 13 187.760 453.920

6 14 182.080 476.000

6 15 178.080 497.040

6 16 169.360 520.080

7 16 212.240 530.880

7 17 203.360 566.720

6 17 156.000 556.000

5 17 100.000 536.000

4 17 40.000 516.000

4 18 32.000 528.000

5 18 87.000 562.000

6 18 142.000 594.000

7 18 194.320 605.600

8 18 243.520 611.000

Figure B11b. Continuation of file gefdc.inp for Rose Bay.

Page 164: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-17

9 18 280.000 611.000

9 19 290.000 660.000

9 20 294.000 710.000

9 21 280.000 760.000

9 22 280.000 800.000

10 22 320.000 800.000

10 21 320.000 760.000

10 20 320.000 710.000

10 19 310.000 660.000

10 18 312.000 610.000

10 17 315.440 573.680

10 16 321.840 547.200

10 15 331.440 516.880

10 14 338.800 487.040

10 13 336.480 456.960

11 13 362.960 447.280

12 13 384.560 442.880

12 14 389.120 473.280

12 15 396.720 504.720

12 16 408.320 538.480

12 17 423.920 567.040

12 18 441.600 598.960

13 18 475.000 585.000

13 19 492.000 612.000

13 20 520.000 647.000

14 20 540.000 640.000

15 20 560.000 633.000

15 19 552.000 590.000

15 18 547.000 564.000

16 18 575.920 559.360

17 18 605.520 558.400

18 18 644.800 557.360

19 18 689.200 558.000

20 18 734.800 551.120

21 18 773.280 536.080

22 18 812.560 512.800

23 18 840.080 493.440

24 18 866.880 470.800

25 18 891.920 447.920

26 18 915.920 422.080

27 18 941.200 399.840

28 18 967.200 386.160

29 18 998.400 378.960

30 18 1038.000 366.880

31 18 1066.320 348.640

32 18 1088.480 326.880

Figure B11c. Continuation of file gefdc.inp for Rose Bay.

Page 165: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-18

33 18 1107.040 302.640

34 18 1124.320 285.680

35 18 1144.560 272.320

36 18 1162.480 264.800

37 18 1182.800 260.560

38 18 1204.640 266.640

39 18 1224.720 284.400

40 18 1240.640 298.880

41 18 1265.440 316.240

42 18 1289.040 333.440

43 18 1311.280 348.960

44 18 1332.960 360.480

45 18 1356.800 372.560

46 18 1379.280 388.240

47 18 1403.000 404.000

47 19 1380.000 440.000

47 20 1355.000 475.000

47 21 1326.000 512.000

48 21 1340.000 520.000

48 20 1370.000 485.000

48 19 1395.000 455.000

48 18 1425.920 422.800

48 17 1444.000 401.120

48 16 1460.880 379.840

48 15 1477.200 349.440

48 14 1488.240 320.480

48 13 1494.800 293.040

48 12 1501.680 272.640

48 11 1512.560 253.920

48 10 1528.400 235.040

48 9 1540.000 220.000

49 9 1560.000 240.000

50 9 1580.000 260.000

50 8 1600.000 240.000

49 8 1580.000 220.000

48 8 1560.000 200.000

47 8 1540.000 180.000

46 8 1520.000 160.000

46 7 1540.000 140.000

46 6 1560.000 120.000

45 6 1541.000 101.000

44 6 1523.000 83.000

43 6 1505.500 65.500

42 6 1488.500 48.500

41 6 1470.000 32.000

40 6 1456.000 16.000

Figure B11d. Continuation of file gefdc.inp for Rose Bay.

Page 166: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-19

B.4 Indian River Lagoon, Florida

This section describes the construction of a composite grid of a section of the Indian River Lagoon, near

Melborne, Florida, from five subgrids. Figures B12-B14 show the composite grid, and the corresponding

cell.inp and gefdc.inp files. The composite grid was generated with the NTYPE = 0 option by gefdc.f. The

input file, gridext.inp, specifying the composite grid was formed by combining the five gridext.out files

generated for the five subgrid regions. Figure B15&B16, B17&B18, B19&B20, B21&B22, and

B23&B24 show the subgrids and the corresponding gefdc.inp files. The cell.inp file for each sub grid is

similar to the cell.inp file shown in Figure B13, with only the water cells in the particular subgrid activated.

The first subgrid, Figures B15&B16, and the fourth subgrid, Figure B21&B22, were generated with the

NTYPE = 0 option. The remaining subgrids are curvilinear-orthogonal and were generated with the

NTYPE = 5 option.

Page 167: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-20

Figure B12. Grid of a section of the Indian River Lagoon near Melbourne, FL. Grid is a composite of fivesubgrids.

Page 168: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-21

C cell.inp file, i columns and j rows, for Indian River Lag

C 1 2 3 4 5

C 123456789012345678901234567890123456789012345678901234

C

60 000000000000000000000000000000000999999999999999999900

59 000000000000000000000000000000000955555555555555555990

58 000000000000000000000000000000000955555555555555555190

57 000000000000000000000000000000000935555555555555555590

56 000000000000000000000000000000000993555555555555555590

55 000000000000000000000000000000000959955555555555555590

54 000000000000000000000000000000000955555555555555555590

53 000000000000000000000000000000000955555555555555555290

52 000000000000000000000000000000000955555555555555555190

51 000000000000000000000000000000000935555555555555555590

50 000000000000000000000000000000000995555555555555555590

49 000000000000000000000000000000000995555555555555555590

48 000000000000000000000000000000009945555555555555555590

47 000000000000000000000000000000009455555555555555555290

46 000000000000000000000000000000009555555555555555555990

45 000000000000000000000000000000009555555555555555555190

44 000000000000000000000000000000009355555555555555555590

43 000000000000000000000000000000009935555555555555555590

42 000000000000000000000000000000000995555555555555555590

41 000000000000000000000000000000000093555555555555555590

40 000000000000000000000000000000999994555555555555555590

39 000000000000000000000000000000945555555555555555555590

38 000000000000000000000000000000955555555555555555555590

37 000000000000000000000000000000955523555555555555555590

36 000000000000000000000000000999955299555555555555555590

35 000000000000000999999999999955959999555555555555555590

34 000000000000000955555555555555559094555555555555555590

33 000000000000000959599995555952999995555555555555555590

32 000000000000000959595555552959900945555555555555555290

31 000000000000000959599999999939009955555555555555555190

30 000000000000000959590000000999009455555555555555555590

29 009999999000000959590000000000009355555555555555555590

28 009559959999999959590000000000009935555555555555555599

27 009555555555555555590000000000009999455555555555555519

26 009599999959599999990000000000009455555555555555555559

25 999590000959590000000000000000009555555555555555555559

24 955590000959590000000000000000009355555555555555555529

23 999990000999590000000000000000009955555555555555555599

22 000000000009590000000000000000009955555555555555555519

21 000000000009590000000000000000009455555555555555555559

Figure B13a. File cell.inp for the Indian River Lagoon grid shown in Figure B12.

Page 169: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-22

20 000000000009990000000000000000009555555555555555555529

19 000000000000000000000000000000009355555555555555555519

18 000000000000000000000000000000009935555555555555555559

17 000000000000000000000000000000000995555555555555555559

16 000000000000000000000000000000000095555555555555555299

15 000000000000000000000000000000000095555555555555555990

14 000000000000000000000000000000000093555555555555555490

13 000000000000000000000000000000000099955555555555555599

12 000000000000000000000000000000000000935555555555555519

11 000000000000000000000000000000000000993555555555555559

10 000000000000000000000000000000000000999555555555555559

9 000000000000000000000000000000000000009555555555555559

8 000000000000000000000000000000000000009555555555555529

7 000000000000000000000000000000000000009555555555555519

6 000000000000000000000000000000000000009555555555555559

5 000000000000000000000000000000000000009555555555555559

4 000000000000000000000000000000000000009555555555555539

3 000000000000000000000000000000000000009555555555555299

2 000000000000000000000000000000000000009555555555555990

1 000000000000000000000000000000000000009999999999999900

Figure B13b. Continuation of File cell.inp for the Indian River Lagoon grid shown in Figure B12.

Page 170: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-23

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 0 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

1 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 995 2. .5 3 0.3517 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 0 0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B14. File gefdc.inp for the Indian River Lagoon grid shown in Figure B12.

Page 171: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-24

Figure B15. Subgrid 1 of the Indian River Lagoon grid shown in Figure B12. This grid is a variablespacing Cartesian grid generated with NTYPE = 0, option by gefdc.f.

Page 172: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-25

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon, sub grid 1

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 146 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 1.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

0 0 1 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

0 896 2. .5 3 0.35 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

0 0 0.0 0.0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B16. File gefdc.inp for subgrid 1, shown in Figure B15.

Page 173: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-26

Figure B17. Subgrid 2 of the Indian River Lagoon grid shown in Figure B10. This grid is a curvilinear-orthogonal grid generated with NTYPE = 5.

Page 174: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-27

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon, Subgrid 2

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

5 140 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 10.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

0 1054 2. .5 3 0.167 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

36 39 5.416584 32.868687

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

36 38 5.458846 32.778057

36 37 5.501108 32.687428

35 37 5.446730 32.662067

35 36 5.514679 32.611004

34 36 5.459079 32.540939

33 36 5.396529 32.462120

33 35 5.468399 32.390812

33 34 5.520639 32.337936

32 34 5.476520 32.278748

Figure B18a. File gefdc.inp for subgrid 2, shown in Figure B17.

Page 175: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-28

31 34 5.403405 32.222584

31 33 5.452924 32.151886

30 33 5.364405 32.105095

30 32 5.395795 32.025944

30 31 5.452544 31.892416

29 31 5.370976 31.854382

29 32 5.312114 31.992439

29 33 5.276192 32.069473

29 34 5.239964 32.135338

28 34 5.165042 32.094883

28 33 5.199157 32.033554

28 32 5.235079 31.956518

27 32 5.148980 31.916368

26 32 5.060462 31.869576

25 32 4.971944 31.822783

24 32 4.878895 31.773876

23 32 4.790073 31.715906

22 32 4.664386 31.618679

21 32 4.537784 31.487925

21 33 4.500639 31.520256

22 33 4.625128 31.655542

23 33 4.762297 31.763639

24 33 4.846588 31.819498

24 34 4.818812 31.867229

23 34 4.725458 31.807148

22 34 4.636329 31.738003

21 34 4.549620 31.675501

20 34 4.440557 31.613609

20 33 4.451099 31.508188

20 32 4.437174 31.407907

20 31 4.415995 31.287693

20 30 4.396928 31.162949

20 29 4.373633 31.047266

20 28 4.360015 30.948162

20 27 4.355037 30.905406

19 27 4.318927 30.908500

18 27 4.269384 30.905899

17 27 4.226488 30.901413

16 27 4.189625 30.862158

15 27 4.145506 30.802967

14 27 4.103806 30.750420

14 26 4.131277 30.691509

14 25 4.207983 30.633492

14 24 4.287153 30.627129

14 23 4.375015 30.606558

Figure B18b. Continuation of file gefdc.inp for subgrid 2, shown in Figure B17.

Page 176: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-29

14 22 4.447190 30.546427

14 21 4.496096 30.453379

13 21 4.473438 30.442812

13 22 4.424227 30.524685

13 23 4.358696 30.582397

13 24 4.280768 30.595711

13 25 4.198070 30.602991

13 26 4.103477 30.656477

13 27 4.043370 30.667067

12 27 3.989883 30.592476

12 26 4.019771 30.540209

12 25 4.100399 30.461952

12 24 4.158063 30.361954

11 24 4.135406 30.351387

11 25 4.086499 30.444435

11 26 3.996809 30.518467

11 27 3.945765 30.533283

10 27 3.894697 30.465336

9 27 3.830034 30.391047

8 27 3.734261 30.324322

7 27 3.626115 30.295958

6 27 3.518578 30.289949

5 27 3.425249 30.312630

5 26 3.393198 30.203899

5 25 3.376549 30.085796

5 24 3.377136 30.025385

4 24 3.339077 30.024187

3 24 3.133373 30.027571

2 24 2.909850 30.033678

2 25 2.909263 30.094091

3 25 3.128256 30.085871

4 25 3.345134 30.082182

4 26 3.362088 30.211458

4 27 3.392026 30.324722

4 28 3.397473 30.360365

4 29 3.414402 30.406878

5 29 3.451852 30.390721

6 29 3.531892 30.367876

6 28 3.521913 30.330122

7 28 3.629143 30.324955

8 28 3.723696 30.346979

8 29 3.711017 30.374166

9 29 3.775374 30.437279

9 28 3.805872 30.407366

10 28 3.863892 30.484074

11 28 3.919492 30.554134

Figure B18c. Continuation of file gefdc.inp for subgrid 2, shown in Figure B17.

Page 177: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-30

12 28 3.956964 30.615744

13 28 4.008034 30.683691

14 28 4.077534 30.771271

15 28 4.117120 30.828348

16 28 4.159126 30.892069

17 28 4.209583 30.937666

17 29 4.204185 31.067553

17 30 4.236845 31.198639

17 31 4.273123 31.298307

17 32 4.296415 31.413992

17 33 4.300971 31.498867

17 34 4.302171 31.581327

17 35 4.301000 31.623074

18 35 4.338164 31.632065

19 35 4.384400 31.645300

20 35 4.430603 31.658621

21 35 4.532715 31.711754

22 35 4.605831 31.767914

23 35 4.695264 31.848236

24 35 4.773217 31.917688

25 35 4.855700 31.989252

26 35 4.944829 32.058399

27 35 5.035765 32.111835

28 35 5.124283 32.158630

29 35 5.199204 32.199085

29 36 5.160864 32.269474

30 36 5.227030 32.316879

31 36 5.295308 32.359753

31 35 5.356001 32.288750

32 35 5.408877 32.340988

32 36 5.347880 32.400818

32 37 5.254269 32.495087

32 38 5.196604 32.595085

32 39 5.135629 32.737679

32 40 5.082215 32.911377

33 40 5.163478 32.938236

34 40 5.232954 32.943050

35 40 5.306961 32.949978

36 40 5.374322 32.959320

36 39 5.416584 32.868687

Figure B18d. Continuation of file gefdc.inp for subgrid 2, shown in Figure B17.

Page 178: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-31

Figure B19. Subgrid 3 of the Indian River Lagoon grid shown in Figure B12. This grid is a curvilinear-orthogonal grid generated with NTYPE = 5.

Page 179: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-32

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon, Sub Grid 3

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

5 48 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

200 200 200 200 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

0 896 2. .5 3 0.167 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

41 2 10.771623 20.911531

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

40 2 10.680992 20.869270

40 3 10.511944 21.231794

40 4 10.332051 21.688562

40 5 10.185966 22.072828

40 6 10.044719 22.470383

40 7 9.894407 22.863710

40 8 9.746491 23.180916

40 9 9.581670 23.534378

40 10 9.410230 23.973021

40 11 9.254519 24.496237

Figure B20a. File gefdc.inp for subgrid 3, shown in Figure B19.

Page 180: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-33

39 11 9.088380 24.473932

39 12 9.040770 24.859980

38 12 8.901817 24.850355

38 13 8.859043 25.249693

38 14 8.798752 25.662931

37 14 8.681543 25.630342

36 14 8.573397 25.601980

36 15 8.490144 25.993475

36 16 8.427410 26.317305

36 17 8.353781 26.569849

36 18 8.205865 26.887056

37 18 8.296495 26.929317

38 18 8.387127 26.971581

39 18 8.500415 27.024408

40 18 8.636361 27.087799

41 18 8.772307 27.151192

42 18 8.908255 27.214586

43 18 9.021543 27.267414

44 18 9.112172 27.309675

44 17 9.281219 26.947151

44 16 9.412794 26.523020

44 15 9.479142 26.167774

44 14 9.558780 25.807695

44 13 9.654101 25.366657

44 12 9.746417 24.979389

44 11 9.811546 24.579441

44 10 9.916542 24.164982

44 9 10.098267 23.775270

44 8 10.263088 23.421810

44 7 10.404335 23.024256

44 6 10.508718 22.587444

44 5 10.613714 22.172985

44 4 10.706031 21.785717

44 3 10.874467 21.400841

44 2 11.043514 21.038317

43 2 10.952884 20.996056

42 2 10.862254 20.953794

41 2 10.771623 20.911531

Figure B20b. Continuation of file gefdc.inp for sub grid 3, shown in Figure B19.

Page 181: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-34

Figure B21. Subgrid 4 of the Indian River Lagoon grid shown in Figure B12. This grid is a curvilinear-orthogonal grid generated with NTYPE = 0.

Page 182: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-35

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon, Subgrid 4

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

0 0 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 7.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

0 1054 2. .5 3 0.167 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 0.0 0.0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B22. File gefdc.inp for subgrid 4, shown in Figure B21, generated with NTYPE = 0.

Page 183: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-36

Figure B23. Subgrid 5 of the Indian River Lagoon grid shown in Figure B12. This grid is a curvilinear-orthogonal grid generated with NTYPE = 5.

Page 184: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-37

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

Indian River Lagoon, Subgrid 5

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

5 50 1 54 1 60 54 60

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

0 50 92 250. 250. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

1.875 15.0 0.0 17.875 15.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

0 1054 2. .5 3 0.167 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

48 2 11.315408 21.165104

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

47 2 11.224776 21.122841

47 3 11.055729 21.485365

47 4 10.909035 21.847277

47 5 10.797980 22.203743

47 6 10.702049 22.622427

47 7 10.606728 23.063465

47 8 10.444349 23.506332

47 9 10.279528 23.859795

47 10 10.102028 24.240444

Figure B24a. File gefdc.inp for subgrid 5, shown in Figure B23, generated with NTYPE = 5.

Page 185: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-38

47 11 9.995811 24.610197

47 12 9.917395 25.014980

47 13 9.829916 25.415539

47 14 9.738821 25.847515

47 15 9.664020 26.220884

47 16 9.592834 26.562840

47 17 9.466708 27.022612

47 18 9.293435 27.394197

48 18 9.384066 27.436460

49 18 9.520012 27.499853

50 18 9.701274 27.584377

51 18 9.927851 27.690031

52 18 10.199742 27.816816

53 18 10.562265 27.985865

54 18 10.834159 28.112650

54 17 11.070825 27.605118

53 17 10.763290 27.483780

53 16 10.961871 26.892284

52 16 10.556476 26.791515

52 15 10.621604 26.391569

53 15 11.044516 26.478437

53 14 11.101190 26.096615

54 14 11.559133 26.155685

54 13 11.637548 25.750900

54 12 11.696055 25.436136

54 11 11.747332 25.184202

54 10 11.807670 24.936493

54 9 11.919335 24.602381

54 8 12.111296 24.096069

54 7 12.300815 23.500349

54 6 12.431167 23.031511

54 5 12.529542 22.702236

54 4 12.621296 22.458145

53 4 12.223131 22.294544

53 3 12.324560 22.077030

52 3 11.974715 21.880795

52 2 12.131084 21.545460

51 2 11.859191 21.418674

50 2 11.632614 21.313019

49 2 11.451354 21.228497

48 2 11.315408 21.165104

Figure B24b. Continuation of file gefdc.inp for subgrid 5, shown in Figure B23, generated with NTYPE= 5.

Page 186: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-39

B.5 SFWMD Water Conservation Area 2A, Florida

This section describes a curvilinear-orthogonal grid of the South Florida Water Management District’s

Water Conservation Area 2A southwest of West Palm Beach, Florida. The physical domain grid is shown

in Figure B25, the cell.inp file in Figure B26, and the gefdc.inp file in Figure B27. The Cartesian graphic

grid overlay file, gcell.inp, is shown in Figure B28, and its equivalent square cell Cartesian grid is shown

in Figure B29. The main portion of the curvilinear grid, excluding the lower four cells is based on a quasi-

conformal mapping using the NTYPE = 7, option by gefdc.f. The four lower cells were then appended

to the grid by hand. The four boundary function subroutines required by the NTYPE = 7, option are shown

in Figure B30-B33.

Page 187: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-40

Figure B25. Physical domain grid of SFWMD’s Water Conservation Area 2A. Grid spacing ranges fromapproximately 400 to 2500 meters.

Page 188: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-41

C cell.inp file, i columns and j rows, for WCA2AC 1 2 3 4C 1234567890123456789012345678901234567890C 32 99999999999999999999999999999999999999 31 95555555555555555555555555555555555559 30 99999999999999999999999999999999999999 29 00000000000009555555555555555555555559 28 99999999999999999999999999999999999999 27 95555555555555555555555555555555555559 26 95555555555555555555555555555555555559 25 95555555555555555555555555555555555559 24 95555555555555555555555555555555555559 23 95555555555555555555555555555555555559 22 95555555555555555555555555555555555559 21 95555555555555555555555555555555555559 20 95555555555555555555555555555555555559 19 95555555555555555555555555555555555559 18 95555555555555555555555555555555555559 17 95555555555555555555555555555555555559 16 95555555555555555555555555555555555559 15 95555555555555555555555555555555555559 14 95555555555555555555555555555555555559 13 95555555555555555555555555555555555559 12 95555555555555555555555555555555555559 11 95555555555555555555555555555555555559 10 95555555555555555555555555555555555559 9 95555555555555555555555555555555555559 8 95555555555555555555555555555555555559 7 95555555555555555555555555555555555559 6 95555555555555555555555555555555555559 5 95555555555555555555555555555555555559 4 95555555555555555555555555555555555559 3 99999999999999999999352999999999999999 2 00000000000000000009939900000000000959 1 00000000000000000000999000000000000999C 1 2 3 4C 1234567890123456789012345678901234567890

Figure B26. File cell.inp for WCA2A Grid Shown in Figure B25.

Page 189: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-42

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

SWFWMD WCA2A

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

7 106 1 38 1 28 38 28

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG NWTGG

1 44 55 600. 600. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

5.1 36.0 0.0 3.9 36.0 0.0

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM NDEPSM

100 100 100 100 1000

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 5.04

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

0 0 1 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE N7RLX NXYIT ITN7M IJSMD ISMD JSMD RP7 SERRMAX

2 38 4 28 1000 1 500 0 0 26 1.0 1.E-8

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

6.76 20.6

31. 9.1

31. 23.6

15.76 35.6

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM ISIDPTYP SURFELV ISVEG NVEGDAT NVEGTYP

1 783 2. .5 2 4.00 1 10710 12

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 0.0 0.0

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B27. File gefdc.inp for WCA2A Grid Shown in Figure B25.

Page 190: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-43

C gcell.inp file, i columns and j rows, for WCA2A

C 1 2 3 4 5

C 12345678901234567890123456789012345678901234567890

C

55 00000000000000000000000000000000000000000000

54 00000000000000099990000000000000000000000000

53 00000000000000095599000000000000000000000000

52 00000000000000995559900000000000000000000000

51 00000000000000955555900000000000000000000000

50 00000000000009955555990000000000000000000000

49 00000000000099555555599000000000000000000000

48 00000000000095555555559900000000000000000000

47 00000000000995555555555900000000000000000000

46 00000000000955555555555990000000000000000000

45 00000000009955555555555599000000000000000000

44 00000000099555555555555559000000000000000000

43 00000000095555555555555559900000000000000000

42 00000000995555555555555555990000000000000000

41 00000000955555555555555555590000000000000000

40 00000009955555555555555555599000000000000000

39 00000009555555555555555555559900000000000000

38 00000099555555555555555555555900000000000000

37 00000995555555555555555555555999900000000000

36 00000955555555555555555555555555999990000000

35 00009955555555555555555555555555555599990000

34 00009555555555555555555555555555555555599990

33 00099555555555555555555555555555555555555590

32 00095555555555555555555555555555555555555590

31 00995555555555555555555555555555555555555590

30 09955555555555555555555555555555555555555590

29 09555555555555555555555555555555555555555590

28 09955555555555555555555555555555555555555590

27 00995555555555555555555555555555555555555590

26 00095555555555555555555555555555555555555590

25 00099555555555555555555555555555555555555590

24 00009955555555555555555555555555555555555590

23 00000995555555555555555555555555555555555590

22 00000095555555555555555555555555555555555590

21 00000099555555555555555555555555555555555590

20 00000009955555555555555555555555555555555590

19 00000000955555555555555555555555555555555590

18 00000000995555555555555555555555555555555590

17 00000000099555555555555555555555555555555590

16 00000000009555555555555555555555555555555590

Figure B28a. File cell.inp for WCA2A Grid Shown in Figure B25.

Page 191: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-44

15 00000000009955555555555555555555555555555590

14 00000000000995555555555555555555555555555590

13 00000000000095555555555555555555555555555590

12 00000000000099555555555555555555555555555590

11 00000000000009955555555555555555555555555590

10 00000000000000955555555555555555555555555590

9 00000000000000955555555555555555555999999990

8 00000000000000995555555555559999999900000000

7 00000000000000095555555999999000000000000000

6 00000000000000095555559900000000000000000000

5 00000000000000095555599000000000000000000000

4 00000000000000095555990000000000000000000000

3 00000000000000099555900000000000000000000000

2 00000000000000009999900000000000000000000000

1 00000000000000000000000000000000000000000000

C

C 12345678901234567890123456789012345678901234567890

C 1 2 3 4 5

Figure B28b. Continuation of file cell.inp for WCA2A Grid Shown in Figure B25.

Page 192: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-45

Figure B29. Square cell Cartesian grid representing same region as shown in Figure B25. This gridcorresponds to the file gcell.inp in Figure B28.

Page 193: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-46

C

REAL*8 FUNCTION FIB(YY,J)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 YY

C

IF(YY.GE.20.6.AND.YY.LE.35.6) THEN

FIB=9.*(YY-21.)/15. + 7.

RETURN

END IF

C

WRITE(6,601) YY,J

601 FORMAT(’ FUNCTION FIB OUT OF BOUNDS YY,J = ’,F10.4,I8/)

C

RETURN

END

C

Figure B30. FORTRAN function subroutine for physical domain true east or X coordinate (FIB), alongbeginning I boundary as a function of physical domain true north or Y coordinate (YY) on that boundary.

C REAL*8 FUNCTION FIE(YY,J) IMPLICIT REAL*8 (A-H,O-Z) REAL*8 YYC IF(YY.GE.9.1.AND.YY.LE.23.6) THEN FIE=31. RETURN END IFC WRITE(6,601) YY,J 601 FORMAT(’ FUNCTION FIE OUT OF BOUNDS YY,J = ’,F10.4,I8/)C RETURN END

C

Figure B31. FORTRAN function subroutine for physical domain true east or X coordinate (FIE), alongending I boundary as a function of physical domain true north or Y coordinate (YY) on that boundary.

Page 194: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-47

C REAL*8 FUNCTION GJB(XX,I) IMPLICIT REAL*8 (A-H,O-Z) REAL*8 XXC IF(XX.GE.6.76.AND.XX.LT.8.76) THEN X=XX-6.76 GJB=20.6-0.6*X-(2.254-0.203*X)*X*X/7.7 RETURN END IFC IF(XX.GE.8.76.AND.XX.LT.14.7) THEN GJB=-11.2*(XX-7.)/7.7 + 21. RETURN END IFC IF(XX.GE.14.7.AND.XX.LT.19.4) THENC GJB=-2.1*(XX-14.7)/4.7 + 9.8 X=XX-14.7 CTMP=6.764968/(4.7*4.7) DTMP=-2.028605/(4.7*4.7*4.7) GJB=9.8-11.2*X/7.7+(CTMP+DTMP*X)*X*X RETURN END IFC IF(XX.GE.19.4.AND.XX.LE.29.0) THEN GJB=1.5*(XX-19.4)/11.6 + 7.7 RETURN END IFC IF(XX.GE.29.0.AND.XX.LE.31.) THEN X=XX-31. GJB=9.1-(0.63+0.085*X)*X*X/11.6 RETURN END IFC WRITE(6,601) XX,I 601 FORMAT(’ FUNCTION GJB OUT OF BOUNDS XX,I = ’,F10.4,I8/)C RETURN ENDC

Figure B32. FORTRAN function subroutine for physical domain true north or Y coordinate (GJB), alongbeginning J boundary as a function of physical domain true east or X coordinate (XX) on that boundary.

Page 195: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-48

C REAL*8 FUNCTION GJE(XX,I) IMPLICIT REAL*8 (A-H,O-Z) REAL*8 XXC IF(XX.GE.15.76.AND.XX.LT.17.76) THEN X=XX-15.76 GJE=35.6-0.6*X-(1.696-0.082*X)*X*X/7.5 RETURN END IFC IF(XX.GE.17.76.AND.XX.LT.22.5) THEN GJE=-10.3*(XX-16.)/7.5 + 36. RETURN END IFC IF(XX.GE.22.5.AND.XX.LT.24.5) THEN X=XX-22.5 GJE=(203.05-10.3*X+2.*X*X)/7.5 RETURN END IFC IF(XX.GE.24.5.AND.XX.LT.29.0) THEN GJE=-2.3*(XX-23.5)/7.5 + 25.7 RETURN END IFC IF(XX.GE.29.0.AND.XX.LE.31.0) THEN X=XX-31. GJE=23.6+(1.175+0.2*X)*X*X/7.5 RETURN END IFC WRITE(6,601) XX,I 601 FORMAT(’ FUNCTION GJE OUT OF BOUNDS XX,I = ’,F10.4,I8/)CC RETURN ENDC

Figure B33. FORTRAN function subroutine for physical domain true north or Y coordinate (GJE), alongending J boundary as a function of physical domain true east or X coordinate (XX) on that boundary.

Page 196: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-49

B.6 Chesapeake Bay

This section describes a square cell Cartesian grid of the Chesapeake Bay. The physical domain grid is

shown in Figure B34, the cell.inp file, Figure B35, and the gefdc.inp file, Figure B36. The grid was

generated with the NTYPE = 9, option by gefdc.f.

Page 197: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-50

Figure B34. Physical and computational domain grid of the Chesapeake Bay. Grid spacing isapproximately 1850 meters.

Page 198: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-51

C cell.inp file, i across and j up, for ches bay

C 0 1 2 3 4 5 6 7 8 9

C 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

C

180 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

179 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

178 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

177 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

176 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

175 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

174 000000000000000000000000000000000000000000000000000000000000000000000000999000000000000000000000

173 000000000000000000000000000000000000000000000000000000000000000000099909959099900000000000000000

172 000000000000000000000000000000000000000000000000000000000000000000995999559095900000000000000000

171 000000000000000000000000000000000000000000000000000000000000000000945551529095900000000000000000

170 000000000000000000000000000000000000000000000000000000000000000009955555599995900000000000000000

169 000000000000000000000000000000000000000000000000000000000000000009455555599452900000000000000000

168 000000000000000000000000000000000000000000000000000000000000000009555555994599900000000000000000

167 000000000000000000000000000000000000000000000000000000000009990009993555942359000000000000000000

166 000000000000000000000000000000000000000000000000000000000009590000999552429999000000000000000000

165 000000000000000000000000000000000000000000000000000000000009590009954555599000000000000000000000

164 000000000000000000000000000000000000000000000000000000000099590099455555990000000000000000000000

163 000000000000000000000000000000000000000000000000000009999994290994555552900000000000000000000000

162 000000000000000000000000000000000000000000000000000009551995999955555599999990000000000000000000

161 000000000000000000000000000000000000000000000000000009935995994555555555555590000000000000000000

160 000000000000000000000000000000000000000000000000000000995995145555299999999990000000000000000000

159 000000000000000000000000000000000000000000000000000000095593555555990000000000000000000000000000

158 000000000000000000000000000000000000000000000000000009995595555299900000000000000000000000000000

157 000000000000000000000000000000000000000000000000000099545545555190000000000000000000000000000000

156 000000000000000000000000000000000000000000000000000995555555555290000000000000000000000000000000

155 000000000000000000000000000000000000000009999990000995555555552990000000000000000000000000000000

154 000000000000000000000000000000000000000009555199009945555555529900000000000000000000000000000000

153 000000000000000000000000000000000000000009993519909555555555599000000000000000000000000000000000

152 000000000000000000000000000000000000000000094555999945555555290000000000000000000000000000000000

151 000000000000000000000000000000000000000000099935199455555555990000000000000000000000000000000000

150 000000000000000000000000000000000000000000000995555555555552900000000000000000000000000000000000

149 000000000000000000000000000000000000000000000095555555555559900000000000000000000000000000000000

148 000000000000000000000000000000000000000000000099935555555559900000000000000000000000000000000000

147 000000000000000000000000000000000000000000000000993555555551900000000000000000000000000000000000

146 000000000000000000000000000000000000000000000000099555555555999999990000000000000000000000000000

145 000000000000000000000000000000000000000000000000009355555555199545590000000000000000000000000000

144 000000000000000000000000000000000000000000000099999955555555595559990000000000000000000000000000

143 000000000000000000000000000000000000000000000095555455555555595529000000000000000000000000000000

142 000000000000000000000000000000000000000000000099935555555555595299000000000000000000000000000000

141 000000000000000000000000000000000000000000000999999955555555295190000000000000000000000000000000

140 000000000000000000000000000000000000000000000951990995552355195590000000000000000000000000000000

139 000000000000000000000000000000000000000000000995199945559955555590000000000000000000000000000000

138 000000000000000000000000000000000000000000000099593155559935555290000000000000000000000000000000

137 000000000000000000000000000000000000000000000009355555529999352990000000000000000000000000000000

136 000000000000000000000000000000000000000000000999935555599999999900000000000000000000000000000000

135 000000000000000000000000000000000000000000000959995555599945559000000000000000000000000000000000

134 000000000000000000000000000000000000000000000955195555595955559000000000000000000000000000000000

133 000000000000000000000000000000000000000000000993555555295155559000000000000000000000000000000000

132 000000000000000000000999000000000000000000000099555555995555559000000000000000000000000000000000

131 000000000000000000000959000000000000000000000994555555995555559990000000000000000000000000000000

130 000000000000000000000959000000000000000000000955555555945552555590000000000000000000000000000000

129 000000000000000000000959000000000000000000000999555555455529555990000000000000000000000000000000

128 000000000000000000000959000000000000000000000099555555555299555900000000000000000000000000000000

127 000000000000000000000959000000000000000000000094555555555999935990000000000000000000000000000000

126 000000000000000000000959000000000000000000009995555555555900995190000000000000000000000000000000

125 000000000000000000000959000000000000000000009455555555559999995590000000000000000000000000000000

124 000000000000000000000959000000000000000000009555555555559599599990000000000000000000000000000000

123 000000000000000000000959000000000000000000009355555555559595559000000000000000000000000000000000

Figure B35a. File cell.inp for Chesapeake Bay Grid Shown in Figure B34.

Page 199: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-52

122 000000000000000000999959000000000000000000009935555555524595599999900000000000000000000000000000121 000000000000000009945559000000000000000000000995555555595555599455900000000000000000000000000000120 000000000000000099552999000000000000000000000095555555593555519599900000000000000000000000000000119 000000000000999094599900000000000000000000000095555555555555555599000000000000000000000000000000118 000000000000959095590000000000000000000000000095555555555555555559000009990000000000000000000000117 000000000009959993590000000000000000000000000095555555555555555559999009590000000000000000000000116 000000000009559455290000000000000000000000000095555555555535355955159909590000000000000000000000115 000000000009555552990000000000000000000000000095555555555519939955551999590000000000000000000000114 000000000099555999900000000000000000000000000095555555555559999993555194590000000000000000000000113 000000000095552900000000000000000000000999000095555555555299999099993552990000000000000000000000112 000000000995555900000000000000000000000959000095555555555519959000099999900000000000000000000000111 000000000945599900000000000000000000000959000095555555555551459000000000000000000000000000000000110 000000009955990000000000000000000000000959000095555555555555559000000000000000000000000000000000109 000000009452900000000000000000000000000959000093555555555552999000000000000000000000000000000000108 000000099559900000000999000000000000000959000099555555559959900000000000000000000000000000000000107 000000094559000000000959000000000000000959990009355555559999000000000000000000000000000000000000106 000000095559000009999959900000000000000955190009935555551990000000000000000000000000000000000000105 000000095559000009599451900000000000000995599900993555555190000000000000000000000000000000000000104 000000093559900009594555900000000000000099551999099355555590000000000000000000000000000000000000103 000000099551900099545555990000000000000009935559909955555599000000000000000009990000000000000000102 000000095555999994555235190099999000000000993551990995555519999000000000000009590000000000000000101 000000099355199455552995590095519000000000099935190095555551959990000099999009590000000000000000100 000000009955555559999995599099959000000000000999590995555555155190000094519999590000000000000000 99 000000000935555299000095519909459000000000000009599945555555535590000995559945590000000000000000 98 000000000999999990000995555999359900000000000009555155555555545999000945529955990000000000000000 97 000000000000000000000955555599951900000000000009935555555555535559990955999459900000000000000000 96 000000000000000000000993555519935900000000000000999994555555551959599935999559000000000000000000 95 000000000000000000000099555551995990999999000000000095555555555954559995199549000000000000000000 94 000000000000000000000009935555555199955559000000000095555555555135529945519519999000000000000000 93 000000000000000000000000995555555519425999990000000095555555555519551955529559459900000000000000 92 000000000000000000000000955555555551555555199000000093555555555555555135555555555900000000000000 91 000000000000000000000000993555555555555555559990099999555555555555555555555555299900000000000000 90 000000000000000000000000099935555555555555555190095909355555555555552935555529990000000000000000 89 000000000000000000000000000993555555555555555590095909935555555555559995559999000000000000000000 88 000000000000000000000000000099999995559555555599995900995555555555551995559999999990000000000000 87 000000000000000000000000000000000099559931955551995900993555555555555555559945955590000000000000 86 000000000000000000000000000000000009959999955555555999955555555555555524551455559990000000000000 85 000000000000000000000000000000000000999000935555555159935555555555555595555555529000000000000000 84 000000000000000000000000000000000000000000993555555551995555555555555593555555299000000000000000 83 000000000000000000000000000000000000000000099955555555995555555555555555555555999999000000000000 82 000000000000000000000000000999000000000000000935555555193555555555555555555555555559000000000000 81 000000000000000000000000000959000000000000000955555555555555555555555555555555559999000000000000 80 000000000000000000000000000959000000000000000923555555555555555555555593555555999000000000000000 79 000000000000000000000000000959000000000000000999935555555555555555555559955555900000000000000000 78 000000000000000000000000000959990000000000000000955555555555555555555599455552900000000000000000 77 000000000000000000000000000955590000000000000000939355555555555555555599555559909999999999999000 76 000000000000000000000000000999599000000000000000999993555555555555555599555555999455555555559000 75 000000000000000000000000000009319990000000000000000099993555555555555514555559994555555555559000 74 000000000000000000000000000009955199000000000000000000099355555555555555555559945555599999999000 73 000000000000000000000000000000993519000000000000000000009993555555555555555555555555999900000000 72 000000000000000000000000000000099959900000000000000000000099555555555555555555555555555900000000 71 000000000000000000000000000000000955990000000000000000000009555555555555555555555555555900000000 70 000000000000000000000000000000000995199000000000000000000009555555555555555555555555555900000000 69 000000000000000000000000000000000093519900000000000000009999555555555555955555555555559900000000 68 000000000000000000000000000000000099551999000000000000009594555555555555955555555555529000000000 67 000000000000000000000000000000000009355519900000000000009555555555555555555555555555599000000000 66 000000000000000000000000000000000009935555999000000000009555555555555555555555555995590000000000 65 000000000000000000000000000000000000999555519900000000009555555555555555555555555599990000000000 64 000000000000000000000000000000000000009355551900000000009555555555555555555555555590000000000000 63 000000000000000000000000000000000000009999555900000000009555555555555555555555552990000000000000 62 000000000000000000000000000000000000000009955990999000009555555555555555555555555900000000000000 61 000000000000000000000000000000000000000000955590959000009355555555555555555555559900000000000000

Figure B35b. Continuation of file cell.inp for Chesapeake Bay Grid Shown in Figure B34.

Page 200: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-53

60 000000000000000000000000000000000000000000935590959000099455555555555555555555599000000000000000

59 000000000000000000000000000000000000000000995599959000095555555555555555555555590000000000000000

58 000000000000000000000000000000000000000000095519559990095555555555555555555555990000000000000000

57 000000000000000000000000000000000000000000093555555199995355555555555555555559900000000000000000

56 000000000000000000000000000000000000000000099355555551999935555555555555555555900000000000000000

55 000000000000000000000000000000000000000000009999999555555555555555555555555595900000000000000000

54 000000000000000000000000000000000000000000000000009555555555555555555555555599900000000000000000

53 000000000000000000000000000000000000000000000000009993555555555555555555555990000000000000000000

52 000000000000000000000000000000000000000000000000000099999955555555555555555900000000000000000000

51 000000000000000000000000000000000999000000000000009999945555555555555555555900000000000000000000

50 000000000000000000000000000000009959900000000000009555555555555555555555552900000000000000000000

49 000000000000000000000000000000009551990000000000009999955535555555555555559900000000000000000000

48 000000000000000000000000000000009935190000000000000000995595555555555555559000000000000000000000

47 000000000000000000000000000000000993599000000000000000099955555555555555559000000000000000000000

46 000000000000000000000000000000000099519900000000000000000995555555555555529000000000000000000000

45 000000000000000000000000000000000009351900000000000000000099555555555555599000000000000000000000

44 000000000000000000000000000000000009935990000000000999999009555555555555599000000000000000000000

43 000000000000000000000000000000000000993599000000000959959009555555555555559000000000000000000000

42 000000000000000000000000000000000000099559900000099959959009555555555555559000000000000000000000

41 000000000999000000000000000000000000009351990000095555159099555555555555599000000000000000000000

40 000000000959000000000000000000000000009935199000099555559995555555555555290000000000000000000000

39 000000000959999900000000000000000000000995519000009955555995555555555552990000000000000000000000

38 000000000951451999999999990000000000000093559900099955555195555555555559900000000000000000000000

37 000000000955555555555945190000000000000099555990095525555555555555555559990000000000000000000000

36 000000000999932999995429590000000000000009935599999993555555555555555555590000000000000000000000

35 000000000000999900095599599000000000000000993551909999555555555555555559990000000000000000000000

34 000000000000000000099999319999990000000000099355999455555555555555555559000000000000000000000000

33 000000000000000000000009951945199990000000009935555555555555555555555559000000000000000000000000

32 000000000000000000000000993555555599999999900999355555555555555555555559000000000000000000000000

31 000000000000000000000000099935555519355551900009999935555555555555555559900000000000000000000000

30 000000000000000000000000000999999355555355990000000995555555555555555555990000000000000000000000

29 000000000000000000000000000000009935552955190000000955555555555555555555190000000000000000000000

28 000000000000000000000000000000000999559955590000000955995555555555555555590000000000000000000000

27 000000000000000000000000000000000009999955990000000999993555555555555555599000000000000000000000

26 000000000000000000000000000000000000000955999000000000099355555555555555519000000000000000000000

25 000000000000000000000000000000000000000955519900000000994555555555555555599000000000000000000000

24 000000000000000000000000000000000000000955551999000000955295555555555555599999999999999999999999

23 000000000000000000000000000000000000000955555559000000999945555555555555555555555555555555555559

22 000000000000000000000000000000000000000955555559990000000955555555555555555555555555555555555559

21 000000000000000000000000000000000000000935555555199000000955555555555555555555555555555555555559

20 000000000000000000000000000000000000000999995555519000999955555555555555555555555555555555555559

19 000000000000000000000000000000000000000000095555559999945455555555555555555555555555555555555559

18 000000000000000000000000000000000000000000099955551994555555555555555555555555555555555555555559

17 000000000000000000000000000000000000000000000995555945555555555555555555555555555555555555555559

16 000000000000000000000000000000000000000000000099355555553519555555555555555555555555555555555559

15 000000000000000000000000000000000000000000000009455555559999935555555555555555555555555555555559

14 000000000000000000000000000000000000000000000009555552359900999935555529999999999999999999999999

13 000000000000000000000000000000000000000000000009955559951900000999959999000000000000000000000000

12 000000000000000000000000000000000000000000000099559999935900000000999000000000000000000000000000

11 000000000000000000000000000000000000000000000095299000955900000000000000000000000000000000000000

10 000000000000000000000000000000000000000000000095990000935900000000000000000000000000000000000000

9 000000000000000000000000000000000000000000000095900000999900000000000000000000000000000000000000

8 000000000000000000000000000000000000000000000099900000000000000000000000000000000000000000000000

7 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

6 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

5 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

4 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

3 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

2 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Figure B35c. Continuation of file cell.inp for Chesapeake Bay Grid Shown in Figure B34.

Page 201: Draft - SourceForgesnl-efdc.sourceforge.net/EFDC-Hydro_Manual.pdf · This document comprises Volume I of the first release of a ... grid generation and ... Dynamically coupled transport

B-54

C1 TITLE

C1 (LIMITED TO 80 CHARACTERS)

chesapeake bay cartesian, ll input, utm output

C2 INTEGER INPUT

C2 NTYPE NBPP IMIN IMAX JMIN JMAX IC JC

9 0 1 97 1 181 96 180

C3 GRAPHICS GRID INFORMATION

C3 ISGG IGM JGM DXCG DYCG nwtgg

1 96 180 1850. 1850. 1

C4 CARTESIAN AND GRAPHICS GRID COORDINATE DATA

C4 CDLON1 CDLON2 CDLON3 CDLAT1 CDLAT2 CDLAT3

-77.5 1.25 -0.625 36.7 1.0 -0.5

C5 INTEGER INPUT

C5 ITRXM ITRHM ITRKM ITRGM

100 100 100 100 4000 1.0

C6 REAL INPUT

C6 RPX RPK RPH RSQXM RSQKM RSQKIM RSQHM RSQHIM RSQHJM

1.8 1.8 1.8 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12 1.E-12

C7 COORDINATE SHIFT PARAMETERS

C7 XSHIFT YSHIFT HSCALE RKJDKI ANGORO

0. 0. 1000. 1. 7.0

C8 INTERPOLATION SWITCHES

C8 ISIRKI JSIRKI ISIHIHJ JSIHIHJ

1 0 0 0

C9 NTYPE = 7 SPECIFIED INPUT

C9 IB IE JB JE NINITM N7RELAX ITN7MAX SERRMAX

C10 NTYPE = 7 SPECIFIED INPUT

C10 X Y IN ORDER (IB,JB) (IE,JB) (IE,JE) (IB,JE)

C11 DEPTH INTERPOLATION SWITCHES

C11 ISIDEP NDEPDAT CDEP RADM isidptyp surfelv

0 79431 2. 1. 1 0. 0 0 0

C12 LAST BOUNDARY POINT INFORMATION

C12 ILT JLT X(ILT,JLT) Y(ILT,JLT)

1 1 1 1

C13 BOUNDARY POINT INFORMATION

C13 I J X(I,J) Y(I,J)

Figure B36. File gefdc.inp for Chesapeake Bay Grid Shown in Figure B34.