drive train technologies 20110503 part4

43
Vestas V90 151 © MERVENTO 3.5.2011

Upload: adrian-tamas

Post on 23-Feb-2015

638 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Drive Train Technologies 20110503 Part4

Vestas V90

151© MERVENTO

3.5.2011

Page 2: Drive Train Technologies 20110503 Part4

Vestas V112

3 MW wind turbineRotor diameter 112 mTraditional geared turbine with one bearing on main shaft

152© MERVENTO

3.5.2011

Page 3: Drive Train Technologies 20110503 Part4

Vestas V112

153© MERVENTO

3.5.2011

Page 4: Drive Train Technologies 20110503 Part4

Vestas V112

154© MERVENTO

3.5.2011

Page 5: Drive Train Technologies 20110503 Part4

Vestas V164

6 MW wind turbineRotor diameter 164 mSemigeared

155© MERVENTO

3.5.2011

Page 6: Drive Train Technologies 20110503 Part4

WinWinD WWD-3

Semigeared 3 MWRotor diameters 90 and 100 mMultibrid-technologyTwo stage planetary gearPrototype in 2004ypSerial production 2005Annual volume approximately 20pp yComing years volume 50 annuallyyNacelle 127 tTotal weight nacelle + rotor 163 t Total weight nacelle rotor 163 t

156© MERVENTO

3.5.2011

Page 7: Drive Train Technologies 20110503 Part4

WinWinD WWD-3

157© MERVENTO

3.5.2011

Page 8: Drive Train Technologies 20110503 Part4

WinWinD WWD-3

158© MERVENTO

3.5.2011

Page 9: Drive Train Technologies 20110503 Part4

WinWindD 3

3 MWRotor diameters 100, 109 and 120Frequency converter and transformer down to tower bbaseNacelle weight 80 t (without hub?)hub?)

159© MERVENTO

3.5.2011

Page 10: Drive Train Technologies 20110503 Part4

Market positioningMarket positioning

Page 11: Drive Train Technologies 20110503 Part4

Established turbines

150m

140m

120

130mRePower 5M

Bard 5.0

ØEnercon E-126

er

110m

120m Siemens SWT 3.6-120

Areva M5000

diam

ete

100m Siemens SWT 2.3-101

Siemens SWT 3.6-107

Alstohm E100Rot

or

90m Vestas V90MWT92

Established turbines mainly in the 2,5 MW class

80mØEnercon E-82 The rotor diameter depends on the wind class

Mainly high speed double fed turbines

161© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 12: Drive Train Technologies 20110503 Part4

New prototypes

150m

140m

120

130mRePower 6MGamesa G128

er

110m

120mRePower 3.2M114

diam

ete

RePower 3.2M114Ø Siemens SWT 2.3-113Nordex 2.4-117

100m Ø Siemens SWT 3.0-101RePower 3.4M104

ØLeitwind LWT101

SL3000/105

New prototypes mainly in the 3 MW class

Rot

or

Vestas V100

90m Doosan WinDS3000ØLeitwind LWT93

SL3000/90

New prototypes mainly in the 3 MW classThe rotor diameter depends on the wind classHigh speed approximately 50% of new

d l t80m

developmentsThe number of direct drive new developments has

increased recently

162© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 13: Drive Train Technologies 20110503 Part4

New developments Vestas V164

150m

140m

120

130m

Bard 6,5er

Sinovel 128

Dong Fang Ø?Ø Vestas 6MW Ø?

Alstohm Ø?Goldwind Ø?

110m

120mØ Mervento 3.6-118

ØGE 4.0-110

WinWinD 3

WinWinD 3diam

ete

Ø Darwind 5MWØ Mervento 4.5-118

Areva M6000 Ø?

g g

Shanghai Electric Ø?

Mitsubishi PSE Ø?

100m

WinWinD 3

New developments mainly in the 3 MW and 5-6MW classes

Rot

or

Goldwind 2,5MW

90mØ Avantis AV928 classes

The rotor diameter depends on the wind classHigh speed approximately 50% of new

d l t80m developmentsThe number of direct drive new developments has

increased recently

163© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 14: Drive Train Technologies 20110503 Part4

Wind class III

150m

140m

120

130m

er

110m

120mAcciona AW3000

RePower 3.2M114

WinWinD 3

diam

ete

Ø Siemens SWT 2.3-113Nordex 2.4-117

100m Previously the class III turbines has been 2,5 MW class

Rot

or

Vestas V100

90m All latest developments are 2 - 3 MW with very large rotor diameters or

Doosan WinDS3000

80m The class III turbines are mainly geared machines. The direct drive new comers are immediately focusing on class II and class I wind conditions.

164© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 15: Drive Train Technologies 20110503 Part4

Wind class II

150m

140m

120

130mØEnercon E-126

Gamesa G128

er

110m

120mØ Mervento 3.6-118

Acciona AW3000

Vestas V112

diam

ete

100m

Acciona AW3000

RePower 3.4M104

Alstohm E100ØEnercon E-101

SL3000/105

Previously the class II turbines has been 2,5 MW class

Rot

or

90m Vestas V90

Ø Avantis AV928MWT92

classAll latest developments are 3 MW with very large

rotor diametersG G128 i b bl i i f l I

80mØEnercon E-82 Gamesa G128 is probably aiming for class I

The class II turbines are becoming more and more direct drive (33%).

165© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 16: Drive Train Technologies 20110503 Part4

Wind class I Vestas V164

150m

140m

120

130mRePower 5M RePower 6M

Bard 5.0 Bard 6,5er

110m

120mØ Mervento 4.5-118

Siemens SWT 3.6-120

ØGE 4.0-110

Areva M5000

diam

ete

100m Acciona AW3000Siemens SWT 2.3-101Ø Siemens SWT 3.0-101

Siemens SWT 3.6-107

The class I turbines are very scatteredThere are lot of new developments going on

Rot

or

90mØLeitwind LWT93

SL3000/90

p g gfocusing mainly on the 5-6 MW segment

Dong Fang 5MW, Sinovel 5MW, Siemens 5-6MW, Vestas 6MW, Darwind 5MW, Hyundai +5MW,

80m Mitsubishi 5-7MW, Clipper Britannia 7,5MW, RePower 6M, Areva 6MW, Alstohm +5MW, Mitsubishi PSE 6MW

166© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 17: Drive Train Technologies 20110503 Part4

Offshore Vestas V164

150mT t l it

140m SupplierSize of turbine Number of

turbines

Total capacity supplied *)

MW2.3 MW 130 2993.6 MW 79 2842 MW 210 420

Siemens 1

Vestas

120

130mRePower 5M RePower 6M

Bard 5.0

2 MW 210 4203 MW 96 288

REpower 5 MW 8 40GE Wind 3.6 MW 7 25Source: BTM Consult Aps - October 2009 (*As per January 2009)

Vestas

Bard 6,5er

110m

120mØ Mervento 4.5-118

Siemens SWT 3.6-120

ØGE 4.0-110

Areva M5000

diam

ete

100m Acciona AW3000Siemens SWT 2.3-101Ø Siemens SWT 3.0-101

Siemens SWT 3.6-107

The class I turbines are very scatteredEnercon is not offshore (for the time

Rot

or

90m SL3000/90

(being)

The big offshore players are Siemens and Vestas

80m Other with a small track record are RePower, Areva, Bard, GE, Sinovel, WinWinD

167© MERVENTO

3.5.20117 MW2 MW 3 MW 4 MW 5 MW 6 MW 8 MW

ØDirect drive Medium speed High speedØOld fashioned technology ØModest technology ØFuture technology

Page 18: Drive Train Technologies 20110503 Part4

Direct Drive turbinesDirect Drive turbines

Page 19: Drive Train Technologies 20110503 Part4

Top 15 suppliers in 2009Total market 38,103 MWTotal market 38,103 MW

Vestas (DK); 12 5 %

Clipper (US); 1 6 %

Mitsubishi (JP); 1 5 %

Others; 11,9 %12,5 %

GE Wind (US); 12 4 %

United Power (CHI); 2,0 %

1,6 % 1,5 %Mingyang

(CHI); 1,5 %12,4 %

RePower (GE);

Nordex; 2,8 %

RePower (GE); 3,4 %

Siemens (DK);

Sinovel (CHI);Suzlon (IND);

5,9 %

Sinovel (CHI); 9,2 %

Enercon (GE); GoldWind Gamesa (ES); Dongfang; 6,5

Suzlon (IND); 6,4 %

169© MERVENTO

8,5 %(CHI); 7,2 %( );

6,7 %g g; ,

%3.5.2011Source: BTM Consult ApS – March 2010

Page 20: Drive Train Technologies 20110503 Part4

Direct drive

Approximately 16% of the market 2009 was direct drive turbinesThe market share of the Enercon direct drive turbines is in Germany 60% (continously growing)The most produced turbine in the world is the Vensys 1,5 MW direct drive by a number of licensees eg GoldWindIn Sweden Piteå will the worlds largest wind power plant with 1101 turbines be built with Enercon direct drive turbinesSi i d l i di t d i t bi i 3MW d 5 6MWSiemens is developing direct drive turbines in 3MW and 5-6MWAccording to information from suppliers 80% of the new d l t i E f d di t d idevelopments are in Europe focused on direct driveThere is not any direct drive turbine aimed for the offshore yet (in progress Darwind 5MW GE 4 1MW Siemens 3MW and(in progress Darwind 5MW, GE 4,1MW, Siemens 3MW and 6MW as well as Mervento 4-4,5 MW)

170© MERVENTO

3.5.2011

Page 21: Drive Train Technologies 20110503 Part4

Direct DriveInner rotor designsInner rotor designs

171© MERVENTO

3.5.2011

Page 22: Drive Train Technologies 20110503 Part4

Direct DriveOuter rotor designsOuter rotor designs

172© MERVENTO

3.5.2011

Page 23: Drive Train Technologies 20110503 Part4

Development 2007 2008 2009 2010Company Type/Size MW MW MW MWDevelopment

of direct drive (DD) concepts

Company Type/Size MW MW MW MWEnercon GmbH DDGermany 1) wound magnetsGoldwind (CN) DDVensys PMGMt (ES) DD

395 1,914 3,495

2,769 2,809 3,221 2,846

( ) pin the market from 2007 to 2010

Mtorres (ES) DDwound magnets

Impsa (Argentina) DDVensys PMGGE- Scanwind (NO) DD

18 n.a n.a

2) 39

n.a

- - 29 100

2010 ?Zephyros (NL) DD

PMGSiemens Wind Power (DK/GE) DD

PMG

2) 39

- - - -

37 3PMG

Others:Dongfang New Energy(CN) DD PMG 3

Hara XEMC (CN) DD PMG 80 128 454 507ZephyrosZephyrosSTX Heavy Industries (formerly Harakosan) (JP) DD PMGZephyrosTotal MW 2,867 3,339 5,663 6,951% of world market 14.50% 11.80% 14.90% 17.60%Source: BTM Consult - A Part of Navigant Consulting - March 2011

Notes:• Enercon’s track-record is outstanding. It has delivered 22,644 MW of its DD concept since 1994 in all models from 500 kW up to 7,5 MW.

Scan ind's fig re of 39 MW is c m lati e capacit b the end of 2009

173© MERVENTO

• Scanwind's figure of 39 MW is cumulative capacity by the end of 2009

3.5.2011

Page 24: Drive Train Technologies 20110503 Part4

Siemens SWT- 2 3-113 -Siemens SWT 2.3 113 Direct-Drive WTG

174© MERVENTO

Source: Siemens Renewable Energy - Press release 14. March 20113.5.2011

Page 25: Drive Train Technologies 20110503 Part4

Main Company Location Main permanent magnet

Ingeteam SpainABB SwitzerlandThe Switch FinlandSiemens Germanyg

generator suppliers

Siemens GermanyWeier GermanyConverteam FranceSicme Motori ItalyyElin AustriaTM4 Inc CanadaDanoteck USWi dG USWindGen USPotencia Industrial MexicoHyundai South KoreaCSR Electric ChinaCSR Electric ChinaNanqi ChinaHui Quan ChinaYuanda ChinaXiangdian ChinaXi’an Dunan ChinaYongyi China

175© MERVENTO

Source: BTM Consult - A Part of Navigant Consulting - March 2011

3.5.2011

Page 26: Drive Train Technologies 20110503 Part4

Comparison of Disadvantages of DDNo gearbox and related wear an tear on Larger diameter of generator/nacelle

Advantages of DDComparison of direct drive and traditional

No gearbox and related wear an tear on mechanical components

Larger diameter of generator/nacelle complicates transportation and installation.

Simpler turbine with fewer parts Higher top-mass weight ')

Higher electrical (PM) and overall drive Expensive PM material potentiallydrive train designs

Higher electrical (PM) and overall drive train efficiency, producing higher energy yield

Expensive PM material – potentially uncertain security of supply

Lower maintenance and greater reliability with less downtime

More complex assembly of generator using PMsy g

Improved thermal characteristics due to absence of field losses

Demagnetisation of PM at high temperature

Full power conversion improves the turbine’s grid compatibility

More advanced cooling system required

F ll th th ti lFull power rather than partial power conversion makes the turbine more expensive

Comments:

Thi i i b d t diti l d i t i i i d bl f d i d ti t d

*) The general trend towards higher top-mass weight for direct drive turbines seems to have beenbroken by the new DD turbine SWT 3.0 from Siemens Wind Power

This comparison is based on a traditional drive train comprising a doubly feed induction generator anda 3-4 stage gearbox.

When comparing the PMG solution to the Enercon DD design, the latter is heavier and the absence ofa permanent magnet creates excitation loss when magnetising the coils, but the concept has animpressive track record from more than 20 GW of capacity in operation.

176© MERVENTO

Source: BTM Consult - A Part of Navigant Consulting - March 2011

3.5.2011

Page 27: Drive Train Technologies 20110503 Part4

Geared versus Direct Drive - today

Geared Geared Direct driveDirect drive

+ Lower weight+ Lower weight + Low noise level+ Low noise level+ Smaller overall size+ Smaller overall size + Low vibration level+ Low vibration level

+ Reliability+ Reliability Strengths+ Components with shortest + Components with shortest possible supply chainpossible supply chain+ Higher total efficiency+ Higher total efficiency+ Higher total efficiency+ Higher total efficiency

–– NoiseNoise–– ReliabilityReliability

––WeightWeight–– SizeSizeReliabilityReliability

–– ReputationReputation–– AvailabilityAvailability

SizeSize–– Transportation Transportation –– ErectionErectionChallenges

–– TimeTime--toto--marketmarketg

177© MERVENTO

3.5.2011

Page 28: Drive Train Technologies 20110503 Part4

Direct drive turbines

Existing direct drive turbinesEnercon (2,3MW – 7,5MW), GoldWind (1,5MW), Leitwind (1,5MW – 1,8MW), Mtorres (1,65MW), XEMC (Lagerway, Harakosan 2MW) GE/ScanWind (3 5MW)Harakosan 2MW), GE/ScanWind (3,5MW)

Prototype direct drive turbinesPrototype direct drive turbinesEnercon (3MW), EWT (2MW with China Energine), GoldWind (2,5MW), Leitwind (3MW), Avantis (2,5MW), Dong Fang (1,5MW), Siemens (3MW), Impsa (2,1 MW)

N d lNew developmentsShanghai Electric Company (5,4MW), Wind Direct (2,5MW), Schuler (2 7MW) Unison 3MW Mervento (3 6MW)Schuler (2,7MW), Unison 3MW, Mervento (3,6MW), GE/ScanWind (4MW), XEMC Darwind (5MW), Siemens (6MW), GoldWind (5-6MW), Nordex (6MW), Sway (10MW), AMSC

178© MERVENTO

Windtec (10MW HTS technology)3.5.2011

Page 29: Drive Train Technologies 20110503 Part4

Direct drive turbines

Engineering companies developing wind turbinesGarrad Hassan (owned by GL), Aerodyn, AMSC Windtec, W2E Wind to Energy (Fuhrländer), Wind-Direct GmbH, Tembra (developing components for Schuler 2 7MW) EDAG Windrad(developing components for Schuler 2,7MW), EDAG, Windrad Engineering (not complete turbines), Windforce, Rotorwerk GmbH, S & G GmbH, P.E. Concepts,

Engineering companies that has developed direct driveGarrad Hassan (for Dong Fang in co-operation with Enmac and The Switch), P.E. Concepts (Sharpower 3MW China), Tembra (developing components for Schuler 2 7MW) Aerodyn (first DD(developing components for Schuler 2,7MW), Aerodyn (first DD developments for Unison)

In reality there is not any engineering company with skill and competence to develope direct drive turbines

179© MERVENTO

3.5.2011

Page 30: Drive Train Technologies 20110503 Part4

Mervento 3 6-118 turbineMervento 3.6-118 turbine

Page 31: Drive Train Technologies 20110503 Part4

Main parametersNear-shore Offshore

Wind turbine class S, IIA with extended temperature range

S, IB with extended temperature range

Vref 10 minutes mean extreme wind speed within 50 years at hub height

42,5 m/s 50,0 m/s

Turbulence intensity at 15 m/s Iref 0,16 0,14Extreme temperature range for stand-by -40ºC +50ºC -40ºC +50ºCA bi t t t i ti 30ºC 40ºC 30ºC 40ºCAmbient temperature range in operation -30ºC +40ºC -30ºC +40ºCNacelle temperature range in operation -20ºC +60ºC -20ºC +60ºCVave annual average at hub height 8,5 m/s 10,0 m/sRotor diameter 118 m 118 mH b h i ht 90 / 125 90Hub height 90 / 125 m 90 mDesign tip speed ratio 9,0 9,0Max tip speed 78,0 m/s 87,0 m/sNominal turbine speed 12,6 rpm 14,1 rpmCut in wind speed 4 m/s 4 m/sCut-in wind speed 4 m/s 4 m/sCut-out wind speed 25 m/s 25 m/sNacelle tilt angle 3º 3ºHub cone angle 3º 3ºBlade cone angle 1º 1ºBlade cone angle 1 1Rated wind speed 11,5 m/s 12,8 m/sNominal rating At sea level, 15°C, rated wind speed 3,6 MW 4,5 MWMechanical hub power at rated wind speed 4,0 MW 5,1 MWMaximum torque 3 067 MNm 3 423 MNmMaximum torque 3,067 MNm 3,423 MNmRotational speed at cut in 5,8 rpm 5,8 rpmWind speed at nominal turbine speed 8,7 m/s 9,4 m/sMaximum power coefficient Cp 0,48 0,48Power coefficient C at rated wind speed 0 40 0 38

181© MERVENTO

3.5.2011

Power coefficient Cp at rated wind speed 0,40 0,38Theoretical capacity factor at Rayleigh distribution 48,7% 55%

Page 32: Drive Train Technologies 20110503 Part4

MERVENTO 3.6-118

Generator in front of tower

Common bearings forCommon bearings for turbine rotor and generator rotor

Total weight competitiveTotal weight competitive with geared turbines

182© MERVENTO

3.5.2011

Page 33: Drive Train Technologies 20110503 Part4

Main circuit diagramPower losses for dimensioningPower losses for dimensioning

Rotor power 4000 kW

Mechanical after bearing 4000 – 5 = 3995 kWPower after generator 3995 – 190 = 3805 kWel

4440kVA

Power after tower cabling 3805 – 12 = 3793 kWel

150kVASelf consumption nacelle + electrical station 400V1 100 864440kVA

Power after transformer 3705 –39,5 (1,1%) = 3665,5 kWel

71 – 100 kWel, average 86 kWel

Power after MV switch gear 3594 3565 kWelPower after

frequency converter and filters 3793 – 88 (2,3%) = 3705 kWel

3594 – 3565 kWelAverage 3579 kWel

V i it b k b f f tVacuum circuit breaker before frequency converterThe accurate powers are in the power curve calculation. These powers to be used only in dimensioning of the components.

183© MERVENTO

3.5.2011

y g p

Page 34: Drive Train Technologies 20110503 Part4

Medium voltage electrical systembenefitsbenefits

More silent frequency converterHigher reliabilityLower total weightLower total costMakes it possible for a topology with frequency converter and p p gy q ytransformer at tower baseTopology ready for even higher voltage levels in range 10 – 13 kV enabling turbines without transformer and centralized electrical station for several turbines

184© MERVENTO

3.5.2011

Page 35: Drive Train Technologies 20110503 Part4

Advantages with electrical station at tower baseat tower base

Less weight in the nacelle to be erectederectedLower nacelle weight decreases tower weightgLonger life time and longer mean time between failure of frequency converter and transformersconverter and transformersEasier maintenance of frequency converter and transformersCooling water system at ground level, maintenance at groundControl room at ground levelControl room at ground levelElectrical station manufactured, assembled and tested at factoryShorter erection and commisioning timeLower total costs

185© MERVENTO

Lower total costsTotal weight approximately 35 tons 3.5.2011

Page 36: Drive Train Technologies 20110503 Part4

Electrical stationGeneral overviewGeneral overview

Overall dimensions (mm) L x W x hmax = 11227 x 4654 x 4210Curvature shape roofDoor to control room

D f i t fDoors for main transformer

186© MERVENTO

3.5.2011

Page 37: Drive Train Technologies 20110503 Part4

Frequency converter PCS6000

Voltage ride through (4ABB four quadrant (4Q) PCS6000 Medium Voltage

Voltage ride through (4 seconds at full power) and reactive power capability (no PCS6000 Medium Voltage

frequency converter, nominal voltage 3,9 kVTh h th l l

p p y (additional Statcom needed)In-line design. Size: 5112mm x 1244mm x 2466mm (L x W x H)Three phase, three level

semiconductors IGCT (Integrated Gate Commutated Thyristor)

1244mm x 2466mm (L x W x H)Weight: ~6580kg

187© MERVENTO

Gate Commutated Thyristor) power stack

3.5.2011

Page 38: Drive Train Technologies 20110503 Part4

Low weight direct drive

188© MERVENTO

3.5.2011

Page 39: Drive Train Technologies 20110503 Part4

Power curve comparison

189© MERVENTO

3.5.2011

Page 40: Drive Train Technologies 20110503 Part4

Turbine maintenance costs over the life cyclethe life cycle

190© MERVENTO

3.5.2011

Page 41: Drive Train Technologies 20110503 Part4

MERVENTO 3.6-118

Higher investmentg&

Higher revenue

&&Lower total cost ofLower total cost of

ownership (TCO)

=Superior net present

value NPV191

© MERVENTO3.5.2011

Page 42: Drive Train Technologies 20110503 Part4

Comparison of Gross Marging

2 x Mervento 3.6-118 > 3 x 3MW-100 m

192© MERVENTO

3.5.2011

Page 43: Drive Train Technologies 20110503 Part4

Direct Reliability

Mervento 3.6Mervento 3.6--118118The first completely gearless wind turbineThe first completely gearless wind turbine

193© MERVENTO

3.5.2011

The first completely gearless wind turbineThe first completely gearless wind turbine