ds160pr810evm-rsc evaluation module (evm)smbus, i2c modes: addr1 controls for each upstream device....

33
User’s Guide DS160PR810EVM-RSC Evaluation Module (EVM) ABSTRACT The DS160PR810EVM-RSC evaluation modules provides a complete high-bandwidth platform for evaluating the signal conditioning features of the Texas Instruments DS160PR810 Octal-Channel PCI-Express 4.0 Linear Redriver. This evaluation board can be used for standard compliance testing, performance evaluation, and initial system prototyping. Figure 1-1. DS160PR810EVM-RSC - Top Side View Table of Contents 1 Introduction............................................................................................................................................................................. 2 1.1 Features............................................................................................................................................................................. 2 1.2 Applications........................................................................................................................................................................ 2 2 Description.............................................................................................................................................................................. 3 2.1 DS160PR810 4-Level I/O Control Inputs........................................................................................................................... 3 2.2 DS160PR810 Modes of Operation.....................................................................................................................................3 2.3 DS160PR810 SMBus or I2C Register Control Interface.................................................................................................... 4 2.4 DS160PR810 Equalization Control.................................................................................................................................... 5 2.5 DS160PR810 RX Detect State Machine............................................................................................................................ 6 2.6 DS160PR810 DC Gain Control.......................................................................................................................................... 6 2.7 DS160PR810 EVM Global Controls ..................................................................................................................................7 www.ti.com Table of Contents SNLU273 – DECEMBER 2020 Submit Document Feedback DS160PR810EVM-RSC Evaluation Module (EVM) 1 Copyright © 2020 Texas Instruments Incorporated

Upload: others

Post on 29-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • User’s GuideDS160PR810EVM-RSC Evaluation Module (EVM)

    ABSTRACT

    The DS160PR810EVM-RSC evaluation modules provides a complete high-bandwidth platform for evaluating thesignal conditioning features of the Texas Instruments DS160PR810 Octal-Channel PCI-Express 4.0 LinearRedriver. This evaluation board can be used for standard compliance testing, performance evaluation, and initialsystem prototyping.

    Figure 1-1. DS160PR810EVM-RSC - Top Side View

    Table of Contents1 Introduction.............................................................................................................................................................................2

    1.1 Features............................................................................................................................................................................. 21.2 Applications........................................................................................................................................................................2

    2 Description.............................................................................................................................................................................. 32.1 DS160PR810 4-Level I/O Control Inputs........................................................................................................................... 32.2 DS160PR810 Modes of Operation.....................................................................................................................................32.3 DS160PR810 SMBus or I2C Register Control Interface....................................................................................................42.4 DS160PR810 Equalization Control.................................................................................................................................... 52.5 DS160PR810 RX Detect State Machine............................................................................................................................62.6 DS160PR810 DC Gain Control..........................................................................................................................................62.7 DS160PR810 EVM Global Controls ..................................................................................................................................7

    www.ti.com Table of Contents

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 1

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.8 DS160PR810EVM Downstream Devices Control..............................................................................................................82.9 DS160PR810EVM Upstream Devices Control.................................................................................................................. 92.10 Quick-Start Guide (Pin Mode)........................................................................................................................................ 102.11 Quick-Start Guide (SMBus Slave Mode)........................................................................................................................10

    3 Test Setup and Results........................................................................................................................................................ 124 Schematics............................................................................................................................................................................135 Board Layout.........................................................................................................................................................................216 Bill of Materials..................................................................................................................................................................... 237 References............................................................................................................................................................................ 27

    TrademarksAll trademarks are the property of their respective owners.

    1 IntroductionThe DS160PR810EVM-RSC evaluation module features four DS160PR810 linear redrivers that can extend thetransmission distance of a PCIe Gen-4 x16 bus. It can directly be plugged into a PCIe slot on a server or PCmotherboard using one end of the board, and paired up with a PCIe add-in card using the straddle mountconnector attached to the other end of the board.

    1.1 Features• PCIe x16 Riser Card option with four 8-channel unidirectional linear redrivers operating at rates up to 25

    Gbps• Linear equalization for seamless support of link training and PCIe channel extension• CTLE boosts up to 18 dB at 8 GHz• Programmable device configuration through GPIO or I2C, SMBus• Onboard 12-V to 3.3-V, 2-A step-down DC/DC converter• Industrial temperature range: –40°C to 85°C• Flow-through layout in 5.5 mm × 10 mm, 64-pin, leadless WQFN 0.4-mm pitch package

    1.2 Applications• PCI Express Gen-1, 2, 3, and 4• High-speed interfaces up to 25 Gbps• Enterprise server motherboard, workstation• Enterprise storage• Enterprise add-in card, end-point

    Trademarks www.ti.com

    2 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2 Description2.1 DS160PR810 4-Level I/O Control InputsEach DS160PR810 features 4-level input pins (MODE, GAIN0, GAIN1, RX_DET, EQ0_0/ADDR0, EQ1_0/ADDR1, EQ0_1, and EQ1_1) that are used to control the configuration of the device. These 4-level inputs use aresistor divider to help set the four valid levels to provide a wider range of control settings.

    Table 2-1. Four-Level Control Pin SettingsPIN LEVEL PIN SETTING

    L0 1 kΩ to GND

    L1 13 kΩ to GND

    L2 59 kΩ to GND

    L3 Float

    2.2 DS160PR810 Modes of OperationEach DS160PR810 can be configured to operate in either Pin Mode, SMBus with I2C Slave Mode, or SMBuswith I2C Master Mode. The mode of operation of the DS160PR810 is determined by the pin strap setting on theMODE pin as shown in Table 2-2.

    Table 2-2. Modes of OperationMODE PIN LEVEL MODE OF OPERATION

    L0 Pin Mode

    L1 SMBus Mode or I2C MasterMode

    L2 SMBus Mode or I2C Slave Mode

    L3 RESERVED

    www.ti.com Description

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 3

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.3 DS160PR810 SMBus or I2C Register Control InterfaceThe DS160PR810 internal registers can be accessed through standard SMBus protocol. The DS160PR810features two banks of channels, Bank 0 (Channels 0–3) and Bank 1 (Channels 4–7), each featuring a separateregister set and requiring a unique SMBus slave address. The SMBus slave address pairs (one for each channelbank) are determined at power up based on the configuration of the EQ0_0/ADDR1 and EQ1_0/ADDR0 pins.The pin state is read on power up, after the internal power-on reset signal is deasserted.

    There are 16 unique SMBus slave address pairs (one address for each channel bank) that can be assigned tothe device by placing external resistor straps on the EQ0_0/ADDR1 and EQ1_0/ADDR0 pins as shown in Table2-3. When multiple DS160PR810 devices are on the same SMBus interface bus, each channel bank of eachdevice must be configured with a unique SMBus slave address pair.

    Table 2-3. DS160PR810 SMBus Address MapADDR1 Pin Level ADDR0 Pin Level Bank 0: Channels 0-3:7-Bit Address [HEX]

    Bank 1 Channels 4-7:7-Bit Address [HEX]

    L0 L0 0x18 0x19

    L0 L1 0x1A 0x1B

    L0 L2 0x1C 0x1D

    L0 L3 0x1E 0x1F

    L1 L0 0x20 0x21

    L1 L1 0x22 0x23

    L1 L2 0x24 0x25

    L1 L3 0x26 0x27

    L2 L0 0x28 0x29

    L2 L1 0x2A 0x2B

    L2 L2 0x2C 0x2D

    L2 L3 0x2E 0x2F

    L3 L0 0x30 0x31

    L3 L1 0x32 0x33

    L3 L2 0x34 0x35

    L3 L3 0x36 0x37

    Description www.ti.com

    4 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.4 DS160PR810 Equalization ControlEach channel of the DS160PR810 features a continuous-time linear equalizer (CTLE) that applies high-frequency boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effectsof the passive channel. Table 2-4 shows available equalization boost through EQ control pins (EQ1_0 andEQ0_0 for channels 0–3 and EQ1_1 and EQ0_1 for channels 4–7) when in Pin Control mode (MODE = L0).

    Table 2-4. Equalization Control SettingsEQ INDEX EQ1 PIN LEVEL EQ0 PIN LEVEL CTLE BOOST AT 4 GHz(dB)

    CTLE BOOST AT 8 GHz(dB)

    0 L0 L0 –0.25 –0.5

    1 L0 L1 2.0 4.0

    2 L0 L2 2.5 5.0

    3 L0 L3 3.0 6.0

    4 L1 L0 4.0 7.0

    5 L1 L1 4.5 7.5

    6 L1 L2 5.0 8.0

    7 L1 L3 6.0 9.5

    8 L2 L0 7.0 10

    9 L2 L1 8.0 11

    10 L2 L2 8.5 12.5

    11 L2 L3 9.0 13

    12 L3 L0 9.5 14.5

    13 L3 L1 10.0 15

    14 L3 L2 10.5 16.0

    15 L3 L3 12 18

    The equalization gain of each channel of each device can also be set by writing to SMBus, I2C registers in I2CMode. Refer to the DS160PR810 Programming Guide (SNLU268) for details.

    www.ti.com Description

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 5

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.5 DS160PR810 RX Detect State MachineEach DS160PR810 deploys an RX Detect state machine that governs the RX detection cycle as defined in thePCI Express specification. At power up or after a manually triggered event, the redriver determines whether ornot a valid PCI Express termination is present at the far end of the link. The RX_DET pin of DS160PR810provides additional flexibility to system designers to appropriately set the device in their desired mode, accordingto Table 2-5.

    Table 2-5. Four-Level Control Pin SettingsPD PIN LEVEL RX_DET/SCL PIN LEVEL DESCRIPTION

    L L0 PCI Express RX detection state machine is disabled. Recommendedfor non-PCI Express use cases. Inputs are always 50 Ω.

    L L1

    PCI Express RX detection state machine is enabled. Recommendedfor PCI Express use cases. Pre Detect: Hi-Z, Post Detect: 50 Ω.

    Outputs poll every approximate 150 μs until 3 consecutive valid RXtermination detections.

    L L2

    PCI Express RX detection state machine is enabled. Recommendedfor PCI Express use cases. Pre Detect: Hi-Z, Post Detect: 50 Ω.

    Outputs poll every approximate 150 μs until 2 consecutive valid RXtermination detections.

    L L3 (Float)

    PCI Express RX detection state machine is enabled. Recommendedfor PCI Express use cases. Pre Detect: Hi-Z, Post Detect: 50 Ω.

    Outputs poll every approximate 150 μs until a valid RX terminationdetection.

    H X Manual reset, inputs are Hi-Z

    2.6 DS160PR810 DC Gain ControlWhen operating in Pin Mode, the GAIN pins can be used to set the overall datapath DC (low frequency) gain ofthe DS160PR810 as shown in Table 2-6.

    Table 2-6. GAIN ControlGAIN/SDA PIN

    LEVEL GAIN SETTING

    L0 –6 dB

    L1 –3 dB

    L2 3 dB

    L3 0 dB (Recommended for most use cases)

    The DC gain of each channel of each device can also be set by writing to SMBus, I2C registers in Slave orMaster Modes. Refer to the DS160PR810 Programming Guide (SNLU268) for details.

    Description www.ti.com

    6 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.7 DS160PR810 EVM Global ControlsTable 2-7 shows DS160PR810EVM-RSC global controls that affect all devices on the board.

    Table 2-7. EVM Global ControlsCOMPONENT NAME FUNCTION / DESCRIPTION

    J1 3x2 Header

    MODE control tied to MODE pins of all four DS160PR810 devices on the EVML0: All devices set to Pin Mode (Default)L1: All devices set to SMBus, I2C Maseter ModeL2: SMBus, I2C Slave ModeL3: Reserved

    J2 3x2 Header

    RX DET control tied to RX DET pins of all four DS160PR810 devices on the EVML0: RX Detect state machine disabled on all devicesL1: RX Detect state machine enabled on all devices (3 valid detections needed)L2: RX Detect state machine enabled on all devices (2 valid detections needed)L3: RX Detect state machine enabled on all devices (1 valid detection needed) -Default

    J3 5x2 Header SMBus, I2C interface. All four DS160PR810 devices on the EVM are on the samebus and can be accessed through this interface.

    J4 3x1 Header

    PWDN control tied to PD1 and PD2 pins of all four DS160PR810 devices on theEVM PWDN tied to GND: All devices enabled (Default) PWDN tied to 3.3V_REG:All devices disabled.PWDN floating: Tie PCIe system PRSNT signal to PWDN using J6 for the PWDNcontrol (optional for PCIe use case)

    J5 3x1 HeaderAccess point to the WP (write protect) pin of the onboard EEPROM devices WPtied to GND: I2C Access to the EEPROM enabled WP floating: I2C Access to theEEPROM disabled (default)

    J6 2x1 Header Alternative PWDN Control PWDN floating: Use J3 for the PWDN control PWDNtied to PRSNT: PRSNT signal controls PWDN (optional for PCIe use case)

    J7, J8, J9, J10 3x1 Headers

    PCIe PRSNT Signal Controls Tie pins 1-2 on J7, J8, J9, and J10: Allow supportany PCIe bus width (default) Tie pins 2-3 of J7, leave J8, J9, and J10 floating:Force x1 PCIe bus width Tie pins 2-3 of J8, leave J7, J9, and J10 floating: Force x4PCIe bus width Tie pins 2-3 of J9, leave J7, J8, and J10 floating: Force x8 PCIebus width Tie pins 2-3 of J10, leave J7, J8, and J9 floating: Force x16 PCIe buswidth

    J11 2x1 HeaderOnboard regulator input. Apply 12 V when using the EVM as a standalone system.DO NOT APPLY power if plugging the EVM into a system as the power is providedthrough the gold finger connector (CONN1).

    J12 2x1 Header Access point to the GND reference

    J13 2x1 Header Onboard 3.3-V output

    www.ti.com Description

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 7

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.8 DS160PR810EVM Downstream Devices ControlTable 2-8 shows the DS160PR810EVM downstream device controls that affect DS1 and DS2 devices on theboard.

    Table 2-8. EVM Downstream Devices ControlsCOMPONENT NAME FUNCTION / DESCRIPTION

    J14 3x2 Header

    Gain Controls tied to GAIN pins of all downstream device banksL0: –6 dB Gain SettingL1: –3 dB Gain SettingL2: 3 dB Gain SettingL3: 0 dB Gain Setting (default)

    J15 12x2 Header

    Pin Mode: EQ1 controls for each downstream device and device bank.Use pins 1–6 for configuring EQ1_0 pin of Bank 0 of DS1 device.Use pins 7–12 for configuring EQ1_1 pin of Bank 1 of DS1 device.Use pins 13–18 for configuring EQ1_0 pin of Bank 0 of DS2 device.Use pins 19–24 for configuring EQ1_1 pin of Bank 1 of DS2 device.SMBus, I2C Modes: ADDR1 controls for each downstream device.Use pins 1–6 for configuring ADDR1 pin of DS1 device.Use pins 13–18 for configuring ADDR1 pin of DS2 device.Install a shunt to achieve L0, L1, or L2 level on the pin. Leave floating to achieveL3 level on the pin.

    J16 12x2 Header

    Pin Mode: EQ0 controls for each downstream device and device bank.Use pins 1–6 for configuring EQ0_0 pin of Bank 0 of DS1 device.Use pins 7–12 for configuring EQ0_1 pin of Bank 1 of DS1 device.Use pins 13–18 for configuring EQ0_0 pin of Bank 0 of DS2 device.Use pins 19–24 for configuring EQ0_1 pin of Bank 1 of DS2 device.SMBus, I2C Modes: ADDR0 controls for each downstream device.Use pins 1–6 for configuring ADDR0 pin of DS1 device.Use pins 13–18 for configuring ADDR0 pin of DS2 device.Install a shunt to achieve L0, L1, or L2 level on the pin. Leave floating to achieveL3 level on the pin.

    J17 3x1 HeaderGAIN / SDA Dual Function Pin Provision for DS1 Device Install shunt across pins1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 for operation inSMBus, I2C Modes

    J18 3x1 HeaderRX DET / SCL Dual Function Pin Provision for DS1 Device Install shunt acrosspins 1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 foroperation in SMBus, I2C Modes

    J19 3x1 HeaderGAIN / SDA Dual Function Pin Provision for DS2 Device Install shunt across pins1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 for operation inSMBus, I2C Modes

    J20 3x1 Header RX DET / SCL Dual Function Pin Provision for DS2 Device Install shunt acrosspins 1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 foroperation in SMBus, I2C Modes

    Description www.ti.com

    8 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.9 DS160PR810EVM Upstream Devices ControlTable 2-9 shows DS160PR810EVM upstream devices controls that affect US1-US2 devices on the board.

    Table 2-9. EVM Upstream Devices ControlsCOMPONENT NAME FUNCTION / DESCRIPTION

    J21 3x2 Header Gain Controls tied to GAIN pins of all upstream device banks L0: -6 dB GainSetting L1: -3 dB Gain Setting L2: 3 dB Gain Setting L3: 0 dB Gain Setting (default)

    J22 12x2

    Pin Mode: EQ1 controls for each upstream device and device bank.Use pins 1–6 for configuring EQ1_0 pin of Bank 0 of US1 device.Use pins 7–12 for configuring EQ1_1 pin of Bank 1 of US1 device.Use pins 13–18 for configuring EQ1_0 pin of Bank 0 of US2 device.Use pins 19–24 for configuring EQ1_1 pin of Bank 1 of US2 device.SMBus, I2C Modes: ADDR1 controls for each upstream device.Use pins 1–6 for configuring ADDR1 pin of US1 device.Use pins 13–18 for configuring ADDR1 pin of US2 device.Install a shunt to achieve L0, L1, or L2 level on the pin. Leave floating to achieveL3 level on the pin.

    J23 12x2 Header

    Pin Mode: EQ0 controls for each upstream device and device bank.Use pins 1–6 for configuring EQ0_0 pin of Bank 0 of US1 device.Use pins 7–12 for configuring EQ0_1 pin of Bank 1 of US1 device.Use pins 13–18 for configuring EQ0_0 pin of Bank 0 of US2 device.Use pins 19–24 for configuring EQ0_1 pin of Bank 1 of US2 device.SMBus, I2C Modes: ADDR0 controls for each upstream device.Use pins 1–6 for configuring ADDR0 pin of US1 device.Use pins 13–18 for configuring ADDR0 pin of US2 device.Install a shunt to achieve L0, L1, or L2 level on the pin. Leave floating to achieveL3 level on the pin.

    J24 3x1 HeaderGAIN / SDA Dual Function Pin Provision for US1 Device Install shunt across pins1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 for operation inSMBus, I2C Modes

    J25 3x1 HeaderRX DET / SCL Dual Function Pin Provision for US1 Device Install shunt acrosspins 1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 foroperation in SMBus, I2C Modes

    J26 3x1 HeaderGAIN / SDA Dual Function Pin Provision for US2 Device Install shunt across pins1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 for operation inSMBus, I2C Modes

    J27 3x1 Header RX DET / SCL Dual Function Pin Provision for US2 Device Install shunt acrosspins 1-2 for operation in Pin Mode (default) Install shunt across pins 2-3 foroperation in SMBus, I2C Modes

    www.ti.com Description

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 9

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 2.10 Quick-Start Guide (Pin Mode)Check that the shunts are at the following positions as shown in Figure 1-1:

    1. The redrivers are configured to operate in Pin Mode (MODE pins tied to L0 using J1 header).2. RX_Detect state machine of all redrivers is enabled by leaving J2 open.3. The redrivers are enabled (PWDN pins tied to GND using J4 header). Alternatevely, for PCIe applications,

    the PWDN pins may be driven by PCIe Present (PRSNT) signal by leaving J4 open and placing a shuntacross pins 1 and 2 of J6.

    4. The board is configured for any PCIe bus width (PRSNT signal controls set as shown in Figure 1-1 using J7,J8, J9 and J10 headers).

    5. DC Gain of all redrivers is set to 0 dB by leaving J14 open for the downstream redrivers and by leaving J21open for the upstream redrivers.

    6. EQ level of the RX CTLEs of all redrivers is set to 8.4 dB at 8 GHz by using J15 and J16 for the downstreamredrivers and J22 and J23 for the upstream redrivers.

    7. If necessary, adjust EQ levels of the downstream redrivers, or upstream redrivers, or both, by arrangingshunts on J15 and J16 for downstream redrivers and J22 and J23 for the upstream redrivers.

    8. Plug the EVM into a PCIe x16 server motherboard slot. Ensure the motherboard is powered down beforeinstalling the EVM or configured for hot-plug operation.

    9. Install a compatible PCIe endpoint card into the straddle connector of the EVM.10.Power-up the motherboard.

    2.11 Quick-Start Guide (SMBus Slave Mode)1. Configure all devices to operate in the SMBus Slave Mode by setting their MODE pins to the L2 level. This is

    accomplished by placing a shunt on J1 L2 location.2. Set a unique SMBus Slave address for each device by placing shunts in the following arrangement:

    • On J15 connector, place shunts in L0 locations for all downstream devices (DS1_0 and DS2_0; DS1_1and DS2_1 are a Don't Care).

    • On J16 connector, place shunts in L0 locations for the DS1_0 and in L1 locations for DS2_0 (DS1_1 andDS2_1 are a Don't Care).

    • On J22 connector, place shunts in L0 locations for all upstream devices (US1_0 and US2_0; DS1_1 andDS2_1 are a Don't Care).

    • On J23 connector, place a shunt in L2 location for the US1_0 and remove shunts for US2_0 to achieve L3level (US1_1 and US2_1 are a Don't Care).

    3. Move shunts from pins 1-2 to pins 2-3 on J17, J18, J19, J20, J24, J25, J26, and J27 to connect the dualfunction redriver pins to the SMBus, I2C bus.

    4. Enable all devices by pulling their PWDN pins to GND. This is accomplished by placing a shunt on J4between PWDN and GND.

    5. Connect the USB2ANY Adapter to J3 (Note that the USB2ANY Adapter is not supplied with theDS160PR810EVM-RSC).

    6. Install SigCon Architect Version 3.0.0.14 application and the DS160PR810 profile.7. Plug the EVM into a PCIe x16 server motherboard slot. Ensure the motherboard is powered down before

    installing the EVM or configured for hot-plug operation.8. Install a compatible PCIe endpoint card into the straddle connector of the EVM.9. Power-up the motherboard.10.Start the SigCon Architect application.11.Select the DS160PR810 Configuration Page and click on "Apply" box to enable the device profile. If

    necessary, edit devices addresses in the Edit Device Addresses box.12.In the DS160PR810 High Level Page, select Block Diagram as shown in Figure 2-1.13.Select the desired EQ Settings and Driver VOD.14.Select devices to which you want to apply the selected settings and click "Apply to All Channels".

    Description www.ti.com

    10 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    http://www.ti.com/tool/USB2ANY/http://www.ti.com/tool/SIGCONARCHITECThttps://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • Figure 2-1. SigCon Architect DS160PR810 High Level Page

    www.ti.com Description

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 11

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 3 Test Setup and ResultsFigure 3-1 shows a typical system setup with the DS160PR810EVM-RSC placed between a CPU on a servermotherboard and an PCIe end point (Network Interface Card or NIC). Additional "Extender" cards are inserted toincrease the channel loss and demonstrate the ability of the redriver to extend the reach.

    NIC

    Redriver EVM

    10´�([WHQGHU�&DUG

    Server Motherboard

    PCIe Gen- 4 CPU

    8´�([WHQGHU�&DUG

    6´�([WHQGHU�&DUG

    Figure 3-1. Example Test Setup

    Figure 3-2 is a typical test result achieved with a system shown in Figure 3-1. As the result indicates, the endpoint (Mellanox NIC) with the DS160PR810EVM-RSC placed in the datapath achieves a stable Gen4, x16 PCIelink.

    Figure 3-2. Example Test Results

    Test Setup and Results www.ti.com

    12 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 4 SchematicsFigure 4-1 through Figure 4-8 illustrate the EVM schematics.

    SCL

    SCL

    SDA

    SDA

    RX_DET

    RX_DET

    PWDN

    PWDN

    PET0_P

    PET0_N

    PET1_P

    PET1_N

    PET2_P

    PET2_N

    PET3_P

    PET3_N

    PET0_C_P

    PET0_C_N

    PET1_C_P

    PET1_C_N

    PET2_C_P

    PET2_C_N

    PET3_C_P

    PET3_C_N

    PET4_P

    PET4_N

    PET5_P

    PET5_N

    PET6_P

    PET6_N

    PET7_P

    PET7_N

    PET4_C_P

    PET4_C_N

    PET5_C_P

    PET5_C_N

    PET6_C_P

    PET6_C_N

    PET7_C_P

    PET7_C_N

    PET8_P

    PET8_N

    PET9_P

    PET9_N

    PET10_P

    PET10_N

    PET11_P

    PET11_N

    PET8_C_P

    PET8_C_N

    PET9_C_P

    PET9_C_N

    PET10_C_P

    PET10_C_N

    PET11_C_P

    PET11_C_N

    PET12_P

    PET12_N

    PET13_P

    PET13_N

    PET14_P

    PET14_N

    PET15_P

    PET15_N

    PET12_C_P

    PET12_C_N

    PET13_C_P

    PET13_C_N

    PET14_C_P

    PET14_C_N

    PET15_C_P

    PET15_C_N

    PWDN

    SCL

    SDA

    RX_DET

    READ_EN_N

    ALL_DONE_N_DS

    MODE

    DS160PR810_2x_DS

    HSDC081A_2x_DS.SchDoc

    PER0_P

    PER0_N

    PER0_C_P

    PER0_C_N

    PER1_C_P

    PER1_C_N

    PER2_C_P

    PER2_C_N

    PER3_C_P

    PER3_C_N

    PER4_C_P

    PER4_C_N

    PER5_C_P

    PER5_C_N

    PER6_C_P

    PER6_C_N

    PER7_C_P

    PER7_C_N

    PER8_C_P

    PER8_C_N

    PER9_C_P

    PER9_C_N

    PER10_C_P

    PER10_C_N

    PER11_C_P

    PER11_C_N

    PER12_C_P

    PER12_C_N

    PER13_C_P

    PER13_C_N

    PER14_C_P

    PER14_C_N

    PER15_C_P

    PER15_C_N

    PER1_P

    PER1_N

    PER2_P

    PER2_N

    PER3_P

    PER3_N

    PER4_P

    PER4_N

    PER5_P

    PER5_N

    PER6_P

    PER6_N

    PER7_P

    PER7_N

    PER8_P

    PER8_N

    PER9_P

    PER9_N

    PER10_P

    PER10_N

    PER11_P

    PER11_N

    PER12_P

    PER12_N

    PER13_P

    PER13_N

    PER14_P

    PER14_N

    PER15_P

    PER15_N

    PWDN

    SCL

    SDA

    RX_DET

    ALL_DONE_N_DS

    ALL_DONE_N

    MODE

    DS160PR810_2x_US

    HSDC081A_2x_US.SchDoc

    READ_EN_N

    ALL_DONE_N_DS

    ALL_DONE_N_DS

    CoverSheet

    HSDC081A_CoverSheet.SchDoc

    Hardware

    HSDC081A_Hardware.SchDoc

    PGOOD

    VoltageRegulator

    HSDC081A_VoltageRegulator.SchDoc

    PGOOD

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    PERST#

    REFCLK_P

    REFCLK_N

    PER0_C_P

    PER0_C_N

    RSVD1

    PER1_C_P

    PER2_C_P

    PER2_C_N

    PER3_C_P

    PER3_C_N

    RSVD3

    RSVD4

    PER4_C_P

    PER4_C_N

    PER5_C_P

    PER5_C_N

    PER6_C_P

    PER6_C_N

    PER7_C_P

    PER7_C_N

    RSVD5

    PER8_C_P

    PER8_C_N

    PER9_C_P

    PER9_C_N

    PER10_C_P

    PER10_C_N

    PER11_C_P

    PER11_C_N

    PER12_C_P

    PER12_C_N

    PER13_C_P

    PER13_C_N

    PER14_C_P

    PER14_C_N

    PER15_C_P

    PER15_C_N

    PER1_C_N

    PRSNT1

    SMCLK

    SMDAT

    JTAG1

    WAKE

    CLKREQ

    PET0_P

    PET0_N

    PRSNT2_1

    PET1_P

    PET1_N

    PET2_P

    PET2_N

    PET3_P

    PET3_N

    RSVD2

    PRSNT2_2

    PET4_P

    PET4_N

    PET5_P

    PET5_N

    PET6_P

    PET6_N

    PET7_P

    PET7_N

    PRSNT2_3

    PET8_P

    PET8_N

    PET9_P

    PET9_N

    PET10_P

    PET10_N

    PET11_P

    PET11_N

    PET12_P

    PET12_N

    PET13_P

    PET13_N

    PET14_P

    PET14_N

    PET15_P

    PET15_N

    PRSNT2_4

    RSVD

    GoldFinger_Conn

    HSDC081A_GoldFinger_Conn.SchDoc

    PRSNT1

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    PERST#

    REFCLK_P

    REFCLK_N

    PER0_P

    PER0_N

    RSVD1

    PER1_P

    PER1_N

    PER2_P

    PER2_N

    PER3_P

    PER3_N

    RSVD3

    RSVD4

    PER4_P

    PER4_N

    PER5_P

    PER5_N

    PER6_P

    PER6_N

    PER7_P

    PER7_N

    PER8_P

    PER8_N

    PER9_P

    PER9_N

    PER10_P

    PER10_N

    PER11_P

    PER11_N

    PER12_P

    PER12_N

    PER13_P

    PER13_N

    PER14_P

    PER14_N

    PER15_P

    PER15_N

    SMCLK

    SMDAT

    JTAG1

    WAKE

    CLKREQ

    PET0_C_P

    PET0_C_N

    PRSNT2_1_C

    PET1_C_P

    PET1_C_N

    PET2_C_P

    PET2_C_N

    PET3_C_P

    PET3_C_N

    RSVD2

    PRSNT2_2_C

    PET4_C_P

    PET4_C_N

    PET5_C_P

    PET5_C_N

    PET6_C_P

    PET6_C_N

    PET7_C_P

    PET7_C_N

    PRSNT2_3_C

    PET8_C_P

    PET8_C_N

    PET9_C_P

    PET9_C_N

    PET10_C_P

    PET10_C_N

    PET11_C_P

    PET11_C_N

    PET12_C_P

    PET12_C_N

    PET13_C_P

    PET13_C_N

    PET14_C_P

    PET14_C_N

    PET15_C_P

    PET15_C_N

    PRSNT2_4_C

    RSVD

    RSVD5

    Straddle_Conn

    HSDC081A_Straddle_Conn.SchDoc

    MODE

    SDA

    SCL

    PWDN

    READ_EN_N

    SMDAT

    SMCLK

    ALL_DONE_N

    PGOOD

    PRSNT1

    PRSNT2_1_C

    PRSNT2_1

    PRSNT2_2_C

    PRSNT2_2

    PRSNT2_3_C

    PRSNT2_3

    PRSNT2_4_C

    PRSNT2_4

    RX_DET

    Control_Status

    HSDC081A_Control_Status.SchDoc

    PWDN

    MODE

    SCL

    SDA

    READ_EN_N

    ALL_DONE_N

    SMDAT

    SMCLK

    PRSNT1

    PRSNT2_1

    PRSNT2_2

    PRSNT2_3

    PRSNT2_4

    PRSNT2_1_C

    PRSNT2_2_C

    PRSNT2_3_C

    PRSNT2_4_C

    PERST#

    REFCLK_P

    REFCLK_N

    SMCLK

    SMDAT

    WAKE

    CLKREQ

    JTAG1

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    RSVD

    RSVD1

    RSVD2

    RSVD3

    RSVD4

    RSVD5

    PRSNT1

    PRSNT2_1

    PRSNT2_2

    PRSNT2_3

    PRSNT2_4

    PERST#

    REFCLK_P

    REFCLK_N

    SMCLK

    SMDAT

    WAKE

    CLKREQ

    JTAG1

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    RSVD

    RSVD1

    RSVD2

    RSVD3

    RSVD4

    RSVD5

    PRSNT1

    PRSNT2_1_C

    PRSNT2_2_C

    PRSNT2_3_C

    PRSNT2_4_C

    PET0_P

    PET0_N

    PET1_P

    PET1_N

    PET2_P

    PET2_N

    PET3_P

    PET3_N

    PET4_P

    PET4_N

    PET5_P

    PET5_N

    PET6_P

    PET6_N

    PET7_P

    PET7_N

    PET8_P

    PET8_N

    PET9_P

    PET9_N

    PET10_P

    PET10_N

    PET11_P

    PET11_N

    PET12_P

    PET12_N

    PET13_P

    PET13_N

    PET14_P

    PET14_N

    PET15_P

    PET15_N

    PET0_C_P

    PET0_C_N

    PET1_C_P

    PET1_C_N

    PET2_C_P

    PET2_C_N

    PET3_C_P

    PET3_C_N

    PET4_C_P

    PET4_C_N

    PET5_C_P

    PET5_C_N

    PET6_C_P

    PET6_C_N

    PET7_C_P

    PET7_C_N

    PET8_C_P

    PET8_C_N

    PET9_C_P

    PET9_C_N

    PET10_C_P

    PET10_C_N

    PET11_C_P

    PET11_C_N

    PET12_C_P

    PET12_C_N

    PET13_C_P

    PET13_C_N

    PET14_C_P

    PET14_C_N

    PET15_C_P

    PET15_C_N

    PER0_C_P

    PER0_C_N

    PER1_C_P

    PER1_C_N

    PER2_C_P

    PER2_C_N

    PER3_C_P

    PER3_C_N

    PER4_C_P

    PER4_C_N

    PER5_C_P

    PER5_C_N

    PER6_C_P

    PER6_C_N

    PER7_C_P

    PER7_C_N

    PER8_C_P

    PER8_C_N

    PER9_C_P

    PER9_C_N

    PER10_C_P

    PER10_C_N

    PER11_C_P

    PER11_C_N

    PER12_C_P

    PER12_C_N

    PER13_C_P

    PER13_C_N

    PER14_C_P

    PER14_C_N

    PER15_C_P

    PER15_C_N

    PER0_P

    PER0_N

    PER1_P

    PER1_N

    PER2_P

    PER2_N

    PER3_P

    PER3_N

    PER4_P

    PER4_N

    PER5_P

    PER5_N

    PER6_P

    PER6_N

    PER7_P

    PER7_N

    PER8_P

    PER8_N

    PER9_P

    PER9_N

    PER10_P

    PER10_N

    PER11_P

    PER11_N

    PER12_P

    PER12_N

    PER13_P

    PER13_N

    PER14_P

    PER14_N

    PER15_P

    PER15_N

    ALL_DONE_N

    RX_DET

    MODE

    MODE

    2x DS160PR810 (Downstream)

    2x DS160PR810 (Upstream)

    Figure 4-1. Top Level Schematic Page

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 13

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • GND

    1 2

    3 4

    5 6

    J1

    SCL

    SDA

    GND

    EEPROM_WP

    A01

    A12

    A23

    VSS4

    SDA5

    SCL6

    WP7

    VCC8

    U1

    AT24C02D-SSHM-TGND

    PRSNT1

    PRSNT1

    PRSNT1

    PRSNT1

    EEPROM_WP

    249R12

    PRSNT1

    PWDN

    SCL

    SDA

    1

    2 3

    U2A

    VCC14

    GND7

    U2E

    2 1

    D1

    10.0k

    R13

    4

    5 6

    U2B

    21

    D2

    10

    89

    U2C

    1112

    13 U2D

    0

    R2DNP

    0

    R1DNP

    2.2k

    R3

    2.2k

    R4

    330

    R14

    330

    R15

    330

    R16 2 1

    D3

    MODE

    3_3V_REG

    3_3V_REG

    GND

    GND

    GND

    GND

    PWDN

    GND

    GND

    READ_EN_N

    SMDAT

    SMCLK

    ALL_DONE_N

    PGOOD

    PRSNT1

    PRSNT2_1_C

    PRSNT2_1

    PRSNT2_2_C

    PRSNT2_2

    PRSNT2_3_C

    PRSNT2_3

    PRSNT2_4_C

    PRSNT2_4

    PWDN

    SDASCLSDASCL

    GND

    1 2

    3 4

    5 6

    7 8

    9 10

    J3

    SW1

    4.70k

    R11

    J6

    1

    2

    3

    J4

    1

    2

    3

    J7

    1

    2

    3

    J8

    1

    2

    3

    J9

    1

    2

    3

    J10

    GND

    3_3V_REG

    3_3V_REG

    3_3V_REG

    3_3V_REG

    3_3V_REG

    3_3V_REG

    3_3V_REG

    249R5

    3.24kR6

    14.7kR7

    GND

    1 2

    3 4

    5 6

    J2

    RX_DET249R8

    3.24kR9

    14.7kR10

    1

    2

    3

    J5

    1

    2

    J30

    DNP

    GND

    GND

    Sample_85_Ohm_P

    Sample_85_Ohm_N

    100

    R98DNP

    1

    2

    J31

    DNP

    1uF

    C1

    1uF

    C2

    Other

    Status LEDs

    EEPROM LoaderGlobal Controls

    Test Traces

    Figure 4-2. Control and Status Schematic Page

    Schematics www.ti.com

    14 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 100uF

    C3

    22uF

    C4

    22uF

    C5

    100k

    R19

    100k

    R23 PGOOD

    PGOODPGOOD

    VSENSE trace goes to furthest DS160PR810

    4.7uF

    C6

    4.7uF

    C8

    165k

    R17

    120k

    R18

    NU1

    NU2

    NU3

    EN_UVLO4

    BOOT5

    NC6

    NC7

    SW8

    SW9

    SW10

    SW11

    SW12

    PGND13

    PGND14

    PGND15

    PGND16

    PGND17

    PGND18

    PGND19

    PGND20

    PVIN21

    PVIN22

    PVIN23

    PVIN24

    PVIN25

    NC26

    NC27

    VDD28

    DRGND29

    AGND30

    BP31

    FSEL32

    VSEL33

    MODE34

    PGOOD35

    ILIM36

    RESV_TRK37

    RSN38

    RSP39

    VOSNS40

    PAD41

    TPS548B22RVFR

    U3

    100uF

    C11

    100uF

    C10

    10.0k

    R27

    5.76k

    R28

    100k

    R21

    105k

    R25

    165k

    R20

    37.4k

    R22

    42.2k

    R24

    2.05k

    R26

    6.8uH

    L1

    GND

    GND

    3_3V_REG

    12V

    3_3V_REG

    47uF

    C12

    3.3V, 2A MAX

    12V+/-20%, 0.5A MAX

    0.1uF

    C9

    10uF

    C13

    4.7uF

    C14

    1µF

    C15

    470nF

    C16

    100nF

    C17

    J12

    J11

    J13

    1uF

    C7

    GND

    Figure 4-3. Voltage Regulator Schematic Page

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 15

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 0.22uF

    C92

    0.22uF

    C91

    0.22uF

    C90

    0.22uF

    C89

    0.22uF

    C88

    0.22uF

    C87

    0.22uF

    C86

    0.22uF

    C85

    0.22uF

    C84

    0.22uF

    C83

    0.22uF

    C82

    0.22uF

    C81

    0.22uF

    C80

    0.22uF

    C79

    0.22uF

    C78

    0.22uF

    C77

    0.22uF

    C76

    0.22uF

    C75

    0.22uF

    C74

    0.22uF

    C69

    0.22uF

    C68

    0.22uF

    C67

    0.22uF

    C66

    0.22uF

    C65

    0.22uF

    C60

    0.22uF

    C59

    0.22uF

    C58

    0.22uF

    C57

    0.22uF

    C53

    0.22uF

    C52

    0.22uF

    C51

    0.22uF

    C50

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    PERST#

    REFCLK_P

    REFCLK_N

    PER0_C_P

    PER0_C_N

    RSVD1

    PER1_C_P

    PER2_C_P

    PER2_C_N

    PER3_C_P

    PER3_C_N

    RSVD3

    RSVD4

    PER4_C_P

    PER4_C_N

    PER5_C_P

    PER5_C_N

    PER6_C_P

    PER6_C_N

    PER7_C_P

    PER7_C_N

    RSVD5

    PER8_C_P

    PER8_C_N

    PER9_C_P

    PER9_C_N

    PER10_C_P

    PER10_C_N

    PER11_C_P

    PER11_C_N

    PER12_C_P

    PER12_C_N

    PER13_C_P

    PER13_C_N

    PER14_C_P

    PER14_C_N

    PER15_C_P

    PER15_C_N

    PER1_C_N

    PRSNT1

    12V

    3_3V

    SMCLK

    SMDAT

    JTAG1

    WAKE

    CLKREQ

    PET0_P

    PET0_N

    PRSNT2_1

    PET1_P

    PET1_N

    PET2_P

    PET2_N

    PET3_P

    PET3_N

    RSVD2

    PRSNT2_2

    PET4_P

    PET4_N

    PET5_P

    PET5_N

    PET6_P

    PET6_N

    PET7_P

    PET7_N

    PRSNT2_3

    PET8_P

    PET8_N

    PET9_P

    PET9_N

    PET10_P

    PET10_N

    PET11_P

    PET11_N

    PET12_P

    PET12_N

    PET13_P

    PET13_N

    PET14_P

    PET14_N

    PET15_P

    PET15_N

    PRSNT2_4

    RSVD

    12V

    GND 3_3V

    3_3VAUX

    1pFC61 43

    R90RSVD5

    1pFC62 43

    R91RSVD2

    1pFC63 43

    R92

    1pFC64 43

    R93RSVD4

    1pFC70 43

    R94RSVD

    1pFC71 43

    R95CLKREQ

    1pFC72 43

    R96PRSNT2_1

    1pFC73 43

    R97RSVD1

    1pFC54 43

    R87PRSNT2_2

    1pFC55 43

    R88PRSNT2_3

    1pFC56 43

    R89PRSNT2_4

    GND GNDGND

    CLKREQ

    PRSNT2_1

    PRSNT2_2

    PRSNT2_3

    PRSNT2_4

    RSVD1

    RSVD3

    RSVD4

    RSVD

    RSVD2

    RSVD5

    RSVD3

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    B1

    B2

    B3

    B4

    B5

    B6

    B7

    B8

    B9

    B10

    B11

    B12

    B13

    B14

    B15

    B16

    B17

    B18

    B19

    B20

    B21

    B22

    B23

    B24

    B25

    B26

    B27

    B28

    B29

    B30

    B31

    B32

    B33

    B34

    B35

    B36

    B37

    B38

    B39

    B40

    B41

    B42

    B43

    B44

    B45

    B46

    B47

    B48

    B49

    B50

    B51

    B52

    B53

    B54

    B55

    B56

    B57

    B58

    B59

    B60

    B61

    B62

    B63

    B64

    B65

    B66

    B67

    B68

    B69

    B70

    B71

    B72

    B73

    B74

    B75

    B76

    B77

    B78

    B79

    B80

    B81

    B82

    BOT

    TOP

    A1

    A2

    A3

    A4

    A5

    A6

    A7

    A8

    A9

    A10

    A11

    A12

    A13

    A14

    A15

    A16

    A17

    A18

    A19

    A20

    A21

    A22

    A23

    A24

    A25

    A26

    A27

    A28

    A29

    A30

    A31

    A32

    A33

    A34

    A35

    A36

    A37

    A38

    A39

    A40

    A41

    A42

    A43

    A44

    A45

    A46

    A47

    A48

    A49

    A50

    A51

    A52

    A53

    A54

    A55

    A56

    A57

    A58

    A59

    A60

    A61

    A62

    A63

    A64

    A65

    A66

    A67

    A68

    A69

    A70

    A71

    A72

    A73

    A74

    A75

    A76

    A77

    A78

    A79

    A80

    A81

    A82

    CONN1

    Figure 4-4. Gold Finger Connector Schematic Page

    Schematics www.ti.com

    16 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • MODE

    SCL

    SDA

    PWDN

    READ_EN_N

    SCL

    SDA

    READ_EN_N

    PWDN

    MODE

    GND

    VREG1_DS1

    VREG2_DS1

    VREG1_DS2

    VREG2_DS2

    1 2

    3 4

    5 6

    7 8

    9 10

    11 12

    13 14

    15

    17

    19

    21

    23

    16

    18

    20

    22

    24

    J15

    13.0kR34

    13.0kR37

    13.0kR40

    13.0kR43

    59.0kR35

    59.0kR38

    59.0kR41

    59.0kR44GND

    EQ1_0_AD1_DS1

    EQ1_1_DS1

    EQ1_0_AD1_DS2

    EQ1_1_DS2

    1 2

    3 4

    5 6

    7 8

    9 10

    11 12

    13 14

    15

    17

    19

    21

    23

    16

    18

    20

    22

    24

    J16

    13.0kR46

    13.0kR49

    13.0kR52

    13.0kR55

    59.0kR47

    59.0kR50

    59.0kR53

    59.0kR56GND

    EQ0_0_AD0_DS1

    EQ0_1_DS1

    EQ0_0_AD0_DS2

    EQ0_1_DS2

    GND

    GAIN_DS 249R29

    3.24kR30

    14.7kR31

    GND

    GND

    ALL_DONE_N_DSALL_DONE_N_DS

    0.1uF

    C18

    0.1uF

    C26

    0.1uF

    C22

    0.1uF

    C23

    0.1uF

    C27

    0.1uF

    C30

    0.1uF

    C32

    0.1uF

    C19

    0.1uF

    C20

    0.1uF

    C28

    0.1uF

    C29

    0.1uF

    C31

    0.1uF

    C33

    0.1uF

    C24

    0.1uF

    C21

    0.1uF

    C25

    1.00kR33

    1.00kR36

    1.00kR39

    1.00kR42

    1.00kR54

    1.00kR51

    1.00kR48

    1.00kR45

    VCC6

    VCC18

    VCC38

    VCC50

    RX0N2

    RX0P1

    RX1N5

    RX1P4

    RX2N8

    RX2P7

    RX3N11

    RX3P10

    RX4N14

    RX4P13

    RX5N17

    RX5P16

    RX6N20

    RX6P19

    RX7N23

    RX7P22

    RX_DET/SCL62

    VREG3

    VREG15

    VREG35

    VREG47

    PD025

    PD126

    EQ0_0/ADDR059

    EQ0_127

    EQ1_0/ADDR160

    EQ1_129

    GAIN0/SDA63

    GAIN128

    READ_EN57

    ALL_DONE31

    MODE61

    RSVD058

    RSVD130

    TX0N54

    TX0P55

    TX1N51

    TX1P52

    TX2N48

    TX2P49

    TX3N45

    TX3P46

    TX4N42

    TX4P43

    TX5N39

    TX5P40

    TX6N36

    TX6P37

    TX7N33

    TX7P34

    GND9

    GND12

    GND21

    GND24

    GND32

    GND41

    GND44

    GND53

    GND56

    GND64

    GND65

    DS160PR810NJX

    DS1

    GND

    3_3V_REG

    VREG1_DS1

    VREG2_DS1

    VREG3_DS1

    VREG4_DS1

    PET0_P

    PET0_N

    PET1_P

    PET1_N

    PET2_P

    PET2_N

    PET3_P

    PET3_N

    PET4_P

    PET4_N

    PET5_P

    PET5_N

    PET6_P

    PET6_N

    PET7_P

    PET7_N

    PET0_C_P

    PET0_C_N

    PET1_C_P

    PET1_C_N

    PET2_C_P

    PET2_C_N

    PET3_C_P

    PET3_C_N

    PET4_C_P

    PET4_C_N

    PET5_C_P

    PET5_C_N

    PET6_C_P

    PET6_C_N

    PET7_C_P

    PET7_C_N

    3_3V_REG

    MODE

    GAIN_DS

    PWDN

    PWDN

    READ_EN_N

    3_3V_REG

    4.70k

    R32

    ALL_DONE_N_DS1

    GAIN0_SDA_DS1

    RX_DET_SCL_DS1

    GAIN0_SDA_DS1

    GAIN_DS

    SDA

    RX_DET_SCL_DS1

    RX_DET

    SCL

    EQ1_0_AD1_DS1

    EQ0_0_AD0_DS1

    EQ1_1_DS1

    EQ0_1_DS1

    VCC6

    VCC18

    VCC38

    VCC50

    RX0N2

    RX0P1

    RX1N5

    RX1P4

    RX2N8

    RX2P7

    RX3N11

    RX3P10

    RX4N14

    RX4P13

    RX5N17

    RX5P16

    RX6N20

    RX6P19

    RX7N23

    RX7P22

    RX_DET/SCL62

    VREG3

    VREG15

    VREG35

    VREG47

    PD025

    PD126

    EQ0_0/ADDR059

    EQ0_127

    EQ1_0/ADDR160

    EQ1_129

    GAIN0/SDA63

    GAIN128

    READ_EN57

    ALL_DONE31

    MODE61

    RSVD058

    RSVD130

    TX0N54

    TX0P55

    TX1N51

    TX1P52

    TX2N48

    TX2P49

    TX3N45

    TX3P46

    TX4N42

    TX4P43

    TX5N39

    TX5P40

    TX6N36

    TX6P37

    TX7N33

    TX7P34

    GND9

    GND12

    GND21

    GND24

    GND32

    GND41

    GND44

    GND53

    GND56

    GND64

    GND65

    DS160PR810NJX

    DS2

    GND

    3_3V_REG

    VREG1_DS2

    VREG2_DS2

    VREG3_DS2

    VREG4_DS2

    PET8_P

    PET8_N

    PET9_P

    PET9_N

    PET10_P

    PET10_N

    PET11_P

    PET11_N

    PET12_P

    PET12_N

    PET13_P

    PET13_N

    PET14_P

    PET14_N

    PET15_P

    PET15_N

    PET8_C_P

    PET8_C_N

    PET9_C_P

    PET9_C_N

    PET10_C_P

    PET10_C_N

    PET11_C_P

    PET11_C_N

    PET12_C_P

    PET12_C_N

    PET13_C_P

    PET13_C_N

    PET14_C_P

    PET14_C_N

    PET15_C_P

    PET15_C_N

    MODE

    GAIN_DS

    PWDN

    PWDN

    ALL_DONE_N_DS1

    3_3V_REG

    4.70k

    R57

    ALL_DONE_N_DS

    GAIN0_SDA_DS2

    RX_DET_SCL_DS2

    EQ1_0_AD1_DS2

    EQ0_0_AD0_DS2

    EQ1_1_DS2

    EQ0_1_DS2

    GAIN0_SDA_DS2

    GAIN_DS

    SDA

    RX_DET_SCL_DS2

    RX_DET

    SCL

    RX_DETRX_DET

    1 2

    3 4

    5 6

    J14

    1

    2

    3

    J17

    1

    2

    3

    J18

    1

    2

    3

    J19

    1

    2

    3

    J20

    J28

    DNP

    3_3V_REG

    Provision for the pin compatible DS160PR822.

    SEL_DS

    SEL_DS

    SEL_DS

    SEL_DS

    SEL_DS

    VREG3_DS1

    VREG4_DS1

    VREG3_DS2

    VREG4_DS2

    1uF

    C125

    1uF

    C126

    Device Power Decoupling

    PLACE CLOSE TO PIN

    Global I/Os

    Downstream pin-mode settings

    Device-Specific Settings

    Figure 4-5. Downstream Devices Schematic Page

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 17

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • GND

    MODE

    SCL

    SDA

    PWDN

    ALL_DONE_N_DS

    SCL

    SDA

    PWDN

    MODE

    GND

    VREG1_US1

    VREG2_US1

    VREG1_US2

    VREG2_US2

    1 2

    3 4

    5 6

    7 8

    9 10

    11 12

    13 14

    15

    17

    19

    21

    23

    16

    18

    20

    22

    24

    J22

    13.0kR63

    13.0kR66

    13.0kR69

    13.0kR72

    59.0kR64

    59.0kR67

    59.0kR70

    59.0kR73GND

    EQ1_0_AD1_US1

    EQ1_1_US1

    EQ1_0_AD1_US2

    EQ1_1_US2

    1 2

    3 4

    5 6

    7 8

    9 10

    11 12

    13 14

    15

    17

    19

    21

    23

    16

    18

    20

    22

    24

    J23

    13.0kR75

    13.0kR78

    13.0kR81

    13.0kR84

    59.0kR76

    59.0kR79

    59.0kR82

    59.0kR85GND

    EQ0_0_AD0_US1

    EQ0_1_US1

    EQ0_0_AD0_US2

    EQ0_1_US2

    ALL_DONE_N_DS

    ALL_DONE_NALL_DONE_N

    0.1uF

    C34

    0.1uF

    C35

    0.1uF

    C36

    0.1uF

    C37

    0.1uF

    C38

    0.1uF

    C39

    0.1uF

    C40

    0.1uF

    C41

    0.1uF

    C42

    0.1uFC43

    0.1uF

    C44

    0.1uF

    C45

    0.1uF

    C46

    0.1uF

    C47

    0.1uF

    C48

    0.1uF

    C49

    1.00kR83

    1.00kR80

    1.00kR77

    1.00kR74

    1.00kR62

    1.00kR65

    1.00kR68

    1.00kR71

    VCC6

    VCC18

    VCC38

    VCC50

    RX0N2

    RX0P1

    RX1N5

    RX1P4

    RX2N8

    RX2P7

    RX3N11

    RX3P10

    RX4N14

    RX4P13

    RX5N17

    RX5P16

    RX6N20

    RX6P19

    RX7N23

    RX7P22

    RX_DET/SCL62

    VREG3

    VREG15

    VREG35

    VREG47

    PD025

    PD126

    EQ0_0/ADDR059

    EQ0_127

    EQ1_0/ADDR160

    EQ1_129

    GAIN0/SDA63

    GAIN128

    READ_EN57

    ALL_DONE31

    MODE61

    RSVD058

    RSVD130

    TX0N54

    TX0P55

    TX1N51

    TX1P52

    TX2N48

    TX2P49

    TX3N45

    TX3P46

    TX4N42

    TX4P43

    TX5N39

    TX5P40

    TX6N36

    TX6P37

    TX7N33

    TX7P34

    GND9

    GND12

    GND21

    GND24

    GND32

    GND41

    GND44

    GND53

    GND56

    GND64

    GND65

    DS160PR810NJX

    US1

    GND

    3_3V_REG

    VREG1_US1

    VREG2_US1

    VREG3_US1

    VREG4_US1

    PER0_P

    PER0_N

    PER1_P

    PER1_N

    PER2_P

    PER2_N

    PER3_P

    PER3_N

    PER4_P

    PER4_N

    PER5_P

    PER5_N

    PER6_P

    PER6_N

    PER7_P

    PER7_N

    PER0_C_P

    PER0_C_N

    PER1_C_P

    PER1_C_N

    PER2_C_P

    PER2_C_N

    PER3_C_P

    PER3_C_N

    PER4_C_P

    PER4_C_N

    PER5_C_P

    PER5_C_N

    PER6_C_P

    PER6_C_N

    PER7_C_P

    PER7_C_N

    MODE

    GAIN_US

    PWDN

    PWDN

    3_3V_REG

    4.70k

    R61

    ALL_DONE_N_US1

    GAIN0_SDA_US1

    RX_DET_SCL_US1

    EQ1_0_AD1_US1

    EQ0_0_AD0_US1

    EQ1_1_US1

    EQ0_1_US1

    ALL_DONE_N_DS

    3_3V_REG

    VCC6

    VCC18

    VCC38

    VCC50

    RX0N2

    RX0P1

    RX1N5

    RX1P4

    RX2N8

    RX2P7

    RX3N11

    RX3P10

    RX4N14

    RX4P13

    RX5N17

    RX5P16

    RX6N20

    RX6P19

    RX7N23

    RX7P22

    RX_DET/SCL62

    VREG3

    VREG15

    VREG35

    VREG47

    PD025

    PD126

    EQ0_0/ADDR059

    EQ0_127

    EQ1_0/ADDR160

    EQ1_129

    GAIN0/SDA63

    GAIN128

    READ_EN57

    ALL_DONE31

    MODE61

    RSVD058

    RSVD130

    TX0N54

    TX0P55

    TX1N51

    TX1P52

    TX2N48

    TX2P49

    TX3N45

    TX3P46

    TX4N42

    TX4P43

    TX5N39

    TX5P40

    TX6N36

    TX6P37

    TX7N33

    TX7P34

    GND9

    GND12

    GND21

    GND24

    GND32

    GND41

    GND44

    GND53

    GND56

    GND64

    GND65

    DS160PR810NJX

    US2

    GND

    3_3V_REG

    VREG1_US2

    VREG2_US2

    VREG3_US2

    VREG4_US2

    PER8_P

    PER8_N

    PER9_P

    PER9_N

    PER10_P

    PER10_N

    PER11_P

    PER11_N

    PER12_P

    PER12_N

    PER13_P

    PER13_N

    PER14_P

    PER14_N

    PER15_P

    PER15_N

    PER8_C_P

    PER8_C_N

    PER9_C_P

    PER9_C_N

    PER10_C_P

    PER10_C_N

    PER11_C_P

    PER11_C_N

    PER12_C_P

    PER12_C_N

    PER13_C_P

    PER13_C_N

    PER14_C_P

    PER14_C_N

    PER15_C_P

    PER15_C_N

    MODE

    GAIN_US

    PWDN

    PWDN

    ALL_DONE_N_US1

    3_3V_REG

    4.70k

    R86

    ALL_DONE_N

    GAIN0_SDA_US2

    RX_DET_SCL_US2

    EQ1_0_AD1_US2

    EQ0_0_AD0_US2

    EQ1_1_US2

    EQ0_1_US2

    GND

    GAIN_US 249R58

    3.24kR59

    14.7kR60

    GAIN0_SDA_US1

    GAIN_US

    SDA

    RX_DET_SCL_US1

    RX_DET

    SCL

    GAIN0_SDA_US2

    GAIN_US

    SDA

    RX_DET_SCL_US2

    RX_DET

    SCL

    RX_DETRX_DET

    1 2

    3 4

    5 6

    J21

    1

    2

    3

    J24

    1

    2

    3

    J25

    1

    2

    3

    J26

    1

    2

    3

    J27

    J29

    DNP3_3V_REG

    Provision for the pin compatible DS160PR822.

    SEL_US

    SEL_US

    SEL_US

    SEL_US

    SEL_US

    VREG3_US1

    VREG4_US1

    VREG3_US2

    VREG4_US2

    1uF

    C127

    1uF

    C128

    Upstream pin-mode settings

    Device-Specific Settings Device Power

    PLACE CLOSE TO PIN

    Global I/Os

    Figure 4-6. Upstream Devices Schematic Page

    Schematics www.ti.com

    18 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 0.22uF

    C93

    0.22uF

    C94

    0.22uF

    C95

    0.22uF

    C96

    0.22uF

    C97

    0.22uF

    C98

    0.22uF

    C99

    0.22uF

    C100

    0.22uF

    C101

    0.22uF

    C102

    0.22uF

    C103

    0.22uF

    C104

    0.22uF

    C105

    0.22uF

    C106

    0.22uF

    C107

    0.22uF

    C108

    0.22uF

    C109

    0.22uF

    C110

    0.22uF

    C111

    0.22uF

    C112

    0.22uF

    C113

    0.22uF

    C114

    0.22uF

    C115

    0.22uF

    C116

    0.22uF

    C117

    0.22uF

    C118

    0.22uF

    C119

    0.22uF

    C120

    0.22uF

    C121

    0.22uF

    C122

    0.22uF

    C123

    0.22uF

    C124

    PRSNT1

    JTAG2

    JTAG3

    JTAG4

    JTAG5

    PERST#

    REFCLK_P

    REFCLK_N

    PER0_P

    PER0_N

    RSVD1

    PER1_P

    PER1_N

    PER2_P

    PER2_N

    PER3_P

    PER3_N

    RSVD3

    RSVD4

    PER4_P

    PER4_N

    PER5_P

    PER5_N

    PER6_P

    PER6_N

    PER7_P

    PER7_N

    PER8_P

    PER8_N

    PER9_P

    PER9_N

    PER10_P

    PER10_N

    PER11_P

    PER11_N

    PER12_P

    PER12_N

    PER13_P

    PER13_N

    PER14_P

    PER14_N

    PER15_P

    PER15_N

    SMCLK

    SMDAT

    JTAG1

    WAKE

    CLKREQ

    PET0_C_P

    PET0_C_N

    PRSNT2_1_C

    PET1_C_P

    PET1_C_N

    PET2_C_P

    PET2_C_N

    PET3_C_P

    PET3_C_N

    RSVD2

    PRSNT2_2_C

    PET4_C_P

    PET4_C_N

    PET5_C_P

    PET5_C_N

    PET6_C_P

    PET6_C_N

    PET7_C_P

    PET7_C_N

    PRSNT2_3_C

    PET8_C_P

    PET8_C_N

    PET9_C_P

    PET9_C_N

    PET10_C_P

    PET10_C_N

    PET11_C_P

    PET11_C_N

    PET12_C_P

    PET12_C_N

    PET13_C_P

    PET13_C_N

    PET14_C_P

    PET14_C_N

    PET15_C_P

    PET15_C_N

    PRSNT2_4_C

    RSVD

    RSVD5

    12V

    3_3V

    12V

    3_3V

    3_3VAUX

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    GND

    A1

    A2

    A3

    A4

    A5

    A6

    A7

    A8

    A9

    A10

    A11

    B1

    B2

    B3

    B4

    B5

    B6

    B7

    B8

    B9

    B10

    B11

    A12

    A13

    A14

    A15

    A16

    A17

    A18

    A19

    A20

    A21

    A22

    A23

    A24

    A25

    A26

    A27

    A28

    A29

    A30

    A31

    A32

    A33

    A34

    A35

    A36

    A37

    A38

    A39

    A40

    A41

    A42

    A43

    A44

    A45

    A46

    A47

    A48

    A49

    A50

    A51

    A52

    A53

    A54

    A55

    A56

    A57

    A58

    A59

    A60

    A61

    A62

    A63

    A64

    A65

    A66

    A67

    A68

    A69

    A70

    A71

    A72

    A73

    A74

    A75

    A76

    A77

    A78

    A79

    A80

    A81

    A82

    B12

    B13

    B14

    B15

    B16

    B17

    B18

    B51

    B52

    B53

    B54

    B55

    B56

    B57

    B58

    B59

    B60

    B61

    B62

    B63

    B64

    B65

    B66

    B67

    B68

    B69

    B70

    B71

    B72

    B73

    B74

    B75

    B76

    B77

    B78

    B79

    B80

    B81

    B82

    B19

    B20

    B21

    B22

    B23

    B24

    B25

    B26

    B27

    B28

    B29

    B30

    B31

    B32

    B33

    B34

    B35

    B36

    B37

    B38

    B39

    B40

    B41

    B42

    B43

    B44

    B45

    B46

    B47

    B48

    B49

    B50

    BOT

    TOP

    CONN2

    GND

    Figure 4-7. Straddle Connector Schematic Page

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 19

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • LOGOPCB

    Texas Instruments

    FID3

    DNP

    HSDC081

    A

    PCB Number:

    PCB Rev:

    Label Assembly Note

    ZZ1

    This Assembly Note is for PCB labels only

    Size: 0.65" x 0.20 "

    PCB Label

    LBL1

    THT-14-423-10

    Assembly Note

    ZZ2

    These assemblies are ESD sensitive, ESD precautions shall be observed.

    Assembly Note

    ZZ3

    These assemblies must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable.

    Assembly Note

    ZZ4

    These assemblies must comply with workmanship standards IPC-A-610 Class 2, unless otherwise specified.

    Variant/Label Table

    Variant Label Text

    001 DS160PR810EVM-RSC

    LOGOPCB

    FCC disclaimer

    LOGOPCB

    WEEE logo

    SH-J8

    SH-J1

    SH-J6

    SH-J4

    SH-J2

    SH-J5

    SH-J7

    SH-J3

    SH-J14

    SH-J9

    SH-J15

    SH-J10

    SH-J16

    SH-J11

    SH-J12

    SH-J13

    Assembly Note

    ZZ5

    Refer to the test procedure for the correct placement of shunts per Variant.

    MP1

    9B90-0000A

    H1

    PMSSS 440 0025 PH

    H2

    PMSSS 440 0025 PH

    CE Mark

    FID5

    DNP

    SH-J18

    SH-J19

    SH-J20

    SH-J17

    SH-J24

    SH-J25

    SH-J26

    SH-J21

    SH-J22

    SH-J23

    SH-J28

    SH-J29

    SH-J30

    SH-J27

    SH-J31

    FID1

    DNP

    FID2

    DNP

    FID4

    DNP

    FID6

    DNP

    Figure 4-8. Hardware Page

    Schematics www.ti.com

    20 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 5 Board LayoutFigure 5-1 and Figure 5-2 illustrate the EVM board layouts.

    Figure 5-1. Top Layer

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 21

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • Figure 5-2. Bottom Layer

    Schematics www.ti.com

    22 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 6 Bill of MaterialsTable 6-1 lists the EVM bill of materials.

    Table 6-1. Bill of MaterialsDESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

    !PCB1 1 Printed Circuit Board HSDC081 Any

    C1, C2, C7, C125, C126,C127, C128

    7 1uF CAP, CERM, 1 uF, 25 V, ±10%, X5R,0402

    0402 C1005X5R1E105K050BC TDK

    C3 1 100uF CAP, TA, 100 uF, 25 V, ±10%, 0.1 ohm,SMD

    7360-38 T495E107K025ATE100 Kemet

    C4, C5 2 22uF CAP, CERM, 22 uF, 25 V, ±20%, X5R,1206_190

    1206_190 TMK316BBJ226ML-T Taiyo Yuden

    C6, C8 2 4.7uF CAP, CERM, 4.7 uF, 25 V, ±10%, X6S,0603

    0603 GRM188C81E475KE11D MuRata

    C9 1 0.1uF CAP, CERM, 0.1 uF, 35 V, ±10%, X5R,0402

    0402 GMK105BJ104KV-F Taiyo Yuden

    C10, C11 2 100uF CAP, CERM, 100 uF, 6.3 V, ±20%, X5R,0805

    0805 GRM21BR60J107M MuRata

    C12 1 47uF CAP, CERM, 47 uF, 6.3 V, ±20%, X5R,0805

    0805 GRM219R60J476ME44D MuRata

    C13 1 10uF CAP, CERM, 10 uF, 6.3 V, ±10%, X5R,0805

    0805 C0805C106K9PAC Kemet

    C14 1 4.7uF CAP, CERM, 4.7 uF, 6.3 V, ±10%, X5R,0603

    0603 C0603C475K9PACTU Kemet

    C15 1 1uF CAP, CERM, 1 uF, 25 V, ±10%, X7R,0603

    0603 C0603C105K3RACTU Kemet

    C16 1 0.47uF CAP, CERM, 0.47 uF, 6.3 V, ±10%,X7R, 0603

    0603 C0603C474K9RACTU Kemet

    C17 1 0.1uF CAP, CERM, 0.1 uF, 10 V, ±10%, X7R,0603

    0603 C0603C104K8RACTU Kemet

    C18, C19, C20, C21, C22,C23, C24, C25, C26, C27,C28, C29, C30, C31, C32,C33, C34, C35, C36, C37,C38, C39, C40, C41, C42,C43, C44, C45, C46, C47,C48, C49

    32 0.1uF CAP, CERM, 0.1 uF, 6.3 V, ±10%, X5R,0201

    0201 GRM033R60J104KE84D MuRata

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 23

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • Table 6-1. Bill of Materials (continued)DESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

    C50, C51, C52, C53, C57,C58, C59, C60, C65, C66,C67, C68, C69, C74, C75,C76, C77, C78, C79, C80,C81, C82, C83, C84, C85,C86, C87, C88, C89, C90,C91, C92, C93, C94, C95,C96, C97, C98, C99, C100,C101, C102, C103, C104,C105, C106, C107, C108,C109, C110, C111, C112,C113, C114, C115, C116,C117, C118, C119, C120,C121, C122, C123, C124

    64 0.22uF CAP, CERM, 0.22 uF, 10 V, ±20%, X5R,0201

    0201 LMK063BJ224MP-F Taiyo Yuden

    C54, C55, C56, C61, C62,C63, C64, C70, C71, C72,C73

    11 1pF CAP, CERM, 1 pF, 50 V, ±10%, C0G/NP0, 0402

    0402 GJM1555C1H1R0BB01D MuRata

    CONN2 1 Receptacle, 1mm, 82x2, Gold, SMT Receptacle, 1mm, 82x2,SMT

    GWE82DHRN-T9410 Sullins ConnectorSolutions

    D1, D2, D3 3 Green LED, Green, SMD 2x1.4mm LG M67K-G1J2-24-Z OSRAM

    DS1, DS2, US1, US2 4 Octal-Channel PCI Express 4.0 LinearRedriver

    WQFN64 DS160PR810NJX Texas Instruments

    H1, H2 2 MACHINE SCREW PAN PHILLIPS 4-40 Machine Screw, 4-40, 1/4inch

    PMSSS 440 0025 PH B and F FastenerSupply

    J1, J2, J14, J21 4 Header, 100mil, 3x2, Gold, TH 3x2 Header TSW-103-07-G-D Samtec

    J3 1 Header, 100mil, 5x2, Gold, TH 5x2 Header TSW-105-07-G-D Samtec

    J4, J5, J7, J8, J9, J10, J17,J18, J19, J20, J24, J25,J26, J27

    14 Header, 100mil, 3x1, Gold, TH 3x1 Header TSW-103-07-G-S Samtec

    J6, J11, J12, J13 4 Header, 100mil, 2x1, Gold, TH Header, 2x1, 100mil 5-146261-1 TE Connectivity

    J15, J16, J22, J23 4 Header, 100mil, 12x2, Gold, TH 12x2 Header TSW-112-07-G-D Samtec

    L1 1 6.8uH Inductor, Drum Core, Ferrite, 6.8 uH, 3.2A, 0.04 ohm, SMD

    SDR0805 SDR0805-6R8ML Bourns

    LBL1 1 Thermal Transfer Printable Labels,0.650" W x 0.200" H - 10,000 per roll

    PCB Label 0.650 x 0.200inch

    THT-14-423-10 Brady

    MP1 1 PCI bracket PCI_BRCKT_NPTH_2 9B90-0000A Gompf Brackets, Inc.

    R3, R4 2 2.2k RES, 2.2 k, 5%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW04022K20JNED Vishay-Dale

    R5, R8, R12, R29, R58 5 249 RES, 249, 1%, 0.1 W, AEC-Q200 Grade0, 0402

    0402 ERJ-2RKF2490X Panasonic

    R6, R9, R30, R59 4 3.24k RES, 3.24 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW04023K24FKED Vishay-Dale

    Schematics www.ti.com

    24 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • Table 6-1. Bill of Materials (continued)DESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

    R7, R10, R31, R60 4 14.7k RES, 14.7 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040214K7FKED Vishay-Dale

    R11, R32, R57, R61, R86 5 4.70k RES, 4.70 k, 1%, 0.063 W, 0402 0402 CRG0402F4K7 TE Connectivity

    R13 1 10.0k RES, 10.0 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 AC0402FR-0710KL Yageo America

    R14, R15, R16 3 330 RES, 330, 5%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW0402330RJNED Vishay-Dale

    R17 1 165k RES, 165 k, 1%, 0.1 W, 0603 0603 RC0603FR-07165KL Yageo

    R18 1 120k RES, 120 k, 1%, 0.1 W, 0603 0603 RC0603FR-07120KL Yageo

    R19, R21, R23 3 100k RES, 100 k, 1%, 0.0625 W, 0402 0402 RC0402FR-07100KL Yageo America

    R20 1 165k RES, 165 k, 1%, 0.1 W, AEC-Q200Grade 0, 0402

    0402 ERJ-2RKF1653X Panasonic

    R22 1 37.4k RES, 37.4 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040237K4FKED Vishay-Dale

    R24 1 42.2k RES, 42.2 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040242K2FKED Vishay-Dale

    R25 1 105k RES, 105 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW0402105KFKED Vishay-Dale

    R26 1 2.05k RES, 2.05 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW04022K05FKED Vishay-Dale

    R27 1 10.0k RES, 10.0 k, 1%, 0.063 W, 0402 0402 RC0402FR-0710KL Yageo America

    R28 1 5.76k RES, 5.76 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW04025K76FKED Vishay-Dale

    R33, R36, R39, R42, R45,R48, R51, R54, R62, R65,R68, R71, R74, R77, R80,R83

    16 1.00k RES, 1.00 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW04021K00FKED Vishay-Dale

    R34, R37, R40, R43, R46,R49, R52, R55, R63, R66,R69, R72, R75, R78, R81,R84

    16 13.0k RES, 13.0 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040213K0FKED Vishay-Dale

    R35, R38, R41, R44, R47,R50, R53, R56, R64, R67,R70, R73, R76, R79, R82,R85

    16 59.0k RES, 59.0 k, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040259K0FKED Vishay-Dale

    R87, R88, R89, R90, R91,R92, R93, R94, R95, R96,R97

    11 43 RES, 43, 5%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW040243R0JNED Vishay-Dale

    www.ti.com Schematics

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 25

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • Table 6-1. Bill of Materials (continued)DESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER

    SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, SH-J6, SH-J7,SH-J8, SH-J9, SH-J10, SH-J11, SH-J12, SH-J13, SH-J14, SH-J15, SH-J16, SH-J17, SH-J18, SH-J19, SH-J20, SH-J21, SH-J22, SH-J23, SH-J24, SH-J25, SH-J26, SH-J27, SH-J28, SH-J29, SH-J30, SH-J31

    31 1x2 Shunt, 100mil, Flash Gold, Black Closed Top 100mil Shunt SPC02SYAN Sullins ConnectorSolutions

    SW1 1 Switch, Tactile, SPST-NO, 0.05A, 12V,TH

    SW, SPST 3.5x5 mm PTS635SL50LFS C and KComponents

    U1 1 I2C-Compatible (2-wire) SerialEEPROM 2-Kbit (256 x 8), SOIC-8

    SOIC-8 AT24C02D-SSHM-T Atmel

    U2 1 Quadruple Bus Buffer Gate With 3-StateOutputs, PW0014A, LARGE T and R

    PW0014A SN74LVC125APWRG3 Texas Instruments

    U3 1 1.5-V to 16-V VIN, 4.5-V to 22-V VDD,25-A SWIFT Synchronous Step-DownConverter with Full Differential Sense,RVF0040A (LQFN-CLIP-40)

    RVF0040A TPS548B22RVFR Texas Instruments

    FID1, FID2, FID3, FID4,FID5, FID6

    0 Fiducial mark. There is nothing to buy ormount.

    N/A N/A N/A

    J28, J29 0 Header, 100mil, 2x1, Gold, TH Header, 2x1, 100mil 5-146261-1 TE Connectivity

    J30, J31 0 Plug, 50 Ohm, Straight, SMT SMA Plug, Straight, SMT 0853050232 Molex

    R1, R2 0 0 RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0,0402

    0402 ERJ-2GE0R00X Panasonic

    R98 0 100 RES, 100, 1%, 0.063 W, AEC-Q200Grade 0, 0402

    0402 CRCW0402100RFKED Vishay-Dale

    Schematics www.ti.com

    26 DS160PR810EVM-RSC Evaluation Module (EVM) SNLU273 – DECEMBER 2020Submit Document Feedback

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • 7 ReferencesFor references, see the following:

    1. Texas Instruments, DS160PR810 Octal-Channel PCI-Express 4.0 Linear Redriver Data Sheet2. Texas Instruments, DS160PR810 Programming Guide3. Texas Instruments, Understanding EEPROM Programming for DS160PR810 PCI-Express 4.0 Linear

    Redriver4. Texas Instruments, CEM2SLIMSAS-EVM Evaluation Module (EVM) User's Guide

    www.ti.com References

    SNLU273 – DECEMBER 2020Submit Document Feedback

    DS160PR810EVM-RSC Evaluation Module (EVM) 27

    Copyright © 2020 Texas Instruments Incorporated

    https://www.ti.com/lit/pdf/SNLS658https://www.ti.com/lit/pdf/SNLU272https://www.ti.comhttps://www.ti.com/feedbackform/techdocfeedback?litnum=SNLU273&partnum=DS160PR810,

  • STANDARD TERMS FOR EVALUATION MODULES1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or

    documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordancewith the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility

    evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are notfinished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. Forclarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditionsset forth herein but rather shall be subject to the applicable terms that accompany such Software

    1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned,or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or productionsystem.

    2 Limited Warranty and Related Remedies/Disclaimers:2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License

    Agreement.2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM

    to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused byneglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that havebeen altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specificationsor instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality controltechniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM.User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10)business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.

    2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or creditUser's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warrantyperiod to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair orreplace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall bewarranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) daywarranty period.

    WARNINGEvaluation Kits are intended solely for use by technically qualified,professional electronics experts who are familiar with the dangers

    and application risks associated with handling electrical mechanicalcomponents, systems, and subsystems.

    User shall operate the Evaluation Kit within TI’s recommendedguidelines and any applicable legal or environmental requirementsas well as reasonable and customary safeguards. Failure to set up

    and/or operate the Evaluation Kit within TI’s recommendedguidelines may result in personal injury or death or propertydamage. Proper set up entails following TI’s instructions for

    electrical ratings of interface circuits such as input, output andelectrical loads.

    NOTE:EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATIONKIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

  • www.ti.com

    2

    3 Regulatory Notices:3.1 United States

    3.1.1 Notice applicable to EVMs not FCC-Approved:FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or softwareassociated with the kit to determine whether to incorporate such items in a finished product and software developers to writesoftware applications for use with the end product. This kit is not a finished product and when assembled may not be resold orotherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the conditionthat this product not cause harmful interference to licensed radio stations and that this product accept harmful interference.Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit mustoperate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

    CAUTIONThis device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may notcause harmful interference, and (2) this device must accept any interference received, including interference that may causeundesired operation.Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority tooperate the equipment.

    FCC Interference Statement for Class A EVM devicesNOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 ofthe FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment isoperated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if notinstalled and used in accordance with the instruction manual, may cause harmful interference to radio communications.Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required tocorrect the interference at his own expense.

    FCC Interference Statement for Class B EVM devicesNOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 ofthe FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residentialinstallation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordancewith the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interferencewill not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, whichcan be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or moreof the following measures:

    • Reorient or relocate the receiving antenna.• Increase the separation between the equipment and receiver.• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.• Consult the dealer or an experienced radio/TV technician for help.

    3.2 Canada3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

    Concerning EVMs Including Radio Transmitters:This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:(1) this device may not cause interference, and (2) this device must accept any interference, including interference that maycause undesired operation of the device.

    Concernant les EVMs avec appareils radio:Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitationest autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doitaccepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

    Concerning EVMs Including Detachable Antennas:Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser)gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna typeand its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary forsuccessful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna typeslisted in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated.Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibitedfor use with this device.

    http://www.ti.com

  • www.ti.com

    3

    Concernant les EVMs avec antennes détachablesConformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type etd'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillageradioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotroperayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Leprésent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans lemanuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antennenon inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation del'émetteur

    3.3 Japan3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に

    輸入される評価用キット、ボードについては、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page

    3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certifiedby TI as conforming to Technical Regulations of Radio Law of Japan.

    If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow theinstructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs(which for the avoidance of doubt are stated strictly for convenience and should be verified by User):1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal

    Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule forEnforcement of Radio Law of Japan,

    2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect toEVMs, or

    3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japanwith respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please notethat if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

    【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用

    いただく。2. 実験局の免許を取得後ご使用いただく。3. 技術基準適合証明を取得後ご使用いただく。

    なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

    ンスツルメンツ株式会社東京都新宿区西新宿6丁目24番1号西新宿三井ビル

    3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

    3.4 European Union3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

    This is a class A product intended for use in environments other than domestic environments that are connected to alow-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment thisproduct may cause radio interference in which case the user may be required to take adequate measures.

    http://www.ti.comhttp://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.pagehttp://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.pagehttp://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.pagehttp://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.pagehttp://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page

  • www.ti.com

    4

    4 EVM Use Restrictions and Warnings:4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT

    LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling

    or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety informationrelated to, for example, temperatures and voltages.

    4.3 Safety-Related Warnings and Restrictions:4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user

    guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable andcustomary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to inputand output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, orproperty damage. If there are questions concerning performance ratings and specifications, User should contact a TIfield representative prior to connecting interface electronics including input power and intended loads. Any loads appliedoutside of the specified output range may also result in unintended and/or inaccurate operation and/or possiblepermanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting anyload to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuitcomponents may have elevated case temperatures. These components include but are not limited to linear regulators,switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using theinformation in the associated documentation. When working with the EVM, please be aware that the EVM may becomevery warm.

    4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with thedangers and application risks associated with handling electrical mechanical components, systems, and subsystems.User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees,affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronicand/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safelylimit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility andliability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors ordesignees.

    4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal,state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes