dual-btl class-d audio amplifier demonstration board … · january 2012 doc id 022507 rev 1 1/22...

22
January 2012 Doc ID 022507 Rev 1 1/22 AN4015 Application note Dual-BTL class-D audio amplifier demonstration board based on the TDA7498E Introduction The purpose of this application note is to describe: how to connect the TDA7498 demonstration board how to evaluate the performance of the demonstration board using the electrical curves how to avoid critical issues in the PCB schematic and layout of the TDA7498E The TDA7498E represents a new generation of analog input class-D devices from STMicroelectronics and is housed in a PSSO36 package. It is able to deliver 160 W +160 W in stereo configuration with V CC = 36 V and a 4 Ω load (a) . Figure 1. TDA7498E demonstration board a. All of the results and graphs included in this document are measured using Audio Precision equipment. www.st.com

Upload: phungbao

Post on 20-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

January 2012 Doc ID 022507 Rev 1 1/22

AN4015Application note

Dual-BTL class-D audio amplifier demonstration boardbased on the TDA7498E

IntroductionThe purpose of this application note is to describe:

■ how to connect the TDA7498 demonstration board

■ how to evaluate the performance of the demonstration board using the electrical curves

■ how to avoid critical issues in the PCB schematic and layout of the TDA7498E

The TDA7498E represents a new generation of analog input class-D devices from STMicroelectronics and is housed in a PSSO36 package. It is able to deliver 160 W +160 W in stereo configuration with VCC = 36 V and a 4 Ω load(a).

Figure 1. TDA7498E demonstration board

a. All of the results and graphs included in this document are measured using Audio Precision equipment.

www.st.com

Contents AN4015

2/22 Doc ID 022507 Rev 1

Contents

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Test conditions and connections of the demonstration board . . . . . . . 5

2.1 Power supply and interface connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Schematic diagram and PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Test curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Design guidelines for PCB schematic and layout . . . . . . . . . . . . . . . . 14

6.1 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1.1 Main driver for the selection of components . . . . . . . . . . . . . . . . . . . . . 14

6.1.2 Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.1.3 Output filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

AN4015 List of figures

Doc ID 022507 Rev 1 3/22

List of figures

Figure 1. TDA7498E demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. TDA7498E demonstration board connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Figure 3. TDA7498E schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Figure 4. PCB layout - top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 5. PCB layout - bottom side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 6. PCB layout - top and bottom sides plus components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 7. THD+N vs. power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 8. THD+N vs. frequency (ref = 1 W at 1 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Figure 9. DNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 10. FFT (0 dBr at 1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Figure 11. Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 12. Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Figure 13. Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 14. Pout vs. VCC and THD level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 15. Snubber filter - solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 16. Snubber filter - solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 17. Dumping network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 18. Frequency shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 19. Decoupling capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 20. Snubber network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 21. VCC decoupling electrolytic capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 22. ROSC - component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 23. Filter capacitors for SVR, VREF, SVCC, VSS and VDDPW. . . . . . . . . . . . . . . . . . . . . . . . 19Figure 24. Input signal routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 25. Signal ground and power ground routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Overview AN4015

4/22 Doc ID 022507 Rev 1

1 Overview

The following terms used in this application note are defined as follows:

● THD+N vs. Pout: Total Harmonic Distortion (THD) plus noise versus output power

● THD+N vs. Freq: Total Harmonic Distortion plus noise versus frequency curve

● S/N Ratio: Signal-to-noise ratio

● DNR: Dynamic range

● FFT: Fast Fourier Transform Algorithm (method)

● XTalk: Channel separation L to R, or R to L channel crosstalk

The equipment used includes the following:

● Audio Precision 2722A + AES-17 filter + DCX+ AUX-0025 filter

● DC power supply

● Digital oscilloscope (Tektronix TDS5054B)

● Differential voltage probe (LeCroy AP031)

● Current probe (Tektronix TCP300)

Reference documents include:

● TDA7498E datasheet

● Schematic diagram

● PCB layout

● Test curves

AN4015 Test conditions and connections of the demonstration board

Doc ID 022507 Rev 1 5/22

2 Test conditions and connections of the demonstration board

2.1 Power supply and interface connection1. Connect PSU to the VCC terminal block

2. Connect the analog input cable to the RCA connectors on the demonstration board, the other side must be connected to a signal source such as the Audio Precision analog outputs or a DVD player

2.2 Output configurationThe TDA7498E demonstration board has been configured in 2-channel BTL output.

2.3 ConnectionsThe board terminals (top view of demonstration board) are visible in Figure 2.

Figure 2. TDA7498E demonstration board connections

Left Load Right Load

Analog input

Single-endedinput/differentialinput modeselection

Standby and mutecontrols

Gain selection

Schematic diagram and PCB layout AN4015

6/22 Doc ID 022507 Rev 1

3 Schematic diagram and PCB layout

Figure 3. TDA7498E schematic

AN4015 Schematic diagram and PCB layout

Doc ID 022507 Rev 1 7/22

Figure 4. PCB layout - top side

Figure 5. PCB layout - bottom side

Schematic diagram and PCB layout AN4015

8/22 Doc ID 022507 Rev 1

Figure 6. PCB layout - top and bottom sides plus components

AN4015 Electrical characteristics

Doc ID 022507 Rev 1 9/22

4 Electrical characteristics

Referring to Figure 3: TDA7498E schematic, the Left (L) and Right (R) channels are the output for a stereo configuration. VCC = +36 V, Gain 23.6 dB; Tamb = 25.5 °C; InputFreq = 1 kHz; RefLevel = 1 W (0 dBr), Load = 4 Ω (resistive dummy load).

Table 1. Electrical characteristics

THD+N vs. power Pout = 1 W 0.0555%

IOCP 12 A

SNRNo filter -74.3 dB

AW - filter -77.5 dB

DNRNo filter -94 dB

AW - filter -98 dB

Xtalk 1 kHz -85.9 dB

Test curves AN4015

10/22 Doc ID 022507 Rev 1

5 Test curves

Figure 7. THD+N vs. power

Figure 8. THD+N vs. frequency (ref = 1 W at 1 kHz)

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Anlr.THD+N Ratio Left Vcc=36V; Load=4ohm; 1kHz; Ch L1 3 Blue Solid 2 Anlr.THD+N Ratio Left Vcc=36V; Load=4ohm; 1kHz; Ch R

0.01

10

0.02

0.05

0.1

0.2

0.5

1

2

5

%

1m 4002m 5m 10m 20m 50m 100m 500m 1 2 5 10 20 50 100 200W

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Anlr.THD+N Ratio Left Vcc=36V; 1W@1kHz; Ch L1 2 Blue Solid 2 Anlr.THD+N Ratio Left Vcc=36V; 1W@1kHz; Ch R

0.01

1

0.02

0.05

0.1

0.2

0.5

%

20 20k50 100 200 500 1k 2k 5k 10kHz

AN4015 Test curves

Doc ID 022507 Rev 1 11/22

Figure 9. DNR

Figure 10. FFT (0 dBr at 1 W)

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Anlr.THD+N Ratio Left Vcc=36V_1kHz_4 ohm; Ch L1 2 Blue Solid 2 Anlr.THD+N Ratio Left Vcc=36V_1kHz_4 ohm; Ch R2 1 Green Solid 2 Anlr.THD+N Ratio Left Vcc=36V_1kHz_4 ohm; Ch R - AW Filter2 2 Black Solid 2 Anlr.THD+N Ratio Left Vcc=36V_1kHz_4 ohm; Ch L - AW Filter

-80

-20

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

dB

-60 +0-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5dBr

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Fft.Ch.1 Ampl Left Vcc=36V; Ref: 1W@1kHz: Ch L1 2 Blue Solid 2 Fft.Ch.2 Ampl Right Vcc=36V; Ref: 1W@1kHz: Ch R

-150

+0

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

dBr B

-150

+0

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

dBr A

20 20k50 100 200 500 1k 2k 5k 10kHz

Test curves AN4015

12/22 Doc ID 022507 Rev 1

Figure 11. Crosstalk

Figure 12. Linearity

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 S2C.Anlr.Crosstalk Left Vcc=36V; 1W; 4ohm; (Ch L on)1 2 Blue Solid 2 S2C.Anlr.Crosstalk Left Vcc=36V; 1W; 4ohm; (Ch R on)

-120

+0

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

dB

20 20k50 100 200 500 1k 2k 5k 10kHz

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 220

20.5

21

21.5

22

22.5

23

23.5

24Gain Linearity

Input Level [V]

Gai

n [d

B]

LeftRight

AN4015 Test curves

Doc ID 022507 Rev 1 13/22

Figure 13. Bandwidth

Figure 14. Pout vs. VCC and THD level

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Red Solid 2 Anlr.Level A Left Vcc=36V; 1W; Ch L1 2 Blue Solid 2 Anlr.Level B Right Vcc=36V; 1W; Ch R

-3

+1

-2.5

-2

-1.5

-1

-0.5

+0

+0.5

dBr B

-3

+1

-2.5

-2

-1.5

-1

-0.5

+0

+0.5

dBr A

10 50k20 50 100 200 500 1k 2k 5k 10k 20kHz

ColorSweep Trace Line Style Thick Data Axis Comment

1 1 Cyan Solid 2 Anlr.Level A Left Pout vs. Vcc; Load=4ohm; THD=1%2 1 Green Solid 2 Anlr.Level A Left Pout vs. Vcc; Load=4ohm; THD=10%3 1 Blue Solid 2 Anlr.Level A Left Pout vs. Vcc; Load=4ohm; THD=20%4 1 Red Solid 2 Anlr.Level A Left Pout vs. Vcc; Load=4ohm; THD=30%

20

200

40

60

80

100

120

140

160

180

W

+10 +40+12.5 +15 +17.5 +20 +22.5 +25 +27.5 +30 +32.5 +35 +37.5Vdc

Design guidelines for PCB schematic and layout AN4015

14/22 Doc ID 022507 Rev 1

6 Design guidelines for PCB schematic and layout

6.1 Schematic

6.1.1 Main driver for the selection of components

● Absolute maximum rate (input VCC supply): 40 V

● Bypass capacitor 100 nF in parallel to 1µF for each power VCC branch. Dielectric X7R is suggested.

● Coil saturation current must be compatible with the peak current of application

6.1.2 Decoupling capacitors

There are two different ways to use the decoupling capacitors:

● The decoupling capacitor(s) can be shared among channels; the layout must be designed to implement a "star route" for the VCC paths.

● One decoupling capacitor can be used for each channel. It is mandatory that each decoupling capacitor be placed as close as possible to the IC pins. This solution is implemented on the TDA7498E demonstration board.

6.1.3 Output filter

● Snubber network: the key function of a snubber network is to absorb energy from the inductive component in the power circuit (the output coils and the speaker). The purpose of the snubber RC network is to dissipate the unnecessary high pulse energy, such as a high voltage spike, in the power circuit which is dangerous to the system.

● Main filter (low-pass filter): The purpose of the main filter is to remove the carrier frequency (≈310 kHz) and to cut off the frequency higher than the audible range of 20 kHz. The LPF filter is implemented by a passive Butterworth topology. In order to have a clean and flat frequency response, it is mandatory to design the filter to fix the cutoff frequency a little bit above 20 kHz.

● Damping network: The purpose of the damping network is to avoid the high-frequency oscillation issue on the output circuit. When the load is disconnected from the amplifier, the frequency response of the main filter is not flat and there is the possibility of adding gain in a frequency band. The damping network also improves the THD performance. The damping network can also avoid the inductive effect of the PCB tracks when the system is working at high frequency with PWM.

AN4015 Design guidelines for PCB schematic and layout

Doc ID 022507 Rev 1 15/22

Snubber filter

The snubber circuit must be optimized for the specific application. Starting values are 330 pF in series to 22 ohm. The power dissipation of this network (resistor) depends on the power supply, frequency and capacitor values using following formula:

This power is dissipated on the series resistance.

Figure 15. Snubber filter - solution 1

To increase the efficiency, it is possible to use two equal snubber networks toward GND. In this case, the formula to evaluate power is:

This power is dissipated on the resistance.

Figure 16. Snubber filter - solution 2

P C f 2 V⋅( )2⋅ ⋅=

C126330p

R4422

INxA

INxB

P C f 2 V2⋅ ⋅ ⋅=

C127330p

C130330p

R4522

R46

22

INxA

INxB

Design guidelines for PCB schematic and layout AN4015

16/22 Doc ID 022507 Rev 1

Dumping network

The C-R-C is a dumping network. It is mainly intended for high inductive loads and for common-mode noise attenuation.

Figure 17. Dumping network

PWM output frequency shifting for AM band radio sensitivity improvement

Using a logic control signal (FS) from MCU or from a DSP (3.3 V) it is possible to modify the PWM output frequency.(b)

Figure 18. Frequency shift

b. For the PWM frequency calculation formula please refer to the datasheet.

AN4015 Design guidelines for PCB schematic and layout

Doc ID 022507 Rev 1 17/22

6.2 Layout● Solder 100 nF and 1µF bypass ceramic capacitors as close as possible to the related

IC pin

● To avoid the effect due to the parasitic inductive coil generated by the copper wires, it is suggested to use the ceramic capacitor to balance the reactance. It's mandatory to place the ceramic capacitor as close as possible to the related pins. The distance between the capacitor to the related pins is recommended to be within 5 mm.

Figure 19. Decoupling capacitors

● Solder the snubber networks as close as possible to the related IC pin. A high level spike may occur if the snubber network is placed too far from the pins. It's recommended that the distance from the snubber network be within 3 mm which takes into consideration the width of the copper wire.

Figure 20. Snubber network

Ground pin and Vcc pin of100 nF and 1μF capacitorsshould be connected to the related IC pin directly

Snubber network

Design guidelines for PCB schematic and layout AN4015

18/22 Doc ID 022507 Rev 1

● Use electrolytic capacitors first to separate the VCC branches. A "star route" for the VCC supply is suggested to avoid interference between the channels such as when one channel is idle while the other channel is working with a full load. In applications with high output power, another approach is to filter the two channels separately. This solution is implemented in this demonstration board.

Figure 21. VCC decoupling electrolytic capacitors

● ROSC network: Place the RC filter for the ROSC pin close to the IC

Figure 22. ROSC - component placement

R-C network forROSC

AN4015 Design guidelines for PCB schematic and layout

Doc ID 022507 Rev 1 19/22

● Place the filter capacitors for SVR, VREF, SVCC, VSS and VDDPW close to the IC.

Figure 23. Filter capacitors for SVR, VREF, SVCC, VSS and VDDPW

● Input signal routing

Figure 24. Input signal routing

Filter capacitors forVREF, SVCC andVSS

Filter capacitorsfor VDDS andVDDPW

Filter capacitor for SVR

Design guidelines for PCB schematic and layout AN4015

20/22 Doc ID 022507 Rev 1

● Signal ground and power ground routing: the signal ground should be connected to the bulk capacitor negative terminal via a dedicated copper track; no vias must be present in the connection path.

Figure 25. Signal ground and power ground routing

AN4015 Revision history

Doc ID 022507 Rev 1 21/22

7 Revision history

Table 2. Document revision history

Date Revision Changes

09-Jan-2012 1 Initial release.

AN4015

22/22 Doc ID 022507 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIEDWARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWSOF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOTRECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAININGAPPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com