dust crystallinity and the evolution of dusty disks

34
Dust crystallinity and the evolution of dusty disks C.P. Dullemond, D. Apai, A. Natta, L. Testi, C. Dominik, S. Walch

Upload: qamar

Post on 22-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Dust crystallinity and the evolution of dusty disks. C.P. Dullemond, D. Apai, A. Natta, L. Testi, C. Dominik, S. Walch. Two questions:. What is the origin of the observed M ~ M * 2 relation of protoplanetary disks?. What does crystallinity of dust tell us about the processes in disks?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dust crystallinity and the evolution of dusty disks

Dust crystallinity andthe evolution of dusty

disks

C.P. Dullemond, D. Apai, A. Natta, L. Testi, C. Dominik, S. Walch

Page 2: Dust crystallinity and the evolution of dusty disks

Two questions:

What is the origin of the observed M ~ M*

2 relation of protoplanetary disks?

What does crystallinity of dust tell us about the processes in disks?

Page 3: Dust crystallinity and the evolution of dusty disks

One answer:

The process of disk formation andviscous evolution!

Page 4: Dust crystallinity and the evolution of dusty disks

Model• Start with a molecular cloud core of

mass Mcore, effective sound speed cs, and rotation rate .

• Use cloud collapse model to compute infall rate, and the radius within which this matter falls onto disk (Rcentr).

• Use viscous evolution model to follow the disk evolution.

Page 5: Dust crystallinity and the evolution of dusty disks

Initial conditions of collapse:

• Let’s take a simple Shu-type collapse:– Collapse starts from slowly rotating singular

isothermal sphere– Mass-radius relation:

– Infall rate constant:

– Centrifugal radius:€

rcore =GMcore

2cs2

˙ M infall =cs

3

G

rc =1

16Ω2cs t 3

Page 6: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Let’s make a numerical model of the disk evolution:

∂(ΣR)

∂t+

∂(ΣRvR )

∂R= R ˙ σ

Mass conservation:

∂(ΣΩK R3)

∂t+

∂(ΣΩK R3vR )

∂R=

∂RΣνR3 ∂ΩK

∂R

⎝ ⎜

⎠ ⎟

Angular momentum conservation:

Page 7: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 8: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 9: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 10: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 11: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 12: Dust crystallinity and the evolution of dusty disks

Evolution of disk parameters

(after Hueso & Guillot 2005)

Class O, I Class II

Page 13: Dust crystallinity and the evolution of dusty disks

Correlation M - M*

Page 14: Dust crystallinity and the evolution of dusty disks

Accretion rate versus star mass

Natta et al. 2005

˙ M ∝ M 2

Page 15: Dust crystallinity and the evolution of dusty disks

Accretion rate versus star mass

• So let’s do an experiment:– Make numerical models for series of cores

with ascending mass– Define dimensionless (important!)

(i.e. fraction of breakup rotation of core)– We assume of the core NOT to depend

on Mcore.€

≡ / GM /Rcore3

Page 16: Dust crystallinity and the evolution of dusty disks

Accretion rate versus star mass

Page 17: Dust crystallinity and the evolution of dusty disks

Disk mass versus star mass

Page 18: Dust crystallinity and the evolution of dusty disks

Crystallinity of dust

Page 19: Dust crystallinity and the evolution of dusty disks

10-micron feature of crystalline dust

Bouwman et al. 2001

Page 20: Dust crystallinity and the evolution of dusty disks

Radial mixingCrystalline silicates

produced here(thermal annealing)...

...but they areobserved here

Turbulent transport

Morfill & Völk (1984), Gail (2001)Wehrstedt & Gail (2002)

Accretion

Page 21: Dust crystallinity and the evolution of dusty disks

New idea:

Page 22: Dust crystallinity and the evolution of dusty disks

New idea:

Page 23: Dust crystallinity and the evolution of dusty disks

New idea:

Page 24: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 25: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 26: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 27: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 28: Dust crystallinity and the evolution of dusty disks

Disk formation and spreading

Page 29: Dust crystallinity and the evolution of dusty disks

Evolution of crystallinity

Page 30: Dust crystallinity and the evolution of dusty disks

Evolution of crystallinity

Page 31: Dust crystallinity and the evolution of dusty disks

Evolution of crystallinity

Page 32: Dust crystallinity and the evolution of dusty disks

Evolution of crystallinity

Page 33: Dust crystallinity and the evolution of dusty disks

Evolution of crystallinity

Page 34: Dust crystallinity and the evolution of dusty disks

Summary

• Self-consistent disk formation and evolution models:– can explain the M ~ M2 relation.– provide a new view to dust crystallinity

• New problem: Why are there no 100% crystalline disks observed?