dynamic multiscale spatiotemporal models for poisson data1cm · poisson multiscale factorization at...

83
Dynamic Multiscale Spatiotemporal Models for Poisson Data Marco A. R. Ferreira (University of Missouri) Tha´ ıs C. O. Fonseca (Federal University of Rio de Janeiro)

Upload: others

Post on 30-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Dynamic Multiscale Spatiotemporal

Models for Poisson Data

Marco A. R. Ferreira (University of Missouri)

Thaıs C. O. Fonseca (Federal University of Rio de Janeiro)

Page 2: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 3: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 4: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1990

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 5: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1991

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 6: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1992

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 7: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1993

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 8: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1994

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 9: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1995

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 10: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1996

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 11: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1997

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 12: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1998

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 13: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1999

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 14: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2000

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 15: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2001

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 16: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2002

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 17: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2003

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 18: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2004

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 19: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2005

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 20: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2006

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 21: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2007

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 22: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2008

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 23: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2009

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 24: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Introduction

I Here we are primarily concerned with Poisson spatiotemporaldatasets available in the form of areal or regional data; that is,data available on a partition of the geographical domain ofinterest (Banerjee et al., 2004).

I Many methods have been recently proposed for the analysis oflarge point-referenced datasets (e.g., Banerjee et al., 2008;Paciorek and McLachlan, 2009; Lemos and Sanso, 2009).

I Here we propose a class of multiscale spatiotemporal modelsfor Poisson areal data that lead to scalable, parallelizable, andcomputationally efficient inferential procedures.

I Related work on Gaussian dynamic spatiotemporal multiscalemodeling: Berliner, Wikle and Milliff (1999), Johannesson,Cressie and Huang (2007), Ferreira, Bertolde and Holan(2010), Ferreira, Holan and Bertolde (2011).

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 25: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Data Structure

The region of interest is divided in geographic subregions or blocks,and the data are number of occurrences of event of interest overthese subregions.

Moreover, there is a nested multiscale structure that aggregatessubregions at one resolution level onto coarser resolution levels.

Our framework can also handle spatiotemporal point process data.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 26: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Multiscale structure for the state of Missouri (Ferreira etal. 2011)

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 27: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

USA Tornado alley and multiscale structure

1

3

2

4

l=1

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6 17 18 21 223 4 7 8 19 20 23 249 10 13 14 25 26 29 3011 12 15 16 27 28 31 3233 34 37 38 49 50 53 5435 36 39 40 51 52 55 5641 42 45 46 57 58 61 6243 44 47 48 59 60 63 64

l=2 l=3

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 28: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 29: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Poisson multiscale factorization

At each time point we decompose the data into empiricalspatiotemporal multiscale coefficients using the spatial multiscalemodeling framework of Kolaczyk and Huang (2001). See alsoChapter 9 of Ferreira and Lee (2007).

Interest lies in an inhomogeneous Poisson process with rate{λ(s) : s ∈ S} on a domain S ⊂ Rk .

Because of measurement, resources or confidentiality restrictions,data are available only up to a given scale of resolution L on apartition of the domain S. Denote this partition by{BL1, . . . ,BL,nL}, with BLj ∈ S, j = 1, . . . , nL, BLi ∩BLj = ∅, i 6= j ,and ∪nLj=1BLj = S.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 30: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

For each subregion BLj there is a count yLj of the number ofoccurrences of the event of interest.

Moreover, the expected number of counts on BLj isµLj = E (yLj) =

∫BLjλ(s)ds, j = 1, . . . , nL.

Further, similarly to Kolaczyk and Huang (2001) we assume thatyL1, . . . , yL,nL are conditionally independent given µL1, . . . , µL,nL .

In what follows, the latent spatial process λ(s) is constructed insuch a way that this latent process will be spatially correlated.Therefore, this spatial dependence will transfer to the countsyL1, . . . , yL,nL and lead their marginal distribution to contain spatialdependence.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 31: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

In addition to the mean process at the Lth resolution level, we arealso interested in the process at aggregated coarser scales.

At the lth scale of resolution, the domain S is partitioned in nlsubregions Bl1, . . . ,Blnl , l = 1, . . . , L− 1.

Moreover, the partition at level l is assumed to be a refinement ofthe partition at level l + 1; that is, Blj = ∪(l+1,j ′)∈Dlj

Bl+1,j ′ , whereDlj is the set of descendants of subregion j at level l , andDlj ∩ Dli = ∅, i 6= j .

Additionally, let Al(L, j) be the ancestral at resolution level l ofsubregion (L, j).

Finally, denote by dlj the number of descendants of subregion (l , j).

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 32: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

The aggregated counts at the lth level of resolution are recursivelydefined as

ylj = 1′dlj yDlj

with corresponding aggregated mean process

µlj = 1′dljµDlj

The mean µlj may be written as

µlj = λljelj

where λlj is the relative risk and elj is either known or unknown upto a low-dimensional parameter vector. Similarly to the observedcounts, elj may be aggregated as

elj = 1′dlj eDlj

and in that case the aggregation for the mean process implies thatthe relative risk process is aggregated as

λlj = e−1lj λ

′DljeDlj

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 33: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Because of conditional independence, the likelihood functionadmits the multiscale factorization (Kolaczyk and Huang, 2001)

nL∏j=1

p(yLj |µLj) =

n1∏j=1

p(y1j |µ1j)L−1∏l=1

nl∏j=1

p(yDlj|ylj ,ωlj), (1)

where y1j |µ1j ∼ Poisson(µ1j).

Further, yDlj|ylj ,ωlj ∼ Multinomial(ylj ,ωlj), where ylj plays the role

of the sample size parameter of the multinomial distribution, andωlj = µDlj

/µlj is the vector of probabilities.

ωlj describes how the counts at subregion (l , j) are expected to bedistributed among its descendants Dlj , and connects coarser tofiner resolution levels.

In analogy to wavelet analysis we refer to ωlj as a spatialmultiscale coefficient.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 34: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 35: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Multiscale spatiotemporal modelThe model for the number of counts at the finest resolution level Lat time t is

ytLj |µtLj ∼ Poisson(µtLj) (2)

Further, we assume that µtLj = λtLjetLj where λtLj is the risk onsubregion (L, j) at time t and etLj is either known or unknown upto a low-dimensional parameter vector.

Examples of known etLj include the case when etLj = 1 and thecase when etLj is the known population size of subregion (l , j) attime t.

An example of etLj unknown up to a low-dimensional parametervector is etLj = exp(x ′tβLj), where x t is a known vector ofregressors common to all regions at time t and βLj = βA1(L,j).

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 36: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

It follows from Equation (1) that the multiscale factorization attime t for the Poisson model is

nL∏j=1

p(ytLj |µtLj) =

n1∏j=1

p(yt1j |µt1j)L−1∏l=1

nl∏j=1

p(yt,Dlj|ytlj ,ωtlj), (3)

where yt1j |µt1j ∼ Poisson(µt1j) and

yt,Dlj|ytlj ,ωtlj ∼ Multinomial(ytlj ,ωtlj), with ωtlj = µt,Dlj

/µtlj .

The parameter ωtlj is the spatiotemporal multiscale coefficientwhich represents the vector of probabilities associated with howthe counts in ytlj are distributed for each descendant in Dlj .

Let ωetlj = y tDlj

/ytlj be an estimator of ωtlj . We refer to ωetlj as an

empirical spatiotemporal multiscale coefficient.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 37: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Beta evolution for coarse level risk (Smith and Miller,1986)

The beta temporal evolution for λt1j is defined as

λt1j = λt−1,1jγ−1j ηtj , (4)

whereηtj |Dt−1, γj ∼ Beta(γjat−1,j , (1− γj)at−1,j),

0 < γj ≤ 1 is a discount factor parameter, and at−1,j > 0.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 38: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Dirichlet evolution for multiscale coefficients

The stochastic temporal evolution for ωtlj is defined as

ωtlj =1

St−1,ljφt−1,lj � ωt−1,lj . (5)

with φt−1,lj = (φt−1,lj1, . . . , φt−1,lj ,dlj )′, where

φt−1,lj1, . . . , φt−1,lj ,dlj are i.i.d. Beta(δljct−1,lji , (1− δlj)ct−1,lji ),

St−1,lj = φ′t−1,ljωt−1,lj , 0 < δlj ≤ 1 is a discount factor parameter,and ct−1,lji > 0, i = 1, . . . , dlj .

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 39: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Initial conditions and priors for the discount factors

λ01j |D0 ∼ Gamma(a0j , b0j)

ω0lj |D0 ∼ Dirichlet(c0lj)

γj ∼ Beta(aγ , bγ)

δlj ∼ Beta(aδ, bδ)

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 40: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 41: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior factorization

Theorem

Consider the multiscale spatiotemporal model for Poisson datadefined by Equations (2), (3), (4), and (5). Given the discountfactor parameters γj , j = 1, . . . , n1, and δlj , l = 1, . . . , L− 1,j = 1, . . . , nl , the vectors λ1:T ,11, . . . ,λ1:T ,1n1 , ω1:T ,11, . . . ,ω1:T ,1n1 , . . ., ω1:T ,L−1,1, . . . ,ω1:T ,L−1,nL−1

are conditionallyindependent a posteriori.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 42: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Filtering for λ1:T ,1j

Theorem

Assume the initial distribution λ01j |D0 ∼ Gamma(a0j , b0j) andconsider the Observation Equation (3) and the beta evolution forλt1j given by Equation (4). Then, for t = 1, . . . ,T :

(i) Posterior for λt−1,1j :λt−1,1j |Dt−1, γj ,βj ∼ Gamma(at−1,j , bt−1,j).

(ii) Prior for λt1j :λt1j |Dt−1, γj ,βj ∼ Gamma(at|t−1,j , bt|t−1,j),

where at|t−1,j = γjat−1,j and bt|t−1,j = γjbt−1,j .

(iii) Posterior for λt1j :λt1j |Dt , γj ,βj ∼ Gamma(atj , btj),

where atj = γjat−1,j + yt1j and btj = γjbt−1,j + et1j .

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 43: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Filtering for ω1:T ,lj

Theorem

Assume the initial distribution ω0lj |D0 ∼ Dirichlet(c0lj), andconsider the Observation Equation (3) and the Dirichlet temporalevolution for the spatiotemporal multiscale coefficient ωtlj given byEquation (5). Then, for t = 1, . . . ,T :

(i) Posterior for ωt−1,lj : ωt−1,lj |Dt−1, δlj ∼ Dirichlet(ct−1,lj).

(ii) Prior for ωtlj : ωtlj |Dt−1, δlj ∼ Dirichlet(ct|t−1,lj),where ct|t−1,lj = δljct−1,lj .

(iii) Posterior for ωtlj : ωtlj |Dt , δlj ∼ Dirichlet(ctlj),where ctlj = δljct−1,lj + ytljω

etlj .

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 44: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Smoothing for λ1:T ,1j

Proposition

Assume the Observation Equation (3) and the beta evolution forλt1j given by Equation (4). Then, the conditional smoothingdistribution of λt−1,1j given λt1j is equal to

p(λt−1,1j |DT , λt1j , γj)

=b

(1−γj )at−1,j

t−1,j

Γ((1− γj)at−1,j)(λt−1,1j − γjλt1j)

(1−γj )at−1,j−1

× exp{−bt−1,j(λt−1,1j − γjλt1j)},

where λt−1,1j − γjλt1j > 0.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 45: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Smoothing for ω1:T ,lj

Proposition

Consider the Observation Equation (3) and the Dirichlet evolutionfor the spatiotemporal multiscale coefficient ωtlj given byEquation (5). Then,

(i) ωt−1,lj |DT , St−1,lj ,ωtlj , δlj ∼Mod-Dirichlet((1− δlj)ct−1,lj , 0, St−1,ljωtlj)

(ii) St−1,lj |DT ,ωtlj , δlj ∼ Beta(δlj ct−1,lj , (1− δlj)ct−1,lj)

where ct−1,lj =∑dlj

i=1 ct−1,lji and Mod-Dirichlet denotes a modifiedDirichlet distribution.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 46: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Likelihood function for the discount factor γj and theregression coefficients βj

p(y1:T ,1j |γj ,βj ,D0)

=∏T

t=τ1p(yt1j |Dt−1, γj ,βj

)=∏T

t=τ1

∫∞0 p

(yt1j |γj ,βj , λt1j

)p(λt1j |Dt−1, γj ,βj

)dλt1j

=∏T

t=τ1

{Γ(γjat−1,j+yt1j )

Γ(γjat−1,j )Γ(yt1j+1)

(γjbt−1,j

ex′tjβj

)γjat−1,j

(1 +

γjbt−1,j

ex′tjβj

)−(γjat−1,j+yt1j )}.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 47: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Likelihood function for the discount factor δlj

p(y1:T ,Dlj|D0, y1:T ,lj , δlj)

=∏T

t=τ2p(yt,Dlj

|Dt−1, ytlj , δlj)

=∏T

t=τ2

∫p(yt,Dlj

|ytlj ,ωtlj)p(ωtlj |Dt−1, δlj)dωtlj

=∏T

t=τ2

{Γ(∑

i δljct−1,lji )Γ(ytlj+1)Γ(∑

i δljct−1,lji+ytlj )

∏dlji=1

Γ(δljct−1,lji+ytljωetlji )

Γ(ytljωetlji+1)Γ(δljct−1,lji )

}.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 48: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 49: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Priors

In all applications, we have used the same default priordistributions:

I For λ01j |D0, we assume a0j = b0j = 0.01,

I For ω0lj |D0, we assume c0lj = 0.011dlj ,

I For γj , we assume aγ = bγ = 1,

I For δlj , we assume aδ = bδ = 1.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 50: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Simulated datasetCoarsest level: 9 subregions

Intermediate level: 36 subregions

Finest level: 72 subregions

T = 200

At time 0, µ0Lj = 30 + 5× longitudej + 8× latitudej .

At time 0, ω0lj = d−1lj 1dlj .

γj = 0.95, j = 1, . . . , n1.

δlj = 0.90, l = 1, 2, j = 1, . . . , nl .

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 51: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior mean (dot) and 95% credible interval (verticaldashed line) for the discount factors

2 4 6 8

0.85

0.90

0.95

1.00

j

γ j

2 4 6 80.82

0.86

0.90

0.94

j

δ 1j

0 5 10 15 20 25 30 35

0.80

0.85

0.90

0.95

1.00

j

δ 2j

(a) γj (b) δ1j (c) δ2j

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 52: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Time series plots for µ1:T ,3j

0 50 100 150 200

02

46

810

12

t

µt3j

0 50 100 150 200

05

1015

2025

t

µt3j

0 50 100 150 200

24

68

1012

14

t

µt3j

(a) j = 6 (b) j = 25 (c) j = 63

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 53: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Mortality in Missouri for 45 to 64 years old age group

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 54: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior densities for discount factors

0.0 0.2 0.4 0.6 0.8 1.0

01

23

45

6

γ

density

region 1region 2region 3region 4region 5

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

δ1

density

region 1region 2region 3region 4region 5

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

δ2

density

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 55: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Estimated risk level for counties within the Saint Louismetropolitan area

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20400600800

1200

t

λ 25 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

5 10 15 20

400600800

1200

t

λ 2

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 56: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1990

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 57: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1991

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 58: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1992

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 59: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1993

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 60: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1994

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 61: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1995

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 62: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1996

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 63: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1997

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 64: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1998

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 65: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

1999

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 66: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2000

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 67: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2001

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 68: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2002

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 69: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2003

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 70: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2004

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 71: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2005

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 72: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2006

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 73: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2007

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 74: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2008

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 75: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Missouri: standardized mortality ratio per 100, 000inhabitants for 45 to 64 years old age group

2009

Observed Fitted

under 530

530 − 624

624 − 718

718 − 812

812 − 906

906 − 1000

1000 − 1094

over 1094

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 76: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Tornados in the American Midwest

1

3

2

4

l=1

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1 2 5 6 17 18 21 223 4 7 8 19 20 23 249 10 13 14 25 26 29 3011 12 15 16 27 28 31 3233 34 37 38 49 50 53 5435 36 39 40 51 52 55 5641 42 45 46 57 58 61 6243 44 47 48 59 60 63 64

l=2 l=3

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 77: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior densities for βj , γj , and δ1j

-0.2 0.0 0.1 0.2 0.3 0.4

02

46

810

1214

β

density

region 1region 2region 3region 4

0.0 0.2 0.4 0.6 0.8 1.0

02

46

8

γ

density

region 1region 2region 3region 4

0.0 0.2 0.4 0.6 0.8 1.0

01

23

45

67

δ1

density

region 1region 2region 3region 4

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 78: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior densities for the discount factors δ2j

corresponding to the descendants of subregion (1,3) andsubregion (1,4)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

05

1015

δ2D13

density

0.70 0.75 0.80 0.85 0.90 0.95 1.00

05

1015

δ2D14

density

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 79: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Posterior median (solid line) and 95% credible interval(dashed line) for each element of ωt2,10

1960 1980 2000

0.0

0.2

0.4

0.6

0.8

1.0

t

ω2

1960 1980 2000

0.0

0.2

0.4

0.6

0.8

1.0

t

ω2

1960 1980 2000

0.0

0.2

0.4

0.6

0.8

1.0

t

ω2

1960 1980 2000

0.0

0.2

0.4

0.6

0.8

1.0

t

ω2

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 80: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Model comparison

Competing models:

I Model I: Multiscale spatiotemporal model for Poisson data.

I Model II: Model that assumes that each finest level subregionhas its own temporal evolution according to the Poissonstate-space model.

I Model III: Spatiotemporal model: ytj |µtj ∼ Poisson(µtj), withlog(µtj) = log(etj) + α0 + aj + bt , bt = φbt−1 + εt ,εt ∼ N(0,W ), and the aj ’s are spatial random effects thatfollow a CAR specification.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 81: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Model comparison

Log conditional Bayes factor of Model I against Models II and III

Model II Model III

Missouri data 283.9 215.1Tornado data 254.8 139.8

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira

Page 82: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Outline

Motivation

Poisson multiscale factorization

Multiscale spatiotemporal model

Bayesian analysis

Applications

Conclusions

Page 83: Dynamic Multiscale Spatiotemporal Models for Poisson Data1cm · Poisson multiscale factorization At each time point we decompose the data into empirical spatiotemporal multiscale

Motivation Factorization Model Inference Applications Conclusions

Conclusions

I Novel multiscale spatiotemporal model for Poisson data.

I Modeling strategy naturally respects nonsmooth transitionsbetween geographic subregions.

I Analysis of the discount factors provides a powerful way toidentify regions with spatiotemporal dynamics that warrantfurther investigation.

I Divide-and-conquer modeling strategy leads to computationalprocedures that are parallelizable, scalable, and fast.

Poisson Multiscale Spatiotemporal Models Marco A. R. Ferreira