dynamics & multiscale morphology cosmic web

95
Dynamics & Dynamics & Multiscale Multiscale Morphology Morphology Cosmic Web Cosmic Web Rien van de Weygaert 3 rd KIAS Workshop, Oct 27-28,

Upload: machiko-rin

Post on 02-Jan-2016

27 views

Category:

Documents


4 download

DESCRIPTION

Dynamics & Multiscale Morphology Cosmic Web. Rien van de Weygaert 3 rd KIAS Workshop, Oct 27-28, Seoul, 2008. Collaboration & References: Pablo Araya- Melo Miguel Aragon- Calvo - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dynamics  &   Multiscale   Morphology   Cosmic Web

Dynamics & Dynamics & Multiscale Multiscale

Morphology Morphology

Cosmic Web Cosmic Web

Rien van de Weygaert

3rd KIAS Workshop, Oct 27-28, Seoul, 2008

Page 2: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 3: Dynamics  &   Multiscale   Morphology   Cosmic Web

Collaboration & References:Collaboration & References:

Pablo Araya-MeloPablo Araya-Melo

Miguel Aragon-Calvo Miguel Aragon-Calvo

Erwin Platen Erwin Platen

Emilio Romano-Diaz Emilio Romano-Diaz

Willem Schaap Willem Schaap

Bernard Jones Bernard Jones

Gert Vegter (comp. geometry & Gert Vegter (comp. geometry &

topology) topology)

Page 4: Dynamics  &   Multiscale   Morphology   Cosmic Web

Foams in Foams in NatureNature

Page 5: Dynamics  &   Multiscale   Morphology   Cosmic Web

Foams in Foams in NatureNature

The largest complex pattern found in nature is Megaparsec Scale:

the Cosmic Web

manifestation of the gravitational origin, emergence and growth of ALL structure in the cosmos …

Page 6: Dynamics  &   Multiscale   Morphology   Cosmic Web

The Cosmic The Cosmic WebWebStochastic

Spatial

Pattern of

Clusters,

Filaments &

Walls

around

Voids

in which matter,

(DM, gas, gal’s)

has agglomerated

Page 7: Dynamics  &   Multiscale   Morphology   Cosmic Web

The Cosmic The Cosmic WebWeb

Significance:Significance: Manifestation mildly nonlinear Manifestation mildly nonlinear clustering: clustering:

Transition stage between linear phase Transition stage between linear phase

and fully collapsed/virialized objectsand fully collapsed/virialized objects

Weblike configurations contain Weblike configurations contain

cosmological information: cosmological information: e.g. Void shapes & alignments (recent e.g. Void shapes & alignments (recent study J. Lee 2007)study J. Lee 2007)

Cosmic environment within which to Cosmic environment within which to understand the understand the

formation of galaxies.formation of galaxies.

Page 8: Dynamics  &   Multiscale   Morphology   Cosmic Web

Web Web AnalysisAnalysis Translate discrete galaxy/particle distribution into continuous density field/image:

- DTFE: Delaunay Tessellation Field Estimator

(Post)processing:

- filtering/smoothing image

- identifying clusters (peaks in image)

- identifying filaments/walls: * MMF & spine (Morse theory)

- tracing void regions: * watershed transform (Morse theory)

- topological aspects * alpha shapes

Page 9: Dynamics  &   Multiscale   Morphology   Cosmic Web

The Cosmic The Cosmic WebWebWeb Discretely Sampled:

By far, most information on the

Cosmic Web concerns

discrete samples:

• observational:

Galaxy Distribution

• theoretical:

N-body simulation particles

Page 10: Dynamics  &   Multiscale   Morphology   Cosmic Web

Power ofPower of

Tessellations Tessellations

Page 11: Dynamics  &   Multiscale   Morphology   Cosmic Web

Multiscale Multiscale MorphologyMorphologyFilter Filter

MMF dissection of cosmic web

into sheets, filaments, clusters …

filament

cluster

sheet

Page 12: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Page 13: Dynamics  &   Multiscale   Morphology   Cosmic Web

Watershed Void Identification Watershed Void Identification

Page 14: Dynamics  &   Multiscale   Morphology   Cosmic Web

Alpha Alpha ShapesShapes

Alpha Shape ofcosmological simulation

left to right: alpha value increases.

LSSLSS

TopologyTopology

Page 15: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic WebCosmic Web

Evolution &Evolution &DynamicsDynamics

Page 16: Dynamics  &   Multiscale   Morphology   Cosmic Web

Dynamical Evolution Cosmic Dynamical Evolution Cosmic Web Web

Page 17: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 18: Dynamics  &   Multiscale   Morphology   Cosmic Web

● hierarchical structure formation

● anisotropic collapse

● void formation: asymmetry overdense vs.

underdense

Dynamical Evolution Cosmic Dynamical Evolution Cosmic Web Web

Page 19: Dynamics  &   Multiscale   Morphology   Cosmic Web

● Gravitational Instability:Gravitational Instability:

- any small initial deviation from sphericity of a collapsing cloud - any small initial deviation from sphericity of a collapsing cloud gets magnified gets magnified

- gravitational collapse proceeds along sequence: - gravitational collapse proceeds along sequence:

● collapse along smallest axis planar geometry wall

● collapse medium axis elongated filament

● full 3-D collapse clump halo

clump/halo virialization cosmic object

Anisotropic Anisotropic CollapseCollapse

(courtesy: A.

Kravtsov).

Page 20: Dynamics  &   Multiscale   Morphology   Cosmic Web

Formative agent of the Cosmic Web:Formative agent of the Cosmic Web:

Tidal strain induced my the Megaparsec Matter Distribution: - anisotropic collapse of structures - connection clusters-filaments: clusters main agent for stretching filaments

Page 21: Dynamics  &   Multiscale   Morphology   Cosmic Web

Ellipsoidal Ellipsoidal CollapseCollapse

Self-gravity

Internal tidal shear (due to shape)

External tidal shear

spherical

short axis

medium axis

long axis

Page 22: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 23: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web & Cosmic Web & ClustersClusters

Perseus Cluster (A426)

Page 24: Dynamics  &   Multiscale   Morphology   Cosmic Web

Tidal Constraints:Tidal Constraints:Example: elongated filamentary feature

Constrained Field:

Page 25: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web Theory:

Specification Cluster Node Locations & Orientation:

Outline Cosmic Web

Bond & Myers 1996

Bond et al. 1996

Spatial structure of Cosmic Web structure present in primordial density field.

Geometry of primordial field mainly filamentary (not Zel’dovich sheets), by sheer of statistics Gaussian field.

Filaments defined by tidal field imposed by cluster patches.

Incremental improvement of cosmic web spatial outline by inserting more and more clusters

Page 26: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web Theory :

Specification Cluster Node Locations & Orientation:

Outline Cosmic Web

Bond & Myers 1996

Bond et al. 1996

Page 27: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web Theory :

Specification Cluster Node Locations & Orientation:

Outline Cosmic Web

Bond et al. 1996

Spatial structure of Cosmic Web structure present in primordial density field.

Geometry of primordial field mainly filamentary (not Zel’dovich sheets), by sheer of statistics Gaussian field.

Filaments defined by tidal field imposed by cluster patches.

Incremental improvement of cosmic web spatial outline by inserting more and more clusters

Page 28: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 29: Dynamics  &   Multiscale   Morphology   Cosmic Web

Multiscale Nature Anisotropic Collapse

Structure arises over

a vast range of scales

- Small scales:

fully collapsed objects

- Very large scales:

still linear (& Gaussian) - Medium Mpc scales:

weblike features

Two analytical formalisms:

statistical Press-Sch.

dynamical PeakPatch

Page 30: Dynamics  &   Multiscale   Morphology   Cosmic Web

Hierarchical Pattern Hierarchical Pattern FormationFormation

Page 31: Dynamics  &   Multiscale   Morphology   Cosmic Web

Hierarchical Void Hierarchical Void Evolution:Evolution:

“Local” Excursion Set Approach

Two-barrier description:

- void merger

- void collapse

Peaked Void Size DistributionVoid Void MergingMerging

Void Void CollapseCollapse

Page 32: Dynamics  &   Multiscale   Morphology   Cosmic Web

Galaxy/HaloGalaxy/Halo&&

Web Web EnvironmentEnvironment

Page 33: Dynamics  &   Multiscale   Morphology   Cosmic Web

Halo Shape Halo Shape AlignmentsAlignmentsHalo & Halo & Galaxy Galaxy

EnvironmenEnvironmentaltal

Influences Influences

Halo ShapeHalo Shape

AlignmentAlignment

evolutionevolution Filaments: Haloes elongated along filamentFilaments: Haloes elongated along filament

Walls: Haloes elongated within plane wall Walls: Haloes elongated within plane wall (major axis in wall)(major axis in wall)

Orientation weakens in timeOrientation weakens in time

Effect stronger for low-mass haloesEffect stronger for low-mass haloes

Page 34: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spinning the GalaxiesSpinning the Galaxies

Page 35: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spinning the GalaxiesSpinning the Galaxies

Spinning Up

a collapsing protogalaxy

by Tidal Torque

Page 36: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spinning the GalaxiesSpinning the Galaxies

Spinning the Galaxies:

Tidal Forces that also Shape Cosmic Web

Connection

Galaxy Spin

Cosmic Web

Page 37: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Cosmic Web:Web:Environmental Environmental ImpactImpactHalo & Galaxy Formation:Halo & Galaxy Formation:

Environmental influences Environmental influences

Environmental Environmental dependence dependence

strongest wrt. strongest wrt. Alignments:Alignments:

- halo shape- halo shape

- halo spin direction- halo spin direction

To be understood from To be understood from the the

crucial role of tidal crucial role of tidal forces in forces in

shaping the Cosmic shaping the Cosmic WebWeb

Page 38: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Cosmic Web:Web:Environmental Environmental ImpactImpactHalo & Galaxy Formation:Halo & Galaxy Formation:

Environmental influences Environmental influences

Halo Spin distribution in Halo Spin distribution in clusters, clusters,

filaments filaments & sheets & sheets

Environmental Environmental dependence on the halo dependence on the halo spin distributionspin distribution

To a large extent To a large extent influenced by presence influenced by presence of unbound particles of unbound particles

Page 39: Dynamics  &   Multiscale   Morphology   Cosmic Web

Halo Spin Halo Spin AlignmentsAlignments

Page 40: Dynamics  &   Multiscale   Morphology   Cosmic Web

Halo Spin Halo Spin AlignmentsAlignmentsHalo & Halo & Galaxy Galaxy

EnvironmenEnvironmentaltal

Influences Influences

Halo SpinHalo Spin

AlignmentAlignment

evolutionevolution Filaments:Filaments:High-mass haloes: always perpendicularHigh-mass haloes: always perpendicular

Low-mass haloes: starting perpendicular, they Low-mass haloes: starting perpendicular, they evolve to parallelevolve to parallel

Walls:Walls:High & Low-mass: always in plane of wallHigh & Low-mass: always in plane of wall

Page 41: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 42: Dynamics  &   Multiscale   Morphology   Cosmic Web

Filament-Galaxy alignment SDSS DR5

Page 43: Dynamics  &   Multiscale   Morphology   Cosmic Web

Filament-Galaxy alignment SDSS DR5

Jones et al. 2008 (in prep.) edge-on galaxies

Page 44: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic WebCosmic Web

AnalysisAnalysis

Page 45: Dynamics  &   Multiscale   Morphology   Cosmic Web

Discrete Point/Galaxy Distribution Continuous FieldDiscrete Point/Galaxy Distribution Continuous Field

(Sibson 1980, 1981; Watson 1992)(Sibson 1980, 1981; Watson 1992)

Natural NeighbourNatural Neighbour

InterpolationInterpolation

Exploiting the Adaptive Nature of Voronoi/Delaunay TessellationsExploiting the Adaptive Nature of Voronoi/Delaunay Tessellations

Page 46: Dynamics  &   Multiscale   Morphology   Cosmic Web

Point Sample Point Sample Continuous FieldContinuous Field

Aspects: ● Anisotropy of Aspects: ● Anisotropy of

Structural Features Structural Features

● ● Hierarchical Hierarchical

InfrastructureInfrastructure

● ● Voids, cq. empty Voids, cq. empty

regionsregions

● ● Inhomogeneous Inhomogeneous

SamplingSampling

Page 47: Dynamics  &   Multiscale   Morphology   Cosmic Web

Dual Tessellations

Voronoi Vertices: Centers Circumscribing Spheres 4 nuclei

Delaunay Tetrahedron

Voronoi Voronoi Delaunay Delaunay

Page 48: Dynamics  &   Multiscale   Morphology   Cosmic Web

Delaunay Tetrahedron:

Set of 4 nuclei,

circumscribing sphere

not containing

any other nuclei

Space-Covering Complete

Set Delaunay Tetrahedra:

Delaunay Tessellation

Voronoi Tessellation &

Delaunay Tessellation:

Duals

Delaunay Tessellation

Delaunay Tetrahedra:

Natural Multidimensional Interpolation Volume

Page 49: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 50: Dynamics  &   Multiscale   Morphology   Cosmic Web

• NN-neighbour Interpolation KernelNN-neighbour Interpolation Kernel

Page 51: Dynamics  &   Multiscale   Morphology   Cosmic Web

Linear KernelLinear Kernel

DTFEDTFE

Page 52: Dynamics  &   Multiscale   Morphology   Cosmic Web

Higher Order NN interpolation Linear DTFEHigher Order NN interpolation Linear DTFE

(Bernardeau & vdW 1996; Schaap & vdW 2000)(Bernardeau & vdW 1996; Schaap & vdW 2000)

Delaunay TessellationDelaunay Tessellation

Field Estimator Field Estimator (DTFE)(DTFE)

Large number of ObjectsLarge number of Objects

Dimensions higher > 2Dimensions higher > 2

Page 53: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 54: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 55: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 56: Dynamics  &   Multiscale   Morphology   Cosmic Web

DTFE DTFE Operational Virtues:Operational Virtues:

Volume-weighted (<> Volume-weighted (<> mass-weighted)mass-weighted)

Field UniversalityField Universality

Dynamic Range & Spatial Dynamic Range & Spatial ResolutionResolution

Shape & Morphology Shape & Morphology SensitivitySensitivity

Void (structure) detection & Void (structure) detection & renderingrendering

Page 57: Dynamics  &   Multiscale   Morphology   Cosmic Web

DTFE DTFE

Dynamic Range & Dynamic Range & ResolutionResolution

* DTFE resolves internal * DTFE resolves internal substructuresubstructure

over full range of over full range of scales presentscales present

in datain data

* Test: Soneira-Peebles * Test: Soneira-Peebles (fractal) model(fractal) model

Page 58: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 59: Dynamics  &   Multiscale   Morphology   Cosmic Web

DTFE DTFE

Shape & Morphology Shape & Morphology SensitivitySensitivity

* DTFE retains the elongated or * DTFE retains the elongated or flattened flattened

geometry of geometry of anisotropic featuresanisotropic features

Page 60: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 61: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 62: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spine:Spine:

Singularities, Singularities, Morse complex & Morse complex &

watershedwatershed

Page 63: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Page 64: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Spine of the Cosmic Web:Spine of the Cosmic Web: Morse complex & search for Morse complex & search for singularities singularities

Morse theory:topological structure well-behaved C2 field:

• singularities - minima, maxima, saddles• “flow” field:• critical net slope lines: connection singularities• saddles-maxima: spine of field • basin minima: watershed voids

Page 65: Dynamics  &   Multiscale   Morphology   Cosmic Web

Density Field Flow LinesDensity Field Flow Lines

Density Field Flow LinesDensity Field Flow Lines

Page 66: Dynamics  &   Multiscale   Morphology   Cosmic Web

Density Field Flow Lines:Density Field Flow Lines: SingularitiesSingularities

Density Field Flow Lines:Density Field Flow Lines: SingularitiesSingularities

Critical NetCritical Net saddles-maxima: ridgessaddles-maxima: ridges

Critical NetCritical Net saddles-maxima: ridgessaddles-maxima: ridges

Page 67: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 68: Dynamics  &   Multiscale   Morphology   Cosmic Web

Spine of the Cosmic Web Spine of the Cosmic Web

Spine of the Cosmic Web Spine of the Cosmic Web

Page 69: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 70: Dynamics  &   Multiscale   Morphology   Cosmic Web

Void Void Detection:Detection:

Watershed Void Watershed Void FinderFinder

Page 71: Dynamics  &   Multiscale   Morphology   Cosmic Web

Particle distr. DTFE densiy

Median Filtered Watershed transf.

Page 72: Dynamics  &   Multiscale   Morphology   Cosmic Web

WATERSHEDS : A cell is the union of points that are

topological closer to a certain minimum

Topological Distance: The path that connects two points via the

steepest slope: the path a water-droplet would take, when

running down a landscape

WatershedsWatershedsSegmentation:

A division of space in individual cellsA division of space in individual cells

Page 73: Dynamics  &   Multiscale   Morphology   Cosmic Web

Following the water-flow into the distinctcatchment basins.

Each basin belongingto one individualminima defines oneregion

Page 74: Dynamics  &   Multiscale   Morphology   Cosmic Web

Surface of Density Field

Local

MinimaLocal

Minima

Pierce the local Pierce the local minima, and let the minima, and let the

landscape sink landscape sink slowly in a tub of slowly in a tub of

water water

Page 75: Dynamics  &   Multiscale   Morphology   Cosmic Web

Every time two different flooding basins meet we draw a dividing wall

Flooding the Density Field

Page 76: Dynamics  &   Multiscale   Morphology   Cosmic Web

Final

segmentation

lines

Void

Patches

Page 77: Dynamics  &   Multiscale   Morphology   Cosmic Web

Particle distr.

Watershed transf.

Page 78: Dynamics  &   Multiscale   Morphology   Cosmic Web

Particle distr.DTFE density + WVF zoom-in:DTFE density +WVF +void orientation

void shape void orientationtidal shear orientation

Page 79: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 80: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 81: Dynamics  &   Multiscale   Morphology   Cosmic Web

MMF:MMF:

MultiscaleMultiscaleMorphology AnalysisMorphology Analysis

Page 82: Dynamics  &   Multiscale   Morphology   Cosmic Web

Multiscale Multiscale MorphologyMorphologyFilter Filter

MMF dissection of cosmic web

into sheets, filaments, clusters …

filament

cluster

sheet

Page 83: Dynamics  &   Multiscale   Morphology   Cosmic Web

Scale Space Pyramids

Gaussian smooth keeping same number of pixels.

The ensemble of images is referred to as a scale space stack: it is analysed as a single object.

Page 84: Dynamics  &   Multiscale   Morphology   Cosmic Web

Scale Space AnalysisScale Space AnalysisInspiration from Medical Imaging:

trace blood vessels, tumors, etc.

Florack, Kuijper et al.; Lindeberg et al.

Sato et al. 1997; Lorentz et al. 1997

Frangi et al. 1998 Multiscale vessel enhancement filter

scale

Page 85: Dynamics  &   Multiscale   Morphology   Cosmic Web

Scale Space AnalysisScale Space Analysis

scale

• Smooth the field over the range of relevant scales

• Select the characteristic scale of a particular (local) morphological element

Page 86: Dynamics  &   Multiscale   Morphology   Cosmic Web

Scale Space AnalysisScale Space Analysis

scale

• Smooth the field over the range of relevant scales

• Select the characteristic scale of a particular (local) morphological element

Page 87: Dynamics  &   Multiscale   Morphology   Cosmic Web
Page 88: Dynamics  &   Multiscale   Morphology   Cosmic Web

MultiscaleMultiscale

MorpholoMorphologygy

Filter Filter

(MMF)(MMF)

Aragon-Calvo, Jones,

van de Weygaert &

van der Hulst 2007

Page 89: Dynamics  &   Multiscale   Morphology   Cosmic Web

MMF MMF Filamentary Filamentary Cosmic WebCosmic Web

Page 90: Dynamics  &   Multiscale   Morphology   Cosmic Web

Ph.D. thesis

Miguel Aragon-Calvo

2007

Page 91: Dynamics  &   Multiscale   Morphology   Cosmic Web

Gray: filament particles

Black: feature compression

Page 92: Dynamics  &   Multiscale   Morphology   Cosmic Web

Gray: filament particles

Black: feature compression

Page 93: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web:Cosmic Web:Cluster-Filament Cluster-Filament ConnectionConnection

#filaments emerging from #filaments emerging from clusters clusters

Mass & Volume content Mass & Volume content

Web morphologiesWeb morphologies

Page 94: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic Web:Cosmic Web:Cluster-Filament Cluster-Filament ConnectionConnection

Density distribution Density distribution

Morph. elements Morph. elements

Mass & Volume content Mass & Volume content

Web morphologiesWeb morphologies

Page 95: Dynamics  &   Multiscale   Morphology   Cosmic Web

Cosmic WebCosmic Web Dynamics & Evolution

- Megaparsec Tidal Field (Cosmic Web theory Bond et al.) - determines weblike geometry & topology - intimate link clusters and web features - large-small scale interaction: alignment galaxy spins along filaments possible SDSS confirmation - alignment voids over > 30 Mpc

Analysis: Unbiased analysis anisotropy & hierarchy cosmic web: - Voronoi & Delaunay tessellations - (natural neighbour) DTFE density field reconstruction & interpolation - basis for geometric & topological analysis: - Morse complex, singularities & critical net: spine - Watershed : voids - Multiscale Morphology Filter : multiscale weblike patterns