dynamics of ultra-precision machining and its effect on

32
Changqing Cheng Satish T.S. Bukkapatnam Department of Industrial & Systems Engineering Texas A & M University Dynamics of Ultra-precision Machining and Its Effect on Surface Roughness

Upload: others

Post on 18-Dec-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Changqing Cheng Satish T.S. Bukkapatnam

Department of Industrial & Systems Engineering

Texas A & M University

Dynamics of Ultra-precision Machining and Its

Effect on Surface Roughness

Outline

Introduction

Why ultra-precision machining (UPM)

Background and literature review

Research challenge and gap

Methodology

Physics-based model: process dynamics analysis using

delayed differential equation

Statistical model: sensor-based surface roughness

estimation

Results

Summary and future work

2

Introduction

Development of sensor-based technique: especially in

advanced manufacturing processes control

Aerospace, biomedical, electronics, automotive et al. (Lee 1999,

Liu 2004)

Taniguchi curve: nano-metric manufacturing accuracy

Industry relies on ultra-precision machining (UPM) to realize

surface roughness (Ra) at 10 nm โ€“ 30 um

3

Taniguchi 1983

Challenge in UPM 4

Quality issue: anomaly development (even in well-designed process) cannot be predicted

Physics-based models: cannot predict surface change

Cutting mechanics: cutting stresses (Marsh 2005); micro-plasticity effect (Yuan 1994, Lee 2001); tool interference (Cheung 2003);

material recovery and swelling effect (Kong 2006)

Micro-physics: crystallographic orientation of the grain (Lee

2000); metrology and process physics (Dornfeld et al. 2006)

Spectrum analysis: Ra spectrum component (Cheung and Lee

2000, Pandit and Shaw 1981, Hocheng et al. 2004)

Prahalad 2013 High-definition optical inspection

Surface roughness models

Sensor-based analytics models: applicable for real-time

Ra estimation

Vibration analysis: vibration amplitude and frequency (Lin 1998,

Abouelatta and Madl 2001, Liu 2004)

Acoustic emission (Beggan et al. 1999)

Temperature sensor (Hayashi et al. 2008)

Strain gauge sensor (Shinno et al. 1997)

Limited by nonlinear and nonstationary nature of machining

signals

5

Cheng et al. 2014

Approach

Physics domain model: consider tool radius effect,

ploughing and shearing effect, elastic material recovery; predict

system dynamic response

Sensor-based model: extract information from in situ

signals; detect change in the process

6

Process dynamics

3 types of vibrations: free vibration, forced vibration, and

self-excited vibration (chatter) (Tobias 1961)

Frictional chatter: ploughing on the work-piece surface

Regenerative chatter: overlapping cuts; source for vibration

amplification

Bring system to instability

Result in inferior part surface and increase tool wear

Most undesirable and least controllable (Quintana et al 2011)

How to model the chatter at UPM is still not well

addressed.

8

Phase difference = 0 Phase difference = ๐œ‹

Quintana et al 2011

UPM dynamics model

๐‘ฆ ๐‘ก + 2ํœ๐œ”๐‘›๐‘ฆ ๐‘ก + ๐œ”๐‘›2๐‘ฆ ๐‘ก = โˆ’

๐น ๐‘ฆ ๐‘ก ,๐‘ฆ ๐‘กโˆ’๐‘‡

๐‘š

๐‘ฆ: tool displacement

๐‘‡: period length, ๐‘‡ =1

ฮฉ

Process parameters: feed ๐‘“0, spindle speed ฮฉ, chip width ๐‘ค

Thrust force model: shearing and ploughing components

9

๐‘“0 โ‰ฅ ๐‘“๐‘š๐‘–๐‘›: material removal; both

shearing and ploughing forces exist

๐‘“0 < ๐‘“๐‘š๐‘–๐‘› : only elastic deformation

and ploughing force

๐‘“0

Shearing Force

Dynamic chip thickness

๐‘ก๐‘ข = (๐‘“0 โˆ’ ๐‘ฆ ๐‘ก + ๐‘ฆ(๐‘ก โˆ’ ๐‘‡)) โˆ’ ๐›ฟ

Shearing angle (Waldorf et al 1999)

10

๐œ™ = tanโˆ’1๐‘“0 โˆ’ ๐›ฟ

๐‘…tan๐œ‹4+

๐›ผ2

+๐›ฟ

tan(๐œ‹2+ ๐›ผ)

โˆ’ 2๐‘…๐›ฟ โˆ’ ๐›ฟ2 + ๐‘ก๐‘/ cos ๐›ผ โˆ’ ๐‘“0 tan ๐›ผ

Thrust Force

Shearing component

Shearing force parallel to shearing plane

(๐‘ค: chip width/ depth of cut)

Normal force on shearing plane

๐น๐‘› = ๐น๐‘ [1 + 2(๐œ‹

4โˆ’ ๐œ™)]

Contribution to thrust force

๐น๐‘ก(1) = ๐น๐‘› cos ๐œ™ โˆ’ ๐น๐‘  sin๐œ™ = ๐‘˜๐‘ค 1 +๐œ‹

2โˆ’ 2๐œ™ cot ๐œ™ โˆ’ 1 ๐‘ก๐‘ข

Ploughing component (Waldorf 1999)

Elastic model: cylinder indentation on an elastic surface

Contribution to thrust force

11

๐น๐‘  = ๐‘˜๐‘ก๐‘ข๐‘ค/ sin๐œ™

๐น๐‘ก(1)

๐‘š= ๐ด๐‘˜๐‘ค๐‘ก๐‘ข

Waldorf et al. 1999 ๐น๐‘ก(2) =

2.375๐œ‹๐‘ค๐ธ

8 1 โˆ’ ๐œˆ2 ๐›ฟ

๐น๐‘ก(2)

๐‘š= ๐ต๐›ฟ

Process dynamics

Delayed differential equation for tool dynamics

๐‘ฆ ๐‘ก + 2ํœ๐œ”๐‘›๐‘ฆ ๐‘ก + ๐œ”๐‘›2๐‘ฆ ๐‘ก = โˆ’

๐น๐‘ก(1) + ๐น๐‘ก(2)

๐‘š= โˆ’๐ด๐‘ก๐‘ข โˆ’ ๐ต๐›ฟ

= โˆ’๐ด๐‘˜๐‘ค๐‘“0 โˆ’ ๐ด๐‘˜๐‘ค ๐‘ฆ ๐‘ก โˆ’ ๐‘ฆ ๐‘ก โˆ’ ๐‘‡ + ๐›ฟ ๐ด๐‘˜๐‘ค โˆ’ ๐ต= โˆ’๐ด๐‘˜๐‘ค ๐‘ฆ ๐‘ก โˆ’ ๐‘ฆ ๐‘ก โˆ’ ๐‘‡ + ๐ถ

No closed-form solution to dynamics state: ๐‘ฆ(๐‘ก)

Temporal finite element model can be used for

approximation (Bayly et al. 2003, Khasawneh et al. 2009)

The time per revolution ๐‘ป is divided into ๐‘ด elements

Approximation to the solution for the tool displacement on

each element

๐‘ฆ๐‘—๐‘› ๐œ = ๐‘Ž๐‘—๐‘–

๐‘›๐‘†๐‘–(๐œ) 4๐‘–=1 ๐‘ฆ๐‘—

๐‘›โˆ’1 ๐œ = ๐‘Ž๐‘—๐‘–๐‘›โˆ’1๐‘†๐‘–(๐œ)

4๐‘–=1

๐œ: local time, 0 โ‰ค ๐œ โ‰ค ๐‘ก๐‘—; ๐‘ก๐‘—: time for element ๐‘—, ๐‘ก๐‘— =๐‘‡

๐‘€

12

Temporal finite element model (TFEM)

Hermite basis functions (Mann et al. 2006)

13

Displacement: ๐‘Ž11 ๐‘Ž13/๐‘Ž21 ๐‘Ž23

๐‘†1 ๐œ = 1 โˆ’ 3๐œ

๐‘ก๐‘—

2

+ 2๐œ

๐‘ก๐‘—

3

๐‘†2 ๐œ = ๐‘ก๐‘—๐œ

๐‘ก๐‘—โˆ’ 2

๐œ

๐‘ก๐‘—

2

+๐œ

๐‘ก๐‘—

3

๐‘†3 ๐œ = 3๐œ

๐‘ก๐‘—

2

โˆ’ 2๐œ

๐‘ก๐‘—

3

๐‘†4 ๐œ = ๐‘ก๐‘— โˆ’๐œ

๐‘ก๐‘—

2

+๐œ

๐‘ก๐‘—

3

โ€ข Orthogonal; second-order

continuous

โ€ข Coefficients represent the state

variable (displacement and

velocity) at the beginning/end of

each element

โ€ข Boundary conditions

Velocity: ๐‘Ž12 ๐‘Ž14/๐‘Ž22 ๐‘Ž24

TFEM

Approximation leads to non-zero error

๐‘Ž๐‘—๐‘–๐‘›๐œ™ ๐‘–

4

๐‘–=1

+ 2ํœ๐œ”๐‘› ๐‘Ž๐‘—๐‘–๐‘›๐œ™ ๐‘–

4

๐‘–=1

+ ๐œ”๐‘›2 ๐‘Ž๐‘—๐‘–

๐‘›๐œ™๐‘–

4

๐‘–=1

+ ๐ด๐‘˜๐‘ค ๐‘Ž๐‘—๐‘–๐‘›๐œ™๐‘–

4

๐‘–=1

โˆ’ ๐‘Ž๐‘—๐‘–๐‘›โˆ’1๐œ™๐‘–

4

๐‘–=1

โˆ’ ๐ถ = ๐‘’๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ

Method of weighted residuals (Reddy 1993)

Independent trial functions: ๐œ“1 = 1 ๐œ“2 =2๐œ

๐‘ก๐‘—โˆ’ 1

๐‘Ž๐‘—๐‘–๐‘›๐œ™ ๐‘–

4

๐‘–=1

+ 2ํœ๐œ”๐‘› ๐‘Ž๐‘—๐‘–๐‘›๐œ™ ๐‘–

4

๐‘–=1

+ ๐œ”๐‘›2 ๐‘Ž๐‘—๐‘–

๐‘›๐œ™๐‘–

4

๐‘–=1

๐‘ก๐‘—

0

+ ๐ด๐‘˜๐‘ค ๐‘Ž๐‘—๐‘–๐‘›๐œ™๐‘–

4

๐‘–=1

โˆ’ ๐‘Ž๐‘—๐‘–๐‘›โˆ’1๐œ™๐‘–

4

๐‘–=1

โˆ’ ๐ถ ๐œ“๐‘ ๐œ ๐‘‘๐œ = 0

14

TFEM

๐‘Ž๐‘—๐‘–๐‘› ๐œ™ ๐‘– + 2ํœ๐œ”๐‘›๐œ™ ๐‘– + ๐œ”๐‘›

2 + ๐ด๐‘˜๐‘ค ๐œ™๐‘–

๐‘ก๐‘—

0

4

๐‘–=1

๐œ“๐‘ ๐œ ๐‘‘๐œ

= ๐‘Ž๐‘—๐‘–๐‘›โˆ’1 ๐ด๐‘˜๐‘ค๐œ™๐‘–

๐‘ก๐‘—

0

4

๐‘–=1

๐œ“๐‘ ๐œ ๐‘‘๐œ + ๐ถ๐œ“๐‘ ๐œ ๐‘‘๐œ ๐‘ก๐‘—

0

15

๐‘Ž๐‘—๐‘–๐‘›

4

๐‘–=1

๐‘๐‘๐‘–๐‘—

= ๐‘Ž๐‘—๐‘–๐‘›โˆ’1๐‘ƒ๐‘๐‘–

๐‘—

4

๐‘–=1

+ ๐‘„๐‘๐‘—

๐‘ƒ๐‘๐‘–๐‘—

= ๐ด๐‘˜๐‘ค๐œ™๐‘–

๐‘ก๐‘—

0

๐œ“๐‘ ๐œ ๐‘‘๐œ

๐‘„๐‘๐‘—= ๐ถ๐œ“๐‘ ๐œ ๐‘‘๐œ

๐‘ก๐‘—0

๐‘๐‘๐‘–๐‘—

= ๐œ™ ๐‘– + 2ํœ๐œ”๐‘›๐œ™ ๐‘– + ๐œ”๐‘›2 + ๐ด๐‘˜๐‘ค ๐œ™๐‘–

๐‘ก๐‘—

0

TFEM

๐‘€ = 2; boundary continuous conditions

Matrix format 1 0 00 1 0

๐‘11 ๐‘12 ๐‘13

0 0 00 0 0

๐‘14 0 0๐‘21 ๐‘22 ๐‘23

0 0 ๐‘11

0 0 ๐‘21

๐‘24 0 0๐‘12 ๐‘13 ๐‘14

๐‘22 ๐‘23 ๐‘24

๐‘Ž11 ๐‘Ž12

๐‘Ž21๐‘Ž22

๐‘Ž23

๐‘Ž24

๐‘›

=

0 0 00 0 0

๐‘ƒ11 ๐‘ƒ12 ๐‘ƒ13

0 1 00 0 1

๐‘ƒ14 0 0๐‘ƒ21 ๐‘ƒ22 ๐‘ƒ23

0 0 ๐‘ƒ11

0 0 ๐‘ƒ21

๐‘ƒ24 0 0๐‘ƒ12 ๐‘ƒ13 ๐‘ƒ14

๐‘ƒ22 ๐‘ƒ23 ๐‘ƒ24

๐‘Ž11 ๐‘Ž12

๐‘Ž21๐‘Ž22

๐‘Ž23

๐‘Ž24

๐‘›โˆ’1

+

00๐‘„1

๐‘„2

๐‘„1

๐‘„2

๐‘ต๐’‚๐‘› = ๐‘ท๐’‚๐‘›โˆ’1 + ๐‘ธ

16

Stability analysis

๐’‚๐‘› = ๐‘ฎ๐’‚๐‘›โˆ’1 + ๐‘ตโˆ’1๐‘ธ (๐‘ฎ = ๐‘ตโˆ’1๐‘ท Monodromy operator )

Criterion: asymptotic stability requires eigenvalues of

๐‘ฎ within the unit circle of the complex plane

Maximum absolute eigenvalues< ๐Ÿ

Stability lobe diagram

Map the area of stability as a function of the machining

parameters (feed, depth of cut, and spindle speed)

Identify the optimum conditions that maximize the chatter-

free material removal rate and avoid inferior surface

17

Sensitivity analysis

Stability sensitivity on ๐›ฟ with perturbation ๐‘‘๐›ฟ

tan๐œ™โ€ฒ = tan๐œ™ + โˆ’๐‘… tan๐œ‹

4+

๐›ผ

2โˆ’

๐‘ก๐‘cos ๐›ผ

+ ๐‘“0 cot ๐›ผ +๐‘“0๐‘… + ๐‘… โˆ’ ๐‘“0 ๐›ฟ

2๐‘…๐›ฟ โˆ’ ๐›ฟ2๐‘‘๐›ฟ

๐ดโ€ฒ โ‰ˆ1 +

๐œ‹2

tan๐œ™+

2 tan๐œ™ 2

3โˆ’ 3

+2 tan๐œ™ (๐‘“0๐‘… + ๐‘… โˆ’ ๐‘“0 ๐›ฟ)

3 2๐‘…๐›ฟ โˆ’ ๐›ฟ2โˆ’

(1 +๐œ‹2)(๐‘“0๐‘… + ๐‘… โˆ’ ๐‘“0 ๐›ฟ)

2๐‘…๐›ฟ โˆ’ ๐›ฟ2 tan๐œ™ 2๐‘‘๐›ฟ

18

๐ถ0 โ‰ช tan๐œ™, ๐ถ0 = 0

Sensitivity analysis

2-element maximum eigenvalue analysis

๐œ†โ€ฒ๐‘š๐‘Ž๐‘ฅ โ‰ˆ ๐œ†๐‘š๐‘Ž๐‘ฅ +tan ๐œ™โ€ฒ 2

tan ๐œ™+๐‘“0๐‘…+ ๐‘…โˆ’๐‘“0 ๐›ฟ

2๐‘…๐›ฟโˆ’๐›ฟ2๐‘‘๐›ฟ

1+2๐œ‹

4โˆ’๐œ™โ€ฒ

๐‘ก๐‘Ž๐‘›๐œ™โ€ฒโˆ’ 1 1 +

๐œ‹

2+

tan ๐œ™ 2๐‘…๐›ฟโˆ’๐›ฟ2

1+๐œ‹

2๐‘“0๐‘…+ ๐‘…โˆ’๐‘“0 ๐›ฟ

๐‘‘๐›ฟ

Given ๐‘‘๐›ฟ = ยฑ0.2๐›ฟ, ๐œ†๐‘š๐‘Ž๐‘ฅโ€ฒ โ‰ˆ ๐œ†๐‘š๐‘Ž๐‘ฅ ยฑ 0.08

Uncertainty for stability boundary: ๐œ†๐‘š๐‘Ž๐‘ฅ close to 1

19

UPM experiment setup

Face turning of aluminum alloy disk-shaped workpiece

Cutting tools: polycrystalline diamond (๐‘… = 60 ๐‘ข๐‘š)

Vibration sensors: Kistler 8782A500

Force sensors: 3-axis piezoelectric dynamometer Kistler

A9251A

20

Cutting Force Sensors

Marks on sample

Cutting Tool

Acoustic Emission Sensor

Vibration Sensors

Feed = 12 / 6 um per revolution 21

โ€ข ๐‘…๐‘Ž measured from MicroXAMยฎ for chatter identification

โ€ข ๐‘…๐‘Ž > 100 ๐‘›๐‘š: onset of the chatter

Feed = 3 / 1.5 um per revolution 22

Feed = 0.75 um per revolution 23

โ€ข ๐‘“0 < 0.75 ๐‘ข๐‘š/revolution: no material removal/chip formation;

only ploughing; high surface roughness

Summary for physics-based model

Delayed differential equation (DDE) with temporal finite

element model (TFEM)

Investigate the process dynamics for UPM

Consider the dynamic shearing and ploughing forces at

nano-scale machining

Can identify optimum conditions, tending to generate low

surface roughness

Challenges

Surface roughness Ra varies according to chip formation

process and other uncontrollable factors even under

optimum conditions

Ra variation monitoring in the incipient stages in real-time

given process parameters; vital for nano-metric range finish

assurance

24

Physics-based sensor fusion technique for Ra real-time estimation

Sensor-based model

Feature extraction

Difficult to evaluate UPM process from the raw time series

signals

Transform time series into feature space with reliable,

effective and accurate features

Identify the patterns hidden into the raw signals

25

Statistical features 26

State space reconstruction 27 Recurrence quantification analysis

๐‘ฅ Nonlinear vibration signal

Recurrence quantification analysis

Threshold recurrence plot

RQA extraction

Nonlinear Dynamic Characterization

Time delay ๐œ

Embedded dimension ๐‘‘

State space

reconstruction

๐‘‹

PCA

Total number of variables: 3 + 6 ร— 9 = 57

The first 3 principal components explained over 70% of

the total variance

Contribution to the 1st principal component

28

๐‘‰๐‘–๐‘_๐‘‹

๐‘‰๐‘–๐‘_๐‘Œ ๐น_๐‘‹ ๐น_๐‘

Gaussian process (GP) model

Mapping between input ๐‘  โˆˆ ๐‘…๐‘›๐‘ and z โˆˆ ๐‘…

z = ๐‘“ ๐‘  + ํœ€ ํœ€ โˆผ ๐‘(0, ๐œŽ12)

Without explicit functional form, covariance structure can be used to represent the function value distribution

Z โˆผ ๐‘(0, ๐พ ๐‘†, ๐‘† + ๐œŽ12๐ผ)

๐‘‹ = ๐‘ 1, ๐‘ 2, โ€ฆ , ๐‘ ๐‘›๐‘ and ๐‘ = [๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ง๐‘›๐‘

]

Covariance matrix ๐พ๐‘–๐‘— = ๐‘˜๐œƒ(๐‘ ๐‘– , ๐‘ ๐‘—), ๐œƒ hyperparameters to be estimated

Squared exponential form

๐‘˜๐œƒ ๐‘ ๐‘– , ๐‘ ๐‘— = ๐œŽ02 exp โˆ’

(๐‘ ๐‘–โˆ’๐‘ ๐‘—)๐‘‡๐‘€(๐‘ ๐‘–โˆ’๐‘ ๐‘—)

2+ ๐œŽ1

2

๐œŽ02: process variance

๐œŽ12: noise variance

๐‘€ = ๐‘‘๐‘–๐‘Ž๐‘” ๐‘™ โˆ’2: length scale in each input direction

Infinitely differentiable; close points are highly correlated

Log likelihood function to optimize the hyperparameters

29

GP prediction

At new input ๐‘ โˆ— โˆˆ ๐‘…๐‘›๐‘ , the noise-free prediction ๐‘“โˆ— is given

by the first two moments

Can predict a complete distribution ๐พ ๐‘†, ๐‘ โˆ— : ๐‘›๐‘ ร— 1 vector, each element is the covariance

between ๐‘ โˆ— and one sample point

Mean: linear combination of the observation values

Covariance: difference between prior covariance and the

information explained

30

),()),((),(),()cov(

)),((),(

*

12

1****

12

1**

sSKISSKsSKssKf

ZISSKsSKf

T

T

30

Estimation result 31

Accuracy of the fitting

Over 85% of measured Ra values are within the 2-sigma

prediction band

Summary and future work

Summary

Physics-based model can predict chatter onset according

to process parameters; not applicable for real-time Ra

estimation

Physics-based statistical model can estimate the surface

roughness with accuracy over 80%

Future work

Cutting speed and thermal effects on the thrust force

Built-up edge effect: dead metal cap on tool edge

Uncertainty in the stability analysis

32

Acknowledgement

We acknowledge the generous support of the NSF

(Grants CMMI 100978, 1301439).

33