e boa expansion joints guide 29.3

428
Expansion Joints Guide

Upload: toni-stvchlr-esteve-chaler

Post on 18-Apr-2015

121 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: e BOA Expansion Joints Guide 29.3

Exp

ansi

on

Join

ts G

uid

e

Expansion JointsGuide

www.boagroup.com

Additional sites in:Buenos Aires, ArgentinaWien, AustriaEmbu – São Paolo, BrazilShanghai, ChinaPlzen, CzechiaChassieu, FranceFère-en-Tardenois, FrancePort Elizabeth, South Africa

BOA Holding GmbHLorenzstrasse 2–6D-76297 StutenseeGermanyPhone +49 (0)72 44 99 0Fax +49 (0)72 44 99 [email protected]

www.boagroup.com

Expansion Joints, Metal HosesMetal Bellows, Plastics Components

Station-Ost 1CH-6023 Rothenburg, Switzerland

Phone +41 (0)41 289 41 11Fax +41 (0)41 289 42 02

[email protected]

www.boa.ch

29.3_UK_00_Umschlag.qxp:29.3_DE_00_Umschlag.qxp 05.11.2009 9:21 Uhr Seite 1

Page 2: e BOA Expansion Joints Guide 29.3

BOA AGExpansion JointsMetal Hoses, Metal BellowsStation-Ost 1CH-6023 Rothenburg, SwitzerlandPhone +41 (0)41 289 41 11Fax +41 (0)41 289 42 [email protected]

BOA EXPANSION JOINTS GUIDE Edition 29.3-UK

29.3_UK_Kap_01.qxp:UK_02_Kap_01.qxp 04.11.2009 15:48 Uhr Seite 1

Page 3: e BOA Expansion Joints Guide 29.3

Contents

2

BOA EXPANSION JOINTS GUIDE

page1 General information 4

2 Expansion joints in general 62.1 Main elements and their function 72.2 The multi-ply bellows 82.3 Calculating the multi-ply bellows 112.4 Types of connections 122.5 The inner sleeve 142.6 Untied expansion joints 142.7 Tied expansion joints 152.8 Types of expansion joints: product range 162.9 Production opportunities 17

3 Quality assurance 183.1 Quality management 183.2 Tests and laboratory 20

4 Applications 224.1 Diesel and gas engines 224.2 Aerospace 244.3 Power distribution 244.4 Domestic installations 254.5 Water and effluent treatment 264.6 Plant construction, general piping construction 264.7 Pumps and compressors 27

5 Definition of compensation types 285.1 Determination of movement range 285.2 Types of compensation 315.3 Anchor points, pipe alignment guides, suspended holding devices 355.4 Practical procedure 385.5 Calculating movement and anchor point forces 42

Axial expansion joints 425.6 Angular expansion joints 465.7 Lateral expansion joints 805.8 Universal expansion joints 92

6 Standard programme 966.1 General 966.2 Reduction 986.3 BOA Axial expansion joints 1006.4 BOA Angular expansion joints 1036.5 BOA Lateral expansion joints 105

29.3_UK_Kap_01.qxp:UK_02_Kap_01.qxp 30.10.2009 14:44 Uhr Seite 2

Page 4: e BOA Expansion Joints Guide 29.3

3

page6.6 BOA Gimbal expansion joints 1106.7 BOA Universal expansion joints 1116.8 BOA Low pressure expansion joints 1146.9 BOA Small expansion joints 1186.10 Axial expansion joints for Mannesmann Pressfitting System 1216.11 Axial steel expansion joints 1226.12 Tables standard programme 125

7 Vibration absorbers 2747.1 General 2747.2 Technical data 2757.3 Sound absorbing expansion joints 2767.4 Tables standard programme 277

8 Rubber expansion joints 2868.1 General 2868.2 Technical data 2878.3 Materials 2878.4 Pressure and temperature 2898.5 Reductions 2908.6 Type designation 2918.7 Tables standard programme 297

9 Dismantling pieces 3229.1 General 3229.2 Technical data 3249.3 Tables standard programme 325

10 Rectangular, unreinforced expansion joints 338

11 Installation instructions 34611.1 General safety recommendations 34611.2 Axial expansion joints / dismantling pieces 34911.3 Angular and lateral expansion joints 36311.4 Rubber expansion joints 373

12 Annex / Standards 38312.1 Symbols used in pipe construction 38312.2 Table on guide analyses and characteristic strength values 38412.3 International standards / comparison table 38812.4 Conversion tables 39012.5 Corrosion table 39412.6 Subsidiaries / Holding Companies / Agencies 426

29.3_UK_Kap_01.qxp:UK_02_Kap_01.qxp 30.10.2009 14:44 Uhr Seite 3

Page 5: e BOA Expansion Joints Guide 29.3

4

1 General information

Presenting BOA Group and BOA AG

BOA Group, Stutensee, GermanyBOA Group is one of the world’s leading manufacturers for flexible mechanical elements for the automotive industry and for a wide range ofindustrial applications. The headquarter is based in Stutensee nearKarlsruhe/Germany.Until August 2006 BOA operated under IWKA Balg- und KompensatorenTechnologie GmbH. About 20 subsidiaries and holding companies in elevencountries are now belonging to the new BOA Group. Additionally, the organization keeps sales and service offices in the most important industrialcountries.BOA Group develops, produces and distributes worldwide stainless steelcomponents for motor management, exhaust systems and side componentsfor vehicles. In the industrial division, BOA delivers pressure-tight and flexi-ble elements for applications in energy technics and technical construction:railway, shipyards, aerospace industry, vacuum technique, measurement andcontrol as well as armatures.BOA solutions include both standardized products and customized, indivi-dual elements developed together with the customer.

Product range of BOA Group:Expansion JointsFor pipe systems in chemical and refinery plants, power plantengineering, district heating and diesel engine manufacturing.

Metal BellowsAs elastic connections and seals in valves and fittings, plant and chemical engineering, electricalengineering, vacuum technique,solar and heating installations, auto-motive engineering, measurementand control equipment.

29.3_UK_Kap_01.qxp:UK_02_Kap_01.qxp 30.10.2009 14:44 Uhr Seite 4

Page 6: e BOA Expansion Joints Guide 29.3

5

BOA AG, Rothenburg, SwitzerlandBOA AG, based in Rothenburg near Lucerne, was founded in 1906. Over 200 employees are responsible for development, production, marketing andsales of high-quality expansion joints, metal bellows, metal hoses and plas-tics components. BOA AG is supported by its subsidiaries and holding com-panies in France, the Netherlands, Poland, Germany, USA and by agenciesin all major industrial countries.The partly varying technologies within the BOA Group form a meaningfulsymbiosis for covering the needs of our customers.BOA AG is an internationally recognized company which is among the market leaders in its activity fields. The high standard in process manage-ment and environmental engineering is maintained and guaranteed by EN 9100:2003, ISO 9001:2000, ISO 14001:2004 and DIN EN 15085-2 certification.

Metal Hosesmade of stainless steel, used wher -ever flexibility and highest reliabilityare required, e.g. gas distribution in private households, solar andheating engineering, but also in theautomotive industry, aerospace andother industrial applications.

Plastics ComponentsHose lines, high pressure hoses,expansion joints and steel piping,whose parts in direct contact withthe flow are covered by plastics,offer big advantages, plastics beingmostly resistant against corrosion.Depending on the application, thesecovers are made of PTFE (Teflon),PFA or EPDM (rubber).

29.3_UK_Kap_01.qxp:UK_02_Kap_01.qxp 30.10.2009 14:44 Uhr Seite 5

Page 7: e BOA Expansion Joints Guide 29.3

Type ofmovement

Type Designaxial one

directionseveral

directionsone

directionseveral

directions

MovementsAbsorption of the

reaction force

axial

axial no

yes

yes

yes

yes

yes

no

yes

axial,pressure-balanced

simplejoint

gimbaljoint

with twotie rods

withseveral tie

rods

universal

universal,pressure-balanced

angular

lateral

universal

angular lateral / radial

2 Expansion joints in general

The main function of expansion joints in their various constructions is to com-pensate for length variations and lateral shifts in pipe systems, machines andappliances, caused by temperature differences, misalignment during installationor construction setting. Therefore they are used for the construction of pipesystems for hot or cold water, steam, petrol, fuel, hot gases and various chemi-cal products. The construction of engines is another application field, whereexpansion joints absorb vibrations in diesel engines, turbines or compressors bypreventing the vibration to be transmitted into the exhaust or compressed airsystems. As dismantling pieces they assure easy mounting.

General table expansion joints according to ISO 15348

6

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 6

Page 8: e BOA Expansion Joints Guide 29.3

7

The table shows the different types of expansion joints according to their mainfunction and construction and the movement ranges. Specially to be remark -ed: all types without tie rods, while under pressure and shock, put a reactionforce (= product of pressure x cross-section of expansion joint) on the pipesystem. Therefore the pipe system has to be specially anchored.

2.1 Main elements and their functionExpansion joints are generally composed of three elements to fulfill their job:

- bellows- connecting part (weld end, flange)- inner sleeve- tie rod (only at hinged or pressure balanced types)

All these parts can be composed in different ways to become the final product"expansion joint".Our standard programme (section 6) shows a wide range of already optimallycomposed expansion joints.

o com-es andstallationpipes chemi-

whereessors bysed air

inner sleeve

weld end

angular tie rod

bellows

flange

tie rod

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 7

Page 9: e BOA Expansion Joints Guide 29.3

2.2 The multi-ply bellows

8

The basic element and therefore the heart of any expansion joint is the bellow.Large flexibility in axial, lateral and angular direction as well as high pressureresistance is expected from this unit. Furthermore it has to resist high tempe-ratures, vibrations and caustic media. BOA, as the inventor of the multi-ply bellows, continued developing this newtechnique. Only bellows of austenitic steel or other high-grade material aremanufactured.

The thin strip material is shaped by alongitudinal welding seam to a tightinner and outside tube (see picture atleft).Between, depending on pressure andtemperature, strip material is spirallywound up and put together to a com-pact cylindrical pack. The singlecylinders may consist of differentmaterials to realize cheaper solutions,when less corrosion resistance isdemanded.

axial movement angular movement lateral movement

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 8

Page 10: e BOA Expansion Joints Guide 29.3

9

This construction principle offers the following advantages in terms of safety:

• early leaking detection• possibility of permanent leaking control while using dangerous media• despite faint leaking, pressure resistance and functionality of the

expansion joint are guaranteed over a certain time (weeks, months)• no need of immediate replacement• spontaneous bursting is impossible.

By pressing out annular corrugationsthrough cold forming, the multi-plybellow is formed with its particularlyuseful technical performance.

• high flexibility• short construction length• small displacement forces• large movement capacities• small corrugation height• vibration absorption

The multi-ply bellow has a positiveeffect on the expansion joint’s safety. If ever the layer in contact with themedium develops a leak, e.g. byoverstress or fatigue, the medium willtry to find its way slowly through thelabyrinth of layers. Once arrived out-side, it will automatically mark theleak at the drilled control hole.

vement

Drilled hole for control purposes

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 9

Page 11: e BOA Expansion Joints Guide 29.3

10

Vibration absorbers take another advantage of the multi-ply bellows. Thanks to the compact layer structure, friction effects grow out inside the bellows pack, and when the bellows is moving, the force-movement-diagramdevelops hysteresis.

• Therefore the principle of the multi-layer bellows is an excellent solid-borne sound absorber. Similar results are realized such as with rubberelements, plus the advantage of higher temperature and ageing resis -tance.

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 10

Page 12: e BOA Expansion Joints Guide 29.3

11

2.3 Calculating the multi-ply bellows

The positive effect of the very flexiblemulti-ply bellows compared with thesingle-ply expansion joints is easy toshow with a simple bending bar. It isevident, that at the same bendingrate and the same dimensions, withhalf of the bar’s thickness a, thebend ing tension F2 is also halved,and the displacement force of thetwo-layer bending bar is only onequarter of the original value.

Usually, the bellows are exposed toextreme static or dynamic forcesgenerated by internal pressure, tem-perature, vibrations etc. Different to afix pipe system, the calculation of theeffects of the varying forces to amulti-ply bellow becomes very com-plex.

To meet the high safety expectancies,engineering must be supported by areliable and tested calculationmethod. BOA makes use of theresults and knowledge of the group ofAmerican expansion joints manufac-turers (EJMA), published since 1958.This calculation method is highlyapproved for multi-ply expansionjoints and is recognized by all interna-tional certification authorities.STANDARDS OF

THE EXPANSION JOINTMANUFACTURERSASSOCIATION, INC.

theiagram

solid-rubberresis -

single-ply

multi-ply

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 11

Page 13: e BOA Expansion Joints Guide 29.3

12

2.4 Types of connections

Depending on the application, exchangeability, safety or pressure rating, weusually distinguish three types to connect the expansion joint with the pipesystem or the unit.

The advantages of this connectiontype are:1. The outside dimensions of the

connection are compact to the continuing piping

2. The tight weld seams (proved to be indestructible by tests) for the application under elevated pres-sure conditions or dangerous media.

Welding the multi-ply bellows madeof austenitic steel and the ferritic weldend (or flange) is a process whichrequires particular measures, trainingand experience. It is one of the deci-sive points for the quality of anexpansion joint. BOA controls andguarantees the catch of the bellows‘layers into the welding, a robust and

Expansion joint forwelding in

Expansion joint withwelded flange connec-tion

Expansion joint withloose flange connection

Expansion joint for welding in

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 12

Page 14: e BOA Expansion Joints Guide 29.3

13

The advantages of this connectiontype lie in its quick replacement andthe short construction length. The welding seam procedure betweenthe multi-ply bellows and the flangefollows strictly the same conditions asfor the weld ends.

Expansion joints with loose flange connection

As for the welded flanges, theadvantages of this connection typelie in the easy replacement, quickinstallation and the short construc-tion length.

Furthermore, the bellows, on bothsides bordered around the flange,keeps the flange movable. If theholes are not in alignment and theinside medium is aggressive, thebordered bellows protects the flan-ges, so that there is no need tochoose special materials for them.

continuous weld structure and a minimal heating zone. By using our testedand optimized welding procedure, we exclude weld flaws, hot cracks, in -clusions, pores and blowholes.

Expansion joint with welded flange connection

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 13

Page 15: e BOA Expansion Joints Guide 29.3

14

2.5 The inner sleeve (protecting tube)

Inner sleeves protect the bellow andprevent it from being activated byvibrations caused by the medium’shigh speed. The installation of aninner sleeve is recommended,

• if abrasive media are used• if large temperature divergences are

expected

2.6 Untied expansion joints

Expansion joints without tie rods(axial or universal), while under pres-sure and shock, put a reaction forceFP (= product of overpressure p xcross section area A) on the pipesystem and the anchor points respec-tively. (For detail information see5.5.1)

The bellow’s cross-section A may be found in the dimension tables of theexpansion joints types. If high pressures and large nominal widths occur, thereaction force becomes enormous, e.g. at a pressure of 40 bar and 400 mmnominal width, the reaction force is approx. 570 kN. Therefore the anchorpoints have to be massive.

• to prevent the deposition of solid parts in the corrugations• if the flow rate is higher than ca. 8 m/sec for gaseous media• if the flow rate is higher than ca. 3 m/sec for liquid media

For further instruction see 11.1 "General safety recommendations".

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 14

Page 16: e BOA Expansion Joints Guide 29.3

15

2.7 Tied expansion joints

The reaction force, explained before,is taken up by a tie bar system, i.e.articulation parts or tie rods.Depending on the pipe alignmentguide and the occuring movements,the appropriate tied expansion jointtype is chosen (see 5.2). Despite ofthe tied version the total length of theexpansion joint remains short and istherefore also advantageous forsystem solutions.

If high pressures or pressure impactsoccur, and to avoid massive andexpensive anchor point construc-tions, tied expansion joints are chosen by the expert engineer.

Along with taking up the reactionforce and its correct transmitting tothe connecting parts, the tie rodssupport the articulation parts, thusensuring the movement function.Besides, there are very often additio-nal loads and moments to transmit. Itis evident, that the dimensioning ofthe tied elements has to be madewith the help of a reliable and testedcalculation method. BOA is using theadvantages of FEM, calculating withthe non linear ultimate load method.The results from this dimensioningmethod mainly meet the values re -ceived during many practical testsand bursting pressure tests.

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:44 Uhr Seite 15

Page 17: e BOA Expansion Joints Guide 29.3

16

2.8 Types of expansion joints: product range

Untied execution Tied executionwith pressure reaction force without pressure reaction force

Low pressure expansion jointsBOA Type EXW Reasonably priced

EXF execution for largeEXUW movements and EXUF low pressures in

exhaust, flue gas,effluent pipes,

p. 116 dilatations, etc.

Angular expansion jointsBOA Type AWT Large angular

AFS movement in one AFB plane at short

building lengths fordemanding process and district heating

p. 103 piping

Universal expansion jointsBOA Type UW Large movement

UFS absorption in everyUFB direction for pipe and

plant construction,installation compensa-

p. 111 tion, subsidences

Lateral expansion jointsBOA Type LW All-around circularly

LFS movable, for plantLFB construction,LWT turbines,

subsidencesp. 105

Axial expansion jointsBOA Type W Large absorption of

FS axial movements atFB short building lengths

for pipe and plant construction.

p. 100

Pressure balanced expansion jointsBOA Type CW Special expansion

CFS joints with appropriateCLW construction for pressure CLF relief, for linear or

deviated pipe quide

Small expansion jointsBOA Type Za Absorption of axial

Ga movements, for HVACI piping7179 00X-MS/ME7160 00S-TI/RI/TA/RA/LF

p. 118 7162 00S-TI/RI/TA/RA/LF

Gimbal expansion jointsBOA Type KAWT Large angular movement

KAFS in several planes at shortKAFB building lengths for

demanding processpiping

p. 110

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:45 Uhr Seite 16

Page 18: e BOA Expansion Joints Guide 29.3

17

2.9 Production opportunities

We are manufacturing expansion joints elements in diameters from 10 mm upto 2100 mm. They resist nominal pressure up to 100 bar and may be used attemperatures from –270°C until 900°C (depending on the choice of material).BOA expansion joints fully meet the high demands concerning flexibility, operating stability, long life span, tightness, temperature resistance, mechani-cal strength and pressure resistance.

Our conceptions to resolve problems with the help of our products result frominnovative research and development work. Varied experiences made over theyears help taking profit from the newest technical engineering standards.

Precise manufacturing and an extensive test programme to guarantee perma-nent quality assurance ensure technically performing products of high quality.

Untied execution Tied executionwith pressure reaction force without pressure reaction force

Rubber expansion jointsBOA Type 3140 00S-.... as a reasonably

priced variant for the absorption p. 286 of dilatations and vibrations.

Rubber expansion jointsBOA Type 3840 DFS-.... as a reasonably

priced variant for the absorption p. 286 of dilatations and vibrations.

e

Vibration absorbersBOA Type Alpha-C Protecting pipe

systems andinstallations from

p. 274 vibrations/oscillations

Vibration absorbersBOA Type Epsilon-C Protecting pipe

systems and install -ations from vibra -

p. 274 tions/oscillations.

Dismantling pieces without tie rods BOA Type AKFB-U They create a

AKFS-U sufficient gap for easydismantling andreplacement of

p. 322 fittings

Dismantling pieces with tie rodsBOA Type AKFB-Z They create a

AKFS-Z sufficient gap forAK-Z easy dismantling

and replacementp. 322 of fittings

29.3_UK_Kap_02.qxp:UK_02_Kap_02.qxp 30.10.2009 14:45 Uhr Seite 17

Page 19: e BOA Expansion Joints Guide 29.3

18

3 Quality assurance

BOA expansion joints are designed, calculated, manufactured and controlledrespecting the technical state of the art. Regular controls and tests executedby accredited authorities for enterprise certification confirm the efficient andprofessional continuity of BOA process management.

Product type approval

To cover the particular market orientations, we are in possession of thenecessary product type approvals, established by accredited certificationauthorities. These are:

3.1 Quality management

Firm approval

EN 9100:2003 Quality Management for Aerospace applications ISO 9001:2000 Quality ManagementISO 14001:2004 Environment ManagementAD2000-W0 TRD 100 Materials: Restamping authorizationAD2000-HP0 EN ISO 3834-2 Welding masteryDIN EN 15085 Railway applications – Welding of railway

vehicles and components – part 2

PED Conformity Pressure Equipment Directive PED 97/23/EC (and SR 819.121)Authorized for CE marking

Euro-Qualiflex

Bureau Veritas

China CorporationRegister of Shipping

Det Norske Veritas

GermanischerLIoyd

Korean Registerof Shipping

Lloyd’sRegister

Rina

American Bureau of Shipping

China Classifi -cation Society

29.3_UK_Kap_03.qxp:UK_02_Kap_03.qxp 30.10.2009 14:45 Uhr Seite 18

Page 20: e BOA Expansion Joints Guide 29.3

19

Non-destructive test methods• water pressure test• leak-tightness test with air or nitro-

gen under water• leak-tightness test with air and

foaming agents at the welds • pressure difference test with air• X-ray test• magnetic particle crack test • dye penetration test• helium leakage test

(<1x10-9 mbar l/s)

Destructive test methods• mechanical strength test• cupping test• metallographic investigations• spectroscopic test• stroke test (endurance test) under

pressure and temperature• vibration test• bursting pressure test

Tests and inspectionsThe expansion joints test programmes follow customer‘s demands andrequests as well as manufacturing and engineering standards, but are not amatter of subsequent tests. Tests only confirm the required quality level.

d’sister

a Classifi -n Society

29.3_UK_Kap_03.qxp:UK_02_Kap_03.qxp 30.10.2009 14:45 Uhr Seite 19

Page 21: e BOA Expansion Joints Guide 29.3

20

3.2 Tests and laboratory

BOA expansion joints can undergo various quality tests and inspections. Thescope of the test programmes depends on requirements and wishes of thecustomer or the inspection organization.

Our quality assurance programme and cooperation with the inspection orga-nizations allow us to supply products to meet the most stringent demands,such as for nuclear applications.

Product quality is a matter of production standards and not of the subsequenttests. Therefore our production methods are generally based on a high qualitylevel. Consequently, for reasons of costs, additional tests are only carried out ifthe application concerned absolutely demands this.

If design evidence is required for the expansion joint in individual cases, weneed to check the admissible operating data here at the factory on the basis ofexact specification of the requirements.

Destructive methods• mechanical strength test• cupping test• metallographic investigations• spectroscopic test• stroke test (endurance test) under

pressure and temperature• bursting pressure test

Our test methods

Non-destructive methods• water pressure test• leak-tightness test with air or

nitrogen under water• leak-tightness test with air and

foaming agents at the weldsX-ray test

• ultrasound test and wall thicknessmeasurement

• magnetic particle crack test • dye penetration test

• helium leakage test (10-9 mbar l/s)• hardness test – including on the

components

29.3_UK_Kap_03.qxp:UK_02_Kap_03.qxp 30.10.2009 14:45 Uhr Seite 20

Page 22: e BOA Expansion Joints Guide 29.3

21

Compared with other leak testmethods, the helium test permitsdetection of the smallest measurableleakage rate so far. Depending on thesize of the test unit, it is possible todetect even a leak up to 10-9 mbar l/s. With the help of a special device,the expansion joint is sealed on bothsides and then pumped out to a vacu-um of 10-2 mbar. The welding seamsare blown with helium on the outside.The mass spectrometer will instantlyregister any leak and the leak rate maybe read from the measuring instru-ment. The leak will also be indicatedby an acoustic signal.

Movement test to determine thestress cycles endured.

Macro cross section of an inner welding seam

Helium leak test

29.3_UK_Kap_03.qxp:UK_02_Kap_03.qxp 30.10.2009 14:45 Uhr Seite 21

Page 23: e BOA Expansion Joints Guide 29.3

22

4 Applications

In almost every technical-oriented industrial area expansion joints are used toensure the operating stability of the installations.

Using flexible, metallic expansion joints in modern installation and plant con-struction is not only technically necessary, but also important to meet theindustry’s demands for:

• improved profitability • system compatibility• reduced plant size • smooth operating• easy mounting • safety in case of incidents

BOA expansion joints meet all these requirements. Below some of the appli-cation fields are listed, where BOA expansion joints mainly are used.Nevertheless, our experienced team will be happy to develop, together withyour engineers, new applications in all areas where flexible pipe elements orconnections are needed. Please submit your problem – and we will presentour solution as we have being for more than hundred years.

4.1 Diesel and gas engines Since many decades BOA is delivering expansion joints for exhaust lines be -tween outlet valve and turbocharger to wellknown manufacturers of dieselengines. By continuous developing our products in this field, we are now ableto design and supply complete exhaust systems. BOA exhaust systems areworldwide in use and present the following advantages to our customers:

• one contact person• compact construction• considerable economies thanks to quick mounting and 50% weight

reduction• optimal and interactive design thanks to modern engineering tools with

Pro-E CAD and ANSIS calculation programme• 100% system tightness because of less intersections• efficient benchmarking at BOA

Exhaust line modular assemblysystem 12/18/20

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 22

Page 24: e BOA Expansion Joints Guide 29.3

23

Additional to the complete exhaust systems, we also construct specialexpansion joints for diesel and gas engine manufacturers, designed accord -ing to customer’s requirements.

Expansion joint with V-clamp flanges

Expansion joint with special flanges

Expansion joint with bent tubessembly

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 23

Page 25: e BOA Expansion Joints Guide 29.3

24

Vibration decoupling unit for helicopters

4.3 Power distributionThrough many years of collaboration with the leading manufacturers of high vol-tage SF6 installations, BOA has developed different types and procedures for thisspecial market. Customers take profit from this longlasting experience as follows:

• worldwide certification according to GIS/GIL norms• cost reduction thanks to the connection of the austenitic bellows with

aluminium flanges• no cleaning afterwards because of SF6 cleanness directives

Axial expansion joint withaluminium flanges

Pressure relieved axial expansion jointfor high voltage SF6 installations

4.2 AerospaceAll experiences made over decades and in different areas needing flexibleelements, BOA could implement them successfully into the aerospace. Themulti-ply expansion joint in this highly demanding application field presentsthe following advantages:

• low weight thanks to short building length, small displacement rates and special welding connections,

• BOA’s high-grade welding competence allows to use the most different materials, particularly required in this exigent sector,

• effective vibration absorption.

Thanks to the high quality standards, our own test laboratory and the mostmodern calculations moduls, BOA is today able to approach successfully the solution of your problem. Since 2009, BOA is certified according to EN 9100:2003.

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 24

Page 26: e BOA Expansion Joints Guide 29.3

25

Axial expansion joint Type W Small expansion joint Type Za

Angular expansion joint Type AW Vibration absorber Type Alpha-C

high vol-es for thiss follows:

with

4.4 Domestic installationsDilatations of central heating pipe systems are not only a problem to resolveby compensating them while installed in industrial plants and large publicbuildings, but also in the private construction sector. The rather long pipelines generate dilatations that can not quite simply be compensated bydeviating the piping. In shorter main pipe lines axial expansion joints areused. In long linear main pipe lines hinged and angular expansion joints areneeded. The requirements of the "heating and ventilation" area are mostlyfulfilled by the BOA standard expansion joints programme.

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 25

Page 27: e BOA Expansion Joints Guide 29.3

26

4.6 Plant construction, general piping construction

There is hardly another application field needing more expansion joints thanplant construction or general piping construction. BOA expansion joints aresuccessfully installed e.g. in chemical plants, thermal power plants, petroche-mical plants and district heating power plants.

Lateral and angular expansion joints

Fresh water piping, chemicalplant, D

Water supply, City of Zurich, CH

4.5 Water and effluent treatment

In this sector mostly BOA dismantling pieces are used. Compared with stan-dard demounting joints, BOA units have the following advantages:• 50% installation time reduction • quick availability of the equipment by exploiting the spring rate of the bellows• 100% tightness because no rubber elements are used (no ageing)• economic execution using parts in contact with the medium made of non-

corrosive austenitic material• compensation of installation misalignment without tightness problems The successful use of BOA dismantling pieces during many years proves theadvantages mentioned above.

The requirements of the plant con-struction field are mostly fulfilled bythe BOA standard expansion jointsprogramme. As a special service forthe pipe system engineer, BOA mayoffer stress analysis data generatedby the "Caesar II" program. Thishelps optimizing construction costsand smooth operating is ensured.

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 26

Page 28: e BOA Expansion Joints Guide 29.3

27

Rubber and metal vibration absorbers

Pump station with vibration absorbers

4.7 Pumps and compressors

Oscillations/vibrations caused by pumps, compressors, burners, piping equip-ment etc. and subsequently transmitted to the pipe system, not only makedisturbing noise, they also stress enormously the materials exposed to thevibrations. Therefore in this application field mostly BOA vibration absorbers(made of metal or rubber) are recommended. Our vast standard programme ofmetal and rubber vibration absorbers mostly covers all application fields ofpumps and compressors.

29.3_UK_Kap_04.qxp:UK_02_Kap_04.qxp 30.10.2009 14:45 Uhr Seite 27

Page 29: e BOA Expansion Joints Guide 29.3

28

5 Definition of compensation types

5.1 Determination of movement range

Expansion joints compensate for different movements, caused by differentsources, such as

• installation misalignment• vibrations • mounting gap• extension caused by pressure force• subsidences• elongations

Elongation usually reaches the highest movement values.

Installation misalignmentMisalignment occurs very often during pipe installation. These imprecisionsmay be compensated by expansion joints, if already considered by the systemdesign. In this case, the expansion joint’s life time is hardly affected, because itis a singular movement. On the other hand a complete or partial blocking ofthe corrugations may be caused, if short axial expansion joints are installed.The indicated movement compensation would be hindered and therefore earlyfailure of the expansion joint is to be expected.

VibrationsVibrations of different frequency and amplitude are caused by rotating or shifting masses in installations such as pumps, piston machines, compressorsetc.These vibrations not only make disturbing noise, but excite connecting pipesto the extent of fatigue causing early failure. Thus the operating stability andeconomic efficiency of the installation is at risk.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 28

Page 30: e BOA Expansion Joints Guide 29.3

29

Mounting gapDuring the installation of pipes, especially when subsequent dismantling andreplacement of singular elements become necessary, an axial mounting gap isindispensable for easy replacement of the modular elements. The so-calleddismantling piece supports larger movement up to the corrugations‘ blocking,because exchange cycles usually are not frequent.

Extension caused by pressure forceExtension occurs in containers and piping put under pressure forces. Theirvalues only have to be considered at larger diameters.

SubsidencesExpansion joints may take up larger subsidence movements, because it is asingular occurrence (no stress cycles). The expansion joint may even endurean excessive deformation of the bellows without leakage.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 29

Page 31: e BOA Expansion Joints Guide 29.3

30

ElongationsChanges in the length of a piping are mainly caused by temperature variations.These changes in length have an insignificant effect in radial direction due tothe pipe geometry and can be neglected, since pipe diameter is much smallerthan pipe length. However, lengthwise variations of volume deserve closeattention, since it can become quite significant when temperature and pipelength increase.Each material has its own expansion coefficient which for the different types ofiron and steel varies in rather narrow range. The differences become more sig-nificant for steel alloys such as heat resistant steel, stainless steel or high heatresistant metals and their alloys such as nickel, Monel, titanium, Inconel,Nimonic etc. Copper and aluminium and their alloys have even greater expan-sion coefficients.

Thermal expansion of different metals

Hea

t ex

pan

sion

�in

mm

/m

Alumini

um

CopperCr N

i St 1

8/8 (

auste

n)

Monel

Mild st

eel and heat re

sistant s

teels

Temperature in °C

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 30

Page 32: e BOA Expansion Joints Guide 29.3

31

5.2 Types of compensation

Basically there are three types of compensation to consider:

• elastic bending of extant pipe legs (natural expansion compensation)• expansion compensation with untied expansion joints• expansion compensation with tied expansion joints

Which of the three types is to be chosen also depends on the following criteria:

• extension and type of the movement to compensate• pipe design• installation conditions• dimensioning of anchor points and connections regarding forces and

moments• total costs of the compensation

5.2.1 Natural expansion compensation

If local conditions allow the alignment of the pipe work between two anchorpoints in such a way that heat expansions of the pipe are compensated by theelastic reaction of the pipe elbows and legs (bending, twisting), these effectshave to be exploited. However, installing extra pipe legs is not an economicsolution. Natural compensation is only useful, if the pipes are able to compen-sate, additional to the stresses caused by internal pressure, the stressesresult ing from the movement cycles, and that without early ageing.Due to the technical efforts and the resulting costs, such types of compensa -tion are only to be considered for pipes smaller than DN 100.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 31

Page 33: e BOA Expansion Joints Guide 29.3

32

5.2.2 Expansion compensation with untied expansion joints

Axial expansion joints have the advantage of requiring almost no additionalspace for installation. The flow direction is not changed. A condition for select -ing an axial expansion joint is the possibility to locate the necessary anchorpoints and pipe alignment guides, which is often difficult for large pipe diame-ters and high pressures. Under pressure, axial expansion joints exert a reactionforce (see 5.5.1), tending to stretch into a smooth pipe.

The reaction force and spring rate should be taken up by the anchor points atboth ends of the pipe section. In a longer pipe system where several expan -sion joints are installed in series, pipe sections should be created by means ofintermediate anchor points. An axial expansion joint should be placed in eachsection. The anchor points at both ends of the straight pipe section shouldtake up the full reaction force. The intermediate anchor points should resist toa smaller, anchor points at direction changing points to a reduced force, i.e. tothe resulting reaction force. Axial expansion joints compensate for axial pipeelongations. Therefore, the piping should be coaxial with the expansion joint.Slight side movements up to a few millimeters are acceptable, however, theyreduce the life expectancy of the axial expansion joint, if the allowable axialmovement is fully used at the same time.

DDDDeeeehhhhnnnnuuuunnnnggggssssaaaauuuuffffnnnnaaaahhhhmmmmeeee vvvvoooonnnn CCCC----SSSSttttaaaahhhhllll

1000

10000

10 100

DDDDeeeehhhhnnnnuuuunnnngggg [[[[mmmmmmmm]]]]

SSSS cccchhhh eeee

nnnn kkkkeeee llllllll äääännnn gggg

eeee[[[[ mmmm

mmmm]]]]

DDDDNNNN55550000

DDDDNNNN111100000000DDDDNNNN111155550000

DDDDNNNN222200000000DDDDNNNN222255550000DDDDNNNN333300000000DDDDNNNN333355550000DDDDNNNN444400000000

DDDDNNNN88880000DDDDNNNN66665555

Expansion compensation of right-angled pipe legs

Expansion �mm �

Expansion compensation of carbon steel

Leng

th o

f p

ipe

leg

�mm

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 32

Page 34: e BOA Expansion Joints Guide 29.3

33

Advantages:• simple way of compensation• no change in flow direction• minimal space requirements

Disadvantages:• strong anchor points and good axial pipe guides required• several axial expansion joints are needed for large elongations• many anchor points and pipe guides are necessary for long pipe sections

5.2.3 Expansion compensation with tied expansion joints

Compared with untied expansion joints, those equipped with tie rods onlyneed light anchor points (sufficiently firm supports). The reaction force fromthe bellow is taken up by the hinges and acts as an anchor point load. Onlythe spring rate of the bellow and the friction forces of the hinge have anactive effect on the anchor points. The anchor points should be calculated toresist to the friction forces at the pipe guide supports and to the displace-ment forces of the expansion joints.

For tied executions, angular and lateral expansion joints are used. Anotherpossibility is the use of pressure balanced expansion joints.

5.2.3.1 Elongation absorption with angular expansion joints

Angular (or hinged) expansion joints are used for large pipe elongations. Asystem of expansion joints is made of standard elements. This requires twoor three expansion joints. The application of angular expansion joints alwaysrequires a change in the direction of the piping. Therefore, they are preferablylocated where a 90° bend has originally been foreseen. The elongationabsorption of hinged expansion joint systems is practically unlimited. It isdetermined by the allowable movement‘s angle of the hinged expansionjoints and the length of the pipe section between two angular expansionjoints.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 33

Page 35: e BOA Expansion Joints Guide 29.3

34

Advantages:• almost unlimited elongation absorption• reduced load on anchor points• modular concept application• use of normal guides

Disadvantages:• change in pipe direction is always required• more space required as compared to axial

expansion joints• two or three expansion joints required for a

system

5.2.3.2 Expansion compensation with lateral expansion joints

Lateral (or swing) expansion joints, equipped with ball joints, can move in alldirections within one plane. They are used for simultaneous or staggeredmovements from two directions. At sufficient length, these expansion jointscan take up considerable amounts of movements. Lateral expansion jointswith ball points are mostly used for small elongations when the pipe layout iscomplex, or for stressless connections directly before sensitive equipment,such as pumps, compressors and machines. If two ball joint expansion jointsare arranged at right angles, such a system takes up elongations in all threedirections (possible only with 2 tie rods). The application of this expansionjoint always requires a change in direction of the piping. Regarding anchorpoint loads, the same rule is applied as for angular expansion joints.

Advantages:• movement compensation in all directions

in one plane• elongation absorption in all three directions

possible, if two ball joint expansion jointsare used (only possible with two tie rods)

• small load on anchor points

Disadvantages:• change in pipe direction is necessary• more space required compared with axial expansion joints

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 34

Page 36: e BOA Expansion Joints Guide 29.3

35

5.2.3.3 Expansion compensation with pressure balanced expansion joints

There are many types of special constructions such as pressure balanced axialexpansion joints, angle balanced expansion joints, composed axial-lateralexpansion joints. There are standards covering such systems, but the expan -sion joints themselves are not standardized. It is recommended to consult themanufacturer in these cases, because special constructions are sometimestechnically efficient, but nevertheless the most expensive solution.

Advantages:• small anchor point loads• needs minimal space• efficient technical solution

Disadvantages:• custom-built, therefore higher costs

5.3 Anchor points, pipe alignment guides, suspended holding devices

Regardless of the type of expansion joint being applied, anchors shouldalways be provided at each end of a pipe. When axial expansion joints areused, each bend, right angle turn or considerable pipe direction change mustbe anchored. Pipes whose elongation is compensated by several expansionjoints should be subdivided by as many anchors as the number of expansionjoints requires. The location of anchors is determinded on the one side by thedirection of the piping, on the other side by local conditions. However, theircapacity of providing good anchorage is essential.The corrugated bellow of the expansion joint tends to stretch when subjectedto internal pressure, and to contract under vacuum. This pushing or pullingforce, the reaction force of the bellows, is transmitted to the piping and shouldbe neutralized by the anchor of the piping. The strength of the anchor point,and therefore basically its design, is determined by the reaction force. In thiscase, not the reaction force (see also 5.2.2) of the operating pressure, but ofthe test pressure is relevant, because the anchorage must absorb the reactionforce of the test phase, when the piping is put under pressure. However, thetest pressure should not exceed 1,5 times of the operating pressure. Thespring rate of the bellow must be added to the reaction force, however itusually amounts to only a friction of the latter. If a sufficient number of anchorpoints cannot be provided, stress-relieved expansion joints, such as hinged,swing or pressure balanced axial expansion joints should be used. It is easier to provide anchor points to a straight pipe section when only thespring rate of the expansion joint and the friction of the guides are to be

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 35

Page 37: e BOA Expansion Joints Guide 29.3

36

absorbed. On the contrary, the reaction force, generated at points of changein direction, at points of cross section changing or influenced by valves or fit-tings, needs more attention. When there is a change in the cross section ofthe piping, the difference in reaction force between the larger and the smallerpipe cross section should be added to, or subtracted from the other forces. The design of an anchor can be quite simple. Below we present some possi-ble and often used anchor designs. The most suitable type to be selected isdetermined by the local conditions.

Examples of anchor points:

Examples of pipe guides:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 36

Page 38: e BOA Expansion Joints Guide 29.3

37

Examples of pipe guides andanchor points:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 37

Page 39: e BOA Expansion Joints Guide 29.3

38

Examples of pipe guides and anchor points:

5.4 Practical procedure

For a given piping layout, such as the one illustrated above, the anchor pointsshould be selected first in places where pipe movements are not desired, i.e.at the branching points. Next step is to select the pipe sections of which theelbows are capable of taking up some pipe elongation with their own flexibility(see 5.2.1). These pipe sections should be limited by anchors. The elongationsof all other parts of the piping will be taken up by expansion joints.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 38

Page 40: e BOA Expansion Joints Guide 29.3

39

Two questions are relevant to decide whether using an axial or a hingedexpansion joint: the pipe layout and the capability of taking up axial forces.For short, straight line sections and expansion movements up to 80 mm, andtherefore a pipe system with many direction changes and branching points,axial expansion joints represent the optimum solution. For long, straightpipes with elongation movements over 80 mm, hinged expansion joints arethe best choice. If local conditions allow to provide the anchorage of stronganchor points and the location of sufficient pipe guides, then axial expansionjoints are chosen. On the other hand, especially for piping with large crosssection and high pressure conditions, the hinged expansion joint is recom-mended even where small elongation movements occur. Installing artificialelbows is not the economic way in costs and space resources. Obviously itis possible to compensate in different ways within one pipe system.However, every expansion joint’s job should be clearly determined by limitingthrough two anchor points the pipe section to compensate. By proceeding inthis way for the pipe layout, the most cost efficient solution will be found.However, early collaboration with the manufacturer is highly recommended.

5.4.1 Data requirements

Check listPlease ask for our technical advice for using CE-marked expansion joints.You may prepare the necessary information for the expansion joint designwith the help of this check list.

Please add, if possible, an installation sketch and/or an isometric drawing ofthe pipe system.

Please make a copy of the following list if necessary.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 39

Page 41: e BOA Expansion Joints Guide 29.3

40

Check list: Industrial Metal BellowsCompany _________________________________________________________Address: _________________________________________________________Inquiry n°: ____________________ Person in charge: _________________

Quantity ___________ units DN________________ mm

Expansion joint type:❏ Axial ❏ Lateral ❏ Universal ❏ Angular❏ Low pressure ❏ Vibration absorber ❏ Other

Bellow material:Exterior ply: ❏ 1.4541 ❏ 1.4404 ❏ 1.4571 ❏ ____________Intermediate ply: ❏ 1.4541 ❏ 1.4404 ❏ 1.4571 ❏ ____________Interior ply: ❏ 1.4541 ❏ 1.4404 ❏ 1.4571 ❏ ____________

Inner sleeve: ❏ yes ❏ noMaterial: ❏ 1.4541 ❏ 1.4404 ❏ 1.4571 ❏ ____________

Fittings: 1st side 2nd sidemovable flange: ❏ ❏

welded flange: ❏ ❏

weld ends ❏ ❏

Material 1st side: ❏ 1.4541 ❏ 1.4301 ❏ 1.4571❏ carbon steel ❏ ___________

Material 2nd side: ❏ 1.4541 ❏ 1.4301 ❏ 1.4571❏ carbon steel ❏ ___________

Movement: ❏ Axial ± __________mm❏ Lateral ± __________mm❏ Angular ± __________°

Cycles: ❏ 1000❏ 500 (Standard products and Pressure Equipment Directive) ❏ ___________

Operating conditions: ❏ Pressure Equipment Directive 97/23/EC❏ Pipe ❏ Container

Piping:Fluid type: ________________________________________________________❏ Group 1: dangerous gaseous / dangerous liquid ❏ Group 2: innocuous gaseous / innocuous liquid

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 40

Page 42: e BOA Expansion Joints Guide 29.3

41

Container, required customer‘s indications:Container, category ________________________________________________Fluid type: _________________________________________________________Fluid group: ________________________________________________________Inspection organization: _____________________________________________

Max. operating pressure PS: __________ barMin.operating pressure PS: __________ bar(if also used in vacuum)

Max. operating temperature TS: _______°CMin. operating temperature TS: _______°C(if also used below 0°C)

Tests: ❏ Standard ❏ Pressure Equipment Directive/EG❏ Special

Inspection certificates: ❏ EN 10204-2.2 ❏ EN 10204-3.1 ❏ EN 10204-3.2❏ Conformity declaration according to Pressure Equipment Directive 97/23/EC❏ Conformity certificate issued by inspection organization

Marking:❏ Standard ❏ EN 10380 ❏ Customer’s indication❏ according to Pressure Equipment Directive 97/23/EC

Packing:❏ Standard ❏ Special ❏ Customer’s indication

Various:❏ Exterior protecting tube ❏ Transportation fixing ❏ _______________

Issued by: __________________________________

Place / Date: __________________________________

Signature: __________________________________

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 41

Page 43: e BOA Expansion Joints Guide 29.3

42

5.5 Calculating movement and anchor point forces

Axial and lateral expansion jointsIn axial and lateral expansion joints the occurring elongation is equivalent tothe real compensation movement.

Angular and gimbal expansion jointsIn angular and gimbal expansion joints the occurring elongation has to beconverted into angular movement. This convertion is described in detail in thesection "Angular expansion joints".

5.5.1 Axial expansion jointsAxial expansion joints are intended to take up pipe expansion, particularly inthe longitudinal direction of a straight pipe section. Of course, an axial expan-sion joint can – depending on length and diameter of the bellow – absorbsmall lateral deflections of only a few millimeters or can slightly rotate angular-ly without parallelism at its end. Such an effect should not be allowed and isnever the main function of the axial expansion joint. The basic element of the axial expansion joint is the multi-ply bellow made ofaustenitic steel. To connect axial expansion joints to the piping, they have either weld ends or flanges, whereby the flanges are either of welded or bordered type. Whilst bordered flanges have a raised face and can rotate,welded flanges are plane and firm. The standardization for certain types of expansion joints is also conditional forconstruction reasons. Is is not possible for the piping engineer to install two ormore axial expansion joints together to form a double expansion joint or agroup of expansion joints in order to achieve a larger movement capacity. Thisprocedure would cause a buckling of the bellows as the stability of the axiallyvery flexible bellows is separately calculated for each expansion joint unit. Thestability is depending on diameter and nominal pressure which effects thethickness and the amount of layers required for the bellows. In their standardexecution, axial expansion joints are delivered with inner sleeve made of aus-tenitic steel.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 42

Page 44: e BOA Expansion Joints Guide 29.3

43

Calculations

Anchor point forcesThe purpose of anchors in pipelines is to restrain the longitudinal forces safe-ly and to direct the thermal expansion to a specific section of the pipe.

Essential loads that these anchors must restrain when untied expansionjoints are installed are:

• pressure thrust Fp• spring rate of the bellows FB• sum of friction forces � Fr

Pressure thrust FPThe pressure thrust tends to expand the bellow of the expansion joint. As thepressure thrust is usually greater than the bellow’s spring force, no balancecan be established between both forces. This would cause an excessiveelongation of the bellow and its subsequent failure if no anchors were instal-led. The pressure thrust is determined by the product of the bellow’s crosssection and the line pressure.

FP = axial pressure force [N]A = effective cross section [cm2]p = pressure [bar] (operating overpressure, test pressure)

FP = 10 · A · p

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 43

Page 45: e BOA Expansion Joints Guide 29.3

44

Spring rate of the bellow FBThe bellow’s spring rate describes the opposing force of a bellow to its com-pression or extension. The specific bellow spring rate per ± 1mm extensionis listed in the data sheets (section 6) as spring rate CX [N/mm].

FB = spring rate of the bellow [N]CX = spring rate taken from table [N/mm]�X = occuring pipe expansion [mm]

Friction forces � FRThe pipe friction forces depend on the weight of the piping, flow medium andinsulation included, and the friction force coefficient of the pipe guide.Some experience values for pipe guide friction force values �:

Steel/steel 0.15 – 0.5Steel/PTFE 0.1 – 0.25Roller guide 0.03 – 0.1

FR = pipe friction force [N]mL = weight of the piping [kg]� = pipe guide friction force value [-]

The largest portion of the anchor force results from the pressure thrust whenaxial expansion joints are used.

Axial expansion joints represent an elastic interruption of the pipeline whichreleases the pressure thrust that has then to be restrained by the pipeanchors (see fig. 1).

FB = CX · �X

FR = 9.81 · mL · �

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 44

Page 46: e BOA Expansion Joints Guide 29.3

45

Basically, we distinguish between main anchors and intermediate anchors.

Main anchors are always positioned at the beginning and the end of a pipe -line, at points of direction changes and also at branching points, thus wherefull reaction forces occur (fig. 2).

FH = anchor point force [N]

FH = FP + FB + ∑FR

Fig. 1

Fig. 2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 45

Page 47: e BOA Expansion Joints Guide 29.3

46

Intermediate anchor points are practically released from pressure thrust andtake up only axially the spring rate of the expansion joint and the friction forcesof the pipe guides.

FZW = intermediate anchor point force [N]

If local conditions do not allow the positioning of anchor points, tied expansionjoints should be installed.

Details for the pipe layout, the design of pipe guides and pretension are shownin section 11.2.1.

5.6 Angular expansion joints

The basic element of the angular (hinged) expansion joint is the multi-ply bel-low in austenitic steel. Contrary to axial expansion joints, the bellow of theangular expansion joint does not work in the direction of the pipe axis, i.e. byelongation and compression, but in an angular rotation in one plane. The hingeassembly attached to the expansion joint end will absorb the reaction force aswell as limit the angular rotation. According to the desired deflection, theexpansion joint will be longer or shorter. Angular expansion joints are suited for the compensation of both long pipesections of district heating systems as well as short boiler and turbine roompipelines in one or more planes. For installations with very limited space, thepossibility of the installation of a lateral or pressure balanced expansion jointshould be taken in consideration. Contrary to axial and lateral expansion jointsbeing independent compensating units, angular and gimbal expansion jointsare only elements of an expansion system. A minimum of two and a maximumof three expansion joints form a statically defined system. Angular expansion joints are usually installed with 50% pretension. This is pre-ferably accomplished by pre-stressing the entire expansion system after itscompletion. The installation temperature of the pipeline has to be considered,especially in surface pipelines. The pretension value can be determined fromthe graph in section 11.3.1.

FZW = FB + ∑FR

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 46

Page 48: e BOA Expansion Joints Guide 29.3

47

Angular expansion joints: distance The longer the distance L1 between two angular expansion joints is, the largerthe movement that can be compensated by the expansion system, and thesmaller the displacement forces become. The center of rotation of the hingeslies on the same axis as the center of the bellow (see fig. 3).Gimbal expansion joints utilize a round or square gimbal joint to restrain thereaction forces. This results in three dimensional rotations around the axes xand z (see fig. 4).

Anchor points, pipe guide supportsAngular expansion joints make no special demands on pipe supports or gui-des in contrast to axial expansion joints. Even swing hangers can be sufficient.Additional supports are unnecessary for short turbine house pipelines. Theweight of the pipe sections between the angular expansion joints must be supported by supports or hangers which must not hinder the movements ofthe angular expansion joints. Pipe guides placed before and after each expan-sion system are necessary in long pipelines. Pipe guides which have been fitted too tightly may become jammed. They could then loosen in short burstswhich could result in severe additional forces. Hinged expansion joints in a twopin I-expansion system follow an arc due to their angular rotation (see fig. 5).

Fig. 3

Fig. 4

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 47

Page 49: e BOA Expansion Joints Guide 29.3

48

The pipe guides should comply with the following requirements:• support the weight of the pipeline and the expansion joints• guide the expanding pipeline in its longitudinal axis• provide sufficient clearance [s] to assure that pipe movements not compen-

sated by expansion joints, resulting from the thermal expansion ΔL and theheight of the arc [h] can be compensated for by the continuing pipeline with-out causing the guide to jam.

Installation instructionsAs for axial expansion joints, the hinged angular systems too require a quitecorrect arrangement of the pipe guides so that a defined movement in thedirection of the pipe axis will be assured. When a two-articulation-system is chosen, one end of the pipeline must pro -vide a sufficient possibility to move so that both the thermal elongation of theintermediate pipe and the rotation of the bend might be absorbed. Long hori-zontal intermediate pipes within the system must be supported. It is of impor-tance that the pivot assemblies of the individual angular expansion joints areexactly in parallel position and vertical to the supporting plane.

s � h + �L [mm]

Fig. 5

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 48

Page 50: e BOA Expansion Joints Guide 29.3

49

Please contact us for designing and any advisory information. BOA engineershave developed the PC-program "BOA-Expert" running on Windows, for thecalculation of articulated pipe systems and their displacement forces. Thisprogram is at your disposal at low copyright fees. The maximum angular rotation as to our catalogue should not be exceeded.The pretension of the articulated system might help to use optimally the pos-sible angular deflection. The expansion joints are installed in neutral position.Pretension is made by displacing the pipeline and subsequently locking ofthe anchor points, or even by means of an intermediate pipe section cut out.For further advice see our separate installation instructions. Also consult sec-tion 11.3.

5.6.1 Arrangements of expansion joint systems

The following expansion joint arrangements are most common in the plan-ning of angular expansion systems.

Two pin I-systemfor pipelines of any lengthby utilizing a given route.

Three pin L-systemfor the compensation of longestand shortest pipes with concurrentmovements from two directions.

Three pin I-systemsuited for the compensation oftransfer pipes, e.g. between twocontainers.

Three pin U-systempreferably for the compensation oflong pipelines.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 49

Page 51: e BOA Expansion Joints Guide 29.3

50

Two pin gimbal I-systemfor the compensation of lateralcircular movements in short pipesections.

Three pin gimbal I-systemfor the compensation of threedimensional systems, e.g. boiler andturbine house pipelines.

Three pin Z1-systemfor the compensation of pipelines by utilizing given routings includingthe compensation of the verticalpipe section.

Similar Z-systems:

Three pin Z2a-system

Three pin Z2b-system

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 50

Page 52: e BOA Expansion Joints Guide 29.3

51

5.6.2 Hinged expansion joint systems in general

In the following example, the three pin L-system is used to explain the basicprocedure for the design of expansion systems. First of all, a suitable expan-sion system has to be chosen, taking in consideration the given routing andthe expected expansion. Both ends of the line must be limited by pipeanchors. For our example, we assume an L-shaped pipe routing of which the expan -sion �1 and �2 of the pipe sections L1 and L2 will be optimally compensatedby a system of three hinged expansion joints in an L-arrangement.

Initially, the expansion values �1 and �2 must be determinded, consideringthe maximum temperature difference of the pipeline (see also section 5.1).

Neutral position (without pretension)

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 51

Page 53: e BOA Expansion Joints Guide 29.3

52

2.Select suitable hinged expansion joints and then calculate the requireddistances X1 and X3. It is to considerate that the nominal angular rotations±� given in the data sheets must be converted into admitted angular rota -tions ±�zul according to section 6.2 "Reductions", if operating conditionsexceed nominal conditions.

In order to get small rotation angles for the expansion joints, the distancesbetween the pins of the joints X1 and X3 should be as long as reasonablypossible and the distance X2 as short as possible.

± �zul = ±� · K� (tB) · KL

± �e ≤ ± �zul

There are two options to calculate the expansion joint system:

1.Determine the layout of the system (X1, X2 and X3) and calculate the effec-tive angular rotation of each hinged joint by using the given formulae. Next,from the data sheets, select hinged expansion joints that are suited for theoperating conditions. They must have an admitted angular rotation equal orgreater than the effective rotation.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 52

Page 54: e BOA Expansion Joints Guide 29.3

53

Anchor and nozzle loads can be determined by using the formulae for thecalculation of the displacement forces F and bending moments M.

In order to achieve optimum utilization of the permissible angular rotation±�zul of hinged expansion joints, a 50% pretension of the system is required. If pretension is not possible, the angular rotation to one side of the centerlinedoubles. This normally requires an angular expansion joint with a larger nomi-nal angular rotation.

The calculation formulae for the determination of the angular rotation of threepin systems are approximations, but sufficiently accurate for practical use. Amore accurate calculation of the angular rotations becomes necessary forvery plane systems if the center joint moves too close to the stretched outposition (see fig. "installation position" above). Please consult BOA engineersin such cases.

Operating position

Installation position (50% pretensioned)

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 53

Page 55: e BOA Expansion Joints Guide 29.3

54

5.6.3 Calculation of systems

5.6.3.1 Two pin I-system

Required hinge distanceConsiderated the permissible angular rotation [�zul] and 50% pretension, theminimum required distance X1 between the hinges is:

X1 = center-to-center distance of the bellows [mm]�zul = permissible angular rotation of one bellow [°]� = movement of the pipeline [mm]

Resulting arc heightAt the maximum effective angular rotation (�e) the vertical distance betweenthe hinges is reduced by the dimension h due to the circular motion of theexpansion joints.

h = arc height [mm]X1 = center-to-center distance of the bellows [mm]�e = effective angular rotation of one bellow [°]

X1=

h = X1 · (1-cos�e)

2 · sin�zul

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 54

Page 56: e BOA Expansion Joints Guide 29.3

55

The height of the arc and the thermal elongation of the pipe section X1 mustbe compensated by the pipe section (2x X1), or a sufficient clearance in thepipe guide must be available.

Effective angular rotationIf the pin distance X1 is given, the effective angular rotation of the angularexpansion joints (�) is calculated as follows if the system is 50% pretensioned:

�e = effective angular rotation of one bellow [°]X1 = center-to-center distance of the bellows [mm]� = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. The effective angle of rotation (�e)must be multiplied by 2 in this case.

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

MB1,2 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e = effective angular rotation of one bellow [°]

�e= ± arcsin ( )�

2 · X1

MB1,2 = Cr · p + Ca · �e + Cb · p · �e

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 55

Page 57: e BOA Expansion Joints Guide 29.3

56

Forces at the connection points

Bending moments at the connection points

MB1,2 = bending moment of the expansion joint [Nm] FX = displacement force in X-direction [N] MA1,2 = moment at the connection point [Nm] l1,2 = distance from bellow’s center to connection point [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

FX = · 1000MB1 + MB2

X1

MA1 = MB1 + FX ·I1

1000

MA2 = MB2 + FX ·I2

1000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 56

Page 58: e BOA Expansion Joints Guide 29.3

57

5.6.3.2 Three pin I-system

Required hinge distanceIf the permissible angular rotation [�zul] of all three expansion joints is thesame and the system is pretensioned at 50%, then the minimum distancesbetween the hinges (X1, X3) are determined as follows:

X3 given

X1 given

�1,2 = movement of the pipeline [mm]X1,3 = center-to-center distance of the bellows [mm]�zul = permissible angular rotation of one bellow [°]

If the result of X1 (or X3) is negative or the distance is too long, then thedistance X3 (or X1) must be increased accordingly, or expansion joints withlarger permissible angular rotation must be chosen.

In general, X1 and X3 should be as long as reasonably possible.

X1 =�1 · X3

2 · sin�zul · X3 - �2

X3 =�2 · X1

2 · sin�zul · X1 - �1

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 57

Page 59: e BOA Expansion Joints Guide 29.3

58

Effective angular rotationIf the pin distances X1 and X3 are given, the effective angular rotation of theangular expansion joints (�1, �2, �3) is calculated as follows if the system is50% pretensioned:

�e1,2,3 = effective angular rotation of one bellow [°]X1,3 = center-to-center distance of the bellows [mm]�1,2 = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e1,2,3) must be multiplied by 2.

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

�e1 = ± arcsin ( )�1

2 · X1

�e2 = ± (�e1 + �e3)

�e3 = ± arcsin ( )�2

2 · X3

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 58

Page 60: e BOA Expansion Joints Guide 29.3

59

MB1,2,3 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e1,2,3 = effective angular rotation of one bellow [°]

Forces at the connection points

Bending moments at the connection points

MB1,2,3 = bending moment of the expansion joint [Nm] FX,Z = displacement force in X,Z-direction [N] MA1,2 = moment at the connection point [Nm] l1,2 = distance from bellow’s center to connection point [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

MB3 = Cr · p + Ca · �e3 + Cb · p · �e3

FX = · 1000MB2 + MB3

X3

FZ = · 1000MB1 + MB2

X1

MA1 = MB1 + FX ·I1

1000

MA2 = MB3 + FX ·I2

1000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 59

Page 61: e BOA Expansion Joints Guide 29.3

60

5.6.3.3 Three pin L-system

Required hinge distanceIf the permissible angular rotation [�zul] of all three expansion joints is thesame and the system is pretensioned at 50%, then the minimum distancesbetween the hinges (X1, X3) are determined as follows:

X2 and X3 given

X1 and X2 given

�1,2 = movement of the pipeline [mm]X1,2,3 = center-to-center distance of the bellows [mm]�zul = permissible angular rotation of one bellow [°]

If the result of X1 (or X3) is negative or the distance is too long, then thedistance X3 (or X1) must be increased accordingly, or expansion joints withlarger permissible angular rotation must be chosen.

In general, X1 und X3 should be as long as reasonably possible, X2 as shortas possible.

X1 = �1 · (X3 + X2)

2 · sin�zul · X3 - �2

X3 = �2 · X1 + �1 · X2

2 · sin�zul · X1 - �1

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 60

Page 62: e BOA Expansion Joints Guide 29.3

61

Effective angular rotationIf the pin distances X1 und X3 are given, the effective angular rotation of theangular expansion joints (�1, �2, �3) is calculated as follows if the system is50% pretensioned:

�e1,2,3 = effective angular rotation of one bellow [°]X1,2,3 = center-to-center distance of the bellows [mm]�1,2 = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e1,2,3) must be multiplied by 2.

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

�e1 = ± arcsin ( )

�e2 = ± (�e1 + �e3)

�e3 = ± arcsin ( )

�1

2 · X1

�2 · X1 + �1 · X2

2 · X1 · X3

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 61

Page 63: e BOA Expansion Joints Guide 29.3

62

MB1,2,3 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e1,2,3 = effective angular rotation of one bellow [°]

Forces at the connection points

Bending moments at the connection points

MB1,2,3 = bending moment of the expansion joint [Nm] FX,Z = displacement force in X, Z-direction [N] MA1,2 = moment at the connecion point [Nm] l1,2 = distance from bellow’s center to connection point [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

MB3 = Cr · p + Ca · �e3 + Cb · p · �e3

FX = ( MB1 + MB2 + FZ · ) ·X2

1000

FZ = ·1000MB2 + MB3

X3

MA1 = MB1 + FZ · I1

1000

MA2 = MB3 + FX · I2

1000

X1

1000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 62

Page 64: e BOA Expansion Joints Guide 29.3

63

5.6.3.4 Three pin U-system

Required hinge distanceAt permissible angular rotation [�zul] of all three expansion joints and if the systemis pretensioned at 50%, then the minimum distance X1 is determined as follows:

X1 = center-to-center distance of the bellows [mm]�zul = permissible angular rotation of one bellow [°]� = movement of the pipeline [mm]

X2 should be as short as possible.

Effective angular rotationIf the pin distance X1 is given, the effective angular rotation of the angularexpansion joints (�1, �2) is calculated as follows if the system is 50% preten-sioned:

�e1,2 = effective angular rotation of one bellow [°]X1 = center-to-center distance of the bellows [mm]� = movement of the pipeline [mm]

X1 = �

2 · sin�zul

�e1 = ± arcsin ( ) �

2 · X1

�e2 = ± �e1

2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 63

Page 65: e BOA Expansion Joints Guide 29.3

64

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e) must be multiplied by 2.

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

MB1,2 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e1,2 = effective angular rotation of one bellow [°]

Forces at the connection points

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

FX = ·1000MB1 + MB2

X1

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 64

Page 66: e BOA Expansion Joints Guide 29.3

65

Bending moments at the connection points

MB1,2 = bending moment of the expansion joint [Nm] MA = moment at the connection point [Nm] FX = displacement force in X-direction [N] X1 = center-to-center distance of the bellows [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

MA = MB2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 65

Page 67: e BOA Expansion Joints Guide 29.3

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

66

5.6.3.5 Three pin Z1-system

Required hinge distances and effective angular rotationThe arrangement of the expansion joints is the same as for the three pin L-system, but with an additional leg. The calculation formulae of the requiredhinge distances and the effective angular rotation may be taken from section5.6.3.3 "Three pin L-system".

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the follow -ing equation:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 66

Page 68: e BOA Expansion Joints Guide 29.3

67

MB1,2,3 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e1,2,3 = effective angular rotation of one bellow [°]

Forces at the connection points

MB3 = Cr · p + Ca · �e3 + Cb · p · �e3

FZ = ( + ) ·1000MB1 + MB2

X1

(MB2 + MB3) · X2

X1 · X3

FX = ·1000MB2 + MB3

X3

Bending moments at the connection points

MB1,2,3 = bending moment of the expansion joint [Nm] FX,Z = displacement force in X, Z-direction [N] MA1,2 = moment at the connection point [Nm] l1,2 = distance from bellow’s center to connection point [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

MA2 = MB1 + FZ ·I1

1000

MA2 = MB3 + FX · - FZ · I2

1000

I31000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 67

Page 69: e BOA Expansion Joints Guide 29.3

68

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

MB3 = Cr · p + Ca · �e3 + Cb · p · �e3

5.6.3.6 Three pin Z2a-system

Required hinge distances and effective angular rotationThe arrangement of the expansion joints is the same as for the three pin L-system, but with an additional leg. The calculation formulae of the requiredhinge distances and the effective angular rotation may be taken from section5.6.3.3 "Three pin L-system".

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 68

Page 70: e BOA Expansion Joints Guide 29.3

69

MB1,2,3 = bending moment of the expansion joint [Nm] Cr = hinge friction [Nm/bar]Ca = angular spring rate [Nm/°]Cb = angular reaction force [Nm/(bar°)]p = operating overpressure [bar]�e1,2,3 = effective angular rotation of one bellow [°]

Forces at the connection points

FZ = ( + ) · 1000MB1 + MB2

X1

MB2 + MB3 · X2

X1 · X3

FX = ·1000MB2 + MB3

X3

Bending moments at the connection points

MB1,2,3 = bending moment of the expansion joint [Nm] FX,Z = displacement force in X,Z-direction [N] MA1,2 = moment at the connection point [Nm] l1,2 = distance from bellow’s center to connection point [mm]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

MA1 = MB1 + FZ · - FX · I1

1000

MA2 = MB3 + FX · I2

1000

I01000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 69

Page 71: e BOA Expansion Joints Guide 29.3

70

X3 = �1 · (8 ·X2 + �1) + 4 · X1 · �2

8 · sin�zul · X1 - 4 · �1

5.6.3.7 Three pin Z2b-system

Required hinge distances At permissible angular rotation �zul of all three expansion joints and if thesystem is pretensioned at 50%, then the minimum distances between thehinges X1, X3 are determined as follows:

X1 = �1 · (8 ·X2 + �1 + 4 · X3)

8 · sin�zul · X3 - 4 · �2

X1 and X2 given

X2 and X3 given

X1,2,3 = center-to-center distance of the bellows [mm]�1,2 = movement of the pipeline [mm]�zul = permissible angular rotation of one bellow [°]

If the result of X1 (or X3) is negative or the distance is too long, then thedistance X3 (or X1) must be increased accordingly, or expansion joints withlarger permissible angular rotation must be chosen.

In general:X1 and X3 should be as long as reasonably possible, X2 as short as possible.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 70

Page 72: e BOA Expansion Joints Guide 29.3

71

Effective angular rotationIf the pin distances X1 and X3 are given, the effective angular rotation of theangular expansion joints (�1, �2, �3) is calculated as follows if the system is50% pretensioned:

�e1 = ± arcsin ( ) �1

2 · X1

�e2 = ± (�e1 + �e3)

�e3 = ± arcsin ( ) �1 · (8 · X2 + �1) + 4 · X1 · �2

8 · X1 · X3

�e1,2,3 = effective angular rotation of one bellow [°]X1,2,3 = center-to-center distance of the bellows [mm]�1,2 = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e1,2,3) must be multiplied by 2.

MB1 = Cr · p + Ca · �e1 + Cb · p · �e1

MB2 = Cr · p + Ca · �e2 + Cb · p · �e2

MB3 = Cr · p + Ca · �e3 + Cb · p · �e3

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 71

Page 73: e BOA Expansion Joints Guide 29.3

72

Forces at the connection points

FZ = 1000 · (MB2 · MB3)

X3

FX = 1000 · (MB2 · MB3) + FZ · 2 · X2

X1

MA1 = MB1 + FZ · I1

1000

MA2 = MB3 + FZ · I2

1000

l1,2 = distance from bellow’s center to connection point [mm] p = operating overpressure [bar]Ca = angular spring rate [Nm/°]Cr = hinge friction [Nm/bar]Cb = angular reaction force [Nm/(bar°)]Fx,z = displacement force in X, Z-direction [N] MA1,2 = moment at the connection point [Nm] MB1,2,3 = bending moment of the expansion joint [Nm] X1,2,3 = center-to-center distance of the bellows [mm]�e1,2,3 = effective angular rotation of one bellow [°]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

Bending moments at the connection points

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 72

Page 74: e BOA Expansion Joints Guide 29.3

5.6.3.8 Two pin gimbal I-system

� = �12 + �22

X1 = �

2 · sin�zul

Resulting expansion

Required hinge distanceAt a permissible angular rotation [�zul] and 50% pretension, the miminumdistance X1 is determined as follows:

h = X1 · (1-cos�e)

Resulting arc heightAt the maximum effective angular rotation (�e) the vertical distance between the hingesis reduced by the dimension h due to the circular motion of the expansion joints.

� = resulting movement of the pipeline [mm]�1,2 = movement of the pipeline [mm]�zul = permissible angular rotation of one bellow [°]�e = effective angular rotation of one bellow [°]h = arc height [mm]X1 = center-to-center distance of the bellows [mm]

The height of the arc and the thermal elongation of the pipe section X1 mustbe compensated by the pipe section (2,5 · X1) ), or a sufficient clearance inthe pipe guide must be available.

73

Pretension gap

Pretension gap

Anchor point

Guide support

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 73

Page 75: e BOA Expansion Joints Guide 29.3

74

MBY = Cr · p + Ca · �ey + Cb · p · �ey

MBX = Cr · p + Ca · �ex + Cb · p · �ex

�ex, ey = effective angular rotation of one bellow [°]X1 = center-to-center distance of the bellows [mm]� = resulting movement of the pipeline [mm]�1,2 = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e, �ex, �ey) must be multiplied by 2.

�e = ± arcsin ( ) �1

2 · X1

�ey = ± arcsin ( ) �1

2 · X1

�ex = ± arcsin ( ) �2

2 · X1

Effective angular rotationIf the pin distance X1 is given, the effective angular rotation of the angularexpansion joints (�e) is calculated as follows if the system is 50% pretensioned:

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 74

Page 76: e BOA Expansion Joints Guide 29.3

75

Bending moments at the connection points

FX = 2000 · (MBY )

X1

FY = 2000 · (MBX )

X1

MAY1 = MBY + FX · I1

1000

MAY2 = MBY + FX · I2

1000

MAX1 = MBX + FY · I1

1000

MAX2 = MBX + FY · I2

1000

Forces at the connection points

l1,2 = distance from bellow’s center to connection point [mm] Ca = angular spring rate [Nm/°]Cr = hinge friction [Nm/bar]Cb = angular reaction force [Nm/(bar°)]FX,Y = displacement force in X, Y-direction [N] MAX,Y1,2 = moment at the connection point [Nm] MBX,Y = bending moment of the expansion joint [Nm] p = operating overpressure [bar]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 75

Page 77: e BOA Expansion Joints Guide 29.3

76

5.6.3.9 Three pin gimbal L-system

W1 = 1 angular expansion joint (angular rotation on one plane)W2,3 = 1 gimbal expansion joint each (angular rotation on circular plane)

The expansion of the connecting points, e.g. in turbine nozzles, should beadded to the thermal expansion of the pipe section �1, �2, oder �3 if bothmove in the same direction and should be subtracted if they move in oppo -site directions.

Effective angular rotationIf the pin distances X1 and X3 are given, the effective angular rotation of theangular expansion joints (�1, �2, �3) is calculated as follows if the system is50% pretensioned:

W2

W1

W3

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 76

Page 78: e BOA Expansion Joints Guide 29.3

77

X1,2,3 = center-to-center distance of the bellows [mm]�e1,2,3,x,y = effective angular rotation of one bellow [°]�zul = permissible angular rotation of one bellow [°]�1,2,3 = movement of the pipeline [mm]

At 100% and at 0% pretension, the rotation angle of the angular expansionjoints doubles, but only in one direction. In these cases, the effective anglesof rotation (�e1,2,3,x,y) must be multiplied by 2.

In general:X1 and X3 should be as long as reasonably possible, X2 as short as possible.

�e1 = ± arcsin ( ) �1

2 · X1

�e1 = ± (�e1 + �e3y)

�e3y = ± arcsin ( ) �1 · X2 + �2 · X1

2 · X1 · X3

�e2x = �e3y = ± arcsin ( ) �3

2 · X3

�e2 = ± (�e2x2 + �e2y2)

�e3 = ± (�e3x2 + �e3y2)

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 77

Page 79: e BOA Expansion Joints Guide 29.3

78

Anchor point connection forces

Bending moments of angular expansion jointsIn order to calculate the bending moments and forces, the absolute value ofthe effective angular rotation (i.e. without signs) must be used in the followingequation:

Forces at the connection points

MB1Y = Cr · p + Ca · �e1 + Cb · p · �e1

MB2Y = Cr · p + Ca · �e2y + Cb · p · �e2y

MB3Y = Cr · p + Ca · �e3y + Cb · p · �e3y

MB2X = Cr · p + Ca · �e2x + Cb · p · �e2x

MB3X = Cr · p + Ca · �e3x + Cb · p · �e3x

FX = 1000 · (MB2Y + MB3Y)

X3

FY = 1000 · (MB2X + MB3X)

X3

M0 = MB2Y + FX · X2

1000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 78

Page 80: e BOA Expansion Joints Guide 29.3

79

Bending moments at the connection points

l1,2,3 = distance from bellow’s center to connection point [mm] Ca = angular spring rate [Nm/°]Cr = hinge friction [Nm/bar]Cb = angular reaction force [Nm/(bar°)]FX,Y,Z = displacement force in X, Y, or Z-direction [N] MAX,Y,Z,1,2 = moment at the connection point [Nm] MB1,2,3,X,Y = bending moment of the expansion joint [Nm] p = operating overpressure [bar]

If the system is pretensioned at 50%, the moments and forces have differentsigns in the pretensioned position and operation position of the system.

FZ = 1000 · (MB1Y + M0)

X1

MAY1 = -MB1Y - FZ · I1

1000

MAY2 = MB3Y + FX · I2

1000

MAX1 = -MB2X - FY · X2

1000

MAZ1 = FY · X1 + I11000

MAZ2 = -FX · [Nm]I3

1000

MAX2 = -MB3X - FY · + FZ · I2

1000

I31000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 79

Page 81: e BOA Expansion Joints Guide 29.3

80

5.7 Lateral expansion joints

Lateral expansion joints work in the same way angular expansion joints do, utilizing the angular rotation of the steel bellows. The movement capacitydepends on the construction length of the bellows and their center-to-centerdistance. The longer the distance between the bellows, the larger is the lateralmovement capacity (fig. 1).

A longer center-to-center distance also results in lower displacement forces ofthe expansion joint. Lateral expansion joints are independent expansionsystems in contrast to angular expansion joints. They are practically a two pinsystem. Lateral expansion joints are usually installed with 50% pretension. Thisis accomplished by pre-stressing the entire pipe system after the expansionjoint is installed. The pretension rate can be determined from the pretensiondiagram in section 11.3.1.

The special features of lateral expansion joints are:1. very low anchor loads as the tie bars restrain the pressure thrust resulting

from internal pressure.2. large movement capacities3. less demanding regarding pipe supports/ guides

Even pipe hangers might be acceptable.

Fig. 1

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 80

Page 82: e BOA Expansion Joints Guide 29.3

81

Depending on their capacity to compensate different movements, we distin-guish between two basic types of lateral expansion joints:

Expansion joints with lateral Expansion joints with lateral movement capacity in one plane. movement capacity in circular plane.

TypesUniversal expansion joints using tie rods and washer nuts to restrain the pres-sure thrust forces represent the simplest design of lateral expansion joints.

For higher pressure conditions, the use of lateral expansion joints, type gimbalexpansion joint or two angular gimbal expansion joints in a system is recom-mended, if the compensation of movements in circular plane is required.

Expansion joints that are suited to compensate for lateral movements in circu-lar plane are also recommended for protecting pipe systems from vibrationsgenerated by pumps, compressors or other engines (fig. 4)

Fig. 2 Fig. 3

Fig. 4 Fig. 5

lateral vibrationsvibrations in any direction

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 81

Page 83: e BOA Expansion Joints Guide 29.3

82

If the unit is firmly mounted to its foundation, the installation of one lateral expan-sion joint in both the suction and discharge pipe is sufficient (fig. 4). If tied univer-sal expansion joints are used, the installation of additional lock washers should beconsidered in anticipation of compression forces caused by vacuum that mightoccur in the suction pipe. If the unit, however, is mounted on flexible supportssuch as spring or rubber mountings, then the vibrations occur in all directions. Inthis case, an additional angular or lateral expansion joint must be installed (fig. 5).The same rule is applied in earthquake areas.

Another option is the installation of a three pin L-system comprising one lateraland one single hinged expansion joint. To allow the elbow between the expansionjoints to rotate without forcing the tie rods to release from their tied position, it is to be assured that the positioning of the tie rod of the lateral expansion joint corresponds to the positioning of the pins of the single hinged unit (fig. 6).

High energy and high frequency vibrations of the pipeline that are caused byturbulent flow after safety blow-down valves, shut-down valves or pressurereducers or vibrations (pulsation) in the gas or liquid column itself cannot becompensated for.

Fig. 6

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 82

Page 84: e BOA Expansion Joints Guide 29.3

83

The pipe supports/ guides must comply with the following requirements:• support the weight of the pipeline and the weight of the expansion joints• guide the pipeline in its axis• provide sufficient clearance s to allow free pipe movement from the uncom-

pensated thermal expansion �L of the pipe section L and from the arc heighth (fig. 7) without causing the guide to jam.

Short pipe routings typical for power station piping usually do not require pipeguides. The weight of the pipe sections should be supported by suitable pipehangers in a way that they do not hinder the movement of the expansion joint.

s ≥ h + �L

Pipe supports, guides, anchorsTo ensure correct compensation of thermal expansion by the lateral expansionjoint, pipe anchors and pipe supports must be installed to define the amountand direction of the thermal expansion. According to the peripheral conditionsof the installation, this can be achieved by placing two pipe guides adjacent tothe elbows on each side of the expansion joint with anchors further away fromthe location of the expansion joint (fig. 7) or by the installation of one anchorand one pipe guide in the afore mentioned poisitions (fig. 8).

Fig. 7 Fig. 8

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 83

Page 85: e BOA Expansion Joints Guide 29.3

84

As a result of the deflection of a lateral expansion joint, a bending moment anda force occur and load the anchors. The moment and force are caused by thebellows spring rate and by the friction of the hinges. In longer pipe routingswith several guides between expansion joint and anchor, the bending momentwears off almost completely until the connection point. The pressure thrustfrom the internal pressure and the effective cross section of the bellows arerestrained by the hinged hardware.

All formulae refer to a 50% pretension of the pipe movement � to compensatefor, which means that the lateral expansion joint will be deflected by the amount of ±�/2.In case of 100% or 0% pretension, the amount of 2 x � should be used in theequation.

Resulting movement

� = �1 + �2

5.7.1 System calculation

5.7.1.1 Lateral expansion joints for movement compensation on one plane

anchor point

pipe guide

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 84

Page 86: e BOA Expansion Joints Guide 29.3

85

h = X1 - (X12 - 0.25 · �2)

± �zul = ± �lat · K� (tB) · KL

± �/2 ≤ ± �zul

Permissible movement capacityFollowing the recommendations explained in section 6.2 "Reduction", thepermissible lateral movement capacity ±�zul is determined taking intoaccount the nominal lateral movement capacity ±�lat as follows:

The effective pipe movement ± �/2 must be equal to or less than the permis-sible lateral movement capacity ± �zul:

Resulting arc heightAt the maximum lateral deflection (�/2) to one side, the vertical distance be -tween the bellows L1 is shortened by the amount of the arc height h which isdetermined as follows:

h = arc height [mm]� = resulting movement of the pipeline [mm]�1,2 = movements of the pipe sections 1 and 2 [mm]�lat = possible lateral movement of the expansion joint [mm]K� = reduction factor for movement capacity [-]X1 = center-to-center distance of the bellows [mm]KL = fatigue factor [-]

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 85

Page 87: e BOA Expansion Joints Guide 29.3

86

MY1 = FX · 0.5 · X1 + I1

1000

MY2 = FX · 0.5 · X1 + I2

1000

FX = displacement force in X-direction [N] L = length of the pipeline [m]g = weight per meter of the pipeline including medium and insulation

[kg/m]µ = friction coefficient [-]� = resulting movement of the pipeline [mm]Cy = lateral spring rate [N/mm]Cr = hinge friction [N/bar]p = operating overpressure [bar]

Bending moments at the connection points

MY1,2 = moments at the connection points [Nm] FX = displacement force in X-direction [N] X1 = center-to-center distance of the bellows [mm]l1,2 = distance from bellows center to connection point [mm]

FX = Cr · p + Cy · +g · L · µ · 10�

2

The arc height h and the uncompensated thermal expansion of the pipe sec-tion in the expansion joint axis must be compensated by sufficient clearanceor the bending of the pipe sections.

Forces at the connection points

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 86

Page 88: e BOA Expansion Joints Guide 29.3

5.7.1.2 Lateral expansion joint for movement compensation in any direction perpendicular to its axis

All formulae refer to 50% pretension of the pipe movement �1 and �2 tocompensate for, which means that the lateral expansion joint will be deflect -ed in both, the pretensioned and operating position, by the amount of ±�/2.

Resulting expansion

87

Permissible movement capacityFollowing the recommendations explained in section 6.2 "Reduction", thepermissible lateral movement capacity ±�zul is determined taking intoaccount the nominal lateral movement capacity ±�lat as follows:

±�zul = ±�lat · K� (tB)· KL

� = �12 + �22

0.5 · X1 + I11000

anchor point

pipe guide

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 87

Page 89: e BOA Expansion Joints Guide 29.3

88

FX = Cr · p + Cx · +g · L · µ · 10�

2

FY = Cr · p + Cy · +g · L · µ · 10

±�/2 ≤ ±�zul

� ≤ �zul

h = X1 – (X12 – 0,25 · �2)

h = arc height [mm]� = resulting movement of the pipeline [mm]�1,2 = movements of the pipe sections 1 and 2 [mm]�lat = possible lateral movement of the expansion joint [mm]K� = reduction factor for movement capacity [-]X1 = center-to-center distance of the bellows [mm]KL = fatigue factor [-]

In case of 100% or 0% pretension, the amount of 2 x � should be used inthe equation for h.The arc height h and the uncompensated thermal expansion of the pipe sec-tion in the expansion joint axis must be compensated by sufficient clearanceor the bending of the pipe sections.

The effective pipe movement ± �/2 must be equal to or less than the permis-sible lateral movement capacity ± �zul:

In case of 100% or 0% pretension, the effective pipe movement � must beequal to or less than �zul.

Resulting arc heightAt the maximum lateral deflection (�/2) to one side, the vertical distance be -tween the bellows is shortened by the amount of the arc height h which isdetermined as follows:

Forces at the connection points

2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 88

Page 90: e BOA Expansion Joints Guide 29.3

89

FX,Y = displacement force in X- and Y-direction [N] L = length of the pipeline [m]g = weight per meter of the pipeline including medium and insulation

[kg/m]µ = friction coefficient [-]�1,2 = movements of the pipe sections 1 and 2 [mm]Cy = lateral spring rate [N/mm]Cr = hinge friction [N/bar]p = operating overpressure [bar]

Bending moments at the connection points

MX1,2 = moments at the connection points [Nm] MY1,2 = moments at the connection points [Nm] FX,Y = displacement force in X- and Y-direction [N] X1 = center-to-center distance of the bellows [mm]l1,2 = distance from bellows center to connection point [mm]

If the system is pretensioned at 50%, the bending moments and forces havedifferent signs in the pretensioned position and operation position of thesystem.

MX1 = FY · 0.5 · X1 + I1

1000

MX2 = FY · 0.5 · X1 + I2

1000

MY1 = FX · 0.5 · X1 + I1

1000

MY2 = FX · 0.5 · X1 + I2

1000

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 89

Page 91: e BOA Expansion Joints Guide 29.3

90

5.7.1.3 Lateral expansion joints in three pin systemsThe section "Angular expansion joints" describes different three pin expansionsystems, comprising each three angular expansion joints.If the center-to-center distance between the joints is short due to restrictedspace conditions, it is often more economical to use one lateral expansionjoint instead of two angular units installed in tandem.

If tied universal expansion joints with tie rods or cardanic hinges are used,these joints must be installed with the correct positioning of the restraininghardware to allow the joints to rotate in an angular direction (fig. 9) around the same axis as the single hinged expansion joint in the system. The line between the tie rods must be parallel to the line between the hinges.

Lateral expansion joints used in three pin systems are not allowed tohave more than two tie rods or bars. Three or more tie rods/ bars will notallow an angular rotation of the individual bellows of a lateral joint.

In order to apply the design calculations of three pin expansion systems tosystems comprising a lateral expansion joint, the spring rates and displace-ment forces of the lateral expansion joint must be converted into an equiva-lent bending spring rate and bending moments of two substitute angularjoints.These two substitute angular expansion joints represent the lateral expansionjoint in the design calculation of the expansion system.

The following conversion applies for tied universal expansion joints with tierods only as an approximate, since the distance between the spherical washers is not equal to the center-to-center distance between the bellows.Please contact us if exact calculation is required.

Fig. 9

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 90

Page 92: e BOA Expansion Joints Guide 29.3

91

The angular spring rate Ca of the substitute angular expansion joint is deter-mined by the lateral spring rate CY of the lateral expansion joint as follows:

The angular hinge friction Cr of the substitute angular expansion joint is deter-mined by the lateral friction Cr(lat) of the lateral expansion joint as follows:

The additional angular moment Cb of the substitute angular expansion joint isdetermined by the additional lateral force Cb(lat)) of the lateral expansion jointas follows:

The permissible angular rotation ±�zul of the substitute angular expansion jointis determined by the permissible lateral movement capacity �zul as follows:

Ca = angular spring rate [Nm/°]Cy = lateral spring rate [N/mm]Cr = hinge friction [Nm/bar]Cr(lat) = lateral friction [N/bar]Cb = angular reaction force [Nm/(bar°)]Cb(lat) = pulling force due to internal pressure and deflection [N/(bar mm)]X3 = center-to-center distance of the bellows [mm]

Ca = CY · X12 · · 10-3π

360

Cr = Cr(lat) · X1

2000

Cb = Cb(lat) · X12 · · 10-3π

360

±�zul = ± arcsin�zul

X1

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 91

Page 93: e BOA Expansion Joints Guide 29.3

92

The application of universal expansion joints is essential wherever large move-ments in axial as well as in lateral direction occur. Consisting of two multi-plybellows made of stainless steel connected by an intermediate tube, they areeither available with welded-on flanges or with weld ends.

BOA universal expansion joints in a truck exhaust system.

Whilst installing BOA universal expansion joints, there are three points to beobserved which are of outmost importance for the proper functioning of theexpansion joint:

Anchors:• The pipe section which has to be compensated must be firmly fastened with

anchors at both ends• To calculate the anchors, the axial forces must be considered (sum of the

spring rate of the expansion joint, reaction force and frictional force of thepiping), as well as the lateral forces (displacement force).

• The reaction force is the product of the effective area of the bellows and thepipe pressure (test pressure).

• The displacement force is the product of lateral and axial spring rates andmovement.

5.8 Universal expansion joints

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 92

Page 94: e BOA Expansion Joints Guide 29.3

93

Pipe guides• No pipe weight should rest on the expansion joint.• Pipe guides have to be installed where a straight pipe routing is wanted (see

installation example).The pipe guides installed adjacent to the expansion joint must be strongenough to withstand the forces imposed on them from the expansion joint.

PretensionThe indicated axial and lateral movements must not be exceeded. In case ofasymmetrical movements, the axial or lateral displacement capacity can nolonger be fully used. Hence the expansion joint has to be pretensioned into theposition which corresponds to the installation temperature. As the temperature of the pipe at the moment of the installation seldomcorresponds to the lowest operating temperature, it is advisable to indicate somepretension values into the installation plans for several temperature levels.

TorsionThe expansion joints should never be subject to torsion. This is especially tobe considered when welding the counter flanges onto the pipe end.

Installation examples:

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 93

Page 95: e BOA Expansion Joints Guide 29.3

94

Movement splitting axial / lateralThe movements indicated in the tables are maximum values. In order toachieve the full load cycles required, only one of the movements can be fullyused. If axial and lateral movements occur simultaneously, the allowed combinationhas to be determined by the following diagram:

The maximum movements, taken from the diagram, form the corners of thetriangle (or the movement limiting line) within any movement combination canbe established for the given full load cycles.

Calculation examplegiven: Type UFS 6-20, DN200, 1000 full load cyclesrequested: lateral movement ± 40mm

Proceedinga) Mark the values of the maximum axial and lateral movement for 1000 full

load cycles, taken from the dimension table, onto the X- and Y-axis.maximum axial movement = ± 46 mmmaximum lateral movement = ± 77 mm

b) By connecting these two points, the movement triangle is obtained (movement limiting line)

c) Mark the requested lateral movement (if the movement distribution is asymmetrical, take the maximum lateral movement part). At the intersection with the movement limiting line, the maximum permissible axial movement of ± 22 mm can be determined.

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 94

Page 96: e BOA Expansion Joints Guide 29.3

95

So the expansion joint type UFS 6-20, DN 200, allows simultaneous axial move-ment of ± 22 mm, in addition to the requested lateral movement of ± 40 mm.

Calculation of the pretensionMovement formula:

Pretension formula:

tmin = minimum temperature [°C]tmax = maximum temperature [°C]te = installation temperature [°C]

Exampleaxial movement = ± 22 mmlateral movement = ± 40 mmtmin = 0 °Ctmax = 120 °Cte = 20 °C

H = movement = total movement [mm]

pretension = H - [mm] H · (te - tmin)

tmax - tmin

axial pretension = 20 - = 14,67 mm = 14,7 mm 44 · (20 - 0)

120 - 0

lateral pretension = 40 - = 26,67 mm = 26,7 mm 80 · (20 - 0)

120 - 0

ˆ

ˆ

H

2

44

2

80

2

29.3_UK_Kap_05.qxp:UK_02_Kap_05.qxp 30.10.2009 14:45 Uhr Seite 95

Page 97: e BOA Expansion Joints Guide 29.3

96

6 Standard programme

6.1 General

BOA expansion joints are especially suitable to compensate for thermalexpansions and minor misalignment during installation. BOA expansion jointapplications offer the following advantages:

• Over 50 years experience in manufacturing expansion joints• Multi-ply construction of the bellows, made of high-grade stainless steel

(1.4571 and 1.4541), which means high resistance against ageing, temperature, UV-rays and most of aggressive media.

• Very low spring rate due to the multi-ply construction of the bellows.• Large movements at short built-in lengths.• Thanks to our generous stock-holding, several nominal diameters and

pressure ranges of the different types are available at short time. These preferred series are grey-shaded in the tables.

Inner sleeveInner sleeves protect the bellows from vibrations caused by the media. Theinstallation of an inner sleeve is recommended in the following cases:

• abrasive media• large temperature differences• flow rates higher than ca. 8 m/s for gaseous media• flow rates higher than ca. 3 m/s for liquid media

The marking for the execution with inner sleeve for axial expansion joints (typeW, FS, FB), angular (AWT) and gimbal expansion joints (KAWT) is the following:Expansion joint types marked with * are available either with or without innersleeve (extra charge for inner sleeve). Because of their short length, expan -sion joint types marked "B" do not need an inner sleeve. Types designated"L" are only available with inner sleeves.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 96

Page 98: e BOA Expansion Joints Guide 29.3

97

Example:Type FS16-3B = basic version without inner sleeveType FS16-3L = basic version with inner sleeveType FS16-2* = basic version without inner sleeve, but may be equipped

with inner sleeve

Usually lateral and universal expansion joints must compensate for large amounts of lateral movements and vibrations. Therefore they are basically not in stalled with an inner sleeve. If an inner sleeve allowing large lateral movements is installed, inevitably the flow cross-section is considerably tight -ened. The resulting local acceleration of the flow medium very often is notaccepted. Nevertheless, on customer’s request, and for extra charge, an innersleeve may be installed.

While consulting the dimension tables of the expansion joints executed withflanges, please pay attention to the fact that the flanges are partly providedwith holes, partly with threads to take up the screws. The reason for is that theoutside diameter of the bellows comes to close to the hole diameter, so thatthe bolt head does not fit in.

Additional variants on requestObviously expansion joints may be designed and manufactured in variousother materials, pressure, movement and life time ranges.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 97

Page 99: e BOA Expansion Joints Guide 29.3

NOTEThe maximum permissible expansion capacity is indicated on the expansionjoint. It refers to 1000 load cycles (expansion joints conforming to EC stan-dards: 500 load cycles with safety factor 2). At higher load cycles, the expan -sion capacity must be reduced by the fatigue factor KL according to table 1.To determinate the exact fatigue factor KL, the following formula can be used:

98

6.2 Reduction

6.2.1 Expansion capacity

KL = (1000 / Ne)0.29

Load cycles Fatigue factor[Ne] [KL]

1'000 1.002'000 0.823'000 0.735'000 0.63

10'000 0.5130'000 0.3750'000 0.32100'000 0.26

200'000 0.221'000'000 0.1425'000'000 0.05

Tab. 1

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 98

Page 100: e BOA Expansion Joints Guide 29.3

99

6.2.2 Temperature related movement and pressure reduction

NOTEThe admissible operating pressure is determined by the nominal pressure considering the reduction factor KP according to tab. 2. At higher temperatu-res, the expansion capacity K� has to be reduced according to the reductionfactors.

Temperature °C KP K�

-10...20 1.00 1.0050 0.92 0.97100 0.87 0.94150 0.83 0.92

200 0.79 0.90250 0.74 0.88

300 0.67 0.86350 0.60 0.85400 0.53 0.84

1) linear interpolation for intermediate values

Reduction factors 1) for pressure[KP] and expansion capacity [K�]

Tab. 2

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 99

Page 101: e BOA Expansion Joints Guide 29.3

100

6.3 BOA Axial expansion joints

6.3.1 BOA Axial expansion joints with flanges

Type FS• Expansion joints of type FS are equipped with flanges firmly welded onto

the bellows.• As a standard, flanges are made of carbon steel and are primer coated.• As a standard, expansion joints of type FS are manufactured in nominal dia-

meters from DN 15 until DN 1000 mm and in pressure ranges of PN 6, 10,16, 25 and 40.

• The execution type I or II is indicated in the last column of the standardtables (see fig.).

Execution IAll types with * and B are manufactured accordingly.

Execution IIOnly available with inner sleeve.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 100

Page 102: e BOA Expansion Joints Guide 29.3

101

Type FB• Expansion joints of type FB are equipped with movable flanges. The inside

medium is only in contact with the austenitic bellows material.• As a standard, flanges are made of carbon steel and galvanized, larger diame-

ters are primer coated.• As a standard, expansion joints of type FB are manufactured in nominal dia-

meters from DN 20 until 1000 mm and in pressure ranges of PN 6, 10 and 16.• The basic version of the expansion joint type FB is manufactured without

inner sleeve. Yet it can be equipped with it (for an extra charge).

Basic versionSupplementary designation B

Supplementary designation L

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 101

Page 103: e BOA Expansion Joints Guide 29.3

102

6.3.2 Axial expansion joints with weld ends

Type W

• Expansion joints of type W are equipped with weld ends, firmly welded ontothe bellows.

• As a standard, the weld ends are made of carbon steel and are primer coated.

• As a standard, expansion joints of type W are manufactured in nominal dia-meters from DN 15 until 1000 mm and in pressure ranges of PN 6, 10, 16,25 and 40.

• The execution type I or II is indicated in the last column of the standardtables (see fig.).

Execution IAll types with * and B are manufactured accordingly.

Execution IIOnly available with inner sleeve.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 102

Page 104: e BOA Expansion Joints Guide 29.3

103

6.4 BOA Angular expansion joints

Angular expansion joints with weld ends

Type AWT• As a standard, expansion joints of type AWT are manufactured in DN 40

until DN 1000 mm and in pressure ranges of PN 16, 25 and 40. For PN 6and 10, standard executions of DN 350 until DN 1000 are available.

• The type designation is extended by the figure 1, 2, 3 and 4, depending onthe construction dimension. AWT6-1 means: short expansion joint for pres-sure ranges PN 6; AWT25-4 means: the longest expansion joint for pressureranges PN 25.

• As a standard, weld ends and tie rods are made of carbon steel and are primer coated.

• As special executions, angular expansion joints type AFS may be manufac-tured with fixed flanges, and those of type AFB with movable flanges.

• The execution type I or II is indicated in the last column of the standardtables (see fig.).

Execution IOnly available without inner sleeve.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 103

Page 105: e BOA Expansion Joints Guide 29.3

104

Execution IIOptionally available with or without inner sleeve.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:45 Uhr Seite 104

Page 106: e BOA Expansion Joints Guide 29.3

105

6.5 BOA Lateral expansion joints

6.5.1 Lateral expansion joints with flanges

Type LFS• Expansion joints of type LFS are equipped with flanges firmly welded onto

the bellows.• As a standard, expansion joints of type LFS are manufactured in nominal

diameters from DN 40 until DN 1000 mm and in pressure ranges of PN 6,10, 16, 25 and 40.

• High-grade, low-friction articulated system with tie rods made of carbonsteel and with ball joints.

• As a standard, flanges are made of carbon steel and are primer coated.• The variant with specially large lateral movement (execution II) is equipped

with an intermediate tube made of carbon steel.• The execution type I or II is indicated in the last column of the standard

tables (see fig.).

Execution ILateral expansion joint with integrated intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 105

Page 107: e BOA Expansion Joints Guide 29.3

106

Execution IILateral expansion joint with attached intermediate tube

Type LFB• Expansion joints of type LFB are equipped with movable flanges. The inside

medium is only in contact with the austenitic bellows material.• As a standard, expansion joints of type LFB are manufactured in nominal

diameters from DN 40 until DN 300 mm and in pressure ranges of DIN PN 6,10, 16 and 25.

• As a standard, flanges are made of carbon steel and are primer coated.• High-grade, low-friction articulated system with tie rods made of carbon

steel and with ball joints.• The variant with specially large lateral movement (execution II) is equipped

with an intermediate tube made of carbon steel.• The execution type I or II is indicated in the last column of the standard

tables (see fig.).

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 106

Page 108: e BOA Expansion Joints Guide 29.3

107

Execution ILateral expansion joint with integrated intermediate tube.

Execution IILateral expansion joint with attached intermediate tube

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 107

Page 109: e BOA Expansion Joints Guide 29.3

108

6.5.2 Lateral expansion joint with weld ends

Type LW• Expansion joints of type LW are equipped with flanges firmly welded onto

the bellows.• As a (BOA) standard, expansion joints of type LWT with cardan joint are

manufactured in nominal diameters from DN 350 until DN 1000 mm and inpressure ranges of DIN PN 6, 10, 16, 25 and 40.

• High-grade, low-friction articulated system with tie rods made of carbonsteel and with ball joints.

• As a standard, weld ends and flanges are made of carbon steel and are primer coated.

• The variant with specially large lateral movement (execution II) is equippedwith an intermediate tube made of carbon steel.

• The execution type I or II is indicated in the last column of the standardtables (see fig.).

Execution ILateral expansion joint with integrated intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 108

Page 110: e BOA Expansion Joints Guide 29.3

109

Execution IILateral expansion joint with attached intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 109

Page 111: e BOA Expansion Joints Guide 29.3

110

Execution IOnly available without inner sleeve.

Execution IIOptionally available with or without inner sleeve.

6.6 BOA Gimbal expansion joints

Gimbal expansion joints with weld ends

Type KAWT• As a standard, expansion joints of type KAWT are manufactured in nominal

diameters from DN 40 until 1000 mm and in pressure ranges of PN 6, 10,16, 25 and 40.

• As a standard, weld ends and tie rods are made of carbon steel and are primer coated.

• As special executions, gimbal expansion joints may be manufactured withfixed or movable flanges.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 110

Page 112: e BOA Expansion Joints Guide 29.3

111

6.7 BOA Universal expansion joints

6.7.1 Universal expansion joints with flanges

Type UFS• Expansion joints of type UFS are equipped with flanges firmly welded onto

the bellows.• As a standard, expansion joints of type UFS are manufactured in nominal

diameters from DN 40 until 1000 mm and in pressure ranges of PN 6, 10, 16and 25.

• As a standard, flanges are made of carbon steel and are primer coated.• The variant with specially large lateral movement (execution II) is equipped

with an intermediate tube made of carbon steel.• The execution type I or II is indicated in the last column of the standard

tables (see fig.).

Execution IUniversal expansion joint with integrated intermediate tube.

Execution IIUniversal expansion joint with attached intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 111

Page 113: e BOA Expansion Joints Guide 29.3

112

Type UFB• Expansion joints of type UFB are equipped with movable flanges. The inside

medium is only in contact with the austenitic bellows material.• As a standard, expansion joints of type UFB are manufactured in nominal

diameters from DN 40 until DN 300 mm and in pressure ranges of DIN PN 6,10, 16 and 25.

• As a standard, flanges are made of carbon steel and are primer coated.• The variant with specially large lateral movement (execution II) is equipped

with an intermediate tube made of carbon steel.• The execution type I or II is indicated in the last column of the standard

tables (see fig.).

Execution IUniversal expansion joint with integrated intermediate tube.

Execution IIUniversal expansion joint with attached intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 112

Page 114: e BOA Expansion Joints Guide 29.3

113

Execution IUniversal expansion joint with integrated intermediate tube.

6.7.2 Universal expansion joints with weld ends

Type UW• Expansion joints of type UW are equipped with weld ends, firmly welded

onto the bellows.• As a standard, expansion joints of type UW are manufactured in nominal

diameters from DN 40 until DN 1000 mm and in pressure ranges of DIN PN 6, 10, 16 and 25.

• As a standard, weld ends are made of carbon steel and are primer coated.• The variant with specially large lateral movement (execution II) is equipped

with an intermediate tube made of carbon steel.• The execution type I or II is indicated in the last column of the standard

tables (see fig.).

Execution IIUniversal expansion joint with attached intermediate tube.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 113

Page 115: e BOA Expansion Joints Guide 29.3

114

6.8 BOA Low pressure expansion joints

BOA low pressure expansion joints are specially built for applications whereat low pressures (up to 3.0 bar at 20°C) large movements are to be absorbed. In the following application fields, low pressure expansion joints have provedto be successful:• any kind of flue gas piping• exhaust gas pipes behind internal combustion engines, especially emergen-

cy power generators and heat/ load couplings.• sewage and water treatment systems.

General• The multi-ply design results in a very low spring rate and therefore very

small displacement forces.• Designed for operating pressures up to 3.0 bar at 20°C. Considering the

reduction factors (see reduction table), operating pressures of 2.03 bar at300°C, or 1.81 bar at 500°C are allowable.

• Higher temperatures are allowed due to the high quality of the materialused. Temperature range: from –180°C up to 500°C. If the entire expansionjoint is made of austenitic steel, then the permissible temperature raises to700°C (for dry and pressure-free media).

• Vacuum installations are allowed up to 300 mbar (700mbar abs.).• The indicated movements are meant for 1000 full load cycles at 20°C.

(CE-marking 500 full load cycles with safety factor 2)

Reduction factors for pressure and movement at higher temperaturesThe reduction factors for movements are related to a constant cycle numberof 1000.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 114

Page 116: e BOA Expansion Joints Guide 29.3

Calculation example:given: Type EXW, DN 300, axial movement ±59 mm, lateral ±10 mm

operating temperature 350°Crequested: possible movement at 350°C

Proceeding:Reduction factor of movement at 350°C according to table = 0.827

Axial movement = ±59 mm · 0.827 = ±48.7 mm

Lateral movement = ±10 mm · 0.827 = ±8.3 mmThe operation pressure is 1.91 bar

115

Temperature Pressure Reduction factor of movement[°C] [bar] [-]

20 3.00 1.00050 2.74 0.96075 2.64 0.945

100 2.56 0.930125 2.49 0.915150 2.42 0.900175 2.37 0.895

200 2.31 0.890225 2.22 0.873250 2.14 0.857275 2.09 0.849

300 2.03 0.840325 1.97 0.834350 1.91 0.827375 1.90 0.821

400 1.89 0.815425 1.87 0.811450 1.85 0.807475 1.83 0.803

500 1.81 0.800550 1.38 0.720

600 1.00 0.630650 0.58 0.580

700 0.30 0.540

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 115

Page 117: e BOA Expansion Joints Guide 29.3

116

Execution EXF

Execution EXUF

6.8.1 Low pressure expansion joints with flanges

Types EXF and EXUF• Expansion joints of types EXF and EXUF are equipped with movable

flanges, floating flange construction both sides drilled according to DIN PN 6.

• The inside medium is only in contact with the austenitic bellows material.• Thanks to the movable flanges, types EXF and EXUF are units easy to fit

and therefore ideal as replacement units in existing systems.• As a standard, the flanges are made of carbon steel.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 116

Page 118: e BOA Expansion Joints Guide 29.3

117

Execution EXW

Execution EXUW

6.8.2 Low pressure expansion joints with weld ends

Types EXW and EXUW• The two weld ends (up to DN 400) are entirely made of austenitic steel

(1.4571). At higher DN (from 450), the weld ends are made of carbon steel.• Tight resistance welding for the connection bellows - weld ends.• The diameters of the weld ends are metric as a standard (see table), yet they

are easily to expand into ISO dimensions. Please let us know the requestedconnection dimension when ordering.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 117

Page 119: e BOA Expansion Joints Guide 29.3

118

DN: 1⁄2" until 2". For larger pipe dimensions, expansion joints of type W areused.

Pressure:Dimension 1⁄2" until 11⁄4" PN 16Dimension 11⁄2" until 2" PN 10For higher pressures, expansion joints of type W are used.

Endurance: 5000 full load cycles at 25 mm movement (1000 full load cycles at 45 mm movement)

Temperature resistance: up to 450°C

6.9 BOA Small expansion joints

6.9.1 Small expansion joint Type Za:

Execution with weld ends, delivered in pretensioned condition. The main ele-ment of this small expansion joint is the multi-ply bellows made of austeniticsteel. The two weld ends are made of carbon steel. The inner sleeve is rein -forced and therefore also acting as a guiding tube. The outside sleeve pro-tects the bellows from peripherical influences. All connections are welded.

TL

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 118

Page 120: e BOA Expansion Joints Guide 29.3

119

6.9.2 Small expansion joint Type Ga:

Drinking water resistant execution, torsion-proof design, delivered in preten-sioned condition. All connections are welded. The main element of this smallexpansion joint is the bellows made of austenitic steel. Both weld end attach-ments are male threaded. The inner sleeve is reinforced and therefore alsoacting as a guiding tube. The hexagonal outside sleeve is strong enough to behold with a wrench during the installation.

DN: 1⁄2" until 2". For larger pipe dimensions, expansion joints of type FB areused.

Pressure: PN 16. For higher pressures, expansion joints of type FB are used.

Endurance: 5000 full load cyclesTemperature resistance: up to 450°C

ain ele-tenitic

s rein -pro-

ded.

TL

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 119

Page 121: e BOA Expansion Joints Guide 29.3

120

6.9.3 Small expansion joint Type I:

Drinking water resistant execution, torsion-proof design, delivered in preten-sioned condition. All connections are welded. The main element of this smallexpansion joint is the bellows made of bronze. Both attachments are equip-ped with inner brazed end. The inner sleeve is reinforced and therefore alsoacting as a guiding tube. The outside sleeve protects the bellows from peri-pherical influences. The small expansion joint is suited for taking up axialmovements.

DN: 15 up to 42. For larger pipe dimensions, expansion joints of type FB areused.

Pressure: PN 16. For higher pressures, expansion joints of type FB are used.

Endurance:DN 15–28: 1000 full load cyclesDN 35–42: 5000 full load cycles

Temperature resistance: up to 180°C

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 120

Page 122: e BOA Expansion Joints Guide 29.3

121

6.10 Axial expansion joints for Mannesmann Pressfitting System

Materials – Type 7179 00X-MSBellows: stainless steel 1.4571Weld ends: carbon steelInner sleeve and protecting tube: carbon steelConnection unit: carbon steel

Materials – Type 7179 00X-MEBellows: stainless steel 1.4571Weld ends: stainless steel 1.4571Inner sleeve and protecting tube: 1.4571 or 1.4404Connection unit: 1.4404

Permissible operating conditions:System "heating": maximum operating pressure 16 bar

maximum temperature 110°C

System "sanitary": maximum operating pressure 16 barmaximum temperature 85°C (according to DIN 1988) or 110°C

FB are

e used.

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 121

Page 123: e BOA Expansion Joints Guide 29.3

122

6.11 Axial steel expansion joints

Equipped with threaded sockets with or without proctecting tube, suitable tocompensate for axial movement without pretension, lateral movement or toabsorb vibrations.

Materials – Type 7160 00S-TIBellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: malleable cast iron,galvanizedGasket: Klingersil C-4400Maximum operating temperature:300°C

Materials – Type 7160 00S-RIBellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: gunmetal 2.1906Gasket: Klingersil C-4400Maximum operating temperature:225°C

Materials – Type 7160 00S-TABellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: malleable cast iron,galvanizedGasket: Klingersil C-4400Maximum operating temperature:300°C

Materials – Type 7160 00S-RABellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: gunmetal 2.1906Gasket: Klingersil C-4400Maximum operating temperature:225°C

Type 7160 00S-TI /RI Type 7160 00S-TA /RA

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 122

Page 124: e BOA Expansion Joints Guide 29.3

123

Materials – Type 7162 00S-TIBellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: malleable cast iron,galvanizedGasket: Klingersil C-4400Protecting sleeve: carbon steel, galvanized, soft soldered Maximum operating temperature:180°C

Materials – Type 7162 00S-RIBellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: gunmetal 2.1906Gasket: Klingersil C-4400Protecting sleeve: brass, soft solderedMaximum operating temperature:180°C

Materials – Type 7162 00S-TABellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: malleable cast iron,galvanizedGasket: Klingersil C-4400Protecting sleeve: carbon steel, galvanized, soft soldered Maximum operating temperature:180°C

Materials – Type 7162 00S-RABellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Screwed ends: gunmetal 2.1906Gasket: Klingersil C-4400Protecting sleeve: brass, soft solderedMaximum operating temperature:180°C

Type 7162 00S-TI /RI Type 7162 00S-TA /RA

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 123

Page 125: e BOA Expansion Joints Guide 29.3

124

Materials – Type 7160 00S-LFBellows: stainless steel 1.4571Spacer sheets: stainless steel1.4301Brazing fitting: gunmetal 2.1906Gasket: Klingersil C-4400Maximum operating temperature:225°C

Type 7160 00S-LF and 7162 00S-LF (gunmetal)With brazing fittings, with or without protecting tube, suitable to compensatefor axial movement without pretension, lateral movement or to absorb vibra-tions.

Materials – Type 7162 00S-LFBellows: stainless steel 1.4571Spacer sheets: stainless steel 1.4301Brazing fittings: gunmetal 2.1906Gasket: Klingersil C-4400Protecting sleeve: brass, soft solderedMaximum operating temperature:180°C

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 124

Page 126: e BOA Expansion Joints Guide 29.3

125

page

BOA Type FS PN6 126PN10 130PN16 134PN25 138PN40 142

BOA Type FB PN6 145PN10 148PN16 151

BOA Type W PN6 154PN10 158PN16 162PN25 166PN40 170

BOA Type AWT PN6 174PN10 176PN16 178PN25 180PN40 182

BOA Type LFS PN6 184PN10 187PN16 190PN25 193PN40 196

BOA Type LFB PN6 198PN10 200PN16 202PN25 204

BOA Type LW PN6 206PN10 209PN16 212PN25 215PN40 218

BOA Type KAWT PN6 220PN10 222PN16 224PN25 226PN40 228

BOA Type UFS PN6 230PN10 232PN16 234PN25 236

BOA Type UFB PN6 238PN10 240PN16 242PN25 244

BOA Type UW PN6 246PN10 248PN16 250PN25 252

BOA Type EXF PN2.5 254EXUF PN2.5 256EXW PN2.5 258EXUW PN2.5 260

BOA Small exp. joints Type Za 262Type Ga 263Type I 264

BOA TypeAxial expansion joints7179/00X-MS/ME 266Axial steel expansion joints7160/7162 00S-TI /RI 268Axial steel expansion joints7160/7162 00S-TA/RA 270Axial steel expansion joint7160/7162 00S-LF 272

6.12 Tables standard programme

page

29.3_UK_Kap_06.qxp:UK_02_Kap_06.qxp 30.10.2009 14:46 Uhr Seite 125

Page 127: e BOA Expansion Joints Guide 29.3

126

BO

A T

ype

FSP

N6

DNTy

pe

15FS

6-26

13

= 2

615

017

535

.080

1255

411

43.0

6.4

0.9

IFS

6-36

18

= 3

616

220

234

.080

1255

411

52.0

6.0

0.9

I

20FS

6-26

13

= 2

615

016

535

.090

1465

411

43.0

6.4

1.2

IFS

6-36

18

= 3

616

218

734

.090

1465

411

52.0

6.0

1.3

I

25FS

6-28

14

= 2

816

017

542

.010

014

754

1189

.09.

41.

6I

FS6-

38*

± 1

9 =

38

158

183

41.0

100

1475

411

54.0

9.1

1.6

I

32FS

6-30

15

= 3

017

219

251

.012

014

904

1484

.015

.02.

2I

FS6-

40*

± 2

0 =

40

196

226

51.0

120

1490

414

121.

014

.22.

4I

40FS

6-30

15

= 3

017

819

858

.013

014

100

414

90.0

19.5

2.4

IFS

6-44

22

= 4

420

823

857

.013

014

100

414

125.

018

.52.

7I

FS6-

3L±

30

= 6

027

8-

68.0

130

1410

04

1456

.527

.03.

4II

50FS

6-1B

± 1

6 =

32

137

-81

.214

014

110

414

101.

039

.03.

0I

FS6-

40*

± 2

0 =

40

190

220

74.0

140

1411

04

1499

.031

.82.

9I

FS6-

3L±

32

= 6

427

8-

81.2

140

1411

04

1450

.539

.03.

8II

65FS

6-1B

± 1

9 =

38

137

-10

4.8

160

1413

04

1490

.066

.03.

7I

FS6-

54*

± 2

7 =

54

240

290

94.0

160

1413

04

1478

.052

.73.

9I

FS6-

3L±

38

= 7

627

8-

104.

816

014

130

414

45.0

66.0

4.8

II

80FS

6-1B

± 2

0 =

40

137

-11

8.5

190

1615

04

1810

1.0

84.0

6.1

I

Tota

l len

gth

Bello

ws

Flan

ge

TLTL

daD

bk

nd

CxA

m

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 126

Page 128: e BOA Expansion Joints Guide 29.3

FS6-

56*

± 2

8 =

56

240

290

105.

019

016

150

418

85.0

67.9

5.9

IFS

6-3L

± 4

0 =

80

278

-11

8.5

190

1615

04

1850

.584

.07.

5II

100

FS6-

1B±

22

= 4

413

6-

142.

121

016

170

418

102.

012

7.0

6.9

IFS

6-76

± 3

8 =

76

278

348

136.

021

016

170

418

90.0

115.

07.

4I

FS6-

3L±

44

= 8

827

4-

142.

121

016

170

418

51.0

127.

08.

7II

125

FS6-

1B±

22

= 4

413

8-

170.

824

018

200

818

129.

018

4.0

9.6

IFS

6-72

38

= 7

228

533

515

8.0

240

1820

08

1810

3.0

159.

010

.0I

FS6-

3L±

44

= 8

827

6-

170.

824

018

200

818

64.5

184.

012

.6II

FS6-

92*

± 4

6 =

92

307

407

158.

024

018

200

818

125.

015

7.0

11.0

I

150

FS6-

1B±

17

= 3

413

8-

202.

026

520

225

818

228.

026

2.0

11.6

IFS

6-2*

± 3

5 =

70

198

198

202.

026

520

225

818

114.

026

2.0

13.7

IFS

6-92

46

= 9

230

740

718

6.0

265

1822

58

1814

3.0

225.

013

.0I

FS6-

4L±

76

= 1

5237

4-

201.

026

520

225

818

61.0

262.

019

.4II

175

FS6-

1B±

21

= 4

216

0-

230.

029

522

255

818

199.

034

2.0

15.6

IFS

6-2*

± 3

7 =

74

205

205

230.

029

522

255

818

114.

034

2.0

18.2

IFS

6-3*

± 4

9 =

98

254

254

231.

029

522

255

818

138.

034

2.0

21.2

IFS

6-4L

± 7

9 =

158

384

-23

0.0

295

2225

58

1850

.034

2.0

24.6

II

200

FS6-

1B±

23

= 4

614

8-

256.

032

022

280

818

293.

043

4.0

16.0

IFS

10-6

0*±

30

= 6

031

537

025

7.0

340

2429

58

2240

0.0

410.

028

.0I

FS6-

4L±

78

= 1

5638

2-

255.

032

022

280

818

24.0

434.

023

.0II

250

FS6-

1B±

19

= 3

814

5-

311.

037

524

335

1218

264.

066

0.0

20.5

IFS

10-6

6*±

33

= 6

632

538

031

2.0

395

2635

012

2245

0.0

625.

036

.0I

FS6-

4*±

92

= 1

8437

7-

315.

037

524

335

1218

78.0

660.

035

.5I

300

FS6-

1B±

21

= 4

215

1-

364.

044

024

395

1222

323.

091

1.0

27.5

IFS

10-7

0*±

35

= 7

032

538

036

3.0

445

2640

012

2250

0.0

870.

042

.0I

FS6-

4*±

96

= 1

9238

8-

365.

044

024

395

1222

70.0

911.

043

.1I

350

FS6-

1B±

20

= 4

014

3-

399.

049

026

445

1222

204.

011

01.0

39.0

IFS

10-7

2*±

36

= 7

232

538

039

5.0

505

2646

016

2255

0.0

1045

.055

.0I

FS6-

4*±

95

= 1

9037

8-

401.

049

026

445

1222

78.0

1103

.058

.0I

400

FS6-

1B±

22

= 4

414

9-

451.

054

028

495

1622

255.

014

17.0

47.0

IFS

10-7

6*±

38

= 7

633

539

044

5.0

565

2651

516

2660

0.0

1355

.066

.0I

FS6-

4*±

100

= 2

0039

3-

451.

054

028

495

1622

71.0

1413

.067

.0I

450

FS6-

1B±

23

= 4

615

1-

505.

059

528

550

1622

262.

017

98.0

53.0

IFS

6-2*

± 3

9 =

78

204

-50

5.0

595

2855

016

2215

7.0

1798

.059

.0I

127

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 127

Page 129: e BOA Expansion Joints Guide 29.3

128

BO

A T

ype

FSP

N6

DNTy

pe

FS6-

3*±

61

= 1

2227

1-

505.

059

528

550

1622

98.0

1798

.064

.0I

FS6-

4*±

95

= 1

9037

8-

505.

059

528

550

1622

73.0

1794

.076

.0I

500

FS6-

1B±

26

= 5

215

9-

557.

064

530

600

2022

316.

021

95.0

62.0

IFS

10-8

0*±

40

= 8

033

539

555

0.0

670

2862

020

2670

0.0

2100

.089

.0I

FS6-

4*±

103

= 2

0640

1-

557.

064

530

600

2022

79.0

2195

.088

.0I

600

FS6-

1B±

29

= 5

817

1-

663.

075

530

705

2026

371.

031

45.0

80.0

IFS

10-8

0*±

40

= 8

034

540

065

2.0

780

2872

520

3090

0.0

3010

.010

4.0

IFS

6-4*

± 9

6 =

192

383

-66

3.0

755

3070

520

2693

.031

45.0

112.

0I

700

FS10

-74*

± 3

7 =

74

345

400

754.

089

530

840

2430

1100

.040

80.0

143.

0I

FS6-

2*±

44

= 8

822

0-

764.

086

024

810

2426

192.

042

24.0

89.0

IFS

6-3*

± 6

2 =

124

280

-76

4.0

860

2481

024

2613

7.0

4224

.097

.0I

800

FS6-

56*

± 2

8 =

56

259

439

912.

097

524

920

2430

963.

058

26.0

102.

0I

FS6-

114*

± 5

7 =

114

434

674

905.

097

524

920

2430

509.

057

75.0

114.

0I

FS6-

164*

± 8

2 =

164

479

779

890.

097

524

920

2430

403.

056

66.0

120.

0I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 128

Page 130: e BOA Expansion Joints Guide 29.3

129

900

FS6-

58*

± 2

9 =

58

259

439

1015

.010

7526

1020

2430

1066

.073

03.0

123.

0I

FS6-

116*

± 5

8 =

116

434

674

1008

.010

7526

1020

2430

561.

072

46.0

136.

0I

FS6-

164*

± 8

2 =

164

479

779

994.

010

7526

1020

2430

441.

071

24.0

142.

0I

1000

FS6-

56*

± 2

8 =

56

239

419

1120

.011

7526

1120

2830

1097

.089

48.0

136.

0I

FS6-

122*

± 6

1 =

122

379

629

1115

.011

7526

1120

2830

547.

088

98.0

151.

0I

FS6-

166*

± 8

3 =

166

419

719

1100

.011

7526

1120

2830

397.

087

61.0

159.

0I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 129

Page 131: e BOA Expansion Joints Guide 29.3

130

BO

A T

ype

FSP

N10

Tota

lläng

eBa

lg

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

DNTy

pe

15FS

10-2

6*±

13

= 2

615

017

535

.095

1465

414

43.0

6.4

1.4

IFS

10-3

6*±

18

= 3

616

220

234

.095

1465

414

52.0

6.0

1.4

I

20FS

10-2

6*±

13

= 2

615

016

535

.010

516

754

1443

.06.

41.

9I

FS10

-36*

± 1

8 =

36

162

187

34.0

105

1675

414

52.0

6.0

1.9

I

25FS

10-2

8*±

14

= 2

816

017

542

.011

516

854

1489

.09.

42.

3I

FS10

-38*

± 1

9 =

38

158

183

41.0

115

1685

414

54.0

9.1

2.3

I

32FS

10-3

0*±

15

= 3

017

219

251

.014

016

100

418

84.0

15.0

3.3

IFS

10-4

0*±

20

= 4

019

622

651

.014

016

100

418

121.

014

.23.

5I

40FS

10-3

0*±

15

= 3

017

819

858

.015

016

110

418

90.0

19.5

3.6

IFS

10-4

4*±

22

= 4

420

823

857

.015

016

110

418

125.

018

.53.

9I

FS16

-3L

± 3

0 =

60

278

-68

.215

016

110

418

56.5

27.0

5.2

II

50FS

10-4

0*±

20

= 4

019

022

074

.016

518

125

418

99.0

31.8

5.1

IFS

10-5

0*±

25

= 5

020

624

674

.016

518

125

418

105.

031

.15.

3I

FS16

-3L

± 3

2 =

64

278

-81

.216

518

125

418

50.5

39.0

6.7

II

65FS

10-3

0*±

15

= 3

017

618

694

.018

518

145

418

90.0

53.1

6.1

IFS

10-5

6*±

28

= 5

625

430

493

.018

518

145

418

161.

051

.17.

0I

FS16

-3L

± 3

8 =

76

278

-10

4.8

185

1814

54

1845

.066

.07.

5II

80FS

10-3

0*±

15

= 3

017

618

610

5.0

200

2016

08

1898

.068

.27.

5I

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 130

Page 132: e BOA Expansion Joints Guide 29.3

FS10

-56*

± 2

8 =

56

254

304

105.

020

020

160

818

175.

066

.08.

6I

FS16

-3L

± 4

0 =

80

278

-11

8.5

200

2016

08

1850

.584

.09.

3II

100

FS10

-56*

± 2

8 =

56

280

320

136.

022

020

180

818

216.

011

4.0

10.0

IFS

10-7

6*±

38

= 7

630

237

213

6.0

220

2018

08

1818

7.0

112.

011

.0I

FS16

-3L

± 4

4 =

88

276

-14

2.1

220

2218

08

1851

.012

7.0

11.5

II

125

FS10

-40*

± 2

0 =

40

203

223

158.

025

022

210

818

135.

016

0.0

12.0

IFS

10-7

6*±

38

= 7

630

737

715

7.0

250

2221

08

1821

2.0

155.

014

.0I

FS16

-3L

± 4

6 =

92

280

-17

0.8

250

2421

08

1864

.518

4.0

16.5

II

150

FS10

-40*

± 2

0 =

40

203

223

186.

028

522

240

822

155.

022

8.0

15.0

IFS

10-7

6*±

38

= 7

630

737

718

6.0

285

2224

08

2224

3.0

224.

018

.0I

FS16

-3*

± 5

0 =

100

270

270

205.

028

524

240

822

155.

026

2.0

22.6

I

175

FS16

-1B

± 2

1 =

42

160

-23

0.0

315

2627

08

2219

9.0

342.

021

.3I

FS16

-2*

± 3

7 =

74

205

-23

0.0

315

2627

08

2211

4.0

342.

023

.9I

FS16

-3*

± 4

9 =

98

254

-23

1.0

315

2627

08

2213

8.0

342.

026

.8I

FS16

-4L

± 7

9 =

158

384

-23

0.0

315

2627

08

2250

.034

2.0

30.2

II

200

FS10

-1B

± 2

2 =

44

157

-25

6.0

340

2629

58

2229

3.0

434.

023

.5I

FS10

-60*

± 3

0 =

60

315

370

257.

034

024

295

822

400.

041

0.0

28.0

IFS

10-8

4*±

42

= 8

435

043

025

7.0

340

2429

58

2230

0.0

410.

034

.0I

FS10

-4L

± 7

6 =

152

374

-25

6.0

340

2629

58

2241

.043

4.0

29.9

II

250

FS10

-1B

± 1

9 =

38

149

-31

2.0

395

2835

012

2223

4.0

660.

030

.5I

FS10

-66*

± 3

3 =

66

325

380

312.

039

526

350

1222

450.

062

5.0

36.0

IFS

10-8

2*±

46

= 8

236

545

031

2.0

395

2635

012

2235

0.0

625.

043

.0I

FS10

-4L

± 7

9 =

158

396

-31

1.0

395

2835

012

2248

.066

0.0

41.3

II

300

FS10

-1B

± 2

0 =

40

151

-36

4.0

445

2840

012

2232

4.0

911.

035

.0I

FS10

-70*

± 3

5 =

70

325

380

363.

044

526

400

1222

500.

087

0.0

42.0

IFS

10-1

00*

± 5

0 =

100

365

455

363.

044

526

400

1222

400.

087

0.0

50.0

IFS

10-4

96

= 1

9239

0-

367.

044

528

400

1222

119.

091

1.0

57.0

I

350

FS10

-1B

± 2

1 =

42

154

-40

1.0

505

3046

016

2236

5.0

1103

.052

.0I

FS10

-72*

± 3

6 =

72

325

380

395.

050

526

460

1622

550.

010

45.0

55.0

IFS

10-1

00*

± 5

0 =

100

365

455

395.

050

526

460

1622

450.

010

45.0

64.0

IFS

10-4

98

= 1

9639

6-

401.

050

530

460

1622

122.

010

93.0

74.0

I

400

FS10

-1B

± 2

2 =

44

156

-45

3.0

565

3251

516

2636

2.0

1424

.063

.0I

FS10

-76*

± 3

8 =

76

335

390

445.

056

526

515

1626

600.

013

55.0

66.0

IFS

10-1

06*

± 5

3 =

106

380

465

445.

056

526

515

1626

500.

013

55.0

76.0

I

131

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 131

Page 133: e BOA Expansion Joints Guide 29.3

132

BO

A T

ype

FSP

N10

DNTy

pe

FS10

-4*

± 1

03 =

206

403

403

453.

056

532

515

1626

121.

014

12.0

94.0

I

450

FS10

-1B

± 2

4 =

48

159

-50

7.0

615

3256

520

2637

2.0

1806

.068

.0I

FS10

-2*

± 4

0 =

80

206

206

507.

061

532

565

2026

223.

018

06.0

76.0

IFS

10-3

63

= 1

2627

927

950

7.0

615

3256

520

2614

0.0

1806

.083

.0I

FS10

-4*

± 1

01 =

202

405

-50

7.0

615

3256

520

2612

1.0

1797

.099

.0I

500

FS10

-1B

± 2

6 =

52

165

-55

9.0

670

3462

020

2642

7.0

2204

.083

.0I

FS10

-80*

± 4

0 =

80

335

395

550.

067

028

620

2026

700.

021

00.0

89.0

IFS

10-1

10*

± 5

5 =

110

380

475

550.

067

028

620

2026

600.

021

00.0

102.

0I

FS10

-4*

± 1

07 =

214

421

-55

9.0

670

3462

020

2612

1.0

2199

.011

7.0

I

600

FS10

-1B

± 1

9 =

38

162

-66

3.0

780

3672

520

3072

3.0

3133

.010

8.0

IFS

10-8

0*±

40

= 8

034

540

065

2.0

780

2872

520

3090

0.0

3010

.010

4.0

IFS

10-1

16*

± 5

8 =

116

395

485

652.

078

028

725

2030

700.

030

10.0

119.

0I

FS10

-4*

± 1

07 =

214

424

-66

3.0

780

3672

520

3013

1.0

3133

.015

0.0

I

700

FS10

-1B

± 2

1 =

42

154

-76

6.0

895

3084

024

3081

8.0

4222

.011

4.0

IFS

10-7

4*±

37

= 7

434

540

075

4.0

895

3084

024

3011

00.0

4080

.014

3.0

IFS

10-1

14*

± 5

7 =

114

395

485

754.

089

530

840

2430

900.

040

80.0

160.

0I

FS10

-4*

± 1

07 =

214

422

-76

6.0

895

3084

024

3014

9.0

4222

.016

7.0

I

800

FS10

-44*

± 2

2 =

44

299

469

897.

010

1532

950

2433

1460

.057

24.0

177.

0I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 132

Page 134: e BOA Expansion Joints Guide 29.3

FS10

-102

51

= 1

0247

471

489

7.0

1015

3295

024

3362

6.0

5724

.018

9.0

IFS

10-1

62*

± 8

1 =

162

534

834

890.

010

1532

950

2433

629.

056

39.0

210.

0I

900

FS10

-42*

± 2

1 =

42

305

479

999.

011

1534

1050

2933

1706

.071

76.0

207.

0I

FS10

-100

50

= 1

0048

072

499

9.0

1115

3410

5029

3373

1.0

7176

.022

0.0

IFS

10-1

62*

± 8

1 =

162

540

844

993.

011

1534

1050

2933

686.

070

93.0

244.

0I

1000

FS10

-46*

± 2

3 =

46

320

494

1092

.012

3034

1160

2836

1930

.087

07.0

243.

0I

FS10

-100

50

= 1

0046

069

410

97.0

1230

3411

6028

3682

6.0

8745

.025

6.0

IFS

10-1

66*

± 8

3 =

166

475

779

1099

.012

3034

1160

2836

608.

087

27.0

282.

0I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

133

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 133

Page 135: e BOA Expansion Joints Guide 29.3

134

BO

A T

ype

FSP

N16

DNTy

pe

15FS

16-2

0*±

10

= 2

013

616

135

.095

1465

414

57.0

6.4

1.4

IFS

16-3

0*±

15

= 3

015

017

534

.095

1465

414

63.0

6.0

1.4

I

20FS

16-2

0*±

10

= 2

013

615

135

.010

516

754

1457

.06.

41.

9I

FS16

-30*

± 1

5 =

30

150

165

34.0

105

1675

414

63.0

6.0

1.9

I

25FS

16-2

0*±

10

= 2

014

415

942

.011

516

854

1411

8.0

9.4

2.3

IFS

16-2

8*±

14

= 2

817

218

741

.011

516

854

1415

1.0

8.8

2.4

I

32FS

16-2

2*±

11

= 2

215

216

251

.014

016

100

418

112.

015

.03.

3I

FS16

-34*

± 1

7 =

34

180

200

51.0

140

1610

04

1814

2.0

14.2

3.5

I

40FS

16-2

2*±

11

= 2

215

616

658

.015

016

110

418

120.

019

.53.

6I

FS16

-36*

± 1

8 =

36

192

212

57.0

150

1611

04

1814

5.0

18.5

3.8

IFS

16-3

30

= 6

027

8-

68.2

150

1611

04

1856

.527

.05.

2II

50FS

16-3

0*±

15

= 3

016

618

674

.016

518

125

418

132.

031

.85.

0I

FS16

-48*

± 2

4 =

48

216

256

73.0

165

1812

54

1817

3.0

30.1

5.6

IFS

16-3

32

= 6

427

8-

81.2

165

1812

54

1850

.539

.06.

7II

65FS

16-2

4*±

12

= 2

417

418

494

.018

518

145

418

172.

052

.76.

1I

FS16

-44*

± 2

2 =

44

236

266

94.0

185

1814

54

1813

3.0

52.4

6.6

IFS

16-3

38

= 7

627

8-

104.

818

518

145

418

45.0

66.0

7.5

II

80FS

16-2

4*±

12

= 2

417

418

410

5.0

200

2016

08

1818

8.0

67.9

7.6

I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 134

Page 136: e BOA Expansion Joints Guide 29.3

FS16

-54*

± 2

7 =

54

278

328

104.

020

020

160

818

278.

064

.19.

2I

FS16

-3L

± 4

0 =

80

278

-11

8.5

200

2016

08

1850

.584

.09.

3II

100

FS16

-24*

± 1

2 =

24

194

214

136.

022

020

180

818

479.

011

4.0

9.0

IFS

16-7

2*±

36

= 7

232

439

413

5.0

220

2018

08

1830

0.0

109.

012

.0I

FS16

-3L

± 4

4 =

88

276

-14

2.1

220

2218

08

1851

.012

7.0

11.5

II

125

FS16

-24*

± 1

2 =

24

199

219

158.

025

022

210

818

546.

015

8.0

12.0

IFS

16-7

2*±

36

= 7

232

939

915

7.0

250

2221

08

1833

6.0

152.

016

.0I

FS16

-3L

± 4

6 =

92

280

-17

0.8

250

2421

08

1864

.518

4.0

16.5

II

150

FS16

-24*

± 1

2 =

24

199

219

186.

028

522

240

822

632.

022

6.0

15.0

IFS

16-7

2*±

36

= 7

232

939

918

5.0

285

2224

08

2238

1.0

219.

019

.0I

FS16

-3*

± 5

0 =

100

270

270

205.

028

524

240

822

155.

026

2.0

22.6

I

175

FS16

-1B

± 2

1 =

42

160

-23

0.0

315

2627

08

2219

9.0

342.

021

.3I

FS16

-2*

± 3

7 =

74

205

-23

0.0

315

2627

08

2211

4.0

342.

023

.9I

FS16

-3*

± 4

9 =

98

254

-23

1.0

315

2627

08

2213

8.0

342.

026

.8I

FS16

-4L

± 7

9 =

158

384

-23

0.0

315

2627

08

2250

.034

2.0

30.2

II

200

FS16

-60*

± 3

0 =

60

315

370

257.

034

024

295

1222

400.

041

0.0

28.0

IFS

16-2

37

= 7

421

0-

258.

034

026

295

1222

169.

043

4.0

26.3

IFS

16-8

4*±

42

= 8

435

043

025

7.0

340

2429

512

2230

0.0

410.

034

.0I

FS16

-4L

± 7

0 =

140

358

-25

8.0

340

2629

512

2284

.043

4.0

32.5

II

250

FS16

-66*

± 3

3 =

66

325

385

312.

040

526

355

1226

450.

062

5.0

38.0

IFS

16-9

2*±

46

= 9

236

545

031

2.0

405

2635

512

2635

0.0

625.

045

.0I

FS16

-3*

± 5

7 =

114

281

-31

3.5

405

3235

512

2612

2.0

660.

044

.4I

FS16

-4*

± 7

6 =

152

379

-31

7.0

405

3235

512

2615

9.0

660.

055

.8I

300

FS16

-70*

± 3

5 =

70

335

395

363.

046

028

410

1226

500.

087

0.0

52.0

IFS

16-2

39

= 7

823

0-

366.

546

032

410

1226

248.

091

1.0

50.5

IFS

16-1

00*

± 5

0 =

100

375

475

363.

046

028

410

1226

400.

087

0.0

60.0

IFS

16-4

84

= 1

6840

4-

371.

046

032

410

1226

185.

091

1.0

73.2

I

350

FS16

-1B

± 2

1 =

42

164

-40

1.0

520

3647

016

2652

8.0

1093

.066

.0I

FS16

-72*

± 3

6 =

72

345

405

395.

052

030

470

1626

550.

010

45.0

71.0

IFS

16-1

00*

± 5

0 =

100

385

480

395.

052

030

470

1626

450.

010

45.0

80.0

IFS

16-4

90

= 1

8041

1-

405.

052

036

470

1626

189.

011

00.0

100.

0I

400

FS16

-1B

± 2

3 =

46

173

-45

5.0

580

3852

516

3058

3.0

1421

.083

.0I

FS16

-76*

± 3

8 =

76

355

410

445.

058

032

525

1630

600.

013

55.0

88.0

IFS

16-1

06*

± 5

3 =

106

400

495

445.

058

032

525

1630

500.

013

55.0

98.0

I

135

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 135

Page 137: e BOA Expansion Joints Guide 29.3

136

BO

A T

ype

FSP

N16

DNTy

pe

FS16

-4*

± 9

2 =

184

395

-45

7.2

580

3852

516

3018

9.0

1424

.011

8.0

I

450

FS16

-1B

± 2

5 =

50

173

-50

9.0

640

4258

520

3059

9.0

1803

.010

4.0

IFS

16-2

41

= 8

221

5-

509.

064

042

585

2030

359.

018

03.0

113.

0I

FS16

-3*

± 6

6 =

132

290

-50

9.0

640

4258

520

3022

4.0

1803

.012

2.0

IFS

16-4

100

= 2

0040

8-

512.

064

042

585

2030

194.

018

06.0

145.

0I

500

FS16

-1B

± 2

7 =

54

182

-56

1.0

715

4465

020

3365

6.0

2202

.013

7.0

IFS

16-6

4*±

32

= 6

436

542

055

0.0

715

3465

020

3313

00.0

2100

.013

5.0

IFS

16-1

10*

± 5

5 =

110

410

505

550.

071

534

650

2033

600.

021

00.0

148.

0I

FS16

-4*

± 1

07 =

214

427

-56

3.0

715

4465

020

3320

9.0

2204

.018

7.0

I

600

FS16

-1B

± 3

0 =

60

190

-66

5.0

840

4877

020

3671

2.0

3131

.019

9.0

IFS

16-6

6*±

33

= 6

636

542

565

2.0

840

3677

020

3615

00.0

3010

.016

9.0

IFS

16-1

16*

± 5

8 =

116

415

515

652.

084

036

770

2036

700.

030

10.0

181.

0I

FS16

-4*

± 1

13 =

226

447

-66

7.0

840

4877

020

3621

1.0

3145

.025

3.0

I

700

FS16

-60*

± 3

0 =

60

375

435

754.

091

036

840

2436

1900

.040

80.0

167.

0I

FS16

-114

57

= 1

1442

552

575

4.0

910

3684

024

3690

0.0

4080

.019

0.0

IFS

16-3

66

= 1

3231

3-

771.

091

036

840

2436

391.

042

43.0

182.

0I

FS16

-4*

± 1

10 =

220

444

-77

1.0

910

3684

024

3623

5.0

4243

.021

2.0

I

800

FS16

-36B

± 1

8 =

36

330

-91

1.0

1025

3895

024

3938

39.0

5799

.021

8.0

IFS

16-7

2*±

36

= 7

251

071

490

4.0

1025

3895

024

3920

04.0

5749

.023

7.0

I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 136

Page 138: e BOA Expansion Joints Guide 29.3

137

FS16

-114

57

= 1

1452

076

490

3.0

1025

3895

024

3910

47.0

5732

.024

6.0

IFS

16-1

60*

± 8

0 =

160

570

864

889.

010

2538

950

2439

800.

056

11.0

358.

0I

900

FS16

-36B

± 1

8 =

36

340

-10

14.0

1125

4010

5028

3942

62.0

7274

.026

2.0

IFS

16-7

4*±

37

= 7

452

072

410

07.0

1125

4010

5028

3922

29.0

7217

.028

3.0

IFS

16-1

16*

± 5

8 =

116

530

774

1007

.011

2540

1050

2839

1150

.071

98.0

293.

0I

FS16

-160

80

= 1

6058

087

499

2.0

1125

4010

5028

3995

5.0

7062

.030

6.0

I

1000

FS16

-32B

± 1

6 =

32

340

-11

14.0

1255

4211

7028

4251

78.0

8868

.034

3.0

IFS

16-7

6*±

38

= 7

648

568

911

14.0

1255

4211

7028

4222

45.0

8865

.036

8.0

IFS

16-1

10*

± 5

5 =

110

490

734

1108

.012

5542

1170

2842

1300

.087

99.0

376.

0I

FS16

-166

83

= 1

6654

084

410

98.0

1255

4211

7028

4282

8.0

8693

.039

4.0

I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 137

Page 139: e BOA Expansion Joints Guide 29.3

138

BO

A T

ype

FSP

N25

DNTy

pe

15FS

25-2

0*±

10

= 2

013

215

734

.095

1665

414

94.0

6.0

1.6

I

20FS

25-2

0*±

10

= 2

013

214

734

.010

518

754

1494

.06.

02.

1I

25FS

25-1

4*±

7 =

14

134

134

42.0

115

1885

414

148.

09.

42.

5I

FS25

-24*

± 1

2 =

24

162

177

41.0

115

1885

414

171.

08.

82.

7I

32FS

25-1

6*±

8 =

16

138

148

51.0

140

1810

04

1815

3.0

15.0

3.7

IFS

25-2

8*±

14

= 2

816

618

651

.014

018

100

418

172.

014

.23.

8I

40FS

25-1

15

= 3

014

1-

70.0

150

1811

04

1817

5.0

27.0

4.6

IFS

25-2

8*±

14

= 2

817

019

057

.015

018

110

418

187.

018

.54.

2I

FS25

-3L

± 3

0 =

60

282

-70

.015

018

110

418

88.0

27.0

5.6

II

50FS

25-1

16

= 3

214

1-

83.0

165

2012

54

1820

5.0

39.0

6.0

IFS

25-3

8*±

19

= 3

819

022

073

.016

520

125

418

219.

030

.15.

9I

FS25

-3L

± 3

2 =

64

282

-83

.016

520

125

418

102.

039

.07.

3II

65FS

25-3

4*±

17

= 3

423

826

894

.018

522

145

818

310.

051

.77.

8I

FS25

-46*

± 2

3 =

46

260

290

93.0

185

2214

58

1828

7.0

49.4

8.4

IFS

25-3

34

= 6

829

0-

105.

018

524

145

818

110.

066

.09.

7II

80FS

25-3

4*±

17

= 3

423

826

810

5.0

200

2416

08

1834

2.0

66.7

10.0

IFS

25-4

6*±

23

= 4

626

029

010

4.0

200

2416

08

1830

8.0

64.1

10.0

IFS

25-3

38

= 7

629

4-

117.

520

026

160

818

74.0

84.0

12.5

II

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 138

Page 140: e BOA Expansion Joints Guide 29.3

139

100

FS25

-1B

± 2

0 =

40

153

-14

4.0

235

2619

08

2221

5.0

127.

013

.5I

FS25

-56*

± 2

8 =

56

282

322

135.

023

524

190

822

375.

010

9.0

14.0

IFS

25-3

40

= 8

029

4-

144.

023

526

190

822

109.

012

7.0

16.0

II

125

FS25

-1B

± 2

0 =

40

156

-17

2.0

270

2822

08

2626

4.0

184.

018

.5I

FS25

-62*

± 3

1 =

62

305

345

157.

027

026

220

826

373.

015

2.0

20.0

IFS

25-3

40

= 8

029

6-

172.

027

028

220

826

133.

018

4.0

22.0

II

150

FS25

-24*

± 1

2 =

24

199

219

186.

030

028

250

826

632.

022

6.0

21.0

IFS

25-4

6*±

23

= 4

628

732

718

6.0

300

2825

08

2655

4.0

225.

023

.0I

FS25

-3*

± 4

3 =

86

279

-20

6.0

300

3025

08

2621

1.0

262.

030

.0I

FS25

-4L

± 6

6 =

132

384

-20

3.0

300

3025

08

2694

.026

2.0

31.7

II

175

FS25

-1B

± 1

9 =

38

183

-23

2.0

330

3228

012

2639

3.0

342.

029

.0I

FS25

-2*

± 3

3 =

66

230

-23

2.0

330

3228

012

2622

4.0

342.

031

.0I

FS25

-3*

± 4

6 =

92

294

-23

4.0

330

3228

012

2621

5.0

342.

037

.0I

FS25

-4L

± 6

2 =

124

382

-23

2.0

330

3228

012

2611

2.0

342.

038

.0II

200

FS25

-1B

± 1

6 =

32

169

-25

8.0

360

3231

012

2657

3.0

434.

033

.2I

FS25

-50*

± 2

5 =

50

345

405

257.

036

030

310

1226

700.

041

0.0

41.0

IFS

25-3

47

= 9

427

7-

259.

036

032

310

1226

191.

043

4.0

40.2

IFS

25-4

68

= 1

3640

0-

259.

036

032

310

1226

123.

043

4.0

46.5

II

250

FS25

-1B

± 1

8 =

36

178

-31

6.0

425

3637

012

3066

4.0

660.

048

.0I

FS25

-54*

± 2

7 =

54

355

415

312.

042

532

370

1230

800.

062

5.0

57.0

IFS

25-3

44

= 8

828

7-

317.

042

536

370

1230

258.

066

0.0

56.0

IFS

25-4

61

= 1

2240

0-

317.

042

536

370

1230

172.

066

0.0

66.0

II

300

FS25

-1B

± 1

9 =

38

179

-36

7.5

485

4043

016

3067

3.0

911.

065

.0I

FS25

-58*

± 2

9 =

58

365

425

363.

048

534

430

1630

900.

087

0.0

72.0

IFS

25-3

51

= 1

0230

7-

369.

048

540

430

1630

254.

091

1.0

74.5

IFS

25-4

63

= 1

2635

3-

369.

048

540

430

1630

221.

091

1.0

79.0

I

350

FS25

-1B

± 2

0 =

40

179

-40

5.0

555

3849

016

3376

2.0

1103

.086

.0I

FS25

-58*

± 2

9 =

58

375

-39

5.0

555

3849

016

3310

00.0

1045

.010

5.0

IFS

25-3

55

= 1

1029

2-

405.

055

538

490

1633

286.

011

03.0

101.

0I

FS25

-4*

± 7

0 =

140

371

-40

3.0

555

3849

016

3331

5.0

1094

.011

0.0

I

400

FS25

-1B

± 2

0 =

40

183

-45

7.0

620

4055

016

3681

4.0

1420

.011

1.0

IFS

25-6

0*±

30

= 6

039

5-

445.

062

040

550

1636

1100

.013

55.0

135.

0I

FS25

-3*

± 5

5 =

110

301

-45

7.0

620

4055

016

3630

5.0

1420

.013

0.0

IFS

25-4

72

= 1

4438

6-

457.

062

040

550

1636

347.

014

21.0

143.

0I

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 139

Page 141: e BOA Expansion Joints Guide 29.3

140

BO

A T

ype

FSP

N25

DNTy

pe

450

FS25

-1B

± 2

1 =

42

187

-51

2.0

670

4060

020

3689

5.0

1797

.012

0.0

IFS

25-2

35

= 7

023

3-

512.

067

040

600

2036

537.

017

97.0

131.

0I

FS25

-3*

± 4

9 =

98

284

-51

2.0

670

4060

020

3638

4.0

1797

.014

0.0

IFS

25-4

77

= 1

5439

6-

512.

067

040

600

2036

356.

018

03.0

157.

0I

500

FS25

-1B

± 1

9 =

38

184

-56

1.0

730

4466

020

3611

50.0

2202

.014

6.0

IFS

25-7

0*±

35

= 7

044

0-

550.

073

044

660

2036

1500

.021

00.0

215.

0I

FS25

-3*

± 4

6 =

92

275

-56

1.0

730

4466

020

3649

3.0

2202

.016

4.0

IFS

25-4

74

= 1

4837

7-

561.

073

044

660

2036

350.

021

95.0

184.

0I

600

FS25

-1B

± 1

7 =

34

182

-66

5.0

845

4677

020

3917

24.0

3137

.019

1.0

IFS

25-7

4*±

37

= 7

444

0-

652.

084

546

770

2039

1700

.030

10.0

240.

0I

FS25

-3*

± 5

2 =

104

294

-66

7.0

845

4677

020

3960

8.0

3141

.022

2.0

IFS

25-4

82

= 1

6439

9-

667.

084

546

770

2039

387.

031

41.0

245.

0I

700

FS25

-1B

± 1

6 =

32

172

-77

1.0

960

4687

524

4223

62.0

4229

.022

9.0

IFS

25-7

4*±

37

= 7

444

0-

754.

096

046

875

2442

2200

.040

80.0

300.

0I

FS25

-3*

± 4

9 =

98

281

-77

1.0

960

4687

524

4278

7.0

4229

.026

3.0

IFS

25-4

81

= 1

6239

2-

771.

096

046

875

2442

472.

042

29.0

293.

0I

800

FS25

-1B

± 2

7 =

54

396

-90

7.0

1085

5099

024

4832

20.0

5727

.040

2.0

IFS

25-2

57

= 1

1459

1-

902.

010

8550

990

2448

1639

.056

89.0

437.

0I

FS25

-3B

± 7

8 =

156

651

-88

7.0

1085

5099

024

4814

68.0

5556

.045

5.0

I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 140

Page 142: e BOA Expansion Joints Guide 29.3

141

900

FS25

-1B

± 2

7 =

54

414

-10

10.0

1185

5410

9028

4836

33.0

7186

.050

5.0

IFS

25-2

57

= 1

1460

9-

1005

.011

8554

1090

2848

1793

.071

50.0

545.

0I

FS25

-3B

± 7

8 =

156

669

-99

0.0

1185

5410

9028

4815

71.0

7002

.056

5.0

I

1000

FS25

-1B

± 2

4 =

48

412

-11

07.0

1320

5812

1028

5646

18.0

8749

.064

8.0

IFS

25-2

55

= 1

1057

2-

1107

.013

2058

1210

2856

2009

.087

45.0

692.

0I

FS25

-3B

± 7

8 =

156

512

-10

95.0

1320

5812

1028

5611

77.0

8635

.069

9.0

I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 141

Page 143: e BOA Expansion Joints Guide 29.3

142

BO

A T

ype

FSP

N40

DNTy

pe

15FS

40-1

4*±

7 =

14

122

132

34.0

9516

654

1413

5.0

6.0

1.5

I

20FS

40-1

4*±

7 =

14

122

122

34.0

105

1875

414

135.

06.

02.

1I

25FS

40-1

8*±

9 =

18

148

163

41.0

115

1885

414

214.

08.

82.

6I

32FS

40-2

0*±

10

= 2

014

615

651

.014

018

100

418

241.

014

.23.

7I

40FS

40-1

11

= 2

214

1-

70.0

150

1811

04

1836

7.0

27.0

4.7

lFS

40-2

2*±

11

= 2

215

416

457

.015

018

110

418

238.

018

.54.

2I

FS40

-3L

± 2

2 =

44

282

-70

.015

018

110

418

183.

527

.05.

9II

50FS

40-1

13

= 2

614

1-

84.0

165

2012

54

1834

5.0

39.0

6.4

lFS

40-2

8*±

14

= 2

816

618

673

.016

520

125

418

299.

030

.15.

8I

FS40

-3L

± 2

6 =

52

282

-84

.016

520

125

418

173.

039

.08.

0ll

65FS

40-1

15

= 3

014

9-

107.

018

524

145

818

330.

066

.08.

6l

FS40

-32*

± 1

6 =

32

220

230

93.0

185

2214

58

1839

8.0

49.4

8.0

IFS

40-3

30

= 6

029

0-

107.

018

524

145

818

165.

066

.010

.5ll

80FS

40-3

2*±

16

= 3

222

023

010

4.0

200

2416

08

1842

7.0

64.1

10.0

IFS

40-2

22

= 4

420

0-

122.

020

026

160

818

284.

084

.011

.9l

FS40

-3L

± 3

4 =

68

294

-12

0.0

200

2616

08

1816

5.0

84.0

12.6

ll

100

FS40

-1B

± 1

7 =

34

153

-14

5.4

235

2619

08

2231

6.0

127.

014

.0l

FS40

-40*

± 2

0 =

40

238

258

135.

023

524

190

822

500.

010

9.0

14.0

I

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 142

Page 144: e BOA Expansion Joints Guide 29.3

FS40

-3L

± 3

4 =

68

294

-14

5.4

235

2619

08

2215

8.0

127.

017

.6ll

125

FS40

-42*

± 2

1 =

42

253

273

157.

027

026

220

826

517.

015

2.0

18.0

IFS

40-2

29

= 5

823

1-

176.

027

028

220

826

270.

018

4.0

22.5

lFS

40-3

40

= 8

030

4-

173.

227

028

220

826

166.

018

4.0

24.0

ll

150

FS40

-1B

± 1

6 =

32

164

-20

5.5

300

3025

08

2658

3.0

262.

025

.0I

FS40

-42*

± 2

1 =

42

253

273

185.

030

028

250

826

587.

021

9.0

23.0

IFS

40-3

35

= 7

030

2-

207.

030

030

250

826

233.

026

2.0

31.6

llFS

40-4

59

= 1

1840

6-

207.

030

030

250

826

146.

026

2.0

36.6

ll

175

FS40

-1B

± 1

7 =

34

167

-23

4.0

350

3429

512

3058

4.0

342.

036

.0l

FS40

-2*

± 2

9 =

58

216

-23

4.0

350

3429

512

3033

4.0

342.

040

.1l

FS40

-4L

± 5

5 =

110

378

-23

4.0

350

3429

512

3016

7.0

342.

049

.1ll

200

FS40

-1B

± 1

2 =

24

181

-26

0.0

375

3632

012

3010

80.0

434.

041

.1l

FS40

-2*

± 2

5 =

50

231

231

260.

037

536

320

1230

540.

043

4.0

45.0

lFS

40-3

37=

74

284

284

260.

037

536

320

1230

433.

043

4.0

46.5

lFS

40-4

56

= 1

1240

4-

260.

037

536

320

1230

232.

043

4.0

55.0

ll

250

FS40

-1B

± 1

3 =

26

157

-31

7.0

450

4438

512

3313

46.0

660.

069

.0l

FS40

-2*

± 2

6 =

52

212

-31

7.0

450

4438

512

3367

3.0

660.

072

.8l

FS40

-3*

± 3

9 =

78

272

-31

7.0

450

4438

512

3344

9.0

660.

077

.7l

FS40

-4*

± 5

7 =

114

404

-31

7.0

450

4438

512

3328

8.0

660.

090

.5ll

300

FS40

-1B

± 1

2 =

24

164

-36

9.0

515

4845

016

3317

82.0

911.

091

.1l

FS40

-2*

± 2

4 =

48

218

-36

9.0

515

4845

016

3389

1.0

911.

097

.6l

FS40

-3*

± 3

2 =

64

257

-36

9.0

515

4845

016

3366

8.0

911.

010

2.0

lFS

40-4

44

= 8

831

5-

369.

051

548

450

1633

486.

091

1.0

108.

0l

350

FS40

-1B

± 1

3 =

26

179

-40

3.0

580

4651

016

3619

49.0

1094

.011

6.0

lFS

40-2

26

= 5

223

7-

403.

058

046

510

1636

975.

010

94.0

124.

0l

FS40

-3*

± 3

5 =

70

278

-40

3.0

580

4651

016

3673

1.0

1094

.012

9.0

lFS

40-4

49

= 9

834

1-

403.

058

046

510

1636

532.

010

94.0

137.

0l

400

FS40

-1B

± 1

3 =

26

186

-45

7.0

660

5058

516

3621

97.0

1420

.016

4.0

lFS

40-2

22

= 4

422

5-

457.

066

050

585

1636

1318

.014

20.0

172.

0l

FS40

-3*

± 3

5 =

70

291

-45

7.0

660

5058

516

3682

4.0

1420

.018

3.0

lFS

40-4

49

= 9

835

7-

457.

066

050

585

1636

599.

014

20.0

193.

0l

450

FS40

-1B

± 1

4 =

28

188

-51

2.0

685

5061

020

3922

56.0

1801

.015

4.0

lFS

40-2

24

= 4

822

9-

512.

068

550

610

2039

1354

.018

01.0

163.

0l

FS40

-3*

± 3

3 =

66

274

-51

2.0

685

5061

020

3996

7.0

1801

.017

2.0

l

143

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 143

Page 145: e BOA Expansion Joints Guide 29.3

144

BO

A T

ype

FSP

N40

DNTy

pe

FS40

-4*

± 5

3 =

106

365

-51

2.0

685

5061

020

3961

5.0

1801

.018

8.0

l

500

FS40

-1B

± 1

3 =

26

193

-56

3.0

755

5267

020

4225

17.0

2195

.019

3.0

lFS

40-2

23

= 4

623

6-

563.

075

552

670

2042

1510

.021

95.0

205.

0l

FS40

-3*

± 3

2 =

64

283

-56

3.0

755

5267

020

4210

79.0

2195

.021

5.0

lFS

40-4

50

= 1

0037

7-

563.

075

552

670

2042

687.

021

95.0

236.

0l

TLTL

daD

bk

nd

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

cm2

kg

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

Tota

l len

gth

Bello

ws

Flan

ge

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with inner sleeve

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l (

page

100

)Ex

ecut

ion

ll (p

age

100)

29.3_UK_Kap_06T01-FS.qxp:Kap_6_01_FS_Tab_UK.qxp 30.10.2009 14:51 Uhr Seite 144

Page 146: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N6

DNTy

pe

20FB

6-26

13

= 2

690

103

7735

.090

1465

411

436.

41.

2

25FB

6-28

14

= 2

810

011

486

42.0

100

1475

411

899.

41.

5

32FB

6-30

15

= 3

011

212

797

51.0

120

1490

414

8415

.02.

1

40FB

6-1B

± 1

5 =

30

118

133

103

58.0

130

1410

04

1490

19.5

2.4

FB6-

2*±

21

= 4

214

416

512

368

.013

014

100

414

6327

.02.

7FB

6-3*

± 3

1 =

62

207

238

176

69.0

130

1410

04

1474

27.0

2.8

50FB

6-40

20

= 4

013

015

011

074

.014

014

110

414

9931

.82.

8FB

6-2*

± 2

3 =

46

144

167

121

81.0

140

1411

04

1457

39.0

3.2

FB6-

3*±

33

= 6

619

622

916

382

.014

014

110

414

8540

.03.

3

65FB

6-1B

± 1

5 =

30

9611

181

94.0

160

1413

04

1490

53.1

3.3

FB6-

2*±

25

= 5

014

216

711

710

3.5

160

1413

04

1457

65.0

3.9

FB6-

70B

± 3

5 =

70

176

211

141

94.0

160

1413

04

1484

51.7

4.0

80FB

6-1B

± 1

5 =

30

100

115

8510

5.0

190

1615

04

1898

68.2

5.3

FB6-

2*±

25

= 5

014

016

511

511

8.0

190

1615

04

1851

83.0

5.7

FB6-

70B

± 3

5 =

70

180

215

145

105.

019

016

150

418

9166

.76.

2

100

FB6-

40B

± 2

0 =

40

122

142

102

136.

021

016

170

418

119

115.

06.

2FB

6-2*

± 3

0 =

60

136

166

106

139.

021

016

170

418

4812

0.0

6.6

FB6-

3*±

40

= 8

018

722

714

713

9.0

210

1617

04

1863

119.

06.

7

Tota

l len

gth

Bello

ws

Flan

ge

TLTL

TLda

Db

kn

dCx

Am

Axial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

145

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 145

Page 147: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N6

DNTy

pe

FB6-

92B

± 4

6 =

92

226

272

180

136.

021

016

170

418

111

113.

07.

9

125

FB6-

40B

± 2

0 =

40

126

146

106

158.

024

018

200

818

135

160.

08.

6FB

6-2*

± 2

5 =

50

140

165

115

168.

524

018

200

818

5818

1.0

8.8

FB6-

76B

± 3

8 =

76

208

246

170

158.

024

018

200

818

103

159.

09.

6FB

6-4*

± 5

4 =

108

276

330

222

170.

024

018

200

818

122

181.

012

.8

150

FB6-

40B

± 2

0 =

40

126

146

106

186.

026

518

225

818

155

228.

09.

7FB

6-2*

± 2

5 =

50

140

165

115

195.

026

520

225

818

9824

5.0

11.5

FB6-

76B

± 3

8 =

76

208

246

170

186.

026

518

225

818

119

228.

011

.0FB

6-4*

± 6

0 =

120

271

331

211

194.

026

520

225

818

8524

4.0

15.3

175

FB6-

2*±

24

= 4

813

015

410

622

8.0

295

2225

58

M16

100

342.

014

.5FB

6-3*

± 4

4 =

88

184

228

140

228.

029

522

255

8M

1655

342.

015

.2FB

6-4*

± 6

0 =

120

271

331

211

229.

029

522

255

8M

1610

734

4.0

19.5

200

FB6-

2*±

24

= 4

813

816

211

425

0.0

320

2228

08

1811

641

7.0

16.1

FB6-

70B

± 3

5 =

70

230

265

195

260.

032

020

280

8M

1614

042

0.0

18.0

FB6-

4*±

59

= 1

1825

531

419

625

0.0

320

2228

08

1886

416.

021

.2

250

FB6-

2*±

22

= 4

413

215

411

030

4.0

375

2433

512

1812

262

7.0

21.1

FB6-

72B

± 3

6 =

72

240

276

204

314.

037

522

335

12M

1616

064

0.0

22.0

FB6-

4*±

76

= 1

5229

336

921

730

5.0

375

2433

512

1867

626.

027

.4

300

FB6-

2*±

28

= 5

613

716

510

935

6.0

440

2439

512

2213

287

1.0

28.9

TLTL

TLda

Db

kn

dCx

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

146

Tota

l len

gth

Bello

ws

Flan

geAxial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 146

Page 148: e BOA Expansion Joints Guide 29.3

FB6-

72B

± 3

6 =

72

250

286

214

364.

044

022

395

12M

2019

088

5.0

33.0

FB6-

4*±

73

= 1

4630

137

422

835

6.0

440

2439

512

2277

871.

035

.0

350

FB6-

2*±

22

= 4

413

015

210

839

7.0

490

2644

512

2227

012

29.0

37.0

FB6-

72B

± 3

6 =

72

260

296

224

396.

049

022

445

12M

2020

010

60.0

49.0

FB6-

4*±

60

= 1

2024

730

718

739

7.0

490

2644

512

2298

1229

.041

.0

400

FB6-

2*±

17

= 3

413

014

711

344

9.0

540

2849

516

2235

715

39.0

43.0

FB6-

3*±

34

= 6

817

420

814

044

9.0

540

2849

516

2217

915

39.0

46.0

FB6-

4*±

62

= 1

2425

531

719

344

9.0

540

2849

516

2298

1539

.049

.0

450

FB6-

2*±

17

= 3

413

014

711

350

3.0

595

2855

016

2236

819

41.0

50.0

FB6-

3*±

35

= 7

018

021

514

550

3.0

595

2855

016

2218

419

41.0

53.0

FB6-

4*±

58

= 1

1625

030

819

250

3.0

595

2855

016

2211

119

41.0

56.0

500

FB6-

2*±

18

= 3

613

014

811

255

5.0

645

3060

020

2236

922

36.0

58.0

FB6-

3*±

30

= 6

016

519

513

555

5.0

645

3060

020

2222

122

36.0

60.0

FB6-

4*±

61

= 1

2225

031

118

955

5.0

645

3060

020

2211

122

36.0

65.0

600

FB6-

2*±

19

= 3

812

013

910

165

8.0

755

2470

520

2638

932

63.0

62.0

FB6-

3*±

32

= 6

417

020

213

865

8.0

755

2470

520

2623

432

63.0

66.0

FB6-

4*±

64

= 1

2824

030

417

665

8.0

755

2470

520

2611

732

63.0

76.0

700

FB6-

2*±

22

= 4

413

015

210

876

3.0

860

2481

024

2650

042

24.0

89.0

FB6-

3*±

37

= 7

417

020

713

376

3.0

860

2481

024

2630

042

24.0

97.0

FB6-

4*±

67

= 1

3425

031

718

376

3.0

860

2481

024

2616

742

24.0

113.

0

800

FB6-

3*±

32

= 6

417

020

213

886

8.0

975

2492

024

3037

255

19.0

120.

0FB

6-4*

± 6

4 =

128

250

314

186

868.

097

524

920

2430

186

5519

.014

0.0

1000

FB6-

3*±

27

= 5

421

223

918

510

72.0

1175

2611

2028

3085

785

39.0

160.

0FB

6-4*

± 5

4 =

108

285

339

231

1072

.011

7526

1120

2830

428

8539

.018

6.0

147

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 147

Page 149: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N10

DNTy

pe

20FB

10-2

6B±

13

= 2

694

107

8135

.010

516

754

1443

.06.

41.

9

25FB

10-2

8B±

14

= 2

810

411

890

42.0

115

1685

414

89.0

9.4

2.3

32FB

10-3

0B±

15

= 3

011

613

110

151

.014

016

100

418

84.0

15.0

3.3

40FB

10-3

0B±

15

= 3

012

213

710

758

.015

016

110

418

90.0

19.5

3.7

FB16

-2*

± 1

7 =

34

144

161

127

69.0

150

1611

04

1813

3.0

27.0

3.9

50FB

16-1

10

= 2

010

011

090

81.0

165

1812

54

1812

4.0

39.0

5.2

FB16

-2*

± 1

7 =

34

144

161

127

82.0

165

1812

54

1813

9.0

40.0

5.4

FB10

-40*

± 2

0 =

40

138

158

118

74.0

165

1812

54

1899

.031

.85.

1FB

10-5

0B±

25

= 5

015

417

912

974

.016

518

125

418

105.

031

.15.

4

65FB

10-3

0*±

15

= 3

010

411

989

94.0

185

1814

54

1890

.053

.16.

0FB

16-2

18

= 3

614

216

012

410

5.0

185

1814

54

1813

0.0

66.0

6.5

FB10

-56B

± 2

8 =

56

182

210

154

93.0

185

1814

54

1816

1.0

51.1

7.0

80FB

10-3

0B±

15

= 3

010

812

393

105.

020

020

160

818

98.0

68.2

7.4

FB16

-2*

± 2

2 =

44

140

162

118

118.

520

020

160

818

120.

085

.07.

8FB

10-5

6B±

28

= 5

618

621

415

810

5.0

200

2016

08

1817

5.0

66.0

8.6

100

FB10

-40B

± 2

0 =

40

138

158

118

74.0

165

1812

54

1899

.031

.85.

1FB

16-2

22

= 4

413

615

811

414

1.0

220

2218

08

1811

4.0

121.

010

.5FB

10-5

6B±

28

= 5

621

224

018

413

6.0

220

2018

08

1821

6.0

114.

09.

9

TLTL

TLda

Db

kn

dCx

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

148

Tota

l len

gth

Bello

ws

Flan

geAxial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 148

Page 150: e BOA Expansion Joints Guide 29.3

FB10

-76B

± 3

8 =

76

236

274

198

136.

022

020

180

818

187.

011

2.0

11.0

125

FB10

-40B

± 2

0 =

40

134

154

114

158.

025

022

210

818

135.

016

0.0

12.0

FB16

-2*

± 2

4 =

48

140

164

116

172.

025

024

210

818

155.

018

3.0

14.5

FB10

-76B

± 3

8 =

76

240

278

202

157.

025

022

210

818

212.

015

5.0

15.0

FB16

-4*

± 4

6 =

92

276

322

230

176.

025

024

210

818

141.

018

3.0

22.5

150

FB10

-40B

± 2

0 =

40

134

154

114

186.

028

522

240

822

155.

022

8.0

14.0

FB16

-2*

± 2

3 =

46

140

163

117

197.

528

524

240

822

148.

024

7.0

17.2

FB10

-76B

± 3

8 =

76

240

278

202

186.

028

522

240

822

243.

022

4.0

18.0

FB16

-4*

± 5

3 =

106

307

360

254

201.

028

524

240

822

187.

024

6.0

25.0

175

FB16

-2*

± 2

0 =

40

130

150

110

230.

031

526

270

822

218.

033

7.0

22.3

FB16

-3*

± 3

7 =

74

195

232

158

229.

031

526

270

822

136.

033

7.0

23.6

FB16

-4*

± 5

3 =

106

316

369

263

230.

031

526

270

822

285.

033

5.0

32.3

200

FB10

-56B

± 2

8 =

56

235

263

207

260.

034

024

295

8M

2027

0.0

420.

026

.0FB

10-3

40

= 8

018

422

414

425

5.0

340

2629

58

2210

3.0

424.

028

.0FB

10-4

55

= 1

1029

034

523

525

5.0

340

2629

58

2215

0.0

423.

033

.0

250

FB10

-58B

± 2

9 =

58

240

269

211

314.

039

526

350

12M

2032

0.0

640.

032

.0FB

10-3

36

= 7

219

523

115

930

8.0

395

2835

012

2212

0.0

631.

034

.0FB

10-4

50

= 1

0027

432

422

430

6.0

395

2835

012

2213

8.0

628.

039

.0

300

FB10

-56B

± 2

8 =

56

250

278

222

364.

044

526

400

12M

2037

0.0

885.

042

.0FB

10-3

32

= 6

418

121

314

935

8.0

445

2840

012

2214

5.0

874.

037

.0FB

10-4

50

= 1

0027

032

022

035

7.0

445

2840

012

2216

0.0

871.

045

.0

350

FB10

-2*

± 1

6 =

32

130

146

114

398.

050

530

460

1622

482.

012

24.0

48.0

FB10

-56B

± 2

8 =

56

250

278

222

396.

050

526

460

16M

2040

0.0

1060

.055

.0FB

10-4

59

= 1

1826

532

420

639

8.0

505

3046

016

2213

2.0

1224

.054

.0

400

FB10

-2*

± 1

7 =

34

130

147

113

450.

056

532

515

1626

479.

015

33.0

60.0

FB10

-3*

± 3

4 =

68

180

214

146

450.

056

532

515

1626

240.

015

33.0

63.0

FB10

-4*

± 6

2 =

124

265

327

203

450.

056

532

515

1626

131.

015

33.0

68.0

450

FB10

-2*

± 1

8 =

36

130

148

112

505.

061

532

565

2026

621.

019

28.0

66.0

FB10

-3*

± 3

0 =

60

166

196

136

505.

061

532

565

2026

373.

019

28.0

69.0

FB10

-4*

± 6

1 =

122

262

323

201

505.

061

532

565

2026

186.

019

28.0

76.0

500

FB10

-2*

± 1

8 =

36

135

153

117

556.

067

034

620

2026

621.

022

23.0

80.0

FB10

-3*

± 3

2 =

64

175

207

143

556.

067

034

620

2026

373.

022

23.0

83.0

FB10

-4*

± 6

4 =

128

280

344

216

556.

067

034

620

2026

187.

022

23.0

91.0

149

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 149

Page 151: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N10

DNTy

pe

600

FB10

-2*

± 1

9 =

38

140

159

121

659.

078

028

725

2030

657.

031

33.0

115.

0FB

10-3

34

= 6

818

622

015

265

9.0

780

2872

520

3039

4.0

3133

.012

1.0

FB10

-4*

± 6

7 =

134

278

345

211

659.

078

028

725

2030

197.

031

33.0

135.

0

700

FB10

-3*

± 3

1 =

62

174

205

143

764.

089

530

840

2430

569.

042

22.0

144.

0FB

10-4

69

= 1

3829

336

222

476

4.0

895

3084

024

3025

3.0

4222

.016

7.0

800

FB10

-3*

± 2

5 =

50

220

245

195

867.

010

1532

950

2433

1016

.054

96.0

184.

0FB

10-4

50

= 1

0029

034

024

086

7.0

1015

3295

024

3350

8.0

5496

.021

0.0

TLTL

TLda

Db

kn

dCx

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

150

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

Tota

l len

gth

Bello

ws

Flan

geAxial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 150

Page 152: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N16

DNTy

pe

20FB

16-2

0B±

10

= 2

080

9070

35.0

105

1675

414

576.

41.

8

25FB

16-2

0B±

10

= 2

088

9878

42.0

115

1685

414

118

9.4

2.2

32FB

16-2

2B±

11

= 2

296

107

8551

.014

016

100

414

112

15.0

3.2

40FB

16-2

2B±

11

= 2

210

011

189

58.0

150

1611

04

1812

019

.53.

6FB

16-2

17

= 3

414

416

112

769

.015

016

110

418

133

27.0

3.9

50FB

16-3

0B±

15

= 3

011

412

999

74.0

165

1812

54

1813

231

.85.

0FB

16-2

17

= 3

414

416

112

782

.016

518

125

418

139

40.0

5.4

FB16

-48B

± 2

4 =

48

166

190

142

73.0

165

1812

54

1817

330

.15.

6

65FB

16-2

4B±

12

= 2

410

211

490

94.0

185

1814

54

1817

252

.76.

1FB

16-2

18

= 3

614

216

012

410

5.0

185

1814

54

1813

066

.06.

5FB

16-4

4B±

22

= 4

416

418

614

294

.018

518

145

418

133

52.4

6.5

80FB

16-2

4B±

12

= 2

410

611

894

105.

020

020

160

818

188

67.9

7.4

FB16

-2*

± 2

2 =

44

140

162

118

118.

520

020

160

818

120

85.0

7.8

FB16

-46B

± 2

3 =

46

170

193

147

105.

020

020

160

818

146

67.5

8.0

100

FB16

-24B

± 1

2 =

24

126

138

114

136.

022

020

180

818

479

114.

08.

9FB

16-2

22

= 4

413

615

811

414

1.0

220

2218

08

1811

412

1.0

10.5

FB16

-46B

± 2

3 =

46

214

237

191

136.

022

020

180

818

415

113.

010

.0FB

16-7

2B±

36

= 7

225

829

422

213

5.0

220

2018

08

1830

010

9.0

12.0

TLTL

TLda

Db

kn

dCx

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

151

Tota

l len

gth

Bello

ws

Flan

geAxial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 151

Page 153: e BOA Expansion Joints Guide 29.3

BO

A T

ype

FBP

N16

DNTy

pe

125

FB16

-24B

± 1

2 =

24

130

142

118

158.

025

022

210

818

546

158.

012

.0FB

16-2

24

= 4

814

016

411

617

2.0

250

2421

08

1815

518

3.0

14.5

FB16

-56B

± 2

8 =

56

216

244

188

158.

025

022

210

818

246

158.

014

.0FB

16-4

46

= 9

227

632

223

017

6.0

250

2421

08

1814

118

3.0

22.5

150

FB16

-24B

± 1

2 =

24

130

142

118

186.

028

522

240

822

632

226.

015

.0FB

16-2

23

= 4

614

016

311

719

7.5

285

2424

08

2214

824

7.0

17.2

FB16

-58B

± 2

9 =

58

216

245

187

186.

028

522

240

822

285

226.

016

.0FB

16-4

53

= 1

0630

736

025

420

1.0

285

2424

08

2218

724

6.0

25.0

175

FB16

-2*

± 2

0 =

40

130

150

110

230.

031

526

270

822

218

337.

022

.3FB

16-3

37

= 7

419

523

215

822

9.0

315

2627

08

2213

633

7.0

23.6

FB16

-4*

± 5

3 =

106

316

369

263

230.

031

526

270

822

285

335.

032

.3

200

FB16

-2*

± 1

9 =

38

133

152

114

253.

034

026

295

1222

330

419.

023

.5FB

16-4

4B±

22

= 4

424

026

221

826

0.0

340

2429

512

M20

530

420.

027

.0FB

16-4

53

= 1

0630

135

424

825

4.0

340

2629

512

2224

741

7.0

33.0

250

FB16

-2*

± 1

6 =

32

132

148

116

306.

540

532

355

1226

498

627.

039

.2FB

16-4

6B±

23

= 4

625

027

322

731

4.0

405

2635

512

M24

600

640.

040

.0FB

16-4

55

= 1

1028

834

323

330

6.5

405

3235

512

2621

762

5.0

47.4

300

FB16

-2*

± 1

5 =

30

135

150

120

361.

046

032

410

1226

570

880.

046

.0FB

16-4

6B±

23

= 4

625

527

823

236

4.0

460

2841

012

M24

720

885.

054

.0

TLTL

TLda

Db

kn

dCx

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

152

Tota

l len

gth

Bello

ws

Flan

geAxial move-ment at 1000full load cycles

unrestraint

maximal

minimal

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅or thread

Effective areaof bellows

Weight *withoutinner sleeve

Spring rate�30%

Exec

utio

n B

(pag

e 10

1)Ex

ecut

ion

L (p

age

101)

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 152

Page 154: e BOA Expansion Joints Guide 29.3

FB16

-4*

± 6

0 =

120

299

359

239

359.

046

032

410

1226

203

874.

055

.8

350

FB16

-2*

± 1

7 =

34

150

167

133

399.

052

036

470

1626

733

1227

.064

.0FB

16-4

6B±

23

= 4

626

028

323

739

6.0

520

2847

016

M24

760

1060

.070

.0FB

16-4

61

= 1

2229

535

623

439

9.0

520

3647

016

2620

012

27.0

73.0

400

FB16

-2*

± 1

8 =

36

160

178

142

452.

058

038

525

1630

856

1530

.080

.0FB

16-3

30

= 6

019

022

016

045

2.0

580

3852

516

3051

415

30.0

83.0

FB16

-4*

± 6

0 =

120

290

350

230

452.

058

038

525

1630

257

1530

.092

.0

450

FB16

-2*

± 1

9 =

38

160

179

141

506.

064

042

585

2030

880

1803

.010

1.0

FB16

-3*

± 3

1 =

62

195

226

164

506.

064

042

585

2030

528

1803

.010

5.0

FB16

-4*

± 6

2 =

124

300

362

238

506.

064

042

585

2030

264

1803

.011

5.0

500

FB16

-2*

± 1

5 =

30

160

175

145

556.

071

544

650

2033

1291

2231

.013

2.0

FB16

-3*

± 2

5 =

50

195

220

170

556.

071

544

650

2033

775

2231

.013

6.0

FB16

-4*

± 5

0 =

100

290

340

240

556.

071

544

650

2033

388

2231

.014

6.0

600

FB16

-3*

± 2

6 =

52

185

211

159

660.

084

036

770

2036

770

3131

.018

1.0

FB16

-4*

± 4

8 =

96

265

313

217

660.

084

036

770

2036

428

3131

.020

8.0

700

FB16

-3*

± 2

4 =

48

190

214

166

765.

091

036

840

2436

1113

4243

.018

2.0

FB16

-4*

± 4

9 =

98

280

329

231

765.

091

036

840

2436

557

4243

.021

2.0

800

FB16

-3*

± 2

5 =

50

220

245

195

868.

010

2538

950

2439

1226

5511

.023

3.0

FB16

-4*

± 5

0 =

100

300

350

250

868.

010

2538

950

2439

613

5511

.026

9.0

153

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T02-FB.qxp:Kap_6_02_FB_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 153

Page 155: e BOA Expansion Joints Guide 29.3

154

BO

A T

ype

WP

N6

Tota

l len

gth

Bello

ws

Wel

d en

ds

TLTL

dade

sCx

Am

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

DNTy

pe

15W

10-2

6*±

13

= 2

614

016

535

.021

.32.

343

.06.

40.

2I

W10

-36*

± 1

8 =

36

152

192

34.0

21.3

2.3

52.0

6.0

0.2

I

20W

10-2

6*±

13

= 2

614

015

535

.026

.92.

343

.06.

40.

2I

W10

-36*

± 1

8 =

36

152

177

34.0

26.9

2.3

52.0

6.0

0.2

I

25W

10-2

8*±

14

= 2

815

016

542

.033

.72.

689

.09.

40.

3I

W10

-38*

± 1

9 =

38

148

173

41.0

33.7

2.6

54.0

9.1

0.3

I

32W

10-3

0*±

15

= 3

016

218

251

.042

.42.

684

.015

.00.

4I

W10

-40*

± 2

0 =

40

186

216

51.0

42.4

2.6

121.

014

.20.

5I

40W

10-3

0*±

15

= 3

016

818

858

.048

.32.

690

.019

.50.

4I

W10

-44*

± 2

2 =

44

198

228

57.0

48.3

2.6

125.

018

.50.

7I

W16

-3L

± 3

0 =

60

426

-68

.248

.32.

956

.527

1.7

II

50W

16-1

16

= 3

228

528

581

.260

.33.

210

1.0

391.

3I

W10

-40*

± 2

0 =

40

180

210

74.0

60.3

2.9

99.0

31.8

0.7

IW

10-5

0*±

25

= 5

019

623

674

.060

.32.

910

5.0

31.1

0.9

I

65W

16-1

19

= 3

828

528

510

4.8

76.1

3.2

90.0

661.

7I

W6-

54*

± 2

7 =

54

230

280

94.0

76.1

2.9

78.0

52.7

1.1

IW

6-70

35

= 7

024

629

694

.076

.12.

984

.051

.71.

4I

80W

16-1

20

= 4

028

528

511

8.5

88.9

3.6

101.

084

2.3

I

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 154

Page 156: e BOA Expansion Joints Guide 29.3

155

W6-

56*

± 2

8 =

56

230

280

105.

088

.93.

285

.067

.91.

3I

W6-

70*

± 3

5 =

70

246

296

105.

088

.93.

291

.066

.71.

7I

100

W16

-1*

± 2

2 =

44

344

344

142.

111

4.3

4.0

102.

012

73.

8I

W6-

76*

± 3

8 =

76

268

338

136.

011

4.3

3.6

90.0

115

2.3

IW

16-3

44

= 8

848

2-

142.

111

4.3

4.0

51.0

127

5.7

IIW

6-92

46

= 9

229

239

213

6.0

114.

33.

611

1.0

113

3.2

I

125

W16

-1*

± 2

2 =

44

344

344

170.

813

9.7

4.0

129.

018

45.

0I

W6-

76*

± 3

8 =

76

270

340

158.

013

9.7

4.0

103.

015

92.

9I

W16

-3L

± 4

4 =

88

482

-17

0.8

139.

74.

064

.518

48.

6II

W6-

92*

± 4

6 =

92

292

392

158.

013

9.7

4.0

125.

015

74.

0I

150

W16

-2*

± 3

5 =

70

390

-20

1.0

168.

34.

511

4.0

262

7.7

IW

6-76

38

= 7

627

034

018

6.0

168.

34.

511

9.0

228

3.7

IW

6-96

48

= 9

629

239

218

6.0

168.

34.

514

3.0

225

5.0

I

175

W16

-1B

± 2

1 =

42

230

-23

0.0

193.

75.

619

9.0

342

6.6

IW

16-2

37

= 7

427

8-

230.

019

3.7

5.6

114.

034

28.

1I

W16

-3*

± 4

9 =

98

324

-23

1.0

193.

75.

613

8.0

342

10.7

IW

16-4

80

= 1

6053

2-

230.

019

3.7

5.6

50.0

342

18.0

II

200

W16

-60*

± 3

0 =

60

290

350

257.

021

9.1

6.3

400.

041

08.

1I

W16

-2*

± 3

7 =

74

294

-25

6.0

219.

14.

516

9.0

434

9.5

IW

16-3

54

= 1

0834

6-

257.

021

9.1

4.5

136.

043

414

.0I

W 6

-4L

± 9

2 =

184

548

-25

4.0

219.

14.

524

.043

414

.3II

250

W16

-66*

± 3

3 =

66

295

360

312.

027

3.0

6.3

450.

062

511

.0I

W16

-2*

± 3

3 =

66

288

-31

3.0

273.

05.

016

3.0

660

13.6

IW

16-3

57

= 1

1434

5-

313.

027

3.0

5.0

122.

066

016

.0I

W6-

4*±

92

= 1

8444

9-

312.

027

3.0

5.0

78.0

660

20.6

I

300

W16

-70*

± 3

5 =

70

295

365

363.

032

3.9

8.0

500.

087

014

.0I

W16

-2*

± 3

9 =

78

294

-36

6.5

323.

95.

624

8.0

911

17.5

IW

16-3

52

= 1

0433

3-

366.

532

3.9

5.6

186.

091

120

.7I

W6-

4*±

96

= 1

9243

4-

364.

032

3.9

5.6

70.0

911

20.8

I

350

W6-

1B±

20

= 4

023

1-

399.

035

5.6

5.6

204.

011

0111

.0I

W16

-72*

± 3

6 =

72

300

375

395.

035

5.6

8.0

550.

010

4515

.0I

W16

-100

50

= 1

0035

546

039

5.0

355.

68.

045

0.0

1045

25.0

IW

6-4*

± 1

06 =

212

496

-40

1.0

355.

65.

678

.011

0333

.0I

400

W6-

1B±

22

= 4

423

7-

451.

040

6.4

6.3

255.

014

1715

.0I

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 155

Page 157: e BOA Expansion Joints Guide 29.3

DNTy

pe

W16

-76*

± 3

8 =

76

300

385

445.

040

6.4

8.8

600.

013

5518

.0I

W16

-106

53

= 1

0636

047

044

5.0

406.

48.

850

0.0

1355

29.0

IW

6-4*

± 1

01 =

202

479

-45

1.0

406.

46.

371

.014

1338

.0I

450

W6-

1B±

23

= 4

623

9-

505.

045

7.0

6.3

262.

017

9828

.7I

W10

-78*

± 3

9 =

78

300

375

498.

045

7.2

10.0

700.

017

1022

.0I

W16

-108

54

= 1

0836

048

049

8.0

457.

210

.055

0.0

1710

34.0

IW

6-4*

± 1

06 =

212

508

-50

5.0

457.

06.

373

.017

9459

.0I

500

W6-

1B±

26

= 5

224

5-

557.

050

8.0

6.3

316.

021

9522

.0I

W10

-80*

± 4

0 =

80

300

385

550.

050

8.0

11.0

700.

021

0025

.0I

W16

-110

55

= 1

1036

048

055

0.0

508.

011

.060

0.0

2100

40.0

IW

6-4*

± 1

04 =

208

497

-55

7.0

508.

06.

379

.021

9549

.0I

600

W6-

1B±

29

= 5

825

1-

663.

061

1.4

8.0

371.

031

4532

.0I

W10

-80*

± 4

0 =

80

300

385

652.

060

9.6

8.0

900.

030

1027

.0I

W16

-116

58

= 1

1636

549

065

2.0

609.

68.

070

0.0

3010

43.0

IW

6-4*

± 1

18 =

236

511

-66

3.0

611.

48.

093

.031

4570

.0I

700

W6-

74B

± 3

7 =

74

315

-75

4.0

711.

012

.011

00.0

4080

40.0

IW

6-2*

± 5

1 =

102

294

-76

4.0

713.

08.

019

2.0

4224

47.0

IW

6-3*

± 7

2 =

144

362

-76

4.0

713.

08.

013

7.0

4224

57.0

IW

6-4*

± 1

14 =

228

497

-76

4.0

713.

08.

087

.042

2476

.0I

156

BO

A T

ype

W

PN

6

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 156

Page 158: e BOA Expansion Joints Guide 29.3

800

W6-

56*

± 2

8 =

56

245

295

912.

081

2.8

8.0

963.

058

2634

.0I

W6-

114*

± 5

7 =

114

420

530

905.

081

2.8

8.0

509.

057

7546

.0I

W6-

164*

± 8

2 =

164

465

635

890.

081

2.8

8.0

403.

056

6652

.0I

900

W6-

58*

± 2

9 =

58

245

295

1015

.091

4.4

10.0

1066

.073

0338

.0I

W6-

116*

± 5

8 =

116

420

530

1008

.091

4.4

10.0

561.

072

4651

.0I

W6-

164*

± 8

2 =

164

465

635

994.

091

4.4

10.0

441.

071

2458

.0I

1000

W6-

56*

± 2

8 =

56

245

275

1120

.010

16.0

10.0

1097

.089

4847

.0I

W6-

122*

± 6

1 =

122

385

485

1115

.010

16.0

10.0

547.

088

9862

.0I

W6-

166*

± 8

3 =

166

425

575

1100

.010

16.0

10.0

397.

087

6170

.0I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

157

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 157

Page 159: e BOA Expansion Joints Guide 29.3

158

BO

A T

ype

WP

N10

DNTy

pe

15W

10-2

6*±

13

= 2

614

016

535

.021

.32.

343

.06.

40.

2I

W10

-36*

± 1

8 =

36

152

192

34.0

21.3

2.3

52.0

6.0

0.2

I

20W

10-2

6*±

13

= 2

614

015

535

.026

.92.

343

.06.

40.

2I

W10

-36*

± 1

8 =

36

152

177

34.0

26.9

2.3

52.0

6.0

0.2

I

25W

10-2

8*±

14

= 2

815

016

542

.033

.72.

689

.09.

40.

3I

W10

-38*

± 1

9 =

38

148

173

41.0

33.7

2.6

54.0

9.1

0.3

I

32W

10-3

0*±

15

= 3

016

218

251

.042

.42.

684

.015

.00.

4I

W10

-40*

± 2

0 =

40

186

216

51.0

42.4

2.6

121.

014

.20.

5I

40W

10-3

0*±

15

= 3

016

818

858

.048

.32.

690

.019

.50.

4I

W10

-44*

± 2

2 =

44

198

228

57.0

48.3

2.6

125.

018

.50.

7I

W16

-3L

± 3

0 =

60

426

-68

.248

.32.

956

.527

.01.

7II

50W

16-1

16

= 3

228

528

581

.260

.33.

210

1.0

39.0

1.3

IW

10-4

0*±

20

= 4

018

021

074

.060

.32.

999

.031

.80.

7I

W10

-50*

± 2

5 =

50

196

236

74.0

60.3

2.9

105.

031

.10.

9I

65W

10-3

0*±

15

= 3

016

617

694

.076

.12.

990

.053

.10.

7I

W10

-56*

± 2

8 =

56

244

294

93.0

76.1

2.9

161.

051

.11.

7I

W16

-3L

± 3

8 =

76

426

-10

4.8

76.1

3.2

45.0

66.0

2.9

II

80W

10-3

0*±

15

= 3

016

617

610

5.0

88.9

3.2

98.0

68.2

0.9

I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 158

Page 160: e BOA Expansion Joints Guide 29.3

159

W10

-56*

± 2

8 =

56

244

294

105.

088

.93.

217

5.0

66.0

2.0

IW

16-3

40

= 8

042

6-

118.

588

.93.

650

.584

.03.

8II

100

W10

-40*

± 2

0 =

40

188

208

136.

011

4.3

3.6

119.

011

5.0

1.5

IW

10-5

6*±

28

= 5

627

031

013

6.0

114.

33.

621

6.0

114.

02.

7I

W10

-76*

± 3

8 =

76

292

362

136.

011

4.3

3.6

187.

011

2.0

3.6

I

125

W10

-40*

± 2

0 =

40

188

208

158.

013

9.7

4.0

135.

016

0.0

2.0

IW

10-7

6*±

38

= 7

629

236

215

7.0

139.

74.

021

2.0

155.

04.

5I

W16

-3L

± 4

4 =

88

482

-17

0.8

139.

74.

064

.518

4.0

8.6

II

150

W10

-40*

± 2

0 =

40

188

208

186.

016

8.3

4.5

155.

022

8.0

2.6

IW

10-7

6*±

38

= 7

629

236

218

6.0

168.

34.

524

3.0

224.

05.

6I

W16

-3*

± 5

0 =

100

462

-20

4.0

168.

34.

515

5.0

262.

011

.5I

175

W16

-1B

± 2

1 =

42

230

-23

0.0

193.

75.

619

9.0

342.

06.

6I

W16

-2*

± 3

7 =

74

278

-23

0.0

193.

75.

611

4.0

342.

08.

1I

W16

-3*

± 4

9 =

98

324

-23

1.0

193.

75.

613

8.0

342.

010

.7I

W16

-4L

± 8

0 =

160

532

-23

0.0

193.

75.

650

.034

2.0

18.0

II

200

W16

-60*

± 3

0 =

60

290

350

257.

021

9.1

6.3

400.

041

0.0

8.1

IW

16-2

37

= 7

429

4-

256.

021

9.1

4.5

169.

043

4.0

9.5

IW

16-3

54

= 1

0834

6-

257.

021

9.1

4.5

136.

043

4.0

14.0

I

250

W16

-66*

± 3

3 =

66

295

360

312.

027

3.0

6.3

450.

062

5.0

11.0

IW

16-2

40

= 8

028

8-

313.

027

3.0

5.0

163.

066

0.0

13.6

IW

16-3

57

= 1

1434

5-

313.

027

3.0

5.0

122.

066

0.0

16.0

I

300

W16

-70*

± 3

5 =

70

295

365

363.

032

3.9

8.0

500.

087

0.0

14.0

IW

16-2

39

= 7

829

4-

366.

532

3.9

5.6

248.

091

1.0

17.5

IW

16-3

52

= 1

0433

3-

266.

532

3.9

5.6

186.

091

1.0

20.7

IW

10-4

96

= 1

9246

2-

366.

032

3.9

5.6

119.

091

1.0

29.6

I

350

W10

-1B

± 2

1 =

42

238

-40

1.0

355.

65.

636

5.0

1103

.013

.0I

W16

-72*

± 3

6 =

72

300

375

395.

035

5.6

8.0

550.

010

45.0

15.0

IW

16-1

00*

± 5

0 =

100

355

460

395.

035

5.6

8.0

450.

010

45.0

25.0

IW

10-4

98

= 1

9645

8-

401.

035

5.6

5.6

122.

010

93.0

37.0

I

400

W10

-1B

± 2

2 =

44

240

-45

3.0

406.

46.

336

2.0

1424

.016

.0I

W16

-76*

± 3

8 =

76

300

385

445.

040

6.4

8.8

600.

013

55.0

18.0

IW

16-1

06±

53

= 1

0636

047

044

5.0

406.

48.

850

0.0

1355

.029

.0I

W10

-4*

± 1

04 =

208

469

-45

3.0

406.

46.

312

1.0

1424

.047

.0I

450

W10

-1B

± 2

4 =

48

243

-50

7.0

457.

06.

337

2.0

1806

.031

.0I

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 159

Page 161: e BOA Expansion Joints Guide 29.3

160

BO

A T

ype

WP

N10

DNTy

pe

W10

-78*

± 3

9 =

78

300

375

498.

045

7.2

10.0

700.

017

10.0

22.0

IW

16-1

08*

± 5

4 =

108

360

480

498.

045

7.2

10.0

550.

017

10.0

34.0

IW

10-4

101

= 2

0247

1-

507.

045

7.0

6.3

121.

017

97.0

61.0

I

500

W10

-1B

± 2

6 =

52

247

-55

9.0

508.

06.

342

7.0

2204

.024

.0I

W10

-80*

± 4

0 =

80

300

385

550.

050

8.0

11.0

700.

021

00.0

25.0

IW

16-1

10*

± 5

5 =

110

360

480

550.

050

8.0

11.0

600.

021

00.0

40.0

IW

10-4

107

= 2

1448

1-

559.

050

8.0

6.3

121.

021

99.0

55.0

I

600

W10

-1B

± 1

9 =

38

228

-66

3.0

611.

48.

072

3.0

3133

.032

.0I

W10

-80*

± 4

0 =

80

300

385

652.

060

9.6

8.0

900.

030

10.0

27.0

IW

16-1

16*

± 5

8 =

116

365

490

652.

060

9.6

8.0

700.

030

10.0

43.0

IW

10-4

107

= 2

1448

2-

663.

061

1.4

8.0

131.

031

33.0

72.0

I

700

W10

-74*

± 3

7 =

74

315

385

754.

071

1.0

12.0

1100

.040

80.0

40.0

IW

10-1

14*

± 5

7 =

114

365

490

754.

071

1.0

12.0

900.

040

80.0

58.0

IW

10-3

75

= 1

5038

4-

766.

071

1.2

8.0

234.

042

22.0

71.0

IW

10-4

118

= 2

3651

2-

766.

071

1.2

8.0

149.

042

22.0

95.0

I

800

W10

-44*

± 2

2 =

44

245

285

897.

081

2.8

8.0

1460

.057

24.0

33.0

IW

10-1

02*

± 5

1 =

102

420

530

897.

081

2.8

8.0

626.

057

24.0

44.0

IW

10-1

62*

± 8

1 =

162

480

650

890.

081

2.8

8.0

629.

056

39.0

65.0

I

900

W10

-42*

± 2

1 =

42

245

285

999.

091

4.4

10.0

1706

.071

76.0

37.0

I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 160

Page 162: e BOA Expansion Joints Guide 29.3

W10

-100

50

= 1

0042

053

099

9.0

914.

410

.073

1.0

7176

.049

.0I

W10

-162

81

= 1

6248

065

099

3.0

914.

410

.068

6.0

7093

.074

.0I

1000

W10

-46*

± 2

3 =

46

280

300

1092

.010

16.0

10.0

1930

.087

07.0

48.0

IW

10-1

00*

± 5

0 =

100

420

500

1097

.010

16.0

10.0

826.

087

45.0

61.0

IW

10-1

66*

± 8

3 =

166

435

585

1099

.010

16.0

10.0

608.

087

27.0

87.0

I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

161

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 161

Page 163: e BOA Expansion Joints Guide 29.3

162

BO

A T

ype

WP

N16

DNTy

pe

15W

16-2

0*±

10

= 2

012

615

135

.021

.32.

357

.06.

40.

2I

W16

-30*

± 1

5 =

30

140

165

34.0

21.3

2.3

63.0

6.0

0.2

I

20W

16-2

0*±

10

= 2

012

614

135

.026

.92.

357

.06.

40.

2I

W16

-30*

± 1

5 =

30

140

155

34.0

26.9

2.3

63.0

6.0

0.2

I

25W

16-2

0*±

10

= 2

013

414

942

.033

.72.

611

8.0

9.4

0.2

IW

16-2

8*±

14

= 2

816

217

741

.033

.72.

615

1.0

8.8

0.4

I

32W

16-2

2*±

11

= 2

214

215

251

.042

.42.

611

2.0

15.0

0.3

IW

16-3

4*±

17

= 3

417

019

051

.042

.42.

614

2.0

14.2

0.5

I

40W

16-1

15

= 3

028

528

568

.248

.32.

911

3.0

27.0

1.0

IW

16-3

6*±

18

= 3

618

220

257

.048

.32.

614

5.0

18.5

0.6

IW

16-3

30

= 6

042

6-

68.2

48.3

2.9

56.5

27.0

1.7

II

50W

16-1

16

= 3

228

528

581

.260

.33.

210

1.0

39.0

1.3

IW

16-4

8*±

24

= 4

820

624

673

.060

.32.

917

3.0

30.1

1.2

IW

16-3

32

= 6

442

6-

81.2

60.3

3.2

50.5

39.0

2.1

II

65W

16-1

19

= 3

828

528

510

4.8

76.1

3.2

90.0

66.0

1.7

IW

16-4

4*±

22

= 4

422

625

694

.076

.12.

913

3.0

52.4

1.2

IW

16-3

38

= 7

642

6-

104.

876

.13.

245

.066

.02.

9II

80W

16-1

20

= 4

028

528

511

8.5

88.9

3.6

101.

084

.02.

3I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 162

Page 164: e BOA Expansion Joints Guide 29.3

163

W16

-46*

± 2

3 =

46

228

258

105.

088

.93.

214

6.0

67.5

1.5

IW

16-3

40

= 8

042

6-

118.

588

.93.

650

.584

.03.

8II

100

W16

-1*

± 2

2 =

44

344

344

142.

111

4.3

4.0

102.

012

7.0

3.8

IW

25-4

6*±

23

= 4

627

231

213

6.0

114.

33.

641

5.0

113.

03.

2I

W16

-3L

± 4

4 =

88

482

-14

2.1

114.

34.

051

.012

7.0

5.7

II

125

W16

-1*

± 2

2 =

44

344

344

170.

813

9.7

4.0

129.

018

4.0

5.0

IW

16-5

6*±

28

= 5

627

031

015

7.0

139.

74.

033

6.0

152.

03.

4I

W16

-3L

± 4

4 =

88

482

-17

0.8

139.

74.

064

.518

4.0

8.6

II

150

W16

-58*

± 2

9 =

58

270

310

185.

016

8.3

4.5

381.

021

9.0

7.4

IW

16-2

35

= 7

039

0-

201.

016

8.3

4.5

114.

026

2.0

7.7

IW

16-3

50

= 1

0046

2-

204.

016

8.3

4.5

155.

026

2.0

11.5

I

175

W16

-1B

± 2

1 =

42

230

-23

0.0

193.

75.

619

9.0

342.

06.

6I

W16

-2*

± 3

7 =

74

278

-23

0.0

193.

75.

611

4.0

342.

08.

1I

W16

-3*

± 4

9 =

98

324

-23

1.0

193.

75.

613

8.0

342.

010

.7I

W16

-4L

± 8

0 =

160

532

-23

0.0

193.

75.

650

.034

2.0

18.0

II

200

W16

-60*

± 3

0 =

60

290

350

257.

021

9.1

6.3

400.

041

0.0

8.1

IW

16-2

37

= 7

429

4-

256.

021

9.1

4.5

169.

043

4.0

9.5

IW

16-3

54

= 1

0834

6-

257.

021

9.1

4.5

136.

043

4.0

14.0

I

250

W16

-66*

± 3

3 =

66

295

360

312.

027

3.0

6.3

450.

062

5.0

11.0

IW

16-2

40

= 8

028

8-

313.

027

3.0

5.0

163.

066

0.0

13.6

IW

16-3

57

= 1

1434

5-

313.

027

3.0

5.0

122.

066

0.0

16.0

I

300

W16

-70*

± 3

3 =

66

295

365

363.

032

3.9

8.0

500.

087

0.0

14.0

IW

16-2

39

= 7

829

4-

366.

532

3.9

5.6

248.

091

1.0

17.5

IW

16-3

52

= 1

0433

3-

366.

532

3.9

5.6

186.

091

1.0

20.7

I

350

W16

-1B

± 2

1 =

42

244

-40

1.0

355.

65.

652

8.0

1093

.015

.0I

W16

-72*

± 3

6 =

72

300

375

395.

035

5.6

8.0

550.

010

45.0

15.0

IW

16-1

00*

± 5

0 =

100

355

460

395.

035

5.6

8.0

450.

010

45.0

25.0

IW

16-4

90

= 1

8049

1-

405.

235

5.6

5.6

189.

011

00.0

50.3

I

400

W16

-1B

± 2

3 =

46

251

-45

5.0

406.

46.

358

3.0

1421

.020

.0I

W16

-76*

± 3

4 =

68

300

385

447.

040

6.4

8.8

600.

013

55.0

18.0

IW

16-1

06*

± 5

3 =

106

360

470

445.

040

6.4

8.8

500.

013

55.0

29.0

IW

16-4

92

= 1

8447

3-

457.

040

6.4

6.3

189.

014

24.0

56.0

I

450

W16

-1B

± 2

5 =

50

251

-50

9.0

457.

06.

359

9.0

1803

.035

.0I

W16

-62*

± 3

1 =

62

300

375

498.

045

7.2

10.0

1200

.017

10.0

24.0

I

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 163

Page 165: e BOA Expansion Joints Guide 29.3

164

BO

A T

ype

WP

N16

DNTy

pe

W16

-108

54

= 1

0836

048

049

8.0

457.

210

.055

0.0

1710

.034

.0I

W16

-4*

± 1

00 =

200

486

-51

2.0

457.

06.

319

4.0

1806

.075

.0I

500

W16

-1B

± 2

7 =

54

258

-56

1.0

508.

06.

365

6.0

2202

.028

.0I

W16

-64*

± 3

2 =

64

300

385

550.

050

8.0

11.0

1300

.021

00.0

28.0

IW

16-1

10*

± 5

5 =

110

360

480

550.

050

8.0

11.0

600.

021

00.0

40.0

IW

16-4

107

= 2

1450

1-

563.

050

8.0

6.3

209.

022

04.0

78.0

I

600

W16

-66*

± 3

0 =

60

300

385

652.

060

9.6

8.0

1500

.030

10.0

30.0

IW

16-1

16*

± 5

8 =

116

365

490

652.

060

9.6

8.0

700.

030

10.0

43.0

IW

16-3

70

= 1

4037

2-

665.

060

9.6

8.0

305.

031

31.0

66.0

IW

16-4

113

= 2

2649

1-

667.

060

9.6

8.0

211.

031

45.0

91.0

I

700

W16

-60*

± 3

0 =

60

315

385

754.

071

1.0

12.0

1900

.040

80.0

44.0

IW

16-1

14*

± 5

7 =

114

365

490

754.

071

1.0

12.0

900.

040

80.0

58.0

IW

16-3

66

= 1

3235

5-

771.

071

3.6

10.0

391.

042

43.0

82.0

IW

16-4

110

= 2

2049

6-

771.

071

3.6

10.0

235.

042

43.0

114.

0I

800

W16

-36B

± 1

8 =

36

250

-91

1.0

812.

88.

038

39.0

5799

.040

.0I

W16

-72*

± 3

6 =

72

430

500

904.

081

2.8

8.0

2004

.057

49.0

59.0

IW

16-1

14*

± 5

7 =

114

440

550

903.

081

2.8

8.0

1047

.057

32.0

67.0

IW

16-1

60*

± 8

0 =

160

490

650

889.

081

2.8

8.0

880.

056

11.0

79.0

I

900

W16

-36B

± 1

8 =

36

250

-10

14.0

914.

410

.042

62.0

7274

.045

.0I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 164

Page 166: e BOA Expansion Joints Guide 29.3

165

W16

-74*

± 3

7 =

74

430

500

1007

.091

4.4

10.0

2229

.072

17.0

66.0

IW

16-1

16*

± 5

8 =

116

440

550

1007

.091

4.4

10.0

1150

.071

98.0

76.0

IW

16-1

60*

± 8

0 =

160

490

650

992.

091

4.4

10.0

955.

070

62.0

89.0

I

1000

W16

-32B

± 1

6 =

32

250

-11

14.0

1016

.010

.051

78.0

8868

.054

.0I

W16

-76*

± 3

8 =

76

395

445

1114

.010

16.0

10.0

2245

.088

65.0

78.0

IW

16-1

10±

55

= 1

1040

049

011

08.0

1016

.015

.013

00.0

8799

.087

.0I

W16

-166

83

= 1

6645

060

010

98.0

1016

.015

.082

8.0

8693

.010

4.0

I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 165

Page 167: e BOA Expansion Joints Guide 29.3

166

BO

A T

ype

WP

N25

DNTy

pe

15W

25-2

0*±

10

= 2

012

214

734

.021

.32.

394

.06.

00.

2I

20W

25-2

0*±

10

= 2

012

213

734

.026

.92.

394

.06.

00.

2I

25W

25-1

4*±

7 =

14

124

124

42.0

33.7

2.6

148.

09.

40.

2I

W25

-24*

± 1

2 =

24

152

167

41.0

33.7

2.6

171.

08.

80.

3I

32W

25-1

6*±

8 =

16

128

138

51.0

42.4

2.6

153.

015

.00.

3I

W25

-28*

± 1

4 =

28

156

176

51.0

42.4

2.6

172.

014

.20.

4I

40W

25-1

8*±

9 =

18

134

144

58.0

48.3

2.6

150.

019

.50.

3I

W25

-28*

± 1

4 =

28

160

180

57.0

48.3

2.6

187.

018

.50.

5I

W25

-3L

± 2

8 =

56

426

-69

.848

.32.

988

.027

.02.

5II

50W

25-2

4*±

12

= 2

415

617

674

.060

.32.

922

8.0

31.6

0.7

IW

25-3

8*±

19

= 3

818

021

073

.060

.32.

921

9.0

30.1

1.0

IW

25-3

30

= 6

042

6-

82.8

60.3

3.2

102.

039

.02.

9II

65W

25-1

16

= 3

228

5-

105.

076

.13.

221

9.0

66.0

2.3

IW

25-4

6*±

23

= 4

625

028

093

.076

.12.

928

7.0

49.4

2.1

IW

25-3

32

= 6

442

6-

105.

076

.13.

211

0.0

66.0

4.1

II

80W

25-3

4*±

17

= 3

422

825

810

5.0

88.9

3.2

342.

066

.71.

7I

W25

-46*

± 2

3 =

46

250

280

104.

088

.93.

230

8.0

64.1

2.4

IW

25-3

36

= 7

242

6-

117.

488

.93.

674

.084

.04.

8II

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 166

Page 168: e BOA Expansion Joints Guide 29.3

100

W25

-24*

± 1

2 =

24

184

204

136.

011

4.3

3.6

479.

011

4.0

1.8

IW

25-4

6*±

23

= 4

627

231

213

6.0

114.

33.

641

5.0

113.

03.

2I

W25

-3L

± 4

0 =

80

488

-14

4.0

114.

34.

010

8.0

127.

06.

8II

125

W25

-24*

± 1

2 =

24

184

204

158.

013

9.7

4.0

546.

015

8.0

2.3

IW

25-4

6*±

23

= 4

627

231

215

8.0

139.

74.

047

6.0

157.

04.

0I

W25

-3L

± 4

0 =

80

486

-17

2.0

139.

74.

013

2.0

184.

010

.6II

150

W25

-24*

± 1

2 =

24

184

204

186.

016

8.3

4.5

632.

022

6.0

3.0

IW

25-1

17

= 3

535

3-

203.

016

8.4

4.5

375.

026

2.0

7.9

IW

25-4

6*±

23

= 4

627

231

218

6.0

168.

34.

555

4.0

225.

05.

0I

175

W25

-1B

± 1

9 =

38

235

-23

2.2

193.

75.

639

3.0

342.

07.

8I

W25

-2*

± 3

3 =

66

282

-23

2.2

193.

75.

622

4.0

342.

011

.0I

W25

-3*

± 4

6 =

92

346

-23

4.4

193.

75.

621

5.0

342.

016

.0I

W25

-4L

± 6

2 =

124

514

-23

2.2

193.

75.

611

2.0

342.

019

.3II

200

W25

-1B

± 1

6 =

32

235

-25

9.0

219.

16.

357

3.0

434.

010

.8I

W25

-50*

± 2

5 =

50

290

350

257.

021

9.1

6.3

700.

041

0.0

9.1

IW

25-3

47

= 9

434

3-

259.

021

9.1

6.3

191.

043

4.0

15.6

IW

25-4

68

= 1

3662

4-

259.

021

9.1

6.3

123.

043

4.0

30.0

II

250

W25

-1B

± 1

8 =

36

242

-31

5.5

273.

06.

366

4.0

660.

014

.7I

W25

-54*

± 2

7 =

54

295

360

312.

027

3.0

6.3

800.

062

5.0

12.0

IW

25-3

44

= 8

833

9-

316.

527

3.0

6.3

258.

066

0.0

22.1

IW

25-4

61

= 1

2264

0-

316.

527

3.0

6.3

172.

066

0.0

41.8

II

300

W25

-1B

± 1

9 =

38

245

-36

8.5

323.

97.

167

3.0

911.

018

.4I

W25

-58*

± 2

9 =

58

295

365

363.

032

3.9

8.0

900.

087

0.0

16.0

IW

25-3

51

= 1

0235

1-

369.

032

3.9

7.1

254.

091

1.0

27.0

IW

25-4

63

= 1

2639

7-

369.

032

3.9

7.1

221.

091

1.0

37.0

I

350

W25

-1B

± 2

0 =

40

251

-40

5.0

355.

68.

076

2.0

1103

.022

.0I

W25

-58*

± 2

9 =

58

300

375

395.

035

5.6

8.0

1000

.010

45.0

18.0

IW

25-3

55

= 1

1036

4-

405.

035

5.6

8.0

286.

011

03.0

37.0

IW

25-4

70

= 1

4044

3-

403.

035

5.6

8.0

315.

010

94.0

46.0

I

400

W25

-1B

± 2

0 =

40

253

-45

7.0

406.

46.

381

4.0

1420

.028

.0I

W25

-60*

± 3

0 =

60

300

385

445.

040

6.4

8.8

1100

.013

55.0

20.0

IW

25-3

55

= 1

1037

1-

457.

040

6.4

8.8

305.

014

20.0

49.0

IW

25-4

72

= 1

4445

6-

457.

040

6.4

8.8

347.

014

21.0

61.0

I

450

W25

-1B

± 2

1 =

42

257

-51

2.0

457.

010

.089

5.0

1797

.040

.0I

167

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 167

Page 169: e BOA Expansion Joints Guide 29.3

168

BO

A T

ype

WP

N25

DNTy

pe

W25

-70*

± 3

5 =

70

330

405

498.

045

7.2

10.0

1400

.017

10.0

34.0

IW

25-3

49

= 9

835

4-

512.

045

7.0

10.0

384.

017

97.0

60.0

IW

25-4

77

= 1

5446

6-

512.

045

7.0

10.0

356.

018

03.0

77.0

I

500

W25

-1B

± 1

9 =

38

250

-56

1.0

508.

011

.011

50.0

2202

.037

.0I

W25

-70*

± 3

5 =

70

330

415

550.

050

8.0

11.0

1500

.021

00.0

40.0

IW

25-3

46

= 9

234

1-

561.

050

8.0

11.0

493.

022

02.0

54.0

IW

25-4

74

= 1

4844

3-

561.

050

6.0

11.0

350.

021

95.0

80.0

I

600

W25

-1B

± 1

7 =

34

246

-66

5.0

611.

612

.017

24.0

3137

.050

.0I

W25

-74*

± 3

7 =

74

330

415

652.

060

9.6

8.0

1700

.030

10.0

43.0

IW

25-3

52

= 1

0435

8-

667.

061

1.6

12.0

608.

031

41.0

80.0

IW

25-4

82

= 1

6446

3-

667.

061

1.6

12.0

387.

031

41.0

103.

0I

700

W25

-1B

± 1

6 =

32

234

-77

1.0

710.

212

.023

62.0

4229

.062

.0I

W25

-74*

± 3

7 =

74

340

415

754.

071

1.0

12.0

2200

.040

80.0

59.0

IW

25-3

49

= 9

834

3-

771.

071

0.2

12.0

787.

042

29.0

95.0

IW

25-4

81

= 1

6245

4-

771.

071

0.2

12.0

472.

042

29.0

126.

0I

800

W25

-54*

± 2

7 =

54

260

310

907.

081

2.8

15.0

3220

.057

27.0

65.0

IW

25-1

14*

± 5

7 =

114

455

565

902.

081

2.8

15.0

1639

.056

89.0

100.

0I

W25

-156

78

= 1

5651

567

588

7.0

812.

815

.014

68.0

5556

.011

8.0

I

900

W25

-54*

± 2

7 =

54

260

310

1010

.091

4.4

15.0

3633

.071

86.0

73.0

I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 168

Page 170: e BOA Expansion Joints Guide 29.3

169

W25

-114

57

= 1

1445

556

510

05.0

914.

415

.017

93.0

7150

.011

3.0

IW

25-1

56*

± 7

8 =

156

515

675

990.

091

4.4

15.0

1571

.070

02.0

133.

0I

1000

W25

-48*

± 2

4 =

48

260

280

1107

.010

16.0

15.0

4618

.087

49.0

86.0

IW

25-1

10*

± 5

5 =

110

420

510

1107

.010

16.0

15.0

2009

.087

46.0

130.

0I

W25

-156

78

= 1

5646

060

010

95.0

1016

.015

.011

77.0

8635

.013

6.0

I

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 169

Page 171: e BOA Expansion Joints Guide 29.3

170

BO

A T

ype

WP

N40

DNTy

pe

15W

40-1

4*±

7 =

14

112

122

34.0

21.3

2.3

135.

06.

00.

2I

20W

40-1

4*±

7 =

14

112

112

34.0

26.9

2.3

135.

06.

00.

2I

25W

40-1

8*±

9 =

18

138

153

41.0

33.7

2.6

214.

08.

80.

3I

32W

40-2

0*±

10

= 2

013

614

651

.042

.42.

624

1.0

14.2

0.4

I

40W

40-2

2*±

11

= 2

214

415

457

.048

.32.

623

8.0

18.5

0.5

IW

40-3

22

= 4

442

6-

70.0

48.3

2.9

183.

527

.02.

5II

50W

40-1

13

= 2

628

5-

84.0

60.3

3.2

345.

039

.01.

7I

W40

-28*

± 1

4 =

28

156

176

73.0

60.3

2.9

299.

030

.10.

8I

W40

-3L

± 2

6 =

52

426

-83

.860

.33.

217

2.5

39.0

2.9

II

65W

40-1

4*±

7 =

14

166

175

94.0

76.1

2.9

688.

051

.70.

9I

W40

-32*

± 1

6 =

32

210

220

93.0

76.1

2.9

398.

049

.41.

6I

W40

-3L

± 3

0 =

60

426

-10

7.0

76.1

3.2

165.

066

.04.

5II

80W

40-1

4*±

7 =

14

166

176

105.

088

.93.

276

0.0

66.7

1.2

IW

40-3

2*±

16

= 3

221

022

010

4.0

88.9

3.2

427.

064

.12.

0I

W40

-3L

± 3

4 =

68

426

-11

9.6

88.9

3.6

165.

084

.05.

2II

100

W40

-20*

± 1

0 =

20

186

206

136.

011

4.3

3.6

922.

011

3.0

2.0

IW

40-4

0*±

20

= 4

022

824

813

5.0

114.

33.

650

0.0

109.

03.

4I

W40

-3L

± 3

2 =

64

488

-14

5.4

114.

34.

015

8.0

127.

08.

0II

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 170

Page 172: e BOA Expansion Joints Guide 29.3

171

125

W40

-20*

± 1

0 =

20

186

206

158.

013

9.7

4.0

1057

.015

7.0

2.5

IW

40-4

2*±

21

= 4

223

825

815

7.0

139.

74.

051

7.0

152.

04.

4I

W40

-3L

± 4

0 =

80

494

-17

3.2

139.

74.

016

6.0

184.

011

.2II

150

W40

-20*

± 1

0 =

20

186

206

186.

016

8.3

4.5

1230

.022

5.0

3.3

IW

40-4

2*±

21

= 4

223

825

818

5.0

168.

34.

558

7.0

219.

05.

5I

W40

-3L

± 3

5 =

70

476

-20

7.0

168.

34.

523

3.0

262.

014

.8II

W40

-4L

± 5

9 =

118

580

-20

7.0

168.

34.

514

6.0

262.

021

.5II

175

W40

-1B

± 1

7 =

34

241

-23

4.4

193.

75.

658

4.0

342.

09.

7I

W40

-2*

± 2

9 =

58

290

-23

4.4

193.

75.

633

4.0

342.

013

.0I

W40

-3*

± 4

6 =

92

346

-23

5.0

193.

75.

621

5.0

342.

015

.0I

W40

-4L

± 5

5 =

110

532

-23

4.4

193.

75.

616

7.0

342.

024

.8II

200

W40

-1B

± 1

2 =

24

233

-25

9.8

219.

16.

310

80.0

434.

011

.8I

W40

-2*

± 2

5 =

50

283

-25

9.8

219.

16.

354

0.0

434.

014

.8I

W40

-3*

± 3

7 =

74

336

-26

0.0

219.

16.

343

3.0

434.

020

.1I

W40

-4L

± 5

6 =

112

614

-25

9.8

219.

16.

323

2.0

434.

032

.6II

250

W40

-1B

± 1

3 =

26

241

-31

6.8

273.

06.

313

46.0

660.

015

.8I

W40

-2*

± 2

6 =

52

296

-23

16.8

273.

06.

367

3.0

660.

019

.6I

W40

-3*

± 3

9 =

78

356

-31

6.8

273.

06.

344

9.0

660.

023

.6I

W40

-4L

± 5

7 =

114

676

-31

6.8

273.

06.

328

8.0

660.

048

.5II

300

W40

-1B

± 1

2 =

24

238

-36

9.0

323.

97.

117

82.0

911.

018

.1I

W40

-2*

± 2

4 =

48

292

-36

9.0

323.

97.

189

1.0

911.

022

.4I

W40

-3*

± 3

2 =

64

331

-36

9.0

323.

97.

166

8.0

911.

026

.6I

W40

-4*

± 4

4 =

88

389

-36

9.0

323.

97.

148

6.0

911.

035

.1I

350

W40

-1B

± 1

3 =

26

243

-40

3.0

355.

68.

019

49.0

1094

.023

.0I

W40

-2*

± 2

6 =

52

301

-40

3.0

355.

68.

097

5.0

1094

.033

.0I

W40

-3*

± 3

5 =

70

342

-40

3.0

355.

68.

073

1.0

1094

.038

.0I

W40

-4*

± 4

9 =

98

405

-40

3.0

355.

68.

053

2.0

1094

.045

.0I

400

W40

-1B

± 1

3 =

26

246

-45

7.0

406.

48.

821

97.0

1420

.032

.0I

W40

-2*

± 2

2 =

44

285

-45

7.0

406.

48.

813

18.0

1420

.042

.0I

W40

-3*

± 3

5 =

70

351

-45

7.0

406.

48.

882

4.0

1420

.052

.0I

W40

-4*

± 4

9 =

98

417

-45

7.0

406.

48.

859

9.0

1420

.063

.0I

450

W40

-1B

± 1

4 =

28

248

-51

2.0

457.

010

.022

56.0

1801

.040

.0I

W40

-2*

± 2

4 =

48

289

-51

2.0

457.

010

.013

54.0

1801

.050

.0I

W40

-3*

± 3

3 =

66

334

-51

2.0

457.

010

.096

7.0

1801

.058

.0I

W40

-4*

± 5

3 =

106

425

-51

2.0

457.

010

.061

5.0

1801

.074

.0I

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 171

Page 173: e BOA Expansion Joints Guide 29.3

172

BO

A T

ype

WP

N40

DNTy

pe

500

W40

-1B

± 1

3 =

26

251

-56

3.0

508.

011

.025

17.0

2195

.052

.0I

W40

-2*

± 2

3 =

46

294

-56

3.0

508.

011

.015

10.0

2195

.064

.0I

W40

-3*

± 3

2 =

64

341

-56

3.0

508.

011

.010

79.0

2195

.075

.0I

W40

-4*

± 5

0 =

100

435

-56

3.0

508.

011

.068

7.0

2195

.095

.0I

800

W40

-1B

± 2

7 =

54

275

-90

6.0

812.

815

.056

44.0

5652

.085

.0I

W40

-2B

± 5

5 =

110

490

-89

9.0

812.

815

.029

63.0

5604

.014

3.0

I

900

W40

-1B

± 2

7 =

54

275

-10

09.0

914.

418

.061

22.0

7108

.010

4.0

IW

40-2

56

= 1

1249

0-

1003

.091

4.4

18.0

3219

.070

54.0

170.

0I

1000

W40

-1B

± 2

6 =

52

275

-11

11.0

1016

.018

.067

09.0

8697

.012

2.0

IW

40-2

58

= 1

1645

5-

1109

.010

16.0

18.0

3019

.086

83.0

198.

0I

TLTL

dade

sCx

Am

mm

mm

mm

mm

mm

mm

N/m

mcm

2kg

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

veL

= w

ith in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

Tota

l len

gth

Bello

ws

Wel

d en

ds

Axial move-ment at 1000full load cycles

unrestraint/without innersleeve

unrestraint/with innersleeve

Outside ∅

Outside ∅

Thickness

Effective areaof bellows

Weight *withoutinner sleeve

Execution

Spring rate�30%

Exec

utio

n l

(pag

e 10

2)Ex

ecut

ion

ll (p

age

102)

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 172

Page 174: e BOA Expansion Joints Guide 29.3

173

29.3_UK_Kap_06T03-W.qxp:Kap_6_03_W_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 173

Page 175: e BOA Expansion Joints Guide 29.3

BO

A T

ype

AW

TP

N6

40AW

T 16

-1B

±20

=40

246

5815

558

48.3

2.6

0.7

0.2

0.05

5.2

I

50AW

T 16

-1B

±20

=40

256

7416

874

60.3

2.9

1.2

0.2

0.09

5.6

I

65AW

T 16

-1B

±20

=40

306

9418

694

76.1

2.9

1.7

0.4

0.20

6.2

I

80AW

T 16

-1B

±20

=40

298

105

200

105

88.9

3.2

20.

50.

266.

7I

100

AWT

6-1*

±18

.5=

3733

213

625

016

411

4.3

3.6

8.7

1.6

0.6

15II

125

AWT

6-1*

±18

.5=

37

360

158

274

190

139.

74

5.6

2.2

0.8

17II

150

AWT

6-1*

±17

=34

36

018

730

824

016

8.3

4.5

93.

71.

126

.9II

200

AWT

16-1

B ±

13=

2651

025

938

235

021

9.1

6.3

649

2.6

64II

250

AWT

16-1

B ±

11.5

=23

51

031

344

040

527

36.

310

713

473

II

300

AWT

16-2

B ±

10=

2055

536

450

039

032

3.9

817

418

5.5

74II

350

AWT

6-2*

±12

=24

360

395

540

412

355.

65.

619

318

5.6

67II

AWT

6-3*

±18

=36

430

395

540

412

355.

65.

610

518

6.4

70II

400

AWT

6-2*

±12

=24

360

447

590

462

406.

46.

327

524

7.3

79II

AWT

6-3*

±16

=32

430

447

590

462

406.

46.

314

924

8.3

82II

450

AWT

6-2*

±9=

1836

049

964

051

845

7.2

6.3

381

329.

894

IIAW

T 6-

3*±

15=

3045

049

964

051

845

7.2

6.3

204

3010

.798

II

Bello

ws

Flan

geW

eld

ends

Bend

ing

mom

ent

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Height

Width

Outside ∅

Thickness

Angularreactionforce

Weight *withoutinner sleeve

Execution

Spring rate�30%

Frictionmoment

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

174

Exec

utio

n l (

page

103

)Ex

ecut

ion

ll (p

age

104)

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 174

Page 176: e BOA Expansion Joints Guide 29.3

175

500

AWT

6-2*

±9=

1843

054

969

057

450

86.

350

539

11.9

108

IIAW

T 6-

3*±

14=

2845

054

969

057

450

86.

327

239

13.9

112

II

600

AWT

6-2*

±8=

1643

065

179

255

061

06.

383

756

1710

0II

AWT

6-3*

±12

=24

450

651

792

550

610

6.3

447

5620

.210

5II

700

AWT

6-2*

±8=

1641

075

493

264

571

17.

112

9696

2315

8II

AWT

6-3*

±11

=22

490

754

932

645

711

7.1

691

9627

.916

5II

800

AWT

6-2*

±6=

1241

091

210

7274

081

38

1756

131

21.1

208

IIAW

T 6-

3*±

10=

2049

090

510

7274

081

38

914

130

50.2

224

II

900

AWT

6-2*

±6=

1244

010

1512

0884

091

48

2410

183

26.5

270

IIAW

T 6-

3*±

9=18

500

1008

1208

840

914

812

5018

163

298

II

1000

AWT

6-2*

±5=

1048

011

2013

1293

510

1610

3023

224

27.2

365

IIAW

T 6-

3*±

8=16

530

1115

1312

935

1016

1014

9122

263

.238

2II

pre

ferr

ed s

erie

s*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 175

Page 177: e BOA Expansion Joints Guide 29.3

40AW

T 16

-1B

±20

=40

246

5815

558

48.3

2.6

0.7

0.2

0.05

5.2

I

50AW

T 16

-1B

±20

=40

256

7416

874

60.3

2.9

1.2

0.2

0.09

5.6

I

65AW

T 16

-1B

±20

=40

306

9418

694

76.1

2.9

2.5

0.4

0.19

6.5

I

80AW

T 16

-1B

±20

=40

298

105

200

105

88.9

3.2

3.5

0.5

0.25

6.8

I

100

AWT

16-1

* ±

18.5

=37

332

136

250

164

114.

33.

617

1.6

0.6

15II

125

AWT

16-1

19.5

=39

36

015

827

419

013

9.7

413

2.2

0.8

17.5

II

150

AWT

16-1

17=

34

360

186

308

240

168.

34.

521

3.6

1.1

27.5

II

200

AWT

16-1

13=

2651

025

938

235

021

9.1

6.3

113

92.

664

II

250

AWT

16-1

11.5

=23

51

031

344

040

527

36.

310

713

473

II

300

AWT

16-2

10=

2055

536

450

043

032

3.9

817

418

5.5

115

II

350

AWT

10-2

8=16

360

395

540

412

355.

65.

619

318

5.6

71II

AWT

10-3

16=

3243

039

554

041

235

5.6

5.6

105

186.

474

II

400

AWT

10-2

9=18

360

447

590

462

406.

46.

327

524

7.3

93II

AWT

10-3

16=

3245

044

759

046

240

6.4

6.3

149

248.

397

II

450

AWT

10-2

9=18

430

499

640

518

457.

26.

338

132

9.8

108

IIAW

T 10

-3*

±15

=30

450

499

640

518

457.

26.

320

430

10.7

113

II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

176

BO

A T

ype

AW

TP

N10

Bello

ws

Flan

geW

eld

ends

Bend

ing

mom

ent

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Height

Width

Outside ∅

Thickness

Angularreactionforce

Weight *withoutinner sleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

103

)Ex

ecut

ion

ll (p

age

104)

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 176

Page 178: e BOA Expansion Joints Guide 29.3

500

AWT

10-2

9=18

430

549

690

574

508

6.3

505

3911

.912

3II

AWT

10-3

12=

2445

054

969

057

450

86.

327

239

13.9

128

II

600

AWT

10-2

7=14

410

651

830

630

610

6.3

837

7117

172

IIAW

T 10

-3*

±12

=24

490

651

830

630

610

6.3

447

7120

.217

8II

700

AWT

10-2

±6=

1244

075

495

673

571

17.

112

9610

723

253

IIAW

T 10

-3*

±10

=20

500

754

956

735

711

7.1

691

107

27.9

261

II

800

AWT

10-2

6=12

480

897

1104

840

813

825

7914

320

.733

1II

AWT

10-3

10=

2053

089

711

0484

081

38

1105

143

49.8

358

II

900

AWT

10-2

4.5=

953

099

912

3095

591

48

3735

215

2643

8II

AWT

10-3

9=18

560

999

1230

955

914

816

0521

562

.446

7II

1000

AWT

10-2

5=10

520

1092

1348

1060

1016

1050

5526

135

.458

1II

AWT

10-3

8=16

580

1097

1348

1060

1016

1021

8226

271

611

II

pre

ferr

ed s

erie

s*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

177

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 177

Page 179: e BOA Expansion Joints Guide 29.3

BO

A T

ype

AW

TP

N16

40AW

T 16

-1B

±20

=40

246

5815

558

48.3

2.6

0.9

0.2

0.04

5.2

I

50AW

T 16

-1B

±20

=40

256

7416

874

60.3

2.9

1.6

0.2

0.07

5.7

I

65AW

T 16

-1B

±20

=40

306

9418

694

76.1

2.9

2.5

0.4

0.19

6.5

I

80AW

T 16

-1B

±20

=40

298

105

200

105

88.9

3.2

3.5

0.5

0.25

6.8

I

100

AWT

16-1

18.5

=37

332

136

250

164

114.

33.

617

1.6

0.6

15.4

II

125

AWT

16-1

19.5

=39

360

158

274

190

139.

74

132.

20.

817

.5II

150

AWT

16-1

17=

3438

018

630

824

016

8.3

4.5

213.

61.

127

.5II

200

AWT

16-1

13=

2651

025

938

235

021

9.1

6.3

649

2.6

64II

250

AWT

16-1

11.5

=23

510

313

440

405

273

6.3

107

134

73II

300

AWT

16-2

10=

2055

536

450

043

032

3.9

817

418

5.5

115

II

350

AWT

16-1

6=12

360

395

540

416

355.

65.

619

318

5.6

90II

AWT

16-1

8.5=

1756

039

554

0-

355.

68

136

476.

184

-AW

T 16

-2*

±13

=26

430

395

540

416

355.

65.

616

018

6.8

99II

400

AWT

16-1

6=12

380

447

620

470

406.

46.

327

531

7.3

128

IIAW

T 16

-1B

±7.

5=15

560

447

595

-40

6.4

8.8

192

618

103

-AW

T 16

-3B

±13

.8=

27.6

530

447

620

470

406.

46.

322

630

914

0II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

178

Bello

ws

Flan

geW

eld

ends

Bend

ing

mom

ent

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Height

Width

Outside ∅

Thickness

Angularreactionforce

Weight *withoutinner sleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

103

)Ex

ecut

ion

ll (p

age

104)

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 178

Page 180: e BOA Expansion Joints Guide 29.3

450

AWT

16-1

6=12

380

499

675

528

457.

26.

367

041

9.8

159

IIAW

T 16

-2*

±10

=20

410

499

675

528

457.

26.

330

938

11.4

171

II

500

AWT

16-1

6=12

380

549

725

584

508

6.3

889

5011

.918

2II

AWT

16-1

6.4=

12.8

505

550

725

584

508

6.3

588

7112

.418

2II

AWT

16-2

10=

2049

054

972

558

450

86.

341

150

14.8

193

II

600

AWT

16-1

5.5=

1143

065

187

068

061

06.

314

9079

1727

1II

AWT

16-2

10=

2048

065

187

068

061

06.

367

679

21.6

286

II

700

AWT

16-2

6=12

530

754

996

790

711

7.1

2264

128

2339

0II

AWT

16-3

10=

2056

075

499

679

071

17.

110

4512

829

.240

8II

800

AWT

16-2

6=12

520

904

1144

905

813

835

8517

251

.759

5II

AWT

16-3

9=18

580

903

1144

905

813

818

6417

253

.260

4II

900

AWT

16-2

5=10

570

1007

1264

1020

914

1049

5428

964

.983

7II

AWT

16-3

7.5=

1561

010

0712

6410

2091

410

2545

288

66.8

848

II

1000

AWT

16-2

5=10

570

1114

1400

1140

1016

1061

0335

565

.610

32II

AWT

16-3

7=14

630

1108

1400

1140

1016

1034

8735

266

.310

41II

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

179

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 179

Page 181: e BOA Expansion Joints Guide 29.3

BO

A T

ype

AW

TP

N25

40AW

T 25

-1B

±20

=40

260

5715

557

48.3

2.6

1.3

0.2

0.04

5.2

I

50AW

T 25

-1B

±20

=40

260

7416

874

60.3

2.9

2.7

0.2

0.09

5.8

I

65AW

T 25

-1B

±20

=40

308

9418

694

76.1

2.9

5.9

0.4

0.19

6.7

I

80AW

T 25

-1B

±20

=40

320

104

200

104

88.9

3.2

70.

50.

2815

.4I

100

AWT

25-1

18.5

=37

332

136

250

164

114.

33.

617

1.6

0.6

25.4

II

125

AWT

25-1

16.5

=33

362

158

280

220

139.

74

262.

20.

828

II

150

AWT

25-1

14=

2836

218

630

824

016

8.3

4.5

423.

61.

166

II

200

AWT

25-2

11=

2251

025

938

235

021

9.1

6.3

113

92.

610

3II

250

AWT

25-2

B ±

9.5=

1955

531

344

839

027

36.

318

819

410

8II

300

AWT

25-2

B ±

8=16

555

364

525

390

323.

98

304

205.

510

8II

350

AWT

25-1

6=12

380

395

565

426

355.

65.

678

823

5.6

126

IIAW

T 25

-2*

±10

=20

410

395

565

426

355.

65.

639

023

6.2

133

II

400

AWT

25-1

5=10

380

447

620

476

406.

46.

311

1131

7.3

160

IIAW

T 25

-2*

±10

=20

490

447

620

476

406.

46.

355

530

816

6II

450

AWT

25-1

5=10

400

499

700

538

457.

26.

315

3743

9.2

223

IIAW

T 25

-3*

±10

=20

500

499

700

538

457.

26.

376

243

10.4

226

II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

180

Bello

ws

Flan

geW

eld

ends

Bend

ing

mom

ent

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Height

Width

Outside ∅

Thickness

Angularreactionforce

Weight *withoutinner sleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

103

)Ex

ecut

ion

ll (p

age

104)

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 180

Page 182: e BOA Expansion Joints Guide 29.3

500

AWT

25-1

4.5=

943

054

976

559

850

86.

320

5556

11.9

264

IIAW

T 25

-3*

±9=

1853

054

976

559

850

86.

310

1556

13.5

273

II

600

AWT

25-1

4.5=

949

065

189

069

561

06.

334

0095

1739

2II

AWT

25-3

9=18

560

651

890

695

610

6.3

1680

9519

.340

0II

700

AWT

25-2

5=10

570

754

1030

798

711

7.1

5205

171

2360

8II

AWT

25-3

8=16

610

754

1030

798

711

7.1

2608

171

26.1

620

II

800

AWT

25-2

4=8

570

907

1196

920

813

857

5222

923

.387

2II

AWT

25-3

7=14

630

902

1196

920

813

828

9222

855

.392

1II

900

AWT

25-3

7=14

690

1005

1316

1035

914

14.2

3935

358

69.5

1274

II

1000

AWT

25-3

6.5=

1379

011

0714

5011

5010

1616

5351

437

7115

96II

pre

ferr

ed s

erie

sB

= w

ithou

t in

ner

slee

ve*=

op

tiona

lly w

ith/w

ithou

t in

ner

slee

ve

181

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 181

Page 183: e BOA Expansion Joints Guide 29.3

BO

A T

ype

AW

TP

N40

40AW

T 40

-1B

±20

=40

244

5715

557

48.3

2.6

1.6

0.2

0.03

5.2

I

50AW

T 40

-1B

±20

=40

256

7416

874

60.3

2.9

3.3

0.2

0.07

5.9

I

65AW

T 40

-1B

±19

=38

310

9318

693

76.1

2.9

7.1

0.4

0.16

7.1

I

80AW

T 40

-1B

±17

=34

330

104

194

140

88.9

3.2

9.7

0.5

0.21

12.5

II

100

AWT

40-1

16.5

=33

368

135

250

170

114.

33.

619

1.8

0.4

21.2

II

125

AWT

40-1

15=

3036

815

728

022

013

9.7

427

2.4

0.6

26.6

II

150

AWT

40-1

13=

2649

818

530

825

016

8.3

4.5

434.

40.

949

II

200

AWT

40-2

8.5=

1755

525

839

835

021

9.1

6.3

257

122.

698

II

250

AWT

40-2

9=18

520

312

480

335

273

6.3

378

144.

311

2II

300

AWT

40-2

7.5=

1554

036

252

540

032

3.9

861

319

613

1II

350

AWT

40-1

3.6=

7.2

435

395

595

436

355.

68.

816

3426

2.8

165

IIAW

T 40

-2*

±8.

3=16

.653

039

559

543

635

5.6

8.8

680

266.

318

4II

400

AWT

40-2

3.3=

6.6

455

447

660

486

406.

410

2342

333.

721

4II

AWT

40-3

7.6=

15.2

570

447

660

486

406.

410

976

338.

223

9II

450

AWT

40-1

3=6

485

499

735

538

457.

211

3230

514.

729

4II

AWT

40-3

6.9=

13.8

600

499

735

538

457.

211

1346

5110

.332

2II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

182

Bello

ws

Flan

geW

eld

ends

Bend

ing

mom

ent

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Height

Width

Outside ∅

Thickness

Angularreactionforce

Weight *withoutinner sleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

103

)Ex

ecut

ion

ll (p

age

104)

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 182

Page 184: e BOA Expansion Joints Guide 29.3

183

500

AWT

40-2

2.7=

5.4

505

549

800

608

508

12.5

4321

676.

136

8II

AWT

40-3

6.3=

12.6

605

549

800

608

508

12.5

1800

6713

.939

6II

600

AWT

40-2

2.4=

4.8

645

651

952

705

610

1571

5012

78.

764

5II

AWT

40-3

5.5=

1170

565

195

270

561

015

2980

127

22.1

667

II

700

AWT

40-3

4.8=

9.6

765

754

1072

820

711

1846

2021

426

.798

1II

800

AWT

40-3

6.1=

12.2

925

899

1248

935

813

2067

2528

159

.414

69II

B =

with

out

inne

r sl

eeve

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

29.3_UK_Kap_06T04-AWT.qxp:Kap_6_04_AWT_Tab_UK.qxp 02.11.2009 13:46 Uhr Seite 183

Page 185: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

6

40LF

S6-5

28

= 5

618

510

957

.524

02

x M

1224

014

100

414

8.1

4.5

4.0

IILF

S6-9

49

= 9

827

814

169

,833

02

x M

1224

115

100

414

7.6

6.0

5.8

ILF

S6-2

00±

100

= 2

0050

543

957

.556

52

x M

1224

014

100

414

0.6

1.7

5.6

IILF

S6-2

50±

125

= 2

5049

841

568

.054

22

x M

1224

115

100

414

0.4

2.5

5.5

II

50LF

S6-6

32

= 6

419

511

473

.825

02

x M

12

250

1411

04

1413

.27.

14.

5II

LFS6

-90

± 4

4 =

88

278

141

82,8

330

2 x

M12

251

1511

04

1412

.57.

06.

7I

LFS6

-110

± 5

5 =

110

265

184

73.8

320

2 x

M12

250

1411

04

145.

35.

34.

7II

LFS6

-245

± 1

23 =

246

528

445

73.8

580

2 x

M12

250

1411

04

140.

92.

76.

7II

65LF

S6-5

28

= 5

620

011

593

.825

02

x M

1227

014

130

414

20.5

11.5

5.3

IILF

S6-7

37

= 7

427

814

110

5.0

330

2 x

M12

262

1513

04

1422

.213

.07.

5I

LFS6

-150

± 7

5 =

150

410

322

93.8

465

2 x

M12

270

1413

04

142.

85.

77.

1II

LFS6

-220

± 1

10 =

220

532

457

104.

058

22

x M

1226

215

130

414

0.8

6.2

7.0

II

80LF

S6-5

25

= 5

020

611

610

5.0

250

2 x

M12

300

1615

04

1828

.214

.57.

7II

LFS6

-70

± 3

7 =

74

278

141

117,

433

02

x M

1229

216

150

418

18.6

17.0

10.6

ILF

S6-1

50±

75

= 1

5044

535

210

5.0

545

2 x

M12

300

1615

04

183.

36.

810

.2II

LFS6

-200

± 1

00 =

200

502

420

116.

055

22

x M

1229

216

150

418

1.0

7.8

9.5

II

100

LFS6

-60

± 3

3 =

66

280

141

143,

233

02

x M

1231

216

170

418

41.2

24.0

12.3

ILF

S6-1

20±

60

= 1

2033

022

013

5.8

410

2 x

M16

320

1617

04

1820

.515

.310

.8II

LFS6

-150

± 7

5 =

150

561

456

136.

262

52

x M

1632

016

170

418

4.0

9.2

14.2

II

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

DNTy

pe

184

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 184

Page 186: e BOA Expansion Joints Guide 29.3

185

LFS6

-200

± 1

00 =

200

510

371

143,

255

82

x M

1231

216

170

418

6.4

13.0

15.6

II

125

LFS6

-60

± 3

0 =

60

276

138

170,

833

02

x M

1234

218

200

818

37.3

36.0

15.3

ILF

S6-1

05±

53

= 1

0634

022

715

7.5

450

2 x

M16

360

1820

08

1830

.420

.714

.3II

LFS6

-150

± 7

5 =

150

511

398

157.

958

02

x M

1636

018

200

818

7.3

13.9

18.1

IILF

S6-1

60±

80

= 1

6049

640

016

8.5

542

2 x

M12

342

1820

08

183.

417

.514

.5II

150

LFS6

-50

± 2

5 =

50

260

150

186.

235

02

x M

1638

518

225

818

80.1

38.8

14.4

IILF

S6-7

35

= 7

036

622

120

0,8

418

2 x

M12

361

1822

58

1837

.338

.017

.0I

LFS6

-90

± 4

5 =

90

340

227

185.

741

02

x M

1638

518

225

818

50.2

29.4

15.8

IILF

S6-1

75±

87

= 1

7463

151

718

6.2

700

2 x

M16

385

1822

58

187.

216

.223

.6II

200

LFS6

-50

± 2

5 =

50

336

181

256.

037

82

x M

1642

220

280

818

130.

069

.025

.8I

LFS6

-60

± 3

0 =

60

426

281

259.

548

52

x M

1643

022

280

8M

1660

.445

.625

.0II

LFS6

-100

± 5

0 =

100

516

361

259.

358

02

x M

1643

022

280

8M

1634

.937

.329

.0II

LFS6

-150

± 7

5 =

150

900

733

259.

299

52

x M

1643

022

280

8M

1625

.421

.348

.0II

250

LFS6

-40

± 2

2 =

44

356

211

311.

045

62

x M

2049

522

335

1218

133.

097

.032

.3I

LFS6

-100

± 5

1 =

102

761

610

313.

485

02x

M16

485

335

12M

1643

.746

.855

.3II

LFS6

-150

± 7

5 =

150

1012

844

313.

311

002

x M

1648

523

335

12M

1633

.528

.666

.0II

300

LFS6

-40

± 2

0 =

40

364

216

363,

646

82

x M

2056

022

395

1222

217.

013

2.0

43.5

ILF

S6-6

29

= 5

848

235

136

4.3

600

2 x

M20

580

3039

512

M20

111.

588

.253

.0II

LFS6

-100

± 5

0 =

100

827

675

363.

896

02

x M

2058

030

395

12M

2057

.849

.891

.0II

LFS6

-150

± 7

5 =

150

1131

979

363.

812

502

x M

2058

030

395

12M

2041

.636

.111

2.0

II

350

LFS6

-70

± 3

5 =

70

486

301

398.

054

23

x M

1659

222

445

1222

107.

814

5.0

68.0

ILF

S6-1

00±

50

= 1

0074

030

539

5.0

780

2 x

2461

032

445

1222

215.

091

.090

.0II

LFS6

-140

± 7

0 =

140

840

405

395.

089

02

x 24

610

3244

512

2213

3.0

80.0

96.0

IILF

S6-2

80±

140

= 2

8012

4080

539

5.0

1290

2 x

2461

032

445

1222

35.0

55.0

127.

0II

400

LFS6

-55

± 2

8 =

56

464

275

450.

057

03

x M

2066

022

495

1622

164.

139

3.0

81.0

ILF

S6-1

00±

50

= 1

0076

029

544

7.0

820

2 x

3066

037

495

1622

320.

014

7.0

110.

0II

LFS6

-130

± 6

5 =

130

860

395

447.

093

02

x 30

660

3749

516

2218

6.0

130.

011

8.0

IILF

S6-2

70±

135

= 2

7012

6079

544

7.0

1330

2 x

3066

037

495

1622

51.0

89.0

152.

0II

450

LFS6

-50

± 2

5 =

50

458

267

504.

055

43

x M

2071

522

550

1622

224.

650

5.0

86.0

ILF

S6-1

00±

50

= 1

0064

044

550

7.0

736

3 x

M20

715

2255

016

2294

.636

2.0

106.

0II

500

LFS6

-45

± 2

2,5

= 4

545

025

055

6.0

560

3 x

M24

770

2460

020

2231

0.6

725.

095

.0I

LFS6

-85

± 4

2 =

84

800

365

550.

086

02

x 30

790

4760

020

2238

9.0

213.

017

7.0

IILF

S6-1

10±

55

= 1

1090

046

555

0.0

960

2 x

3079

047

600

2022

250.

019

0.0

192.

0II

LFS6

-220

± 1

10 =

220

1300

865

550.

013

602

x 30

790

4760

020

2276

.013

2.0

250.

0II

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 185

Page 187: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

6

600

LFS6

-35

± 1

8 =

36

502

312

660.

063

03

x M

3090

130

705

2026

718.

210

74.0

145.

0I

LFS6

-70

± 3

7 =

72

840

385

651.

092

02

x 36

920

5770

520

2657

6.0

360.

023

7.0

IILF

S6-1

00±

50

= 1

0094

048

565

1.0

1020

2 x

3692

057

705

2026

376.

032

2.0

250.

0II

LFS6

-200

± 1

00 =

200

1340

885

651.

014

202

x 36

920

5770

520

2611

8.0

226.

030

4.0

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

186

pre

ferr

ed s

erie

s

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:52 Uhr Seite 186

Page 188: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

10

40LF

S16-

60±

30

= 6

022

516

157

.529

02

x M

1226

016

110

418

6.3

3.8

5.6

IILF

S16-

70±

36

= 7

227

814

170

.033

02

x M

1225

216

110

418

16.1

6.0

7.7

ILF

S16-

100

± 5

0 =

100

360

294

57.5

410

2 x

M12

260

1611

04

181.

92.

47.

3II

LFS1

6-20

100

= 2

0062

555

957

.567

52

x M

1226

016

110

418

0.5

1.4

7.8

II

50LF

S16-

45±

23

= 4

619

010

773

.724

02

x M

1227

518

125

418

28.5

7.3

7.3

IILF

S16-

70±

35

= 7

027

814

183

.833

02

x M

1226

718

125

418

22.0

7.0

10.0

ILF

S16-

150

± 7

5 =

150

500

427

73.8

565

2 x

M12

275

1812

54

181.

62.

89.

3II

LFS1

6-10

100

= 2

0059

050

682

.063

52

x M

1226

718

125

418

1.2

3.1

9.1

II

65LF

S16-

60±

32

= 6

427

814

110

7.0

330

2 x

M12

287

1814

54

1835

.014

.011

.2I

LFS1

6-85

± 4

2 =

84

270

174

93.3

320

2 x

M12

295

1814

54

1820

.98.

49.

2II

LFS1

6-15

75

= 1

5055

546

893

.762

52

x M

1229

518

145

418

25.9

4.2

11.4

IILF

S16-

170

± 8

5 =

170

544

458

104.

059

22

x M

1228

718

145

418

2.5

5.8

10.2

II

80LF

S16-

60±

32

= 6

427

814

111

9.6

330

2 x

M12

302

2016

08

1844

.017

.014

.5I

LFS1

6-10

50

= 1

0044

035

210

4.9

515

2 x

M12

310

2016

08

187.

26.

812

.9II

LFS1

6-15

75

= 1

5060

551

510

4.9

655

2 x

M12

310

2016

08

183.

45.

014

.3II

LFS1

6-17

85

= 1

7052

442

611

7.0

565

2 x

M12

302

2016

08

184.

07.

712

.8II

100

LFS1

6-50

± 2

7 =

54

282

141

145.

433

02

x M

1232

220

180

818

65.0

24.0

16.5

ILF

S16-

100

± 5

0 =

100

360

211

134.

941

02

x M

1633

020

180

818

47.2

13.5

15.5

IILF

S16-

150

± 7

5 =

150

488

388

141.

054

22

x M

1632

220

180

818

7.0

11.8

15.3

ILF

S16-

165

± 8

2 =

164

640

530

136.

073

02

x M

1633

020

180

818

7.0

8.0

18.6

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

187

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 187

Page 189: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

10

125

LFS1

0-50

± 2

7 =

54

284

140

172.

033

02

x M

1235

222

210

818

64.6

29.2

20.4

ILF

S16-

90±

44

= 8

835

022

815

7.2

450

2 x

M16

370

2221

08

1849

.720

.018

.7II

LFS1

6-15

0 ±

75

= 1

5055

442

417

0.0

598

2 x

M16

352

2221

08

1813

.015

.620

.0II

LFS1

6-16

81

= 1

6271

560

015

7.7

785

2 x

M16

370

2221

08

188.

79.

925

.9II

150

LFS1

6-45

± 2

3 =

46

340

223

185.

741

02

x M

1640

522

240

822

198.

729

.822

.3II

LFS1

0-70

± 3

4 =

68

366

221

200.

839

72

x M

1238

722

240

822

41.0

33.9

23.2

ILF

S16-

100

± 5

0 =

100

625

510

185.

970

02

x M

1640

522

240

822

23.4

16.3

30.2

IILF

S16-

150

± 7

5 =

150

695

578

185.

976

52

x M

1640

522

240

822

13.6

14.7

31.9

II

200

LFS1

0-50

± 2

4 =

48

338

181

256.

043

82

x M

1644

224

295

822

130.

012

5.0

35.5

ILF

S10-

115

± 5

8 =

116

536

366

258.

762

02

x M

1645

024

340

822

51.1

35.4

39.0

IILF

S10-

150

± 7

5 =

150

920

743

259.

299

52

x M

1645

024

340

822

24.8

20.8

53.0

II

250

LFS1

0-40

± 2

1 =

42

360

211

311.

045

62

x M

2051

526

350

1222

133.

020

4.0

45.7

ILF

S10-

95±

48

= 9

655

036

731

2.8

660

2 x

M20

535

3039

512

2285

.154

.257

.0II

LFS1

0-15

75

= 1

5010

4085

331

3.3

1220

2 x

M20

535

3039

512

2232

.828

.381

.0II

300

LFS1

0-40

± 1

9 =

38

368

216

363.

648

02

x M

2458

026

400

1222

217.

031

4.0

58,5

ILF

S10-

60±

29

= 5

854

135

536

3.5

700

2 x

M24

600

2845

012

2221

8.8

77.9

78.0

IILF

S10-

100

± 5

0 =

100

879

675

363.

810

402

x M

2460

028

450

1222

86.0

47.1

107.

0II

LFS1

0-15

75

= 1

5011

9799

336

3.8

1360

2 x

M24

600

2845

012

2240

.534

.213

0.0

II

350

LFS1

0-10

± 6

= 1

243

5-

395.

050

02

x 28

630

3750

516

2229

56.0

177.

088

.0II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

188

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 188

Page 190: e BOA Expansion Joints Guide 29.3

LFS1

0-65

± 3

3 =

66

492

295

398.

060

63

x M

2062

526

460

1622

141.

128

6.0

98.0

ILF

S10-

85±

42

= 8

484

040

395.

089

02

x 28

630

3750

516

2223

1.0

91.0

112.

0II

LFS1

0-18

92

= 1

8412

4080

539

5.0

1290

2 x

2863

037

505

1622

61.0

61.0

141.

0II

400

LFS1

0-10

± 6

= 1

246

5-

447.

053

02

x 36

720

4756

516

2641

62.0

297.

013

3.0

IILF

S10-

55±

28

= 5

647

827

245

0.8

588

3 x

M24

690

2651

516

2625

2.9

442.

010

9.0

ILF

S10-

80±

39

= 7

886

039

544

7.0

940

2 x

3672

047

565

1626

341.

015

9.0

169.

0II

LFS1

0-17

88

= 1

7612

6079

544

7.0

1340

2 x

3672

047

565

1626

88.0

108.

020

9.0

II

450

LFS1

0-50

± 2

5 =

50

476

265

505.

260

63

x M

3076

147

565

2026

346.

065

3.0

145.

0I

LFS1

0-10

50

= 1

0065

844

350

6.6

794

3 x

M30

761

3056

520

2614

7.4

473.

017

0.0

II

500

LFS1

0-10

± 4

= 8

505

-55

0.0

590

2 x

4085

057

670

2026

1318

3.0

457.

020

6.0

IILF

S10-

45±

22,

5 =

45

498

305

557.

660

84

x M

2480

530

620

2026

484.

265

5.0

170.

0I

LFS1

0-70

± 3

4 =

68

900

465

550.

098

02

x 40

850

5767

020

2643

8.0

254.

025

2.0

IILF

S10-

155

± 7

7 =

154

1300

865

550.

013

902

x 40

850

5767

020

2613

3.0

176.

031

4.0

II

600

LFS1

0-5

± 3

= 6

545

-65

1.0

660

2 x

4598

077

780

2030

2141

5.0

683.

031

6.0

IILF

S10-

35±

18

= 3

651

431

066

2.0

650

4 x

M30

924

3572

520

3011

05.6

1049

.025

5.0

ILF

S10-

60±

29

= 5

894

048

565

1.0

1040

2 x

4598

077

780

2030

658.

039

2.0

364.

0II

LFS1

0-13

65

= 1

3013

4088

565

1.0

1430

2 x

4598

077

780

2030

207.

027

5.0

398.

0II

189

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 189

Page 191: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

16

40LF

S16-

60±

30

= 6

022

516

157

.529

02

x M

1226

016

110

418

6.3

3.8

5.6

IILF

S16-

70±

36

= 7

227

814

170

.033

02

x M

1225

216

110

418

16.1

6.0

7.7

ILF

S16-

100

± 5

0 =

100

360

294

57.5

410

2 x

M12

260

1611

04

181.

92.

47.

3II

LFS1

6-22

110

= 2

2057

655

969

.067

52

x M

1225

216

110

418

0.9

2.3

7.5

II

50LF

S16-

45±

23

= 4

619

010

773

.724

02

x M

1227

518

125

418

28.5

7.3

7.3

IILF

S16-

70±

35

= 7

027

814

183

.833

02

x M

1226

718

125

418

22.0

7.0

10.0

ILF

S16-

150

± 7

5 =

150

500

427

73.8

565

2 x

M12

275

1812

44

181.

62.

89.

3II

LFS1

6-20

100

= 2

0059

050

682

.063

52

x M

1226

718

125

418

1.2

3.1

9.1

II

65LF

S16-

60±

32

= 6

427

814

110

7.0

330

2 x

M12

287

1814

54

1835

.014

.011

.2I

LFS1

6-85

± 4

2 =

84

270

174

93.3

320

2 x

M12

295

1814

54

1820

.98.

49.

2II

LFS1

6-15

75

= 1

5055

546

893

.762

52

x M

1229

518

145

418

25.9

4.2

11.4

IILF

S16-

170

± 8

5 =

170

544

458

104.

059

22

x M

1228

718

145

418

2.5

5.8

10.2

II

80LF

S16-

60±

32

= 6

427

814

111

9.6

330

2 x

M12

302

2016

08

1844

.017

.014

.5I

LFS1

6-10

50

= 1

0044

035

210

4.9

515

2 x

M12

310

2016

08

187.

26.

812

.9II

LFS1

6-15

75

= 1

5060

551

510

4.9

655

2 x

M12

310

2016

08

183.

45.

014

.3II

LFS1

6-17

85

= 1

7052

442

611

7.0

565

2 x

M12

302

2016

08

184.

07.

712

.8II

100

LFS1

6-50

± 2

7 =

54

282

141

145.

533

02

x M

1632

220

180

818

65.0

24.0

16.5

ILF

S16-

70±

35

= 7

032

021

113

6.0

410

2 x

M16

330

2018

08

1843

.315

.813

.2II

LFS1

6-15

75

= 1

5048

838

814

1.0

542

2 x

M16

322

2018

08

187.

011

.815

.3I

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

190

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 190

Page 192: e BOA Expansion Joints Guide 29.3

LFS1

6-16

82

= 1

6464

053

013

6.0

730

2 x

M16

330

2018

08

187.

08.

018

.6II

125

LFS1

6-50

± 2

6 =

52

292

144

173.

233

02

x M

1635

222

210

818

95.0

36.0

22.0

ILF

S16-

90±

44

= 8

835

022

815

7.2

450

2 x

M16

370

2221

08

1849

.720

.018

.7II

LFS1

6-15

75

= 1

5055

442

417

0.0

598

2 x

M16

352

2221

08

1813

.015

.620

.0II

LFS1

6-16

81

= 1

6271

560

015

7.7

785

2 x

M16

370

2221

08

188.

79.

925

.9II

150

LFS1

6-45

± 2

3 =

46

340

223

185.

741

02

x M

1640

522

240

822

198.

729

.822

.3II

LFS

16-6

31

= 6

236

220

920

3.0

438

2 x

M16

387

2224

08

2271

.039

.025

.5I

LFS1

6-10

50

= 1

0062

551

018

5.9

700

2 x

M16

405

2224

08

2223

.416

.330

.2II

LFS1

6-15

75

= 1

5069

557

818

5.9

765

2 x

M16

405

2224

08

13.6

14.7

31.9

II

200

LFS1

6-40

± 2

3 =

46

368

217

257.

846

82

x M

2047

024

295

1222

183.

066

.040

,5I

LFS1

6-65

± 3

2 =

64

440

275

258.

760

02

x M

2048

032

295

1222

120.

945

.246

.0II

LFS1

6-10

50

= 1

0070

651

425

9.2

850

2 x

M20

480

3229

512

2250

.627

.956

.0II

LFS1

6-15

75

= 1

5094

575

325

9.2

1100

2 x

M20

480

3229

512

2224

.120

.665

.0II

250

LFS1

6-40

± 2

1 =

42

396

224

315.

253

62

x M

3055

528

355

1226

302.

021

5.0

67.0

ILF

S16-

100

± 5

0 =

100

795

593

313.

392

02

x M

2455

038

355

1226

66.6

37.6

84.0

IILF

S16-

150

± 7

5 =

150

1072

868

313.

312

002

x M

2455

038

355

1226

31.7

27.6

97.0

II

300

LFS1

6-35

± 1

8 =

36

392

217

367.

253

62

x M

3060

532

410

1226

413.

027

8.0

69.5

ILF

S16-

60±

30

= 6

055

935

836

2.6

700

2 x

M30

645

4441

012

2632

6.5

74.9

115.

0II

LFS1

6-10

50

= 1

0090

468

836

3.8

1100

2 x

M30

645

4441

012

2682

.946

.013

6.0

IILF

S16-

150

± 7

5 =

150

1209

993

363.

613

502

x M

3064

544

410

1226

40.5

34.0

160.

0II

350

LFS1

6-10

± 5

= 1

043

5-

395.

052

02

x 36

675

4847

016

2651

99.0

243.

012

4.0

IILF

S16-

40±

21

= 4

274

030

539

4.0

820

2 x

3667

548

470

1626

884.

014

4.0

150.

0II

LFS1

6-65

± 3

3 =

66

512

330

401.

663

24

x M

2464

230

470

1626

184.

131

8.0

123.

0I

LFS1

6-13

68

= 1

3612

4080

539

4.0

1320

2 x

3667

548

470

1626

143.

085

.019

3.0

II

400

LFS1

6-10

± 4

= 8

465

-44

7.0

550

2 x

4275

057

525

1630

7331

.033

7.0

172.

0II

LFS1

6-40

± 2

0 =

40

760

325

446.

084

62

x 42

750

5752

516

3011

05.0

204.

020

4.0

IILF

S16-

60±

30

= 6

050

831

645

4.4

618

4 x

M24

715

3252

516

3029

6.5

415.

016

4.0

ILF

S16-

120

± 6

0 =

120

1260

835

446.

094

02

x 42

750

5752

516

3019

2.0

123.

025

7.0

II

450

LFS1

6-55

± 2

7,5

= 5

551

632

050

8.2

650

4 x

M30

784

3258

520

3046

0.5

602.

019

9.0

ILF

S16-

100

± 5

0 =

100

710

518

508.

284

04

x M

3078

432

585

2030

144.

843

8.0

239.

0II

500

LFS1

6-10

± 5

= 1

053

0-

548.

063

02

x 52

940

6865

020

3312

110.

054

8.0

317.

0II

LFS1

6-40

± 2

0 =

40

490

255

561.

062

04

x M

3087

035

650

2033

1145

.777

4.0

252.

0I

LFS1

6-70

± 3

6 =

72

960

490

548.

010

702

x 52

940

6865

020

3344

8.0

302.

038

3.0

IILF

S16-

160

± 8

0 =

160

1360

890

548.

013

602

x 52

940

6865

020

3314

3.0

214.

045

1.0

II

191

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 191

Page 193: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

16

600

LFS1

6-10

± 4

= 8

570

-65

0.0

700

2 x

6010

8087

770

2036

1973

6.0

817.

049

8.0

IILF

S16-

30±

16,

5 =

33

500

245

665.

064

84

x M

3610

2045

770

2036

2079

.212

30.0

384.

0I

LFS1

6-65

± 3

4 =

64

1000

500

650.

011

302

x 60

1080

8777

020

3670

4.0

465.

056

0.0

IILF

S16-

150

± 7

6 =

152

1400

900

650.

015

302

x 60

1080

8777

020

3622

9.0

333.

062

5.0

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

192

pre

ferr

ed s

erie

s

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 192

Page 194: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

25

40LF

S25-

50±

25

= 5

020

713

557

.027

52

x M

1226

018

110

418

13.3

3.9

6.6

IILF

S25-

100

± 5

0 =

100

368

239

69.0

418

2 x

M12

252

1811

04

188.

03.

48.

5I

LFS2

5-17

85

= 1

7048

040

957

.054

52

x M

1226

018

110

418

1.5

1.7

8.0

IILF

S25-

180

± 9

0 =

180

562

483

69.0

605

2 x

M12

252

1811

04

182.

02.

28.

0II

50LF

S25-

50±

24

= 4

819

010

573

.234

02

x M

1227

520

125

418

35.6

7.1

8.4

IILF

S25-

90±

45

= 9

026

017

573

.231

02

x M

1227

520

125

418

14.4

5.2

8.7

IILF

S25-

90±

46

= 9

236

623

683

.041

82

x M

1226

120

125

418

11.0

5.0

10.7

ILF

S25-

180

± 9

0 =

180

548

458

82.5

592

2 x

M12

261

2012

54

182.

03.

410

.0II

65LF

S25-

50±

25

= 5

027

017

193

.532

02

x M

1229

522

145

818

43.1

8.6

10.6

IILF

S25-

90±

46

= 9

238

224

410

6.0

434

2 x

M12

281

2214

58

1818

.08.

114

.0I

LFS2

5-15

75

= 1

5058

547

993

.565

52

x M

1229

522

145

818

4.9

4.0

13.4

IILF

S25-

170

± 8

5 =

170

564

464

105.

060

52

x M

1228

122

145

818

4.0

5.5

12.5

II

80LF

S25-

45±

23

= 4

628

017

410

4.7

320

2 x

M12

310

2416

08

1858

.710

.712

.9II

LFS2

5-80

± 4

0 =

80

362

232

118.

539

72

x M

1229

624

160

818

20.0

11.1

16.0

ILF

S25-

150

± 7

5 =

150

640

529

104.

770

02

x M

1231

024

160

818

5.8

4.7

16.8

IILF

S25-

170

± 8

5 =

170

552

441

118.

559

22

x M

1229

624

160

818

6.0

7.3

15.3

II

100

LFS2

5-55

± 2

8 =

56

330

212

135.

841

02

x M

1634

524

190

822

81.7

15.6

17.5

IILF

S25-

70±

35

= 7

036

022

114

5.0

438

2 x

M16

337

2419

08

2240

.034

.022

.0I

LFS2

5-95

± 4

8 =

96

370

232

134.

945

02

x M

1634

524

190

822

46.8

13.5

19.4

ILF

S25-

150

± 7

5 =

150

670

541

135.

873

02

x M

1634

524

190

822

11.4

7.7

23.1

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

193

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 193

Page 195: e BOA Expansion Joints Guide 29.3

194

BO

A T

ype

LFS

PN

25

125

LFS2

5-50

± 2

5 =

50

305

164

156.

838

02

x M

1639

026

220

826

191.

823

.224

.9II

LFS2

5-70

± 3

5 =

70

382

230

174.

048

12

x M

2039

026

220

826

59.0

46.5

28.0

ILF

S25-

85±

42

= 8

437

523

615

6.6

450

2 x

M16

390

2622

08

2670

.918

.625

.7II

LFS2

5-15

75

= 1

5074

361

015

7.5

825

2 x

M16

390

2622

08

2614

.39.

631

.9II

150

LFS2

5-55

± 2

8 =

56

392

218

205.

049

12

x M

2043

030

250

826

110.

087

.045

.5I

LFS2

5-10

50¨

= 1

0066

052

218

5.7

730

2 x

M16

430

2825

08

2632

.615

.638

.7II

LFS2

5-15

75

= 1

5061

861

819

7.0

716

2 x

M16

430

3025

08

2623

.055

.242

.0II

LFS2

5-16

80

= 1

6088

675

018

5.7

960

2 x

M16

430

2825

08

2616

.011

.643

.8II

200

LFS2

5-40

± 2

2 =

44

372

217

258.

052

02

x M

3051

030

310

1226

183.

015

0.0

46.0

ILF

S25-

50±

25

= 5

045

027

225

8.0

580

2 x

M24

515

3831

012

2633

6.1

43.9

65.0

IILF

S25-

100

± 5

0 =

100

592

437

258.

073

62

x M

3051

030

310

1226

44.0

94.0

58.0

IILF

S25-

150

± 7

5 =

150

915

737

258.

010

402

x M

2451

538

310

1226

50.8

20.9

85.0

II

250

LFS2

5-40

± 2

0 =

40

394

224

315.

055

02

x M

3659

536

370

1230

302.

024

7.0

64,5

ILF

S25-

50±

25

= 5

053

931

331

2.0

700

2 x

M30

610

4437

012

3045

2.2

55.7

103.

0II

LFS2

5-10

50

= 1

0081

058

431

2.0

950

2 x

M30

610

4437

012

3013

8.4

36.2

117.

0II

LFS2

5-15

75

= 1

5010

7985

331

2.0

1260

2 x

M30

610

4437

012

3066

.326

.913

2.0

II

300

LFS2

5-35

± 1

8 =

36

394

217

368.

053

64

x M

3063

034

430

1630

452.

029

7.0

81.0

ILF

S25-

50±

25

= 5

056

835

836

2.5

750

2 x

M36

690

5443

016

3058

5.2

74.2

154.

0II

LFS2

5-10

50

= 1

0088

867

836

2.5

1050

2 x

M36

690

5443

016

3017

2.4

46.2

184.

0II

LFS2

5-15

75

= 1

5012

0399

336

2.5

1400

2 x

M36

690

5443

016

3081

.933

.720

2.0

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

peBe

llow

sTi

e ro

dsFl

ange

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 194

Page 196: e BOA Expansion Joints Guide 29.3

195

pre

ferr

ed s

erie

s

350

LFS2

5-10

± 4

= 8

435

-39

4.0

540

2 x

4575

058

490

1633

1212

2.0

302.

018

9.0

IILF

S25-

50±

25

= 5

049

432

240

2.4

630

4 x

M30

700

3849

016

3328

6.0

385.

016

5.0

IILF

S25-

60±

30

= 6

084

040

539

4.0

930

2 x

4575

058

490

1633

553.

015

5.0

220.

0II

LFS2

5-13

68

= 1

3612

4080

539

4.0

1400

2 x

4575

058

490

1633

147.

097

.025

5.0

II

400

LFS2

5-5

± 3

= 6

465

-44

6.0

570

2 x

5284

068

550

1626

1736

6.0

407.

025

8.0

IILF

S25-

40±

19

= 3

876

028

544

6.0

870

2 x

5284

068

550

1636

1383

.024

9.0

291.

0II

LFS2

5-50

± 2

5 =

50

534

362

453.

467

04

x M

3077

540

550

1636

321.

546

0.0

217.

0II

LFS2

5-12

60

= 1

2012

6079

544

6.0

1370

2 x

5284

068

550

1636

212.

015

1.0

354.

0II

450

LFS2

5-50

± 2

5 =

50

512

378

507.

466

04

x M

3683

540

600

2036

395.

069

2.0

255.

0II

LFS2

5-10

50

= 1

0083

670

450

7.4

994

4 x

M36

835

4060

020

3611

6.0

424.

030

5.0

II

500

LFS2

5-10

± 5

= 1

053

0-

548.

066

02

x 60

970

8866

020

3612

110.

061

4.0

442.

0II

LFS2

5-35

± 1

7 =

34

800

315

549.

093

02

x 60

970

8866

020

3621

19.0

407.

045

8.0

IILF

S25-

50±

25

= 5

056

638

456

0.2

738

4 x

M42

928

4466

020

3651

9.0

875.

031

2.0

IILF

S25-

105

± 5

2 =

104

1300

815

549.

014

302

x 60

970

8866

020

3635

7.0

253.

054

9.0

II

600

LFS2

5-5

± 2

= 4

545

-65

1.0

690

2 x

9011

3010

777

020

3951

563.

011

23.0

630.

0II

LFS2

5-30

± 1

5 =

30

840

425

651.

010

142

x 90

1130

107

770

2039

3278

.072

2.0

689.

0II

LFS2

5-50

± 2

5 =

50

616

407

666.

081

64

x M

4810

7055

770

2039

697.

013

50.0

506.

0II

LFS2

5-90

± 4

4 =

88

1340

825

651.

015

142

x 90

1130

107

770

2039

570.

045

3.0

788.

0II

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 195

Page 197: e BOA Expansion Joints Guide 29.3

BO

A T

ype

LFS

PN

40

40LF

S40-

50±

25

= 5

027

521

557

.034

52

x M

1226

018

110

418

8.1

2.9

7.0

IILF

S40-

100

± 5

0 =

100

410

350

57.0

465

2 x

M12

260

1811

04

183.

12.

07.

6II

LFS4

0-15

75

= 1

5057

551

557

.065

52

x M

1226

018

110

418

1.4

1.4

8.4

II

50LF

S40-

50±

28

= 5

629

021

973

.234

52

x M

1227

520

125

418

15.8

4.7

9.0

IILF

S40-

100

± 5

0 =

100

440

369

73.2

515

2 x

M12

275

2012

54

185.

73.

110

.0II

LFS4

0-15

75

= 1

5061

053

973

.267

52

x M

1227

520

125

418

2.7

2.2

11.0

II

65LF

S40-

50±

26

= 5

231

121

892

.736

52

x M

1229

522

145

818

32.5

7.1

11.6

IILF

S40-

100

± 5

0 =

100

485

393

92.7

545

2 x

M12

295

2214

58

1810

.34.

612

.9II

LFS4

0-15

75

= 1

5067

057

892

.772

52

x M

1229

522

145

818

4.8

3.3

14.2

II

80LF

S40-

50±

25

= 5

033

523

810

3.9

410

2 x

M12

310

2416

08

1838

.48.

614

.9II

LFS4

0-10

50

= 1

0054

544

810

3.9

620

2 x

M12

310

2416

08

1811

.45.

317

.0II

LFS4

0-15

75

= 1

5074

564

810

3.9

825

2 x

M12

310

2416

08

185.

43.

919

.1II

100

LFS4

0-50

± 2

5 =

50

360

242

134.

942

52

x M

1634

530

190

822

68.2

14.3

23.7

IILF

S40-

100

± 5

0 =

100

560

442

134.

962

02

x M

1634

530

190

822

21.3

8.9

26.3

IILF

S40-

150

± 7

5 =

150

750

632

134.

982

52

x M

1634

530

190

822

10.4

6.6

29.0

II

125

LFS4

0-50

± 2

5 =

50

400

272

156.

655

02

x M

2039

035

220

826

85.3

18.3

34.0

IILF

S40-

100

± 5

0 =

100

630

502

156.

673

02

x M

2039

035

220

826

25.4

11.4

37.2

IILF

S40-

150

± 7

5 =

150

860

732

156.

696

02

x M

2039

035

220

826

12.2

8.2

43.7

II

TLBm

daL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

196

Bello

ws

Tie

rods

Flan

geDi

spla

cem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-cen -ter distance ofthe bellows

Outside ∅

Length

Number xthread

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Spring rate±30%

Frictional force

Weight

Execution

Number ofholes

Exec

utio

n l (

page

105

)Ex

ecut

ion

ll (p

age

106)

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 196

Page 198: e BOA Expansion Joints Guide 29.3

150

LFS4

0-50

± 2

5 =

50

462

319

184.

858

02

x M

2443

040

250

826

103.

123

.047

.9II

LFS4

0-10

50

= 1

0066

551

418

4.8

810

2 x

M24

430

4025

08

2634

.215

.657

.7II

LFS4

0-15

75

= 1

5089

074

018

4.8

1040

2 x

M24

430

4025

08

2616

.411

.559

.6II

200

LFS4

0-50

± 2

5 =

50

511

320

257.

465

02

x M

3056

043

320

1230

425.

938

.384

.0II

LFS4

0-10

50

= 1

0079

060

025

7.4

930

2 x

M30

560

4332

012

3012

9.4

24.2

97.0

IILF

S40-

150

± 7

5 =

150

1066

876

257.

412

002

x M

3056

043

320

1230

62.0

17.7

110.

0II

250

LFS4

0-50

± 2

5 =

50

583

368

311.

575

02

x M

3666

054

385

1233

578.

551

.714

9.0

IILF

S40-

100

± 5

0 =

100

913

698

311.

511

002

x M

3666

054

385

1233

169.

931

.917

4.0

IILF

S40-

150

± 7

5 =

150

1233

1018

311.

514

002

x M

3666

054

385

1233

81.3

23.3

196.

0II

300

LFS4

0-50

± 2

5 =

50

671

428

362.

090

02

x M

4276

068

450

1633

724.

661

.122

5.0

IILF

S40-

100

± 5

0 =

100

1051

808

362.

013

002

x M

4276

068

450

1633

212.

838

.325

8.0

IILF

S40-

150

± 7

5 =

150

1426

1183

362.

016

502

x M

4276

068

450

1633

100.

827

.929

1.0

II

350

LFS4

0-50

± 2

5 =

50

604

423

403.

275

24

x M

3674

846

510

1636

395.

035

7.0

228.

0II

LFS4

0-10

50

= 1

0096

478

340

3.2

1112

4 x

M36

748

4651

016

3611

6.0

224.

026

7.0

II

400

LFS4

0-50

± 2

5 =

50

668

478

457.

284

04

x M

4285

650

585

1639

452.

047

8.0

332.

0II

LFS4

0-10

50

= 1

0010

7888

845

7.2

1250

4 x

M42

856

5058

516

3913

1.0

300.

039

3.0

II

450

LFS4

0-50

± 2

5 =

50

692

500

511.

686

44

x M

4288

250

610

2039

533.

058

5.0

343.

0II

LFS4

0-10

50

= 1

0011

1292

051

1.6

1284

4 x

M42

882

5061

020

3915

8.0

365.

041

9.0

II

500

LFS4

0-50

± 2

5 =

50

762

564

563.

296

24

x M

4897

558

670

2042

569.

076

5.0

448.

0II

LFS4

0-10

50

= 1

0012

6210

6456

3.2

1462

4 x

M48

975

5867

020

4216

1.0

462.

056

3.0

II

197

29.3_UK_Kap_06T05-LFS.qxp:Kap_6_05_LFS_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 197

Page 199: e BOA Expansion Joints Guide 29.3

198

40LF

B6-1

00±

48

= 9

625

817

545

68.0

6830

52

x M

1224

115

100

414

2.4

4.9

5.0

ILF

B6-2

50±

125

= 2

5049

841

545

68.0

6854

22

x M

1224

115

100

414

0.4

2.5

5.5

I

50LF

B6-1

00±

48

= 9

627

019

141

80.0

8131

42

x M

1225

115

110

414

2.7

7.0

6.0

ILF

B6-2

40±

120

= 2

4052

044

141

80.0

8156

52

x M

1225

115

110

414

0.5

3.5

6.5

I

65LF

B6-1

00±

48

= 9

629

221

737

104.

010

534

02

x M

1226

215

130

414

3.4

12.6

6.5

ILF

B6-2

20±

110

= 2

2053

245

737

104.

010

558

22

x M

1226

215

130

414

0.8

6.2

7.0

I

80LF

B6-1

00±

46

= 9

229

521

340

116.

012

034

02

x M

1229

216

150

418

3.8

15.6

9.0

ILF

B6-2

00±

100

= 2

0050

242

040

116.

012

055

22

x M

1229

216

150

418

1.0

7.8

9.5

I

100

LFB6

-50

± 2

4 =

48

216

122

5213

8.0

142

260

2 x

M12

312

1617

04

1821

.022

.010

.0I

LFB6

-100

± 4

8 =

96

316

222

5213

8.0

142

360

2 x

M12

312

1617

04

187.

015

.010

.5I

LFB6

-170

± 8

5 =

170

466

372

5213

8.0

142

512

2 x

M12

312

1617

04

182.

512

.411

.0I

125

LFB6

-50

± 2

5 =

50

246

150

5016

8.5

174

286

2 x

M12

342

1820

08

1823

.035

.013

.5I

LFB6

-100

± 4

8 =

96

355

260

5016

8.5

174

397

2 x

M12

342

1820

08

188.

027

.014

.0I

LFB6

-160

± 8

0 =

160

496

400

5016

8.5

174

542

2 x

M12

342

1820

08

183.

417

.514

.5I

150

LFB6

-50

± 2

8 =

56

286

145

6519

5.0

196

330

2 x

M12

361

1822

58

1839

.044

.815

.0I

LFB6

-100

± 4

8 =

96

381

240

6519

5.0

196

428

2 x

M12

361

1822

58

1815

.032

.315

.5I

LFB6

-150

± 7

5 =

150

496

355

6519

5.0

196

542

2 x

M12

361

1822

58

187.

025

.516

.0I

200

LFB6

-45

± 2

3 =

46

310

163

6825

2.0

254

355

2 x

M16

422

2028

08

1867

.071

.022

.5I

BO

A T

ype

LFB

PN

6

TLBm

AIda

gL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

peBe

llow

sTi

e ro

dsFl

ange

Disp

lacem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Raised face ∅

Number xthread

Length

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Frictionalforce

Weight

Execution

Spring rate�30%

Number ofholes

Exec

utio

n l (

page

107

)Ex

ecut

ion

ll (p

age

107)

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 198

Page 200: e BOA Expansion Joints Guide 29.3

199

LFB6

-90

± 4

5 =

90

450

303

6825

2.0

254

490

2 x

M16

422

2028

08

1821

.049

.023

.5I

LFB6

-150

± 7

5 =

150

634

488

6825

2.0

254

676

2 x

M16

422

2028

08

188.

035

.032

.0II

250

LFB6

-50

± 2

5 =

50

354

190

8030

6.5

308

450

2 x

M20

495

2233

512

1810

5.0

174.

033

.0I

LFB6

-85

± 4

2 =

84

464

300

8030

6.5

308

560

2 x

M20

495

2233

512

1845

.013

3.0

34.5

ILF

B6-1

50±

75

= 1

5066

450

080

306.

530

876

02

x M

2049

522

335

1218

17.0

93.0

47.0

II

300

LFB6

-45

± 2

2 =

44

371

192

8735

8.5

361

468

2 x

M20

560

2239

512

2215

1.0

238.

042

.0I

LFB6

-65

± 3

3 =

66

446

267

8735

8.5

361

540

2 x

M20

560

2239

512

2278

.019

8.0

43.5

ILF

B6-1

50±

75

= 1

5073

655

787

358.

536

183

02

x M

2056

022

395

1222

19.0

120.

062

.0II

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 199

Page 201: e BOA Expansion Joints Guide 29.3

200

40LF

B16-

100

± 5

0 =

100

316

232

4269

.068

360

2 x

M12

252

1611

04

185.

04.

26.

9I

LFB1

6-22

110

= 2

2057

649

242

69.0

6861

62

x M

1225

216

110

418

0.9

2.3

7.5

I

50LF

B16-

100

± 5

0 =

100

344

261

3682

.081

397

2 x

M12

267

1812

54

184.

56.

08.

6I

LFB1

6-20

100

= 2

0059

050

636

82.0

8163

52

x M

1226

718

125

418

1.2

3.1

9.1

I

65LF

B16-

50±

25

= 5

023

414

838

104.

010

528

02

x M

1228

718

145

418

21.0

16.1

9.5

ILF

B16-

100

± 5

0 =

100

360

276

3810

4.0

105

412

2 x

M12

287

1814

54

187.

09.

710

.0I

LFB1

6-17

85

= 1

7054

445

838

104.

010

559

22

x M

1228

718

145

418

2.5

5.8

10.2

I

80LF

B16-

50±

24

= 4

823

413

646

117.

012

028

02

x M

1230

220

160

818

33.0

20.8

12.0

ILF

B16-

100

± 5

0 =

100

364

266

4611

7.5

120

412

2 x

M12

302

2016

08

189.

011

.012

.5I

LFB1

6-17

85

= 1

7052

442

646

117.

512

056

52

x M

1230

220

160

818

4.0

7.7

12.8

I

100

LFB1

6-50

± 2

8 =

56

260

156

4614

1.0

144

315

2 x

M16

322

2018

08

1839

.027

.614

.9I

LFB1

6-10

50

= 1

0036

826

848

141.

014

442

02

x M

1632

220

180

818

14.0

17.9

15.1

ILF

B16-

150

± 7

5 =

150

488

388

4814

1.0

142

542

2 x

M16

322

2018

08

187.

011

.815

.3I

125

LFB1

6-50

± 2

5 =

50

294

164

7417

0.0

174

355

2 x

M16

352

2221

08

1880

.028

.018

.5I

LFB1

6-10

50

= 1

0043

430

474

170.

017

448

42

x M

1635

222

210

818

25.0

22.5

18.9

ILF

B16-

150

± 7

5 =

150

554

424

7417

0.0

174

598

2 x

M16

352

2221

08

1813

.015

.620

.0II

150

LFB1

6-50

± 2

5 =

50

306

173

7319

5.0

196

355

2 x

M16

387

2224

08

2298

.046

.223

.0I

LFB1

6-10

50

= 1

0045

632

373

195.

019

649

82

x M

1638

722

240

822

30.0

34.0

23.5

ILF

B16-

150

± 7

5 =

150

606

473

7319

5.0

196

652

2 x

M16

387

2224

08

2215

.018

.028

.0II

BO

A T

ype

LFB

PN

10

TLBm

AIda

gL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

peBe

llow

sTi

e ro

dsFl

ange

Disp

lacem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Raised face ∅

Number xthread

Length

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Frictionalforce

Weight

Execution

Spring rate�30%

Number ofholes

Exec

utio

n l (

page

107

)Ex

ecut

ion

ll (p

age

107)

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 200

Page 202: e BOA Expansion Joints Guide 29.3

201

200

LFB1

0-45

± 2

3 =

46

310

177

7225

1.5

254

355

2 x

M16

442

2429

58

2298

.072

.030

.0I

LFB1

0-80

± 4

0 =

80

414

282

7225

1.5

254

458

2 x

M16

442

2429

58

2241

.054

.031

.0I

LFB1

0-15

75

= 1

5065

452

272

251.

525

469

62

x M

1644

224

295

822

13.0

34.0

41.0

II

250

LFB1

0-45

± 2

3 =

46

354

182

8430

6.0

308

450

2 x

M20

515

2635

012

2216

3.0

207.

042

.0I

LFB1

0-80

± 4

0 =

80

466

294

8430

6.0

308

554

2 x

M20

515

2635

012

2267

.015

8.0

43.0

ILF

B10-

150

± 7

5 =

150

708

534

8430

6.0

308

806

2 x

M20

515

2635

012

2221

.010

8.0

54.0

II

300

LFB1

0-45

± 2

2 =

44

378

211

7136

0.0

361

490

2 x

M24

580

2640

012

2219

6.0

309.

051

.0I

LFB1

0-70

± 3

5 =

70

490

321

7136

0.0

361

606

2 x

M24

580

2640

012

2288

.023

9.0

55.0

ILF

B10-

150

± 7

5 =

150

780

591

9135

8.0

361

895

2 x

M24

580

2640

012

2225

.015

5.0

67.0

II

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 201

Page 203: e BOA Expansion Joints Guide 29.3

202

40LF

B16-

100

± 5

0 =

100

316

232

4269

.068

360

2 x

M12

252

1611

04

185.

04.

26.

9I

LFB1

6-22

110

= 2

2057

649

242

69.0

6861

62

x M

1225

216

110

418

0.9

2.3

7.5

I

50LF

B16-

100

± 5

0 =

100

344

261

3682

.081

397

2 x

M12

267

1812

54

184.

56.

08.

6I

LFB1

6-20

100

= 2

0059

050

636

82.0

8163

52

x M

1226

718

125

418

1.2

3.1

9.1

I

65LF

B16-

50±

25

= 5

023

414

838

104.

010

528

02

x M

1228

718

145

418

21.0

16.1

9.5

ILF

B16-

100

± 5

0 =

100

360

276

3810

4.0

105

412

2 x

M12

287

1814

54

187.

09.

710

.0I

LFB1

6-17

85

= 1

7054

445

838

104.

010

559

22

x M

1228

718

145

418

2.5

5.8

10.2

I

80LF

B16-

50±

24

= 4

823

413

646

117.

012

028

02

x M

1230

220

160

818

33.0

20.8

12.0

ILF

B16-

100

± 5

0 =

100

364

266

4611

7.5

120

412

2 x

M12

302

2016

08

189.

011

.012

.5I

LFB1

6-17

85

= 1

7052

442

646

117.

512

056

52

x M

1230

220

160

818

4.0

7.7

12.8

I

100

LFB1

6-50

± 2

8 =

56

260

156

4614

1.0

144

315

2 x

M16

322

2018

08

1839

.027

.614

.9I

LFB1

6-10

50

= 1

0036

826

848

141.

014

442

02

x M

1632

220

180

818

14.0

17.9

15.1

ILF

B16-

150

± 7

5 =

150

488

388

4814

1.0

142

542

2 x

M16

322

2018

08

187.

011

.815

.3I

125

LFB1

6-50

± 2

5 =

50

294

164

7417

0.0

174

355

2 x

M16

352

2221

08

1880

.028

.018

.5I

LFB1

6-10

50

= 1

0043

430

474

170.

017

448

42

x M

1635

222

210

818

25.0

22.5

18.9

ILF

B16-

150

± 7

5 =

150

554

424

7417

0.0

174

598

2 x

M16

352

2221

08

1813

.015

.620

.0II

150

LFB1

6-50

± 2

5 =

50

306

173

7319

5.0

196

355

2 x

M16

387

2224

08

2298

.046

.223

.0I

LFB1

6-10

50

= 1

0045

632

373

195.

019

649

82

x M

1638

722

240

822

30.0

34.0

23.5

ILF

B16-

150

± 7

5 =

150

606

473

7319

5.0

196

652

2 x

M16

387

2224

08

2215

.018

.028

.0II

BO

A T

ype

LFB

PN

16

TLBm

AIda

gL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

peBe

llow

sTi

e ro

dsFl

ange

Disp

lacem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Raised face ∅

Number xthread

Length

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Frictionalforce

Weight

Execution

Spring rate�30%

Number ofholes

Exec

utio

n l (

page

107

)Ex

ecut

ion

ll (p

age

107)

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 202

Page 204: e BOA Expansion Joints Guide 29.3

203

200

LFB1

6-50

± 2

5 =

50

326

180

8025

3.0

254

426

2 x

M20

470

2429

512

2216

0.0

122.

035

.0I

LFB1

6-80

± 4

0 =

80

460

333

6325

3.0

254

560

2 x

M20

470

2429

512

2264

.086

.036

.0I

LFB1

6-15

75

= 1

5064

450

080

253.

025

474

62

x M

2047

024

295

1222

23.0

62.0

47.0

II

250

LFB1

6-45

± 2

2 =

44

332

191

7130

9.5

308

474

2 x

M30

555

2835

512

2626

1.0

257.

057

.0I

LFB1

6-65

± 3

3 =

66

412

271

7130

9.5

308

550

2 x

M30

555

2835

512

2613

5.0

207.

059

.0I

LFB1

6-15

75

= 1

5068

452

292

308.

030

881

32

x M

3055

528

355

1226

34.0

125.

073

.0II

300

LFB1

6-50

± 2

5 =

50

408

250

8036

1.0

361

500

2 x

M30

605

3241

012

2629

0.0

286.

069

.0I

LFB1

6-10

50

= 1

0057

239

210

236

1.0

361

705

2 x

M30

605

3241

012

2696

.020

4.0

83.0

IILF

B16-

150

± 7

5 =

150

752

572

102

361.

036

190

42

x M

3060

532

410

1226

46.0

155.

085

.0II

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 203

Page 205: e BOA Expansion Joints Guide 29.3

204

40LF

B25-

50±

25

= 5

023

215

333

69.0

6828

02

x M

1225

218

110

418

135.

47.

0I

LFB2

5-10

50

= 1

0036

228

333

69.0

6841

22

x M

1225

218

110

418

43.

47.

6I

LFB2

5-18

90

= 1

8056

248

333

69.0

6860

52

x M

1225

218

110

418

22.

28.

0I

50LF

B25-

50±

24

= 4

823

314

338

82.5

8128

02

x M

1226

120

125

418

195.

58.

8I

LFB2

5-10

48

= 9

634

825

838

82.5

8139

72

x M

1226

120

125

418

74.

89.

2I

LFB2

5-18

90

= 1

8054

845

838

82.5

8159

22

x M

1226

120

125

418

23.

410

.0I

65LF

B25-

50±

24

= 4

824

014

044

105.

010

528

02

x M

1228

122

145

818

397.

711

.1I

LFB2

5-10

48

= 9

637

527

444

105.

010

542

82

x M

1228

122

145

818

126.

811

.8I

LFB2

5-17

85

= 1

7056

446

444

105.

010

560

52

x M

1228

122

145

818

45.

512

.5I

80LF

B25-

50±

24

= 4

825

214

151

118.

512

030

52

x M

1229

624

160

818

4810

.013

.9I

LFB2

5-10

50

= 1

0038

227

151

118.

512

042

82

x M

1229

624

160

818

148.

315

.0I

LFB2

5-17

85

= 1

7055

244

151

118.

512

059

22

x M

1229

624

160

818

67.

315

.3I

100

LFB2

5-50

± 2

4 =

48

281

173

4814

1.0

142

330

2 x

M16

337

2419

08

2256

15.0

17.8

ILF

B25-

100

± 4

8 =

96

426

318

4814

1.0

142

484

2 x

M16

337

2419

08

2219

11.6

18.2

ILF

B25-

140

± 7

0 =

140

546

438

4814

1.0

142

598

2 x

M16

337

2419

08

2211

22.0

18.5

I

125

LFB2

5-50

± 2

4 =

48

300

178

5817

1.0

174

400

2 x

M20

390

2622

08

2610

871

.226

.3I

LFB2

5-10

50

= 1

0047

635

161

171.

017

457

42

x M

2039

026

220

826

2941

.428

.3I

LFB2

5-15

75

= 1

5062

650

359

171.

017

472

62

x M

2039

026

220

826

1528

.030

.5II

150

LFB2

5-50

± 2

4 =

48

325

171

8019

7.0

196

426

2 x

M20

430

3025

08

2615

490

.734

.0I

BO

A T

ype

LFB

PN

25

TLBm

AIda

gL

n x

MD

bk

nd

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

peBe

llow

sTi

e ro

dsFl

ange

Disp

lacem

ent f

orce

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Raised face ∅

Number xthread

Length

Outside ∅

Thickness

Bolt circle ∅

Hole ∅

Frictionalforce

Weight

Execution

Spring rate�30%

Number ofholes

Exec

utio

n l (

page

107

)Ex

ecut

ion

ll (p

age

107)

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 204

Page 206: e BOA Expansion Joints Guide 29.3

205

LFB2

5-10

48

= 9

645

830

480

197.

019

656

02

x M

2043

030

250

826

5374

.534

.5I

LFB2

5-15

75

= 1

5061

846

480

197.

019

671

62

x M

2043

030

250

826

2355

.242

.0II

200

LFB2

5-50

± 2

5 =

50

355

213

6825

5.0

254

500

2 x

M30

510

3031

012

2620

415

7.0

47.0

ILF

B25-

80±

40

= 8

047

032

868

255.

025

460

62

x M

3051

030

310

1226

9311

9.0

49.0

ILF

B25-

150

± 7

5 =

150

754

595

8525

4.0

254

904

2 x

M30

510

3031

012

2632

74.0

63.0

II

250

LFB2

5-50

± 2

3 =

46

402

212

102

310.

030

855

02

x M

3659

536

370

1230

430

242.

077

.0I

LFB2

5-10

50

= 1

0062

243

898

309.

030

878

62

x M

3659

536

370

1230

9315

7.0

87.0

IILF

B25-

150

± 7

5 =

150

812

628

9830

9.0

308

970

2 x

M36

595

3637

012

3046

120.

096

.0II

300

LFB2

5-50

± 2

4 =

48

463

254

109

362.

036

163

52

x M

4269

042

430

1630

413

262.

077

.8II

LFB2

5-10

48

= 9

666

845

910

936

2.0

361

850

2 x

M42

690

4243

016

3014

018

0.0

94.0

IILF

B25-

150

± 7

5 =

150

868

659

109

362.

036

110

402

x M

4269

042

430

1630

7013

8.0

109.

3II

29.3_UK_Kap_06T06-LFB.qxp:Kap_6_06_LFB_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 205

Page 207: e BOA Expansion Joints Guide 29.3

40LW

6-55

± 2

7 =

54

285

107.

557

.527

52

x M

1216

075

48.3

2.6

9.6

3.9

2.6

IILW

6-90

± 4

9 =

98

426

141

69.8

397

2 x

M12

155

----

48.3

2.9

7.6

3.6

4.7

ILW

6-20

100

= 2

0059

041

557

.558

02

x M

1216

075

48.3

2.6

0.7

1.7

4.1

IILW

6-25

125

= 2

5067

441

568

.065

22

x M

1215

5--

--

48

.32.

90.

42.

35.

0II

50LW

6-65

± 3

2 =

64

305

117.

573

.830

02

x M

1218

090

60.3

2.9

12.9

5.7

3.7

IILW

6-90

± 4

4 =

88

426

141

82.8

397

2 x

M12

170

----

60.3

3.2

12.5

5.2

5.7

ILW

6-11

55

= 1

1037

518

7.5

73.8

370

2 x

M12

180

9060

.32.

95.

34.

53.

8II

LW6-

240

± 1

20 =

240

630

445

73.8

625

2 x

M12

180

9060

.32.

90.

92.

55.

7II

65LW

6-60

± 2

9 =

58

315

121

93.8

310

2 x

M12

200

115

76.1

2.9

19.3

9.0

4.9

IILW

6-70

± 3

7 =

74

426

141

105.

039

72

x M

1219

0--

--76

.13.

222

.58.

77.

7I

LW6-

150

± 7

5 =

150

520

326

93.8

515

2 x

M 1

220

011

576

.12.

92.

85.

16.

6II

LW6-

220

± 1

10 =

220

708

457

104.

068

22

x M

1219

0--

--

76

.13.

20.

85.

27.

7II

80LW

6-50

± 2

5 =

50

315

121.

510

5.0

310

2 x

M12

220

140

88.9

3.2

27.1

11.6

6.1

IILW

6-70

± 3

7 =

74

426

141

117.

439

72

x M

1220

5--

--88

.93.

618

.611

.010

.0I

LW6-

150

± 7

5 =

150

550

356

105.

054

52

x M

1222

014

088

.93.

23.

36.

18.

4II

LW6-

200

± 1

00 =

200

674

420

116.

065

22

x M

1220

5--

--

88

.93.

61.

06.

810

.0II

100

LW6-

60±

33

= 6

648

814

114

3.2

397

2 x

M12

260

----

114.

34.

041

.216

.715

.0I

LW6-

115

± 5

8 =

116

465

222.

513

5.8

460

2 x

M16

240

160

114.

33.

620

.312

.710

.9II

LW6-

150

± 7

5 =

150

625

387.

513

6.2

625

2 x

M16

240

160

114.

33.

65.

69.

313

.3II

BO

A T

ype

LWP

N6

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Execution

Spring rate�30%

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

206

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 206

Page 208: e BOA Expansion Joints Guide 29.3

LW6-

200

± 1

00 =

200

718

371

143.

265

22

x M

1226

0--

--11

4.3

4.0

6.4

10.0

18.4

II

125

LW6-

60±

30

= 6

048

213

817

0.8

397

2 x

M12

285

----

139.

74.

037

.324

.219

.0I

LW6-

105

± 5

3 =

106

470

229

157.

546

52

x M

1629

021

013

9.7

4.0

30.2

17.5

15.9

IILW

6-15

75

= 1

5064

540

2.5

157.

964

02

x M

1629

021

013

9.7

4.0

7.3

12.4

19.5

IILW

6-16

80

= 1

6072

640

016

8.5

652

2 x

M12

285

--

--

139.

74.

03.

415

.019

.5II

150

LW6-

50±

25

= 5

039

015

218

6.2

385

2 x

M16

325

240

168.

34.

581

.833

.017

.6II

LW10

-70

± 3

4 =

68

566

221

200.

848

22

x M

1232

4--

--16

8.3

4.5

41.0

28.0

20.0

ILW

6-15

75

= 1

5070

435

519

5.0

616

2 x

M12

324

--

--

168.

34.

57.

021

.021

.0II

LW6-

175

± 8

7 =

174

765

521.

518

6.2

765

2 x

M16

325

240

168.

34.

57.

215

.026

.4II

200

LW10

-50

± 2

4 =

48

536

181

256.

051

42

x M

2040

5--

--21

9.1

4.5

130.

010

4.0

40.0

ILW

6-60

± 3

0 =

60

623

296.

526

0.0

580

2 x

M16

380

250

219.

16.

360

.438

.425

.5II

LW6-

100

± 5

0 =

100

711

375.

526

0.0

665

2 x

M16

380

250

219.

16.

334

.932

.426

.5II

LW6-

150

± 7

5 =

150

1100

750

260.

010

502

x M

1638

025

021

9.1

6.3

25.4

19.5

48.8

II

250

LW10

-40

± 2

1 =

42

602

211

311.

057

02

x M

2447

8--

--27

3.0

5.0

133.

016

1.0

57.5

ILW

6-10

51

= 1

0298

061

031

4.0

960

2x M

2042

031

527

3.0

6.3

43.7

85.9

42.8

IILW

6-15

75

= 1

5012

3186

131

4.0

1220

2 x

M20

420

315

273.

06.

333

.553

.953

.6II

300

LW10

-40

± 2

0 =

40

642

216

363.

662

02

x M

3054

0--

--32

3.9

5.6

217.

024

7.0

79.5

ILW

6-60

± 2

9 =

58

713

366.

536

5.0

700

2 x

M24

500

385

323.

98.

011

1.5

169.

039

.1II

LW6-

100

± 5

0 =

100

1062

692

364.

010

502

x M

2450

038

532

3.9

8.0

87.8

102.

678

.3II

LW6-

150

± 7

5 =

150

1366

996

364.

013

602

x M

2450

038

532

3.9

8.0

41.6

76.7

102.

8II

350

LW6-

70±

35

= 7

063

430

139

7.2

600

4 x

M16

510

----

355.

65.

610

7.8

128.

074

.0I

LW6-

100

± 5

0 =

100

890

295

395.

077

02

x 24

605

355.

68.

022

2.0

118.

082

.0II

LW6-

140

± 7

0 =

140

990

395

395.

087

02

x 24

605

355.

68.

013

3.0

104.

089

.0II

LW6-

280

± 1

40 =

280

1390

795

395.

012

602

x 24

605

355.

68.

035

.070

.011

9.0

II

400

LW6-

55±

28

= 5

661

827

544

9.2

578

4 x

M16

560

----

406.

46.

316

4.1

175.

086

.0I

LW6-

100

± 5

0 =

100

880

285

447.

075

02

x 24

660

406.

48.

833

1.0

159.

091

.0II

LW6-

130

± 6

5 =

130

980

385

447.

087

02

x 24

660

406.

48.

819

6.0

139.

010

0.0

IILW

6-27

135

= 2

7013

8078

544

7.0

1260

2 x

2466

040

6.4

8.8

51.0

93.0

138.

0II

450

LW6-

50±

25

= 5

060

826

750

3.6

574

4 x

M16

610

----

457.

06.

322

4.6

220.

083

.0I

LW6-

90±

46

= 9

288

028

549

8.0

760

2 x

2871

045

7.2

10.0

452.

019

8.0

112.

0II

LW6-

120

± 6

0 =

120

980

385

498.

087

02

x 28

710

457.

210

.026

7.0

173.

012

5.0

IILW

6-24

120

= 2

4013

8078

549

8.0

1260

2 x

2871

045

7.2

10.0

69.0

116.

017

3.0

II

500

LW6-

45±

22,

5 =

45

662

250

555.

263

03

x M

2468

0--

--50

8.0

6.3

310.

662

7.0

106.

0I

LW6-

85±

42

= 8

495

028

555

0.0

820

2 x

3080

050

8.0

11.0

599.

035

0.0

148.

0II

207

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 207

Page 209: e BOA Expansion Joints Guide 29.3

LW6-

110

± 5

5 =

110

1050

385

550.

090

02

x 30

80

050

8.0

11.0

354.

030

8.0

163.

0II

LW6-

220

± 1

10 =

220

1450

785

550.

013

002

x 30

800

508.

011

.092

.020

9.0

224.

0II

600

LW6-

35±

18

= 3

672

431

266

0.0

696

3 x

M30

800

----

611.

88.

071

8.2

952.

014

8.0

ILW

6-75

± 3

7 =

74

950

285

651.

082

02

x 36

900

609.

68.

097

5.0

499.

019

4.0

IILW

6-10

50

= 1

0010

5038

565

1.0

920

2 x

3690

060

9.6

8.0

576.

044

0.0

210.

0II

LW6-

200

± 1

00 =

200

1450

785

651.

013

002

x 36

900

609.

68.

014

9.0

298.

026

1.0

II

BO

A T

ype

LWP

N6

Execution

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

208

pre

ferr

ed s

erie

s

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 208

Page 210: e BOA Expansion Joints Guide 29.3

40LW

16-5

24

= 4

830

013

557

.529

02

x M

1216

075

48.3

2.6

9.0

3.7

2.6

IILW

16-7

36

= 7

242

614

170

.039

72

x M

1215

5--

--48

.32.

916

.13.

65.

0I

LW16

-140

± 7

1 =

142

570

405

57.5

565

2 x

M12

160

7548

.32.

61.

01.

74.

0II

LW16

-220

± 1

10 =

220

748

492

69.0

728

2 x

M12

155

--

--

48.3

2.9

0.9

2.0

5.5

I

50LW

16-5

25

= 5

030

013

2.5

73.8

295

2 x

M12

180

9060

.32.

916

.75.

83.

5II

LW 1

6-70

± 3

5 =

70

426

141

83.8

397

2 x

M12

170

----

60.3

3.2

22.0

5.2

6.5

ILW

16-1

50±

75

= 1

5060

043

073

.859

52

x M

1218

090

60.3

2.9

1.6

2.6

5.5

IILW

16-2

00±

100

= 2

0075

650

682

.072

82

x M

1217

0--

--

60

.33.

21.

22.

86.

5I

65LW

16-5

25

= 5

036

017

2.5

93.7

355

2 x

M12

200

115

76.1

2.9

19.0

7.7

5.1

IILW

16-6

32

= 6

442

614

110

7.0

397

2 x

M12

190

----

76.1

3.2

35.0

8.7

8.0

ILW

16-8

42

= 8

437

547

1.5

93.3

655

2 x

M12

200

115

76.1

2.9

20.3

7.1

5.6

IILW

16-1

70±

85

= 1

7071

045

810

4.0

682

2 x

M12

190

--

--

76.1

3.2

2.5

5.2

8.5

I

80LW

16-6

32

= 6

442

614

111

9.6

397

2 x

M12

205

----

88.9

3.6

44.0

11.0

11.5

ILW

16-7

37

= 7

437

518

310

4.5

370

2x M

1222

014

088

.93.

228

.49.

26.

8II

LW16

-150

± 7

5 =

150

705

522

104.

970

02x

M12

220

140

88.9

3.2

3.4

4.7

9.8

IILW

16-1

70±

85

= 1

7068

642

611

7.5

660

2 x

M12

205

--

--

88.9

3.6

4.0

6.8

11.0

I

100

LW16

-50

± 2

7 =

54

488

141

145.

539

62

x M

1626

0--

--11

4.3

4.0

65.0

16.7

16.0

ILW

16-9

48

= 9

648

023

413

4.9

475

2x M

1624

016

011

4.3

3.6

49.3

11.8

12.5

IILW

16-1

50±

75

= 1

5071

238

814

1.0

635

2 x

M12

260

--

--

114.

34.

07.

010

.517

.3II

BO

A T

ype

LWP

N10

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

209

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 209

Page 211: e BOA Expansion Joints Guide 29.3

LW16

-160

± 8

2 =

164

770

534

136.

076

52x

M16

240

160

114.

33.

67.

07.

315

.5II

125

LW10

-50

± 2

7 =

54

486

140

172.

039

72

x M

1228

5--

--13

9.7

4.0

64.6

24.2

20.0

ILW

16-9

44

= 8

849

024

315

6.6

485

2x M

1629

021

013

9.7

4.0

71.7

16.2

18.0

IILW

16-1

50±

75

= 1

5070

435

417

3.0

652

2 x

M16

285

--

--

139.

74.

017

.014

.827

.5II

LW16

-160

± 8

0 =

160

840

604

157.

783

52

x M

1629

021

013

9.7

4.0

8.7

9.2

23.0

II

150

LW16

-45

± 2

2 =

44

470

229

185.

746

52

x M

1632

524

016

8.3

4.5

193.

626

.019

.1II

LW10

-70

± 3

4 =

68

566

221

200.

848

22

x M

1232

4--

--16

8.3

4.5

41.0

28.0

20.0

ILW

16-7

38

= 7

247

023

318

5.5

465

2x M

1632

524

016

8.3

4.5

83.9

25.8

19.7

IILW

16-1

50±

75

= 1

5083

058

618

5.9

825

2 x

M16

325

240

168.

34.

513

.613

.628

.3II

200

LW10

-50

± 2

4 =

48

536

181

256.

051

42

x M

2040

5--

--21

9.1

4.5

130.

010

4.0

40.0

ILW

10-1

15±

58

= 1

1672

138

0.5

259.

066

52

x M

1638

025

021

9.1

6.3

51.1

31.4

28.3

IILW

10-1

50±

75

= 1

5011

1076

026

0.0

1050

2 x

M16

380

250

219.

16.

324

.819

.349

.3II

250

LW10

-40

± 2

1 =

42

602

211

311.

057

02

x M

2447

8--

--27

3.0

5.0

133.

016

1.0

57.5

ILW

10-9

48

= 9

674

338

1.5

313.

073

02

x M

2042

031

527

3.0

6.3

85.1

98.2

29.8

IILW

10-1

50±

75

= 1

5012

4087

031

4.0

1220

2 x

M20

420

315

273.

06.

332

.853

.453

.9II

300

LW10

-40

± 1

9 =

38

642

216

363.

662

02

x M

3054

0--

--32

3.9

5.6

217.

024

7.0

79.5

ILW

10-6

29

= 5

872

037

036

4.0

700

2 x

M24

500

385

323.

98.

021

8.8

164.

844

.6II

LW10

-100

± 5

0 =

100

1062

692

364.

010

502

x M

2450

038

532

3.9

8.0

86.0

121.

678

.3II

LW10

-150

± 7

5 =

150

1380

1010

358.

013

602x

M24

500

385

323.

98.

040

.575

.810

3.7

II

BO

A T

ype

LWP

N10

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

210

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 210

Page 212: e BOA Expansion Joints Guide 29.3

350

LW10

-10

± 6

= 1

259

5-

395.

047

02

x 28

605

355.

68.

029

56.0

202.

069

.0II

LW10

-65

± 3

3 =

66

676

295

398

904

3 x

M20

515

----

355.

65.

614

1.1

253.

088

.0I

LW10

-85

± 4

2 =

84

990

395

395.

088

02

x 28

605

355.

68.

023

4.0

103.

010

2.0

IILW

10-1

85±

92

= 1

8413

9079

539

5.0

1270

2 x

2860

535

5.6

8.0

62.0

69.0

133.

0II

400

LW10

-10

± 6

= 1

266

5-

447.

053

52

x 36

690

406.

48.

841

62.0

379.

010

8.0

IILW

10-5

28

= 5

668

327

245

0.8

653

3 x

M24

575

----

406.

46.

325

2.9

389.

011

0.0

ILW

10-8

39

= 7

810

5038

544

7.0

920

2 x

3669

040

6.4

8.8

345.

019

9.0

146.

0II

LW10

-170

± 8

5 =

170

1450

785

447.

013

202

x 36

690

406.

48.

889

.013

5.0

187.

0II

450

LW10

-10

± 4

= 8

665

-49

8.0

535

2 x

3675

045

7.2

10.0

9971

.047

7.0

138.

0II

LW10

-50

± 2

5 =

50

680

265

505.

264

04

x M

2063

0--

--45

7.0

6.3

345.

628

4.0

126.

0I

LW10

-70

± 3

5 =

70

1050

385

498.

092

02

x 36

750

457.

210

.046

9.0

249.

017

6.0

IILW

10-1

60±

80

= 1

6014

5078

549

8.0

1320

2 x

3675

045

7.2

10.0

122.

016

9.0

227.

0II

500

LW10

-10

± 4

= 8

665

-55

0.0

535

2 x

40

800

508.

011

.013

184.

058

7.0

149.

0II

LW10

-45

± 2

2,5

= 4

570

230

555

7.6

672

4 x

M24

680

----

508.

06,

348

4.2

580.

013

6.0

ILW

10-6

33

= 6

610

5038

555

0.0

920

2 x

40

800

508.

011

.062

0.0

307.

020

0.0

IILW

10-1

50±

76

= 1

5214

5078

555

0.0

1330

2 x

40

800

508.

011

.016

1.0

208.

026

2.0

II

600

LW10

-5±

3 =

682

5-

651.

055

52

x 45

930

609.

68.

021

416.

083

8.0

220.

0II

LW10

-35

± 1

8 =

36

752

310

662.

072

24

x M

3080

0--

--61

1.8

8.0

1105

.691

0.0

208.

0I

LW10

-55

± 2

7 =

54

1210

385

651.

095

22

x 45

930

609.

68.

010

08.0

439.

027

6.0

IILW

10-1

30±

64

= 1

2816

1078

565

1.0

1350

2 x

4593

060

9.6

8.0

261.

029

7.0

333.

0II

211

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 211

Page 213: e BOA Expansion Joints Guide 29.3

40LW

16-5

24

= 4

830

013

557

.529

02

x M

1216

075

48.3

2.6

9.0

3.7

2.6

IILW

16-7

36

= 7

242

614

170

.039

72

x M

1215

5--

--48

.32.

916

.13.

65.

0I

LW16

-140

± 7

1 =

142

570

405

57.5

565

2 x

M12

160

7548

.32.

61.

01.

74.

0II

LW16

-220

± 1

10 =

220

748

492

69.0

728

2 x

M12

155

--

--

48.3

2.9

0.9

2.0

5.5

II

50LW

16-5

25

= 5

030

013

2.5

73.8

295

2 x

M12

180

9060

.32.

916

.75.

83.

5II

LW16

-70

± 3

5 =

70

426

141

83.8

397

2 x

M12

170

----

60.3

3.2

22.0

5.2

6.5

ILW

16-1

50±

75

= 1

5060

043

073

.859

52

x M

1218

090

60.3

2.9

1.6

2.6

5.5

IILW

16-2

00±

100

= 2

0075

650

682

.072

82

x M

1217

0--

--

60

.33.

21.

22.

86.

5II

65LW

16-5

25

= 5

036

017

2.5

93.7

355

2 x

M12

200

115

76.1

2.9

19.0

7.7

5.1

IILW

16-6

32

= 6

442

614

110

7.0

397

2 x

M12

190

----

76.1

3.2

35.0

8.7

8.0

ILW

16-1

50±

75

= 1

5065

547

1.5

93.7

655

2 x

M12

200

115

76.1

2.9

2.9

3.9

7.6

IILW

16-1

70±

85

= 1

7071

045

810

4.0

682

2 x

M12

190

--

--

76.1

3.2

2.5

5.2

8.5

II

80LW

16-5

29

= 5

836

017

310

4.7

355

2 x

M12

220

140

88.9

3.2

26.7

9.9

6.3

ILW

16-6

32

= 6

442

614

111

9.6

397

2 x

M12

205

----

88.9

3.6

44.0

11.0

11.5

ILW

16-1

50±

75

= 1

5070

552

1.5

104.

970

02

x M

1222

014

088

.93.

23.

44.

79.

8II

LW16

-170

± 8

5 =

170

686

426

117.

566

02

x M

1220

5--

--

88

.93.

64.

06.

811

.0II

100

LW16

-50

± 2

7 =

54

488

141

145.

539

62

x M

1626

0--

--11

4.3

4.0

65.0

16.7

16.0

ILW

16-7

35

= 7

044

521

2.5

136.

044

02

x M

1624

016

011

4.3

3.6

44.2

13.5

10.4

IILW

16-1

50±

75

= 1

5071

238

814

1.0

635

2 x

M12

260

--

--

114.

34.

07.

010

.517

.3II

BO

A T

ype

LWP

N16

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

212

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 212

Page 214: e BOA Expansion Joints Guide 29.3

LW16

-160

± 8

2 =

164

770

534

136.

076

52

x M

1624

016

011

4.3

3.6

7.0

7.3

15.5

II

125

LW16

-50

± 2

6 =

52

494

144

173.

043

82

x M

1628

5--

--13

9.7

4.0

95.0

22,1

22.0

ILW

16-6

32

= 6

447

022

915

7.7

465

2 x

M16

290

210

139.

74.

059

.917

.615

.4II

LW16

-150

± 7

5 =

150

704

354

173.

065

22

x M

1628

5--

--

13

9.7

4.0

17.0

14.8

27.5

IILW

16-1

60±

80

= 1

6084

060

415

7.7

835

2 x

M16

290

210

139.

74.

08.

79.

223

.0II

150

LW16

-45

± 2

2 =

44

470

229

185.

746

52

x M

1632

524

016

8.3

4.5

193.

626

.019

.1II

LW 1

6-60

± 3

1 =

62

562

209

203.

049

82

x M

1632

4--

--16

8.3

4.5

71.0

28.0

22.5

ILW

16-1

10±

59

= 1

1871

235

920

3.0

638

2 x

M16

324

----

168.

34.

525

.022

.027

.5II

LW16

-150

± 7

5 =

150

830

586

185.

982

52

x M

1632

524

016

8.3

4.5

13.6

13.6

28.3

II

200

LW16

-45

± 2

3 =

46

558

217

258.

053

62

x M

2040

5--

--21

9.1

4.5

189.

098

.042

.0I

LW16

-65

± 3

2 =

64

629

289.

525

9.0

620

2 x

M24

390

275

219.

16.

312

0.9

91.3

28.5

IILW

16-1

00±

50

= 1

0090

153

126

0.0

900

2 x

M24

390

275

219.

16.

350

.658

.843

.6II

LW16

-150

± 7

5 =

150

1140

770

260.

011

302

x M

2439

027

521

9.1

6.3

24.1

44.5

53.5

II

250

LW16

-40

± 2

1 =

42

628

224

315.

060

62

x M

2447

8--

--27

3.0

5.0

302.

015

6.0

64.5

ILW

16-1

00

± 5

0 =

100

980

610

314.

097

52

x M

2445

032

027

3.0

6.3

66.6

80.5

57.1

IILW

16-1

50±

75

= 1

5012

5588

531

4.0

1250

2 x

M24

450

320

273.

06.

331

.760

.470

.9II

300

LW16

-35

± 1

8 =

36

654

217

368.

062

02

x M

3054

0--

--32

3.9

5.6

452.

024

7.0

87.5

ILW

16-6

30

= 6

074

837

436

3.0

720

2 x

M30

500

385

323.

98.

032

6.5

184.

857

.3II

LW16

-100

± 5

0 =

100

1095

705

364.

010

802

x M

3050

038

532

3.9

8.0

82.9

116.

990

.5II

LW16

-150

± 7

5 =

150

1400

1010

364.

013

802

x M

3050

038

532

3.9

8.0

40.5

87.7

113.

7II

350

LW16

-10

± 5

= 1

066

5-

395.

053

52

x 36

635

355.

68.

051

99.0

291.

010

8.0

IILW

16-4

21

= 4

296

029

539

4.0

830

2 x

3663

535

5.6

8.0

911.

017

2.0

137.

0II

LW16

-65

± 3

3 =

66

728

330

401.

669

04

x M

2452

5--

--35

5.6

5.6

184.

128

0.0

99.0

ILW

16-1

35±

68

= 1

3614

6079

539

4.0

1330

2 x

3663

535

5.6

8.0

144.

010

3.0

179.

0II

400

LW16

-10

± 4

= 8

665

-44

7.0

535

2 x

4269

040

6.4

8.8

7331

.037

8.0

129.

0II

LW16

-40

± 1

9 =

38

950

285

446.

082

02

x 42

690

406.

48.

813

83.0

230.

016

6.0

IILW

16-6

30

= 6

072

631

645

4.4

682

4 x

M24

580

----

406.

46.

329

6.5

368.

012

8.0

ILW

16-1

20±

60

= 1

2014

5078

544

6.0

1320

2 x

4269

040

6.4

8.8

212.

013

3.0

220.

0II

450

LW16

-10

± 5

= 1

085

0-

497.

062

02

x 45

770

457.

210

.091

75.0

407.

017

2.0

IILW

16-5

27,

5 =

55

746

320

508.

272

04

x M

3064

5--

--45

7.0

6,3

460.

553

5.0

158.

0I

LW16

-70

± 3

5 =

70

1270

420

497.

010

102

x 45

770

457.

210

.045

0.0

228.

024

8.0

IILW

16-1

60±

79

= 1

5816

7082

049

7.0

1410

2 x

4577

045

7.2

10.0

127.

015

8.0

307.

0II

500

LW16

-10

± 5

= 1

085

0-

548.

064

02

x 52

825

508.

011

.012

109.

055

9.0

210.

0II

LW16

-40

± 2

0 =

40

720

255

561.

069

04

x M

3070

0--

--50

8.0

6,3

1145

.767

7.0

200.

0I

213

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 213

Page 215: e BOA Expansion Joints Guide 29.3

LW16

-70

± 3

5 =

70

1270

420

548.

010

302

x 52

825

508.

011

.059

4.0

316.

028

3.0

IILW

16-1

60±

80

= 1

6016

7082

054

8.0

1430

2 x

5282

550

8.0

11.0

168.

022

0.0

351.

0II

600

LW16

-30

± 1

6,5

= 3

376

424

566

5.0

728

4 x

M36

820

----

612.

410

.020

79.2

1060

.026

0.0

ILW

16-5

25

= 5

011

7032

065

0.0

960

2 x

6095

060

9.6

8.0

1558

.056

1.0

358.

0II

LW16

-65

± 3

3 =

66

1270

420

650.

010

602

x 60

950

609.

68.

096

9.0

501.

037

4.0

IILW

16-1

50±

75

= 1

5016

7082

065

0.0

1460

2 x

6095

060

9.6

8.0

280.

035

0.0

442.

0II

BO

A T

ype

LWP

N16

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

214

pre

ferr

ed s

erie

s

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 214

Page 216: e BOA Expansion Joints Guide 29.3

40LW

25-5

25

= 5

028

511

7.5

57.0

275

2 x

M12

160

7548

.32.

618

.73.

72.

7II

LW25

-100

± 5

0 =

100

512

239

69.0

482

2 x

M12

155

----

48.3

2.9

8.0

3.0

5.0

ILW

25-1

70±

85

= 1

7058

041

057

.057

02

x M

1216

075

48.3

2.6

1.5

1.6

4.1

IILW

25-1

80±

90

= 1

8073

048

369

.070

52

x M

1215

5--

--

48

.32.

92.

01.

95.

8I

50LW

25-5

25

= 5

033

015

7.5

73.7

300

2 x

M12

180

9060

.32.

920

.35.

23.

7II

LW25

-90

± 4

6 =

92

506

236

83.0

482

2 x

M12

170

----

60.3

3.2

11.0

4.5

6.5

ILW

25-1

00±

50

= 1

0047

029

7.5

73.7

465

2 x

M12

180

9060

.32.

95.

73.

44.

0II

LW25

-190

± 9

5 =

190

800

630

73.7

795

2 x

M12

180

9060

.32.

91.

31.

96.

7II

65LW

25-5

25

= 5

037

017

7.5

93.5

365

2 x

M12

200

115

76.1

2.9

41.1

7.3

5.3

IILW

25-9

46

= 9

252

224

410

6.0

498

2 x

M12

190

----

76.1

3.2

18.0

7.0

7.0

ILW

25-1

50±

75

= 1

5068

048

493

.567

52

x M

1220

011

576

.12.

94.

93.

77.

9II

LW25

-170

± 8

5 =

170

722

464

105.

070

52

x M

1219

0--

--

76

.13.

24.

04.

98.

8I

80LW

25-4

23

= 4

637

017

810

4.7

365

2 x

M12

220

140

88.9

3.2

58.4

9.5

6.6

IILW

25-8

40

= 8

049

823

211

8,5

470

2 x

M12

205

----

88.9

3.6

20.0

9.5

10.5

ILW

25-1

50±

75

= 1

5073

053

410

4.7

725

2 x

M12

220

140

88.9

3.2

5.8

4.4

10.2

IILW

25-1

70±

85

= 1

7070

644

111

8.5

682

2 x

M12

205

--

--

88.9

3.6

6.0

6.5

12.3

I

100

LW25

-55

± 2

8 =

56

445

212.

513

5.8

440

2 x

M16

240

160

114.

33.

684

.513

.410

.8I

LW25

-70

± 3

5 =

70

558

221

145.

049

82

x M

1626

0--

--11

4.3

4.0

40.0

13.5

16.5

ILW

25-9

47

= 9

448

023

013

4.9

475

2 x

M16

240

160

114.

33.

649

.311

.912

.6II

BO

A T

ype

LWP

N25

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

215

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 215

Page 217: e BOA Expansion Joints Guide 29.3

LW25

-150

± 7

5 =

150

790

544

135.

878

52

x M

1624

016

011

4.3

3.6

11.4

7.0

16.0

II

125

LW25

-50

± 2

5 =

50

430

172

156.

842

52

x M

1629

021

013

9.7

4.0

181.

919

.017

.3II

LW25

-70

± 3

5 =

70

576

230

174.

049

82

x M

1628

5--

--13

9.7

4.0

59.0

19.5

23.0

ILW

25-8

42

= 8

449

023

915

6.6

485

2 x

M16

290

210

139.

74.

071

.716

.218

.0II

LW25

-150

± 7

5 =

150

860

614

157.

586

02

x M

1629

021

013

9.7

4.0

14.3

8.9

23.8

II

150

LW25

-55

± 2

8 =

56

580

218

205.

056

02

x M

2032

4--

--16

8.3

4.5

110.

055

.534

.5I

LW25

-70

± 3

5 =

70

490

239

185.

048

52

x M

1632

524

016

8.3

4.5

118.

324

.421

.6II

LW25

-150

± 7

5 =

150

860

498

205.

084

02

x M

2032

432

416

8.3

4.5

21.0

52.0

43.0

IILW

25-1

60±

80

= 1

6010

0075

418

5.7

995

2 x

M16

325

240

168.

34.

516

.011

.032

.3II

200

LW25

-40

± 2

2 =

44

614

217

258.

056

04

x M

2040

5--

--21

9.1

6.3

183.

091

.550

.5I

LW25

-50

± 2

5 =

50

690

290

258.

065

52

x M

2439

027

521

9.1

6.3

336.

182

.738

.8II

LW25

-100

± 5

0 =

100

925

525

258.

090

02

x M

2439

027

521

9.1

6.3

104.

656

.848

.7II

LW25

-150

± 7

5 =

150

1155

755

258.

011

502

x M

2439

027

521

9.1

6.3

50.8

43.5

58.5

II

250

LW25

-40

± 2

0 =

40

658

224

315.

060

64

x M

2447

8--

--27

3.0

6.3

302.

015

2.0

75.0

ILW

25-5

25

= 5

072

033

031

2.0

720

2 x

M30

450

320

273.

06.

345

2.3

134.

554

.1II

LW25

-100

± 5

0 =

100

991

601

312.

099

02

x M

3045

032

027

3.0

6.3

138.

490

.768

.9II

LW25

-150

± 7

5 =

150

1260

870

312.

012

602

x M

3045

032

027

3.0

6.3

66.3

68.6

83.4

II

300

LW25

-35

± 1

7 =

34

674

217

368.

062

04

x M

3054

0--

--32

3.9

7.1

452.

024

8.0

101.

0I

LW25

-50

± 2

5 =

50

805

375

363.

080

02

x M

3650

037

532

3.9

8.0

585.

219

5.7

82.9

IILW

25-1

00±

50

= 1

0011

2569

536

3.0

1120

2 x

M36

500

375

323.

98.

017

2.4

128.

510

8.8

IILW

25-1

50±

75

= 1

5014

4010

1036

3.0

1435

2 x

M36

500

375

323.

98.

081

.996

.013

4.4

II

350

LW25

-10

± 4

= 8

665

-39

4.0

535

2 x

3663

535

5.6

8.0

1212

2.0

289.

012

5.0

IILW

25-5

25

= 5

071

432

240

2.4

688

4 x

M30

540

----

355.

68.

029

7.2

340.

010

9.0

IILW

25-6

30

= 6

010

5038

539

4.0

930

2 x

3663

535

5.6

8.0

570.

015

2.0

164.

0II

LW25

-135

± 6

8 =

136

1450

785

394.

013

202

x 36

635

355.

68.

014

8.0

103.

020

2.0

II

400

LW25

-5±

3 =

682

5-

446.

058

52

x 52

720

406.

48.

817

366.

040

8.0

160.

0II

LW25

-40

± 1

9 =

38

1110

285

446.

087

02

x 52

720

406.

48.

813

83.0

247.

021

6.0

IILW

25-5

25

= 5

077

836

245

3.4

705

4 x

M30

590

----

406.

48.

832

1.5

342.

014

9.0

IILW

25-1

20±

60

= 1

2016

1078

544

6.0

1370

2 x

5272

040

6.4

8.8

212.

014

9.0

277.

0II

450

LW25

-10

± 5

= 1

085

0-

497.

062

02

x 60

790

457.

210

.291

75.0

554.

020

8.0

IILW

25-3

17

= 3

411

1028

549

8.0

880

2 x

6079

045

7.2

10.2

1894

.035

4.0

245.

0II

LW25

-50

± 2

5 =

50

816

378

507.

478

64

x M

3666

0--

--45

7.0

10.0

394.

855

5.0

183.

0II

LW25

-110

± 5

6 =

112

1610

785

498.

013

802

x 60

790

457.

210

.029

0.0

213.

032

4.0

II

216

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 216

Page 218: e BOA Expansion Joints Guide 29.3

500

LW25

-10

± 5

= 1

099

0-

548.

065

02

x 60

840

508.

011

.012

109.

063

8.0

240.

0II

LW25

-35

± 1

7 =

34

1250

285

549.

091

02

x 60

840

508.

011

.025

14.0

417.

031

4.0

IILW

T25-

50*

± 2

5 =

50

855

310

----

--54

976

5.0

598.

050

8.0

8.0

2450

.435

8.5

375.

9II

LW25

-105

± 5

2 =

104

1750

785

549.

014

102

x 60

840

508.

011

.038

5.0

254.

040

6.0

II

600

LW25

-5±

2 =

495

0-

651.

067

02

x 80

1000

609.

68.

051

563.

011

23.0

395.

0II

LW25

-30

± 1

5 =

30

1420

325

651.

010

502

x 80

1000

609.

68.

032

77.0

684.

053

0.0

IILW

25-4

20

= 4

015

2042

565

1.0

1150

2 x

8010

0060

9.6

8.0

2023

.061

5.0

554.

0II

LW25

-90

± 4

4 =

88

1920

825

651.

015

502

x 80

1000

609.

68.

057

0.0

438.

065

1.0

II

BO

A T

ype

LWP

N25

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

217

pre

ferr

ed s

erie

s

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 217

Page 219: e BOA Expansion Joints Guide 29.3

40LW

40-5

25

= 5

038

521

7.5

57.0

370

2 x

M12

160

7548

.32.

68.

12.

63.

6II

LW40

-100

± 5

0 =

100

565

397.

557

.055

02

x M

1216

075

48.3

2.6

2.4

1.7

4.1

IILW

40-1

50±

75

= 1

5075

558

7.5

57.0

740

2 x

M12

160

7548

.32.

61.

11.

24.

7II

50LW

40-5

25

= 5

039

522

2.5

73.2

390

2 x

M12

180

9060

.32.

915

.84.

14.

5II

LW40

-100

± 5

0 =

100

595

422.

573

.258

02

x M

1218

090

60.3

2.9

4.4

2.6

5.6

IILW

40-1

50±

75

= 1

5079

562

2.5

73.2

780

2 x

M12

180

9060

.32.

92.

01.

96.

7II

65LW

40-5

25

= 5

043

522

2.5

92.7

410

2 x

M12

200

115

76.1

2.9

32.5

6.3

6.3

IILW

40-1

00±

50

= 1

0061

540

2.5

92.7

595

2 x

M12

200

115

76.1

2.9

10.1

4.2

7.5

IILW

40-1

50±

75

= 1

5079

558

2.5

92.7

780

2 x

M12

200

115

76.1

2.9

4.8

3.1

8.7

II

80LW

40-5

25

= 5

045

524

2.5

103.

944

02

x M

1622

014

088

.93.

238

.47.

68.

6II

LW40

-100

± 5

0 =

100

665

452.

510

3.9

650

2 x

M16

220

140

88.9

3.2

11.2

4.9

9.8

IILW

40-1

50±

75

= 1

5086

565

2.5

103.

985

02

x M

1622

014

088

.93.

25.

43.

711

.4II

100

LW40

-50

± 2

5 =

50

490

246

134.

946

52

x M

1624

016

011

4.3

3.6

68.2

12.1

12.6

IILW

40-1

00±

50

= 1

0069

044

613

4.9

665

2 x

M16

240

160

114.

33.

621

.18.

115

.0II

LW40

-150

± 7

5 =

150

880

636

134.

986

02

x M

1624

016

011

4.3

3.6

10.4

6.2

17.4

II

125

LW40

-50

± 2

5 =

50

580

276

156.

655

02

x M

2029

021

013

9.7

4.0

85.3

17.2

20.1

IILW

40-1

00±

50

= 1

0081

050

615

6.6

780

2 x

M20

290

210

139.

74.

025

.710

.924

.1II

LW40

-150

± 7

5 =

150

1040

736

156.

610

102

x M

2029

021

013

9.7

4.0

12.2

8.0

28.1

II

BO

A T

ype

LWP

N40

TLBm

daL

n x

MD

HB

des

CyCr

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/ba

rkg

DNTy

pe

218

Execution

Tie

rods

Bello

ws

Flan

geW

eld

ends

Disp

lace

men

t for

ceLateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Outside ∅

Heigth

Width

Number xthread

Length

Outside ∅

Outside ∅

Thickness

Frictionalforce

Weight

Spring rate�30%

Exec

utio

n ll

(pag

e 10

9)Ex

ecut

ion

l (pa

ge 1

08)

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 218

Page 220: e BOA Expansion Joints Guide 29.3

219

150

LW40

-50

± 2

5 =

50

600

284

184.

858

02

x M

2432

524

016

8.3

4.5

110.

223

.826

.3II

LW40

-100

± 5

0 =

100

830

514

184.

881

02

x M

2432

524

016

8.3

4.5

34.2

15.4

31.8

IILW

40-1

50±

75

= 1

5010

6074

418

4.8

1040

2 x

M24

325

240

168.

34.

516

.411

.337

.3II

200

LW40

-50

± 2

5 =

50

751

338

258.

075

02

x M

3040

029

521

9.1

6.3

425.

985

.752

.7II

LW40

-100

± 5

0 =

100

1031

618

258.

010

252

x M

3040

029

521

9.1

6.3

129.

457

.665

.1II

LW40

-150

± 7

5 =

150

1307

894

258.

013

002

x M

3040

029

521

9.1

6.3

62.0

43.5

77.9

II

250

LW40

-50

± 2

5 =

50

820

385

312.

082

02

x M

3647

033

027

3.0

6.3

578.

613

3.9

78.6

IILW

40-1

00±

50

= 1

0011

5071

531

2.0

1150

2 x

M36

470

330

273.

06.

316

9.9

88.2

102.

0II

LW40

-100

± 7

5 =

150

1470

1035

312.

014

702

x M

3647

033

027

3.0

6.3

81.3

66.3

124.

6II

300

LW40

-50

± 2

5 =

50

930

445

362.

092

52

x M

4254

040

532

3.9

8.0

724.

619

3.6

117.

2II

LW40

-100

± 5

0 =

100

1310

825

362.

013

002

x M

4254

040

532

3.9

8.0

212.

812

6.1

160.

3II

LW40

-100

± 7

5 =

150

1685

1200

362.

016

802

x M

4254

040

532

3.9

8.0

100.

893

.319

8.0

II

350

LW40

-50

± 2

5 =

50

860

423

403.

283

04

x M

3655

0--

--35

5.6

8.0

395.

031

6.0

145.

0II

LW40

-100

± 5

0 =

100

1220

783

403.

211

904

x M

3655

0--

--35

5.6

8.0

116.

020

7.0

179.

0II

400

LW40

-50

± 2

5 =

50

952

478

457.

292

44

x M

4262

0--

--40

6.4

8.8

452.

042

4.0

215.

0II

LW40

-100

± 5

0 =

100

1362

888

457.

213

344

x M

4262

0--

--40

6.4

8.8

131.

026

6.0

270.

0II

450

LW40

-50

± 2

5 =

50

980

500

511.

695

04

x M

4267

5--

--45

7.0

10.0

533.

052

0.0

272.

0II

LW40

-100

± 5

0 =

100

1400

920

511.

613

704

x M

4267

5--

--45

7.0

10.0

158.

033

8.0

338.

0II

500

LW40

-50

± 2

5 =

50

1086

564

563.

210

564

x M

4875

0--

--50

8.0

11.0

569.

068

0.0

359.

0II

LW40

-100

± 5

0 =

100

1586

1064

563.

215

564

x M

4875

0--

--50

8.0

11.0

161.

043

0.0

465.

0II

29.3_UK_Kap_06T07-LW.qxp:Kap_6_07_LW_LWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 219

Page 221: e BOA Expansion Joints Guide 29.3

BO

A T

ype

KA

WT

PN

6

40KA

WT

6-2*

±20

=40

268

5815

515

548

.32.

60.

70.

20.

057.

7I

50KA

WT

6-2*

±20

=40

260

7416

816

860

.32.

91.

20.

20.

098.

2I

65KA

WT

6-2*

±20

=40

290

9418

618

676

.12.

91.

70.

40.

209.

6I

80KA

WT

6-2*

±20

=40

300

105

200

200

88.9

3.2

20.

50.

2610

.5I

100

KAW

T 6-

2*±

20=

4033

013

625

025

011

4.3

3.6

8.7

1.6

0.6

19.8

II

125

KAW

T 6-

2*±

20=

4036

015

827

427

413

9.7

45.

62.

20.

823

.1II

150

KAW

T 6-

2*±

20=

4036

018

730

830

816

8.3

4.5

93.

71.

137

II

200

KAW

T 6-

2*±

13=

2649

525

938

238

221

9.1

6.3

649

2.6

94II

250

KAW

T 6-

2*±

11.5

=23

495

313

440

440

273

6.3

107

134.

010

9II

300

KAW

T 6-

2*±

10=

20.0

495

364

500

500

323.

98

174

185.

598

II

350

KAW

T 6-

2*±

9.7=

19.4

465

395

540

540

355.

65.

619

318

5.6

82II

KAW

T 6-

3*±

15.1

=30

.249

039

554

054

035

5.6

5.6

105

186.

484

II

400

KAW

T 6-

2*±

8.8=

17.3

646

544

759

059

040

6.4

6.3

275

247.

398

IIKA

WT

6-3*

±15

.1=

30.2

490

447

590

590

406.

46.

314

924

8.3

102

II

450

KAW

T 6-

2*±

8=16

465

499

640

640

457.

26.

338

132

9.8

120

IIKA

WT

6-3*

±12

.6=

25.2

495

499

640

640

457.

26.

320

430

10.7

123

II

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Heigth

Width

Outside ∅

Thickness

Angularreactionforce

Weight*without innersleeve

Execution

Spring rate�30%

Frictionmoment

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

220

Exec

utio

n l (

page

110

)Ex

ecut

ion

ll (p

age

110)

Flan

geW

eld

ends

Bend

ing

mom

ent

Bello

ws

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 220

Page 222: e BOA Expansion Joints Guide 29.3

221

500

KAW

T 6-

2*±

7.3=

14.6

465

549

690

690

508

6.3

505

3911

.914

0II

KAW

T 6-

3*±

11.6

=23

.249

554

969

069

050

86.

327

239

13.9

144

II

600

KAW

T 6-

2*±

6.6=

13.2

465

651

792

792

610

6.3

837

5617

147

IIKA

WT

6-3*

±10

=20

500

651

792

792

610

6.3

447

5620

.215

3II

700

KAW

T 6-

2*±

5.8=

11.6

485

754

932

932

711

7.1

1296

9623

235

IIKA

WT

6-3*

±8.

8=17

.652

575

493

293

271

17.

169

196

27.9

242

II

800

KAW

T 6-

2*±

3.6=

7.2

465

912

1072

1072

813

817

5613

121

.132

3II

KAW

T 6-

3*±

7.2=

14.4

610

905

1072

1072

813

891

413

050

.233

9II

900

KAW

T 6-

2*±

3.3=

6.6

435

1015

1208

1208

914

824

1018

326

.545

0II

KAW

T 6-

3*±

6.6=

13.2

610

1008

1208

1208

914

812

5018

163

465

II

1000

KAW

T 6-

2*±

3.3=

6.6

465

1120

1312

1312

1016

1030

2322

427

.261

8II

KAW

T 6-

3*±

6.2=

12.4

575

1115

1312

1312

1016

1014

9122

263

.261

2II

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 221

Page 223: e BOA Expansion Joints Guide 29.3

BO

A T

ype

KA

WT

PN

10

40KA

WT

10-2

20=

4026

858

155

155

48.3

2.6

0.7

0.2

0.05

7.7

I

50KA

WT

10-2

20=

4026

074

168

168

60.3

2.9

1.2

0.2

0.09

8.2

I

65KA

WT

10-2

20=

4030

694

186

186

76.1

2.9

2.5

0.4

0.19

9.9

I

80KA

WT

10-2

20=

4029

810

520

020

088

.93.

23.

50.

50.

2510

.6I

100

KAW

T 10

-2*

±20

=40

330

136

250

250

114.

33.

617

1.6

0.6

19.8

II

125

KAW

T 10

-2*

±19

.5=

39

360

158

274

274

139.

74

132.

20.

823

.6II

150

KAW

T 10

-2*

±17

=34

38

018

630

830

816

8.3

4.5

213.

61.

137

.6II

200

KAW

T 10

-2*

±13

=26

495

259

382

382

219.

16.

311

39

2.6

94II

250

KAW

T 10

-2*

±11

.5=

23

495

313

440

440

273

6.3

107

134

109

II

300

KAW

T 10

-2*

±10

=20

555

364

500

500

323.

98

174

185.

517

1II

350

KAW

T 10

-2*

±9.

7=19

.446

539

554

054

035

5.6

5.6

193

185.

690

IIKA

WT

10-3

15.1

=30

.249

039

554

054

035

5.6

5.6

105

186.

493

II

400

KAW

T 10

-2*

±8.

8=17

.646

544

759

059

040

6.4

6.3

275

247.

311

9II

KAW

T 10

-3*

±13

.7=

27.4

490

447

590

590

406.

46.

314

924

8.3

123

II

450

KAW

T 10

-2*

±8=

1646

549

964

064

045

7.2

6.3

381

329.

814

2II

KAW

T 10

-3*

±12

.6=

25.2

495

499

640

640

457.

26.

320

430

10.7

146

II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

222

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Heigth

Width

Outside ∅

Thickness

Angularreactionforce

Weight*without innersleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

110

)Ex

ecut

ion

ll (p

age

110)

Flan

geW

eld

ends

Bend

ing

mom

ent

Bello

ws

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 222

Page 224: e BOA Expansion Joints Guide 29.3

223

500

KAW

T 10

-2*

±7.

3=14

.646

554

969

069

050

86.

350

539

11.9

167

IIKA

WT

10-3

11.6

=23

.249

554

969

069

050

86.

327

239

13.9

172

II

600

KAW

T 10

-2*

±6.

6=13

.250

565

183

083

061

06.

383

771

1724

7II

KAW

T 10

-3*

±10

=20

540

651

830

830

610

6.3

447

7120

.225

4II

700

KAW

T 10

-2*

±5.

8=11

.653

575

495

695

671

17.

112

9610

723

373

IIKA

WT

10-3

8.8=

17.6

575

754

956

956

711

7.1

691

107

27.9

381

II

800

KAW

T 10

-2*

±2.

8=5.

646

589

711

0411

0481

38

2579

143

20.7

538

IIKA

WT

10-3

6.3=

12.6

640

897

1104

1104

813

811

0514

349

.859

6II

900

KAW

T 10

-2*

±2.

5=5

485

999

1230

1230

914

837

3521

526

730

IIKA

WT

10-3

5.6=

11.2

660

999

1230

1230

914

816

0521

562

.473

5II

1000

KAW

T 10

-2*

±2.

5=5

500

1092

1348

1348

1016

1050

5526

135

.497

8II

KAW

T 10

-3*

±5.

1=10

.264

010

9713

4813

4810

1610

2182

262

7197

2II

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 223

Page 225: e BOA Expansion Joints Guide 29.3

BO

A T

ype

KA

WT

PN

16

40KA

WT

16-1

20=

4024

658

155

155

48.3

2.6

0.9

0.2

0.04

7.7

I

50KA

WT

16-1

20=

4025

674

168

168

60.3

2.9

1.6

0.2

0.07

8.3

I

65KA

WT

16-1

20=

4030

694

186

186

76.1

2.9

2.5

0.4

0.19

9.9

I

80KA

WT

16-1

20=

4029

810

520

020

088

.93.

23.

50.

50.

2510

.6I

100

KAW

T 16

-1*

±18

.5=

3733

213

625

025

011

4.3

3.6

171.

60.

620

.2II

125

KAW

T 16

-1*

±19

.5=

3936

015

827

427

413

9.7

413

2.2

0.8

23.6

II

150

KAW

T 16

-1*

±17

=34

380

186

308

308

168.

34.

521

3.6

1.1

37.6

II

200

KAW

T 16

-1*

±13

=26

495

259

382

382

219.

16.

364

92.

694

II

250

KAW

T 16

-1*

±11

.5=

2349

531

344

044

027

36.

310

713

410

9II

300

KAW

T 16

-2*

±10

=20

555

364

500

500

323.

98

174

185.

517

1II

350

KAW

T 16

-1*

±9.

7=19

.448

539

554

054

035

5.6

5.6

193

185.

611

5II

KAW

T 16

-2*

±15

.3=

30.6

525

395

540

540

355.

65.

616

018

6.8

125

II

400

KAW

T 16

-1*

±8.

8=17

.648

544

762

062

040

6.4

6.3

275

317.

316

8II

KAW

T 16

-3*

±13

.8=

27.6

530

447

620

620

406.

46.

322

630

918

0II

450

KAW

T 16

-1*

±7=

1448

549

967

567

545

7.2

6.3

670

419.

821

1II

KAW

T 16

-2*

±12

.6=

25.2

530

499

675

675

457.

26.

330

938

11.4

222

II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

224

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Heigth

Width

Outside ∅

Thickness

Angularreactionforce

Weight*without innersleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

110

)Ex

ecut

ion

ll (p

age

110)

Flan

geW

eld

ends

Bend

ing

mom

ent

Bello

ws

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 224

Page 226: e BOA Expansion Joints Guide 29.3

225

500

KAW

T 16

-1*

±6.

4=12

.850

554

972

572

550

86.

388

950

11.9

250

IIKA

WT

16-2

10.5

=21

550

549

725

725

508

6.3

411

5014

.826

1II

600

KAW

T 16

-1*

±5.

5=11

525

651

870

870

610

6.3

1490

7917

393

IIKA

WT

16-2

10.1

=20

.257

565

187

087

061

06.

367

679

21.6

404

II

700

KAW

T 16

-2*

±4.

9=9.

857

575

499

699

671

17.

122

6412

823

581

IIKA

WT

16-3

8.9=

17.8

625

754

996

996

711

7.1

1045

128

29.2

599

II

800

KAW

T 16

-2*

±4.

6=9.

269

090

411

4411

4481

38

3585

172

51.7

889

IIKA

WT

16-3

7.1=

14.2

700

903

1144

1144

813

818

6417

253

.289

7II

900

KAW

T 16

-2*

±4.

3=8.

673

010

0712

6412

6491

410

4954

289

64.9

1234

IIKA

WT

16-3

6.5=

1374

010

0712

6412

6491

410

2545

288

66.8

1245

II

1000

KAW

T 16

-2*

±4=

870

511

1414

0014

0010

1610

6103

355

65.6

1583

IIKA

WT

16-3

5.7=

11.4

710

1108

1400

1400

1016

1034

8735

266

.315

92II

B =

with

out

inne

r sl

eeve

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 225

Page 227: e BOA Expansion Joints Guide 29.3

226

BO

A T

ype

KA

WT

PN

25

40KA

WT

25-1

20=

4026

057

155

155

48.3

2.6

1.3

0.2

0.04

7.7

I

50KA

WT

25-1

20=

4026

074

168

168

60.3

2.9

2.7

0.2

0.09

8.4

I

65KA

WT

25-1

20=

4030

894

186

186

76.1

2.9

5.9

0.4

0.19

10.1

I

80KA

WT

25-1

20=

4032

010

420

020

088

.93.

27

0.5

0.28

11.6

I

100

KAW

T 25

-1*

±18

.5=

3733

213

625

025

011

4.3

3.6

171.

60.

620

.2II

125

KAW

T 25

-1*

±16

.5=

3336

215

828

028

013

9.7

426

2.2

0.8

36II

150

KAW

T 25

-1*

±14

=28

362

186

308

308

168.

34.

542

3.6

1.1

38.3

II

200

KAW

T 25

-2*

±11

=22

495

259

382

382

219.

16.

311

39

2.6

95II

250

KAW

T 25

-2*

±9.

5=19

555

313

448

448

273

6.3

188

194

154

II

300

KAW

T 25

-2*

±8=

1651

536

452

552

532

3.9

830

420

5.5

136

II

350

KAW

T 25

-1*

±6.

3=12

.648

539

556

556

535

5.6

5.6

788

235.

616

6II

KAW

T 25

-2*

±10

=20

525

395

565

565

355.

65.

639

023

6.2

153

II

400

KAW

T 25

-1*

±5.

5=11

515

447

620

620

406.

46.

311

1131

7.3

214

IIKA

WT

25-2

9.1=

18.2

535

447

620

620

406.

46.

355

530

822

0II

450

KAW

T 25

-1*

±5=

1053

549

970

070

045

7.2

6.3

1537

439.

226

0II

KAW

T 25

-3*

±8.

3=16

.353

049

970

070

045

7.2

6.3

762

4310

.430

5II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Heigth

Width

Outside ∅

Thickness

Angularreactionforce

Weight*without innersleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

110

)Ex

ecut

ion

ll (p

age

110)

Flan

geW

eld

ends

Bend

ing

mom

ent

Bello

ws

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 226

Page 228: e BOA Expansion Joints Guide 29.3

227

500

KAW

T 25

-1*

±4.

7=9.

454

554

976

576

550

86.

320

5556

11.9

373

IIKA

WT

25-3

7.7=

15.4

570

549

765

765

508

6.3

1015

5613

.538

2II

600

KAW

T 25

-1*

±3.

9=7.

859

565

189

089

061

06.

334

0095

1757

3II

KAW

T 25

-3*

±6.

6=13

.262

065

189

089

061

06.

316

8095

19.3

581

II

700

KAW

T 25

-2*

±3.

6=7.

264

575

410

3010

3071

17.

152

0517

123

885

IIKA

WT

25-3

5.8=

11.6

670

754

1030

1030

711

7.1

2608

171

26.1

897

II

800

KAW

T 25

-2*

±3.

5=7

640

907

1196

1196

813

857

5222

923

.313

49II

KAW

T 25

-3*

±7.

1=14

.278

590

211

9611

9681

38

2892

228

55.3

1366

II

900

KAW

T 25

-2*

±3.

1=6.

276

010

1013

1613

1691

414

.280

4835

929

.218

88II

KAW

T 25

-3*

±6.

4=12

.885

510

0513

1613

1691

414

.239

3535

869

.518

75II

1000

KAW

T 25

-2*

±2.

5=5

810

1107

1450

1450

1016

1612

311

437

30.4

2454

IIKA

WT

25-3

5.6=

11.2

840

1107

1450

1450

1016

1653

5143

771

2434

II

B =

with

out

inne

r sl

eeve

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:53 Uhr Seite 227

Page 229: e BOA Expansion Joints Guide 29.3

228

BO

A T

ype

KA

WT

PN

40

40KA

WT

40-1

20=

4024

457

155

155

48.3

2.6

1.6

0.2

0.03

7.7

I

50KA

WT

40-1

20=

4025

674

168

168

60.3

2.9

3.3

0.2

0.07

8.5

I

65KA

WT

40-1

19=

3831

093

186

186

76.1

2.9

7.1

0.4

0.16

10.5

I

80KA

WT

40-1

17=

3433

010

419

419

488

.93.

29.

70.

50.

2114

.5II

100

KAW

T 40

-1*

±16

.5=

3336

813

525

025

011

4.3

3.6

191.

80.

428

.4II

125

KAW

T 40

-1*

±15

=30

368

157

280

280

139.

74

272.

40.

637

.2II

150

KAW

T 40

-1*

±13

=26

498

185

308

308

168.

34.

543

4.4

0.9

65II

200

KAW

T 40

-2*

±8.

5=17

555

258

398

398

219.

16.

325

712

2.6

137

II

250

KAW

T 40

-2*

±9=

1852

031

248

048

027

36.

337

814

4.3

136

II

300

KAW

T 40

-2*

±7.

5=15

540

362

525

525

323.

98

613

196

165

II

350

KAW

T 40

-1*

±3.

6=7.

243

539

559

559

535

5.6

8.8

1634

262.

822

6II

KAW

T 40

-2*

±8.

3=16

.653

039

559

559

535

5.6

8.8

680

266.

324

5II

400

KAW

T 40

-2*

±3.

3=6.

645

544

766

066

040

6.4

1023

4233

3.7

303

IIKA

WT

40-3

7.6=

15.2

570

447

660

660

406.

410

976

338.

232

7II

450

KAW

T 40

-1*

±3=

648

549

973

573

545

7.2

1132

3051

4.7

428

IIKA

WT

40-3

6.9=

13.8

600

499

735

735

457.

211

1346

5110

.344

8II

TLda

HB

des

CaCr

Cbm

°m

mm

mm

mm

mm

mm

mNm

/°Nm

/bar

Nm/b

ar°

kg

DNTy

pe

Angular move-ment at 1000full load cycles

Total length

Outside ∅

Heigth

Width

Outside ∅

Thickness

Angularreactionforce

Weight*without innersleeve

Execution

Spring rate�30%

Frictionmoment

Exec

utio

n l (

page

110

)Ex

ecut

ion

ll (p

age

110)

Flan

geW

eld

ends

Bend

ing

mom

ent

Bello

ws

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 228

Page 230: e BOA Expansion Joints Guide 29.3

500

KAW

T 40

-2*

±2.

7=5.

450

554

980

080

050

812

.543

2167

6.1

549

IIKA

WT

40-3

6.3=

12.6

605

549

800

800

508

12.5

1800

6713

.956

9II

600

KAW

T 40

-2*

±2.

4=4.

864

565

195

295

261

015

7150

127

8.7

938

IIKA

WT

40-3

5.5=

1170

565

195

295

261

015

2980

127

22.1

960

II

700

KAW

T 40

-2*

±2.

1=4.

274

575

410

7210

7271

118

1109

021

411

.814

28II

KAW

T 40

-3*

±4.

8=9.

676

575

410

7210

7271

118

4620

214

26.7

1414

II

800

KAW

T 40

-2*

±3.

1=6.

284

590

712

4812

4881

320

1304

128

325

.521

42II

KAW

T 40

-3*

±6.

1=12

.292

589

912

4812

4881

320

6725

281

59.4

2148

II

900

KAW

T 40

-2*

±2.

8=5.

686

510

1014

1614

1691

422

1778

242

732

3090

IIKA

WT

40-3

5.5=

1196

510

0214

1614

1691

422

9266

424

74.7

3050

II

1000

KAW

T 40

-2*

±2.

4=4.

891

011

1115

5015

5010

1625

2420

052

332

.841

06II

KAW

T 40

-3*

±5.

2=10

.494

011

0915

5015

5010

1625

1088

352

278

.240

69II

B =

with

out

inne

r sl

eeve

*= o

ptio

nally

with

/with

out

inne

r sl

eeve

229

29.3_UK_Kap_06T08-KAWT.qxp:Kap_6_08_KAWT_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 229

Page 231: e BOA Expansion Joints Guide 29.3

40UF

S 6-

11±

30

= 6

49

= 9

827

814

171

69.8

130

1410

04

1487

.07.

627

3.3

IUF

S 6-

20±

30

= 6

114

= 2

2842

829

171

69.8

130

1410

04

1487

.02.

227

4.0

II

50UF

S 6-

11±

32

= 6

44

= 8

827

814

171

82.8

140

1411

04

1410

2.0

12.5

393.

9I

UFS

6-20

± 3

2 =

64

± 1

06 =

212

438

301

7182

.814

014

110

414

102.

03.

139

4.8

II

65UF

S 6-

11±

35

= 7

37

= 7

427

814

171

105.

016

014

130

414

110.

022

.066

4.8

IUF

S 6-

20±

35

= 7

100

= 2

0046

833

171

105.

016

014

130

414

110.

04.

366

6.1

II

80UF

S 6-

11±

38

= 7

37

= 7

427

814

171

117.

419

016

150

418

73.0

18.6

846.

9I

UFS

6-20

± 3

8 =

76

± 1

00 =

200

468

331

7111

7.4

190

1615

04

1873

.03.

684

8.6

II

100

UFS

6-11

± 4

2 =

84

± 3

3 =

66

280

141

7114

3.2

210

1617

04

1810

8.0

41.0

127

8.7

IUF

S 6-

20±

42

= 8

100

= 2

0051

037

171

143.

221

016

170

418

108.

06.

412

711

.6II

125

UFS

6-11

± 4

8 =

96

± 3

0 =

60

276

138

6817

0.8

240

1820

08

1865

.038

.018

410

.4I

UFS

6-20

± 4

8 =

96

± 7

8 =

156

446

308

6817

0.8

240

1820

08

1865

.08.

118

413

.2II

150

UFS

6-11

± 3

8 =

76

± 3

5 =

70

366

221

6120

0.8

265

2022

58

1811

4.0

41.0

262

13.0

IUF

S 6-

20±

38

= 7

76

= 1

5257

643

161

200.

826

520

225

818

114.

011

.026

219

.1II

200

UFS

6-11

± 4

6 =

92

± 2

5 =

50

336

181

7125

6.0

320

2228

08

1814

7.0

130.

043

420

.1I

UFS

6-20

± 4

6 =

92

± 7

7 =

154

606

451

7125

6.0

320

2228

08

1814

7.0

20.0

434

28.2

II

250

UFS

6-11

± 3

9 =

78

± 2

2 =

44

356

211

5131

1.0

375

2433

512

1813

2.0

133.

066

023

.8I

BO

A T

ype

UFS

PN

6

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Outside ∅

Hole ∅

Number ofholes

Bolt circle ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

DNTy

pe

TLBm

AIda

Db

kn

dCx

CyA

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/m

mcm

2kg

230

Exec

utio

n l (

page

111

)Ex

ecut

ion

ll (p

age

111)

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 230

Page 232: e BOA Expansion Joints Guide 29.3

231

UFS

6-20

± 3

9 =

78

± 5

3 =

106

616

471

5131

1.0

375

2433

512

1813

2.0

29.0

660

36.6

II

300

UFS

6-11

± 4

2 =

84

± 2

0 =

40

364

216

5639

3.6

440

2439

512

2216

2.0

217.

091

132

.9I

UFS

6-20

± 4

2 =

84

± 5

1 =

102

654

506

5636

3.6

440

2439

512

2216

2.0

37.0

911

51.2

II

350

UFS

6-11

± 5

5 =

110

± 3

5 =

70

496

301

101

397.

249

026

445

1222

144.

510

7.8

1093

48.0

IIUF

S 6-

20±

75

= 1

50±

75

= 1

5068

245

813

240

0.8

490

2644

512

2216

0.8

53.2

1093

63.0

II

400

UFS

6-11

± 5

5 =

110

± 2

8 =

56

476

275

105

449.

254

028

495

1622

143.

716

4.1

1421

57.0

IIUF

S 6-

20±

65

= 1

30±

50

= 1

0061

841

410

845

2.0

540

2849

516

2215

9.5

83.3

1421

80.0

II

450

UFS

6-11

± 6

0 =

120

± 2

5 =

50

740

267

107

503.

659

528

550

1622

147.

922

4.6

1806

65.0

IIUF

S 6-

20±

70

= 1

40±

50

= 1

0065

244

511

150

6.4

595

2855

016

2216

4.7

94.6

1806

92.0

II

500

UFS

6-11

± 6

0 =

120

± 2

2.5

= 4

546

025

011

055

5.2

645

3060

020

2214

8.0

310.

622

0475

.0II

UFS

6-20

± 7

0 =

140

± 5

0 =

100

686

472

114

558.

064

530

600

2022

165.

510

3.5

2204

107.

0II

600

UFS

6-11

± 4

5 =

90

± 1

8 =

36

506

312

9266

0.0

755

3070

520

2636

1.2

718.

231

3397

.0II

UFS

6-20

± 7

5 =

150

± 5

0 =

100

728

510

118

662.

075

530

705

2026

166.

212

6.5

3133

144.

0II

700

UFS

6-10

± 8

0 =

160

± 2

5 =

50

530

305

127

765.

286

024

810

2426

215.

659

7.5

4222

133.

0II

UFS

6-20

± 8

0 =

160

± 5

0 =

100

772

547

127

765.

286

024

810

2426

215.

619

2.8

4222

167.

0II

800

UFS

6-10

± 7

0 =

140

± 2

5 =

50

576

379

9987

0.0

975

2492

024

3021

0.9

508.

155

1916

6.0

IIUF

S 6-

20±

70

= 1

40±

50

= 1

0088

668

999

870.

097

524

920

2430

210.

915

6.0

5519

216.

0II

900

UFS

6-10

± 7

0 =

140

± 2

5 =

50

604

401

101

973.

010

7526

1020

2430

214.

057

8.0

6915

197.

0II

UFS

6-20

± 7

0 =

140

± 5

0 =

100

936

733

101

973.

010

7526

1020

2430

214.

017

6.0

6915

257.

0II

1000

UFS

6-10

± 7

5 =

150

± 2

5 =

50

642

436

104

1077

.011

7526

1120

2830

215.

460

9.3

8539

223.

0II

UFS

6-20

± 7

5 =

150

± 5

0 =

100

982

776

104

1077

.011

7526

1120

2830

215.

419

4.6

8539

291.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 231

Page 233: e BOA Expansion Joints Guide 29.3

40UF

S 16

-11

± 2

2 =

44

± 3

6 =

72

278

141

7170

.015

016

110

418

184.

016

.127

4.8

IUF

S 16

-20

± 2

2 =

44

± 8

5 =

170

428

291

7170

.015

016

110

418

184.

04.

127

5.4

II

50UF

S 16

-11

± 2

6 =

52

± 3

5 =

70

278

141

7183

.816

518

125

418

173.

022

.039

6.5

IUF

S 16

-20

± 2

6 =

52

± 8

5 =

170

438

301

7183

.816

518

125

418

173.

05.

139

7.4

II

65UF

S 16

-11

± 3

0 =

60

± 3

2 =

64

278

141

7110

7.0

185

1814

54

1816

5.0

35.0

667.

8I

UFS

16-2

30

= 6

86

= 1

7246

833

171

107.

018

518

145

418

165.

07.

266

9.1

II

80UF

S 16

-11

± 3

4 =

68

± 3

2 =

64

278

141

7111

9.6

200

2016

08

1816

6.0

44.0

8410

.0I

UFS

16-2

34

= 6

87

= 1

7446

833

171

119.

620

020

160

818

166.

09.

084

11.7

II

100

UFS

16-1

35

= 7

27

= 5

428

214

171

145.

422

022

180

818

158.

065

.012

712

.2I

UFS

16-2

35

= 7

76

= 1

5248

234

171

145.

422

022

180

818

158.

011

.712

714

.8II

125

UFS

10-1

43

= 8

27

= 5

428

414

474

172.

025

024

210

818

132.

071

.018

415

.5I

UFS

10-2

43

= 8

76

= 1

5249

435

474

172.

025

024

210

818

132.

013

.018

418

.8II

150

UFS

10-1

38

= 7

35

= 7

036

622

969

200.

828

524

240

822

114.

041

.026

217

.8I

UFS

10-2

38

= 7

76

= 1

5257

643

969

200.

828

524

240

822

114.

011

.026

223

.9II

200

UFS

10-1

46

= 9

25

= 5

033

817

060

256.

034

026

295

822

147.

013

0.0

434

26.0

IUF

S 10

-20

± 4

6 =

92

± 7

3 =

146

608

440

6025

6.0

340

2629

58

2214

7.0

20.0

434

34.1

II

250

UFS

10-1

39

= 7

22

= 4

436

022

464

311.

039

528

350

1222

132.

013

3.0

660

31.3

I

BO

A T

ype

UFS

PN

10

DNTy

pe

TLBm

AIda

Db

kn

dCx

Cy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

232

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Outside ∅

Hole ∅

Number ofholes

Bolt circle ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

111

)Ex

ecut

ion

ll (p

age

111)

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 232

Page 234: e BOA Expansion Joints Guide 29.3

233

UFS

10-2

39

= 7

53

= 1

0662

048

464

311.

039

528

350

1222

132.

029

.066

044

.1II

300

UFS

10-1

42

= 8

20

= 4

036

822

767

363.

644

528

400

1222

162.

021

7.0

911

37.8

IUF

S 10

-20

± 4

2 =

84

± 5

2 =

104

658

527

7736

3.6

445

2840

012

2216

2.0

44.0

911

56.1

II

350

UFS

10-1

55

= 1

10±

33

= 6

650

029

510

539

8.0

505

3046

016

2218

1.9

141.

111

0362

.0II

UFS

10-2

60

= 1

20±

75

= 1

5075

253

911

340

1.6

505

3046

016

2222

6.6

55.2

1103

89.0

II

400

UFS

10-1

60

= 1

20±

28

= 5

649

027

211

245

0.8

565

3251

516

2621

8.4

252.

914

2080

.0II

UFS

10-2

65

= 1

30±

50

= 1

0064

642

611

645

2.6

565

3251

516

2624

0.8

119.

114

2010

3.0

II

450

UFS

10-1

60

= 1

20±

25

= 5

048

426

511

550

5.2

615

3256

520

2622

4.7

345.

617

9788

.0II

UFS

10-2

65

= 1

30±

50

= 1

0066

644

311

950

6.6

615

3256

520

2625

4.3

147.

417

9711

4.0

II

500

UFS

10-1

55

= 1

10±

22.

5 =

45

510

305

9555

7.6

670

3462

020

2633

0.0

484.

222

0210

8.0

IIUF

S 10

-20

± 7

5 =

150

± 5

0 =

100

710

472

130

560.

267

034

620

2026

323.

920

3.4

2202

143.

0II

600

UFS

10-1

45

= 9

18

= 3

652

431

010

066

2.0

780

3672

520

3054

8.9

1105

.631

4114

1.0

IIUF

S 10

-20

± 7

5 =

150

± 5

0 =

100

738

512

134

663.

278

036

725

2030

342.

829

9.0

3141

193.

0II

700

UFS

10-1

90

= 1

80±

25

= 5

049

827

910

976

7.2

895

3084

024

3023

9.8

804.

642

4318

7.0

IIUF

S 10

-20

± 9

0 =

180

± 5

0 =

100

718

499

109

767.

289

530

840

2430

239.

825

9.8

4243

217.

0II

800

UFS

10-1

100

= 2

00±

25

= 5

051

428

911

187

1.2

1015

3295

024

3324

5.5

991.

755

1123

5.0

IIUF

S 10

-20

± 1

00 =

200

± 5

0 =

100

744

519

111

871.

210

1532

950

2433

245.

531

8.2

5511

272.

0II

900

UFS

10-1

105

= 2

10±

25

= 5

053

029

811

497

5.2

1115

3410

5028

3323

7.0

1131

.069

1527

6.0

IIUF

S 10

-20

± 1

05 =

210

± 5

0 =

100

766

534

114

975.

211

1534

1050

2833

237.

036

4.0

6915

329.

0II

1000

UFS

10-1

105

= 2

10±

25

= 5

056

232

811

610

78.2

1230

3411

6028

3624

9.0

1217

.185

3633

5.0

IIUF

S 10

-20

± 1

05 =

210

± 5

0 =

100

818

584

116

1078

.212

3034

1160

2836

249.

039

5.1

8536

398.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 233

Page 235: e BOA Expansion Joints Guide 29.3

40UF

S 16

-11

± 2

2 =

44

± 3

6 =

72

278

141

7170

.015

016

110

418

184.

016

.127

4.8

IUF

S 16

-20

± 2

2 =

44

± 8

5 =

170

428

291

7170

.015

016

110

418

184.

04.

127

5.4

II

50UF

S 16

-11

± 2

6 =

52

± 3

5 =

70

278

141

7183

.816

518

125

418

173.

022

.039

6.5

IUF

S 16

-20

± 2

6 =

52

± 8

5 =

170

438

301

7183

.816

518

125

418

173.

05.

139

7.4

II

65UF

S 16

-11

± 3

0 =

60

± 3

2 =

64

278

141

7110

7.0

185

1814

54

1816

5.0

35.0

667.

8I

UFS

16-2

30

= 6

86

= 1

7246

833

171

107.

018

518

145

418

165.

07.

266

9.1

II

80UF

S 16

-11

± 3

4 =

68

± 3

2 =

64

278

141

7111

9.6

200

2016

08

1816

6.0

44.0

8410

.0I

UFS

16-2

34

= 6

87

= 1

7446

833

171

119.

620

020

160

818

166.

09.

084

11.7

II

100

UFS

16-1

35

= 7

27

= 5

428

214

171

145.

522

022

180

818

158.

065

.012

712

.2I

UFS

16-2

35

= 7

76

= 1

5248

234

171

145.

522

022

180

818

158.

011

.712

714

.8II

125

UFS

16-1

41

= 8

26

= 5

229

214

474

173.

225

024

210

818

173.

095

.018

416

.6I

UFS

16-2

41

= 8

76

= 1

5250

235

474

173.

225

024

210

818

173.

017

.018

419

.9II

150

UFS

16-1

36

= 7

31

= 6

236

220

969

203.

028

524

240

822

186.

071

.026

219

.7I

UFS

16-2

36

= 7

59

= 1

1851

235

969

203.

028

524

240

822

186.

025

.026

224

.4II

200

UFS

16-1

33

= 6

23

= 4

636

821

760

257.

834

026

295

1222

285.

018

3.0

434

27.5

IUF

S 16

-20

± 3

3 =

66

± 5

2 =

104

588

437

6025

7.8

340

2629

512

2228

5.0

44.0

434

35.5

II

250

UFS

16-1

37

= 7

21

= 4

239

622

464

315.

240

532

355

1226

332.

030

2.0

660

45.1

I

BO

A T

ype

UFS

PN

16

DNTy

pe

TLBm

AIda

Db

kn

dCx

CyA

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/m

mcm

2kg

234

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Outside ∅

Hole ∅

Number ofholes

Bolt circle ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

111

)Ex

ecut

ion

ll (p

age

111)

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 234

Page 236: e BOA Expansion Joints Guide 29.3

235

UFS

16-2

37

= 7

52

= 1

0465

648

464

315.

240

532

355

1226

332.

065

.066

057

.8II

300

UFS

16-1

40

= 8

18.

5 =

37

392

217

6736

7.2

460

3241

012

2633

6.0

452.

091

154

.4I

UFS

16-2

40

= 8

52

= 1

0469

051

767

367.

246

032

410

1226

336.

078

.091

172

.5II

350

UFS

16-1

45

= 9

33

= 6

652

233

090

401.

652

036

470

1626

283.

318

4.1

1094

83.0

IIUF

S 16

-20

± 5

0 =

100

± 5

0 =

100

650

457

9140

2.4

520

3647

016

2632

6.0

110.

710

9410

4.0

II

400

UFS

16-1

50

= 1

00±

30

= 6

051

831

696

454.

458

038

525

1630

325.

529

6.5

1420

105.

0II

UFS

16-2

50

= 1

00±

50

= 1

0070

050

094

454.

458

038

525

1630

325.

511

9.1

1420

130.

0II

450

UFS

16-1

50

= 1

00±

27.

5 =

55

534

320

100

508.

264

042

585

2030

414.

046

0.5

1801

133.

0II

UFS

16-2

55

= 1

10±

50

= 1

0072

851

896

508.

264

042

585

2030

335.

914

4.8

1801

158.

0II

500

UFS

16-1

55

= 1

10±

20

= 4

050

825

513

556

1.0

715

4465

020

3356

0.4

1145

.721

9517

3.0

IIUF

S 16

-20

± 6

0 =

120

± 5

0 =

100

750

530

102

561.

271

544

650

2033

381.

819

3.0

2195

201.

0II

600

UFS

16-1

60

= 1

20±

16.

5 =

33

516

245

145

665.

084

048

770

2036

671.

420

79.2

3141

246.

0II

UFS

16-2

60

= 1

20±

50

= 1

0082

259

110

566

5.2

840

4877

020

3638

3.2

221.

031

4130

4.0

II

700

UFS

16-1

65

= 1

30±

25

= 5

058

235

811

276

7.4

910

3684

024

3648

5.3

1005

.842

2923

6.0

IIUF

S 16

-20

± 6

5 =

130

± 5

0 =

100

872

648

112

767.

491

036

840

2436

485.

331

3.7

4229

286.

0II

800

UFS

16-1

70

= 1

40±

25

= 5

060

837

411

887

2.8

1025

3895

024

3953

1.9

1313

.355

1929

6.0

IIUF

S 16

-20

± 7

0 =

140

± 5

0 =

100

912

678

118

872.

810

2538

950

2439

531.

940

8.5

5519

356.

0II

900

UFS

16-1

75

= 1

540

± 2

5 =

50

634

394

120

976.

811

2540

1050

2839

512.

014

28.0

6910

335.

0II

UFS

16-2

75

= 1

50±

50

= 1

0094

870

812

097

6.8

1125

4010

5028

3951

2.0

452.

069

1040

5.0

II

1000

UFS

16-1

80

= 1

60±

25

= 5

066

441

412

610

80.6

1255

4211

7028

4259

1.6

1847

.085

3643

2.0

IIUF

S 16

-20

± 8

0 =

160

± 5

0 =

100

1004

754

126

1080

.612

5542

1170

2842

591.

656

8.6

8536

516.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 235

Page 237: e BOA Expansion Joints Guide 29.3

40UF

S 25

-11

± 1

6 =

32

± 5

0 =

100

368

239

5969

150

1811

04

1823

28

275.

0I

UFS

25-2

16

= 3

79

= 1

5848

835

959

6915

018

110

418

232

427

5.9

II

50UF

S 25

-11

± 1

8 =

36

± 4

6 =

92

362

236

5683

165

2012

54

1823

111

396.

8I

UFS

25-2

18

= 3

75

= 1

5048

235

656

8316

520

125

418

231

539

7.9

II

65UF

S 25

-11

± 2

3 =

46

± 4

6 =

92

386

244

6410

618

524

145

818

232

1866

10.0

IUF

S 25

-20

± 2

3 =

46

± 7

5 =

150

506

364

6410

618

524

145

818

232

866

11.5

II

80UF

S 25

-11

± 2

3 =

46

± 4

0 =

80

366

232

5211

8.5

200

2616

08

1818

220

8411

.5I

UFS

25-2

23

= 4

75

= 1

5953

640

252

118.

520

026

160

818

182

784

13.6

II

100

UFS

25-1

27

= 5

35

= 7

036

422

161

145

235

2619

08

2222

040

127

15.7

IUF

S 25

-20

± 2

7 =

54

± 5

6 =

112

474

331

6114

523

526

190

822

220

2012

718

.0II

125

UFS

25-1

33

= 6

36

= 7

238

623

070

174

270

2822

08

2624

259

184

22.0

IUF

S 25

-20

± 3

3 =

66

± 5

8 =

116

506

350

7017

427

028

220

826

242

2518

424

.3II

150

UFS

25-1

35

= 7

29

= 5

839

021

878

205

300

3025

08

2628

811

026

229

.0I

UFS

25-2

35

= 7

53

= 1

0654

036

878

205

300

3025

08

2628

840

262

32.6

II

200

UFS

25-1

32

= 6

22

= 4

437

221

757

258

360

3231

012

2628

518

243

437

.3I

UFS

25-2

32

= 6

50

= 1

0059

243

757

258

360

3231

012

2628

544

434

47.3

II

BO

A T

ype

UFS

PN

25

DNTy

pe

TLBm

AIda

Db

kn

dCx

Cy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

236

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Outside ∅

Hole ∅

Number ofholes

Bolt circle ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

111

)Ex

ecut

ion

ll (p

age

111)

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 236

Page 238: e BOA Expansion Joints Guide 29.3

237

250

UFS

25-1

36

= 7

20

= 4

040

422

464

315

425

3637

012

3033

230

266

055

.3I

UFS

25-2

36

= 7

50

= 1

0066

448

464

315

425

3637

012

3033

265

660

69.4

II

300

UFS

25-1

38

= 7

18

= 3

639

621

767

368

485

4043

016

3033

645

291

173

.0I

UFS

25-2

38

= 7

50

= 1

0069

651

767

368

485

4043

016

3033

678

911

93.8

II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T09-UFS.qxp:Kap_6_09_UFS_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 237

Page 239: e BOA Expansion Joints Guide 29.3

40UF

B6-1

20

= 4

48

= 9

625

817

545

68.0

6813

014

100

414

452.

427

2.9

IUF

B6-1

20

= 4

125

= 2

5049

841

545

68.0

6813

014

100

414

450.

427

3.0

I

50UF

B6-1

21

= 4

48

= 9

627

019

141

80.0

8114

014

110

414

422.

739

3.2

IUF

B6-1

21

= 4

120

= 2

4052

044

141

80.0

8114

014

110

414

420.

539

3.4

I

65UF

B6-1

24

= 4

48

= 9

629

221

737

104.

010

516

014

130

414

381

3.4

664.

0I

UFB6

-12

± 2

4 =

48

± 1

10 =

220

532

457

3710

4.0

105

160

1413

04

1438

0.8

664.

2I

80UF

B6-1

27

= 5

46

= 9

229

521

340

116.

012

019

016

150

418

343.

884

6.5

IUF

B6-1

27

= 5

100

= 2

0050

242

040

116.

012

019

016

150

418

341.

084

6.7

I

100

UFB6

-11

± 3

3 =

66

± 2

4 =

48

216

122

5213

8.0

142

210

1617

04

1844

21.0

127

7.5

IUF

B6-1

33

= 6

48

= 9

631

622

252

138.

014

221

016

170

418

447.

012

77.

6I

UFB6

-13

± 3

3 =

66

± 8

5 =

170

466

372

5213

8.0

142

240

1820

08

1844

2.5

127

7.9

I

125

UFB6

-11

± 3

4 =

68

± 2

5 =

50

246

150

5016

8.5

174

240

1820

08

1847

23.0

184

10.1

IUF

B6-1

34

= 6

48

= 9

635

526

050

168.

517

424

018

200

818

478.

018

410

.3I

UFB6

-13

± 3

4 =

68

± 8

0 =

160

496

400

5016

8.5

174

240

1820

08

1847

3.4

184

10.7

I

150

UFB6

-11

± 4

5 =

90

± 2

8 =

56

286

145

6519

5.0

196

265

2022

58

1857

39.0

262

13.6

IUF

B6-1

45

= 9

48

= 9

638

124

065

195.

019

626

520

225

818

5715

.026

214

.0I

UFB6

-13

± 4

5 =

90

± 7

5 =

150

496

325

6519

5.0

196

265

2022

58

1857

7.0

262

14.5

I

200

UFB6

-11

± 4

1 =

82

± 2

3 =

46

310

163

6825

2.0

254

320

2228

08

1872

67.0

434

19.2

I

BO

A T

ype

UFB

PN

6

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Bolt circle ∅

Hole ∅

Number ofholes

Outside ∅

Raised face ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

DNTy

pe

TLBm

AIda

gD

bk

nd

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

238

Exec

utio

n l (

page

112)

Exec

utio

n ll

(pag

e 11

2)

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 238

Page 240: e BOA Expansion Joints Guide 29.3

239

UFB6

-12

± 4

1 =

82

± 4

5 =

90

450

303

6825

2.0

254

320

2228

08

1872

21.0

434

19.8

IUF

B6-2

41

= 8

75

= 1

5063

448

868

252.

025

432

022

280

818

728.

043

431

.5II

250

UFB6

-11

± 5

0 =

100

± 2

5 =

50

354

190

8030

6.5

308

375

2433

512

1810

210

5.0

660

28.1

IUF

B6-1

50

= 1

00±

42

= 8

446

430

080

306.

530

837

524

335

1218

102

45.0

660

28.9

IUF

B6-2

50

= 1

00±

75

= 1

5066

450

080

306.

530

837

524

335

1218

102

17.0

660

41.2

II

300

UFB6

-11

± 5

2 =

104

± 2

2 =

44

371

192

8735

8.5

361

440

2439

512

2210

415

1.0

911

36.9

IUF

B6-1

52

= 1

04±

33

= 6

644

626

787

358.

536

144

024

395

1222

104

78.0

911

37.6

IUF

B6-2

52

= 1

04±

75

= 1

5073

655

787

358.

536

244

024

395

1222

104

19.0

911

59.1

II

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 239

Page 241: e BOA Expansion Joints Guide 29.3

40UF

B16-

11±

16

= 3

50

= 1

0031

623

242

69.0

6815

016

110

418

127

5.0

274.

8I

UFB1

6-12

± 1

6 =

32

± 1

10 =

220

576

492

4269

.068

150

1611

04

1812

71.

027

5.0

I

50UF

B16-

11±

17

= 3

50

= 1

0034

426

136

82.0

8116

518

125

418

120

4.5

396.

3I

UFB1

6-12

± 1

7 =

34

± 1

00 =

200

590

506

3682

.081

165

1812

54

1812

01.

239

6.6

I

65UF

B16-

11±

20

= 4

25

= 5

023

414

838

104.

010

518

518

145

418

113

21.0

667.

2I

UFB1

6-12

± 2

0 =

40

± 5

0 =

100

360

276

3810

4.0

105

185

1814

54

1811

37.

066

7.6

IUF

B16-

13±

20

= 4

85

= 1

7054

445

838

104.

010

518

518

145

418

113

2.5

667.

9I

80UF

B16-

11±

24

= 4

24

= 4

823

413

646

117.

512

020

020

160

818

119

33.0

849.

4I

UFB1

6-12

± 2

4 =

48

± 5

0 =

100

364

266

4611

7.5

120

200

2016

08

1811

99.

084

9.9

IUF

B16-

13±

24

= 4

85

= 1

7052

442

646

117.

512

020

020

160

818

119

4.0

8410

.3I

100

UFB1

6-11

± 2

9 =

58

± 2

8 =

56

264

158

4814

1.0

144

220

2218

08

1812

639

.012

712

.4I

UFB1

6-12

± 2

9 =

58

± 5

0 =

100

372

268

4814

1.0

144

220

2218

08

1812

614

.012

712

.9I

UFB1

6-13

± 2

9 =

58

± 7

5 =

150

492

388

4814

1.0

144

220

2218

08

1812

67.

012

713

.4I

125

UFB1

6-11

± 3

2 =

64

± 2

5 =

50

298

164

7417

0.0

174

250

2421

08

1819

780

.018

416

.8I

UFB1

6-12

± 3

2 =

64

± 5

0 =

100

438

304

7417

0.0

174

250

2421

08

1819

725

.018

417

.6I

UFB1

6-20

± 3

2 =

64

± 7

5 =

150

558

424

7417

0.0

174

250

2421

08

1819

713

.018

421

.3II

150

UFB1

6-11

± 3

3 =

66

± 2

5 =

50

306

173

7319

5.0

200

285

2424

08

2219

898

.026

221

.1I

UFB1

6-12

± 3

3 =

66

± 5

0 =

100

456

323

7319

5.0

200

285

2424

08

2219

830

.026

222

.2I

BO

A T

ype

UFB

PN

10

DNTy

pe

TLBm

AIda

gD

bk

nd

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

240

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Bolt circle ∅

Hole ∅

Number ofholes

Outside ∅

Raised face ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

112)

Exec

utio

n ll

(pag

e 11

2)

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 240

Page 242: e BOA Expansion Joints Guide 29.3

241

UFB1

6-20

± 3

3 =

66

± 7

5 =

150

606

473

7319

5.0

200

285

2424

08

2219

815

.026

228

.8II

200

UFB1

0-11

± 4

0 =

80

± 2

3 =

46

310

177

7225

1.5

254

340

2629

58

2212

398

.043

427

.9I

UFB1

0-12

± 4

0 =

80

± 4

0 =

80

414

282

7225

1.5

254

340

2629

58

2212

341

.043

428

.8I

UFB1

0-20

± 4

0 =

80

± 7

5 =

150

654

522

7225

1.5

254

340

2629

58

2212

313

.043

438

.2II

250

UFB1

0-11

± 4

8 =

96

± 2

3 =

46

354

182

8430

6.0

308

395

2835

012

2214

716

3.0

660

39.1

IUF

B10-

12±

48

= 9

40

= 8

046

629

484

306.

030

839

528

350

1222

147

67.0

660

40.3

IUF

B10-

20±

48

= 9

75

= 1

5070

853

484

306.

031

039

528

350

1222

147

21.0

660

53.5

II

300

UFB1

0-11

± 4

3 =

86

± 2

2 =

44

378

211

7136

0.0

361

445

2840

012

2216

319

6.0

911

45.0

IUF

B10-

12±

43

= 8

35

= 7

049

032

171

360.

036

144

528

400

1222

163

88.0

911

46.5

IUF

B10-

20±

51

= 1

02±

75

= 1

5078

059

191

358.

036

144

528

400

1222

150

24.0

911

67.1

II

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 241

Page 243: e BOA Expansion Joints Guide 29.3

40UF

B16-

11±

16

= 3

50

= 1

0031

623

242

69.0

6815

016

110

418

127

5.0

274.

8I

UFB1

6-12

± 1

6 =

32

± 1

10 =

220

576

492

4269

.068

150

1611

04

1812

71.

027

5.0

I

50UF

B16-

11±

17

= 3

50

= 1

0034

426

136

82.0

8116

518

125

418

120

4.5

396.

3I

UFB1

6-12

± 1

7 =

34

± 1

00 =

200

590

506

3682

.081

165

1812

54

1812

01.

239

6.6

I

65UF

B16-

11±

20

= 4

25

= 5

023

414

838

104.

010

518

518

145

418

113

21.0

667.

2I

UFB1

6-12

± 2

0 =

40

± 5

0 =

100

360

276

3810

4.0

105

185

1814

54

1811

37.

066

7.6

IUF

B16-

13±

20

= 4

85

= 1

7054

445

838

104.

010

518

518

145

418

113

2.5

667.

9I

80UF

B16-

11±

24

= 4

24

= 4

823

413

646

117.

512

020

020

160

818

119

33.0

849.

4I

UFB1

6-12

± 2

4 =

48

± 5

0 =

100

364

266

4611

7.5

120

200

2016

08

1811

99.

084

9.9

IUF

B16-

13±

24

= 4

85

= 1

7052

442

646

117.

512

020

020

160

818

119

4.0

8410

.3I

100

UFB1

6-11

± 2

9 =

58

± 2

8 =

56

264

158

4814

1.0

144

220

2218

08

1812

639

.012

712

.4I

UFB1

6-12

± 2

9 =

58

± 5

0 =

100

372

268

4814

1.0

144

220

2218

08

1812

614

.012

712

.9I

UFB1

6-13

± 2

9 =

58

± 7

5 =

150

492

388

4814

1.0

144

220

2218

08

1812

67.

012

713

.4I

125

UFB1

6-11

± 3

2 =

64

± 2

5 =

50

298

164

7417

0.0

174

250

2421

08

1819

780

.018

416

.8I

UFB1

6-12

± 3

2 =

64

± 5

0 =

100

438

304

7417

0.0

174

250

2421

08

1819

725

.018

417

.6I

UFB1

6-20

± 3

2 =

64

± 7

5 =

150

558

424

7417

0.0

174

250

2421

08

1819

713

.018

421

.3II

150

UFB1

6-11

± 3

3 =

66

± 2

5 =

50

306

173

7319

5.0

200

285

2424

08

2219

898

.026

221

.1I

UFB1

6-12

± 3

3 =

66

± 5

0 =

100

456

323

7319

5.0

200

285

2424

08

2219

830

.026

222

.2I

BO

A T

ype

UFB

PN

16

DNTy

pe

TLBm

AIda

gD

bk

nd

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

242

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Bolt circle ∅

Hole ∅

Number ofholes

Outside ∅

Raised face ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

112)

Exec

utio

n ll

(pag

e 11

2)

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 242

Page 244: e BOA Expansion Joints Guide 29.3

243

UFB1

6-20

± 3

3 =

66

± 7

5 =

150

606

473

7319

5.0

200

285

2424

08

2219

815

.026

228

.8II

200

UFB1

6-11

± 4

1 =

82

± 2

5 =

50

326

180

8025

3.0

254

340

2629

512

2220

816

0.0

434

30.9

IUF

B16-

12±

33

= 6

40

= 8

046

033

363

253.

025

434

026

295

1222

260

64.0

434

31.7

IUF

B16-

20±

41

= 8

75

= 1

5064

450

080

253.

025

434

026

295

1222

208

23.0

434

40.4

II

250

UFB1

6-11

± 4

1 =

82

± 2

2 =

44

340

191

7130

9.5

308

405

3235

512

2625

026

1.0

660

49.7

IUF

B16-

12±

41

= 8

33

= 6

642

027

171

309.

530

840

532

355

1226

250

135.

066

051

.1I

UFB1

6-20

± 4

8 =

96

± 7

5 =

150

692

522

9230

8.0

308

405

3235

512

2622

434

.066

064

.4II

300

UFB1

6-11

± 4

2 =

84

± 2

5 =

50

408

250

8036

1.0

363

460

3241

012

2633

429

0.0

911

63.0

IUF

B16-

12±

53

= 1

06±

50

= 1

0057

239

210

236

1.0

363

460

3241

012

2626

896

.091

175

.6II

UFB1

6-20

± 5

3 =

106

± 7

5 =

150

752

572

102

361.

036

346

032

410

1226

268

46.0

911

83.9

II

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 243

Page 245: e BOA Expansion Joints Guide 29.3

40UF

B25-

11±

12

= 2

25

= 5

023

215

333

69.0

6815

018

110

418

159

1227

5.1

IUF

B25-

12±

12

= 2

50

= 1

0036

228

333

69.0

6815

018

110

418

159

427

5.3

IUF

B25-

13±

12

= 2

90

= 1

8056

248

333

69.0

6815

018

110

418

159

227

5.5

I

50UF

B25-

11±

15

= 3

24

= 4

823

314

338

82.0

8116

520

125

418

162

1939

6.9

IUF

B25-

12±

15

= 3

48

= 9

634

825

838

82.0

8116

520

125

418

162

739

7.1

IUF

B25-

13±

15

= 3

90

= 1

8054

845

838

82.0

8116

520

125

418

162

239

7.5

I

65UF

B25-

11±

20

= 4

24

= 4

824

414

044

105.

010

518

524

145

818

192

4166

9.9

IUF

B25-

12±

20

= 4

48

= 9

637

927

444

105.

010

518

524

145

818

192

1166

10.4

IUF

B25-

13±

20

= 4

85

= 1

7056

846

444

105.

010

518

524

145

818

192

466

11.0

I

80UF

B25-

11±

24

= 4

24

= 4

825

614

151

118.

512

020

026

160

818

182

4884

12.7

IUF

B25-

12±

24

= 4

50

= 1

0038

627

151

118.

512

020

026

160

818

182

1484

13.2

IUF

B25-

13±

24

= 4

85

= 1

7055

644

151

118.

512

020

026

160

818

182

684

13.9

I

100

UFB2

5-11

± 2

3 =

46

± 2

4 =

48

285

173

4814

1.0

142

235

2619

08

2223

858

127

16.9

IUF

B25-

12±

23

= 4

48

= 9

643

031

848

141.

014

223

526

190

822

238

1912

717

.5I

UFB2

5-13

± 2

3 =

46

± 7

0 =

140

550

438

4814

1.0

142

235

2619

08

2223

811

127

18.0

I

125

UFB2

5-11

± 2

7 =

54

± 2

4 =

48

304

178

5817

1.0

174

270

2822

08

2631

010

818

423

.4I

UFB2

5-12

± 2

7 =

54

± 5

0 =

100

480

351

6117

1.0

174

270

2822

08

2631

029

184

24.6

IUF

B25-

20±

27

= 5

75

= 1

5063

050

359

171.

017

427

028

220

826

310

1518

428

.8II

BO

A T

ype

UFB

PN

25

DNTy

pe

TLBm

AIda

gD

bk

nd

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

244

Bello

ws

Flan

geSp

ring

rate

�30

%

Axial move-ment at 1000full load cycles

Lateral move-ment at 1000full load cycles

Total length

Center-to-centerdistance of thebellows

Active length

Outside ∅

Bolt circle ∅

Hole ∅

Number ofholes

Outside ∅

Raised face ∅

Thickness

Axial

Lateral

Effective areaof bellows

Weight

Execution

Exec

utio

n l (

page

112)

Exec

utio

n ll

(pag

e 11

2)

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 244

Page 246: e BOA Expansion Joints Guide 29.3

245

150

UFB2

5-11

± 3

5 =

70

± 2

4 =

48

325

171

8019

7.0

200

300

3025

08

2630

315

426

230

.9I

UFB2

5-12

± 3

5 =

70

± 4

8 =

96

458

304

8019

7.0

200

300

3025

08

2630

353

262

32.2

IUF

B25-

20±

35

= 7

75

= 1

5061

846

480

197.

020

030

030

250

826

303

2326

238

.3II

200

UFB2

5-11

± 3

5 =

70

± 2

4 =

48

359

213

6825

5.0

254

360

3231

012

2637

020

443

444

.5I

UFB2

5-12

± 3

5 =

70

± 4

0 =

80

474

328

6825

5.0

254

360

3231

012

2637

093

434

46.3

IUF

B25-

20±

35

= 7

75

= 1

5075

859

585

254.

025

436

032

310

1226

408

3243

460

.5II

250

UFB2

5-11

± 4

2 =

84

± 2

3 =

46

402

212

102

310.

030

842

536

370

1230

516

429

660

69.6

IUF

B25-

12±

40

= 8

50

= 1

0062

243

898

309.

030

842

536

370

1230

439

9366

079

.8II

UFB2

5-20

± 4

0 =

80

± 7

5 =

150

812

628

9830

9.0

308

425

3637

012

3043

946

660

88.1

II

300

UFB2

5-11

± 4

5 =

90

± 2

4 =

48

459

254

109

362.

036

348

540

430

1630

524

413

911

98.7

IIUF

B25-

12±

45

= 9

48

= 9

666

449

910

936

2.0

363

485

4043

016

3052

414

091

111

0.7

IIUF

B25-

20±

45

= 9

75

= 1

5086

465

910

936

2.0

363

485

4043

016

3052

469

911

122.

4II

29.3_UK_Kap_06T10-UFB.qxp:Kap_6_10_UFB_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 245

Page 247: e BOA Expansion Joints Guide 29.3

246

40UW

6-1

30

= 6

49

= 9

842

614

171

69.8

48.3

2.9

87.3

7.6

271.

9I

UW 6

-20

± 3

0 =

60

± 1

14 =

228

576

291

7169

.848

.32.

987

.32.

227

2.5

II

50UW

6-1

32

= 6

44

= 8

842

614

171

82.8

60.3

3.2

102.

112

.539

2.3

IUW

6-2

32

= 6

106

= 2

1258

630

171

82.8

60.3

3.2

102.

13.

139

2.9

II

65UW

6-1

35

= 7

37

= 7

442

614

171

105.

076

.13.

210

9.6

22.2

663.

0I

UW 6

-20

± 3

5 =

70

± 1

00 =

200

616

331

7110

5.0

76.1

3.2

109.

64.

366

4.3

II

80UW

6-1

38

= 7

37

= 7

442

614

171

117.

488

.93.

673

.218

.683

3.5

IUW

6-2

38

= 7

100

= 2

0061

633

171

117.

488

.93.

673

.23.

683

5.3

II

100

UW 6

-11

± 4

2 =

84

± 3

3 =

66

488

141

7114

3.2

114.

34.

010

7.5

40.6

126

5.8

IUW

6-2

42

= 8

100

= 2

0071

837

171

143.

211

4.3

4.0

107.

56.

412

68.

3II

125

UW 6

-11

± 4

8 =

96

± 3

0 =

60

482

138

6817

1.0

139.

74.

064

.538

.318

36.

4I

UW 6

-20

± 4

8 =

96

± 7

8 =

156

652

308

6817

1.0

139.

74.

064

.58.

118

39.

2II

150

UW 1

0-11

± 3

8 =

76

± 3

5 =

70

566

221

6120

1.0

168.

34.

511

4.0

41.0

260

8.4

IUW

10-

20±

38

= 7

76

= 1

5277

643

161

201.

016

8.3

4.5

114.

011

.026

014

.4II

200

UW 1

0-11

± 4

6 =

92

± 2

5 =

50

432

181

7125

6.0

219.

14.

514

7.0

130.

043

010

.6I

UW 1

0-20

± 4

6 =

92

± 7

3 =

146

702

451

7125

6.0

219.

14.

514

7.0

20.0

430

18.7

II

250

UW 1

0-11

± 3

9 =

78

± 2

2 =

44

442

211

5131

1.0

273.

05.

013

2.0

133.

066

011

.3I

BO

A T

ype

UW

PN

6

Bello

ws

Wel

d en

dsSp

ring

rate

�30

%Axial movementat 1000 full load cycles

Lateral movement at 1000 full load cycles

Total length

Center-to-center distanceof the bellows

Active length

Outside ∅

Outside ∅

Thickness

Axial

Lateral

Effective area of bellows

Weight

Execution

DNTy

pe

TLBm

AIda

des

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

Exec

utio

n l (

page

113

)Ex

ecut

ion

ll (p

age

113)

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 246

Page 248: e BOA Expansion Joints Guide 29.3

247

UW 1

0-20

± 3

9 =

78

± 5

3 =

106

702

471

5131

1.0

273.

05.

013

2.0

29.0

660

23.4

II

300

UW 1

0-11

± 4

2 =

84

± 2

0 =

40

452

216

5636

4.0

323.

95.

616

2.0

217.

091

015

.7I

UW 1

0-20

± 4

2 =

84

± 5

2 =

104

742

506

5636

4.0

323.

95.

616

2.0

44.0

910

33.7

II

350

UW 6

-11

± 5

5 =

110

± 3

5 =

70

584

301

101

397.

235

5.6

5.6

144.

510

7.8

1103

21.0

IUW

6-2

75

= 1

50±

75

= 1

5077

245

813

240

0.8

355.

65.

616

0.8

53.2

1103

36.0

II

400

UW 6

-11

± 5

5 =

110

± 2

8 =

56

562

275

105

449.

240

6.4

6.3

143.

716

4.1

1420

26.0

IUW

6-2

65

= 1

30±

50

= 1

0070

441

410

845

2.0

406.

46.

315

9.5

83.3

1420

49.0

II

450

UW 6

-11

± 6

0 =

120

± 2

5 =

50

556

267

107

503.

645

7.0

6.3

147.

922

4.6

1797

29.0

IUW

6-2

70

= 1

40±

50

= 1

0073

844

511

150

6.4

457.

06.

316

4.7

94.6

1797

56.0

II

500

UW 6

-11

± 6

0 =

120

± 2

2,5

= 4

554

125

011

055

5.2

508.

06.

314

8.0

310.

622

0232

.0I

UW 6

-20

± 7

0 =

140

± 5

0 =

100

767

472

114

558.

050

8.0

6.3

165.

510

3.5

2202

64.0

II

600

UW 6

-11

± 4

5 =

90

± 1

8 =

36

587

312

9266

0.0

611.

46.

336

1.2

718.

231

4148

.0I

UW 6

-20

± 7

5 =

150

± 5

0 =

100

810

510

118

662.

061

1.4

6.3

166.

212

6.5

3141

94.0

II

700

UW 6

-10

± 8

0 =

160

± 2

5 =

50

613

305

127

765.

271

3.0

8.0

215.

659

7.5

4243

90.0

IIUW

6-2

80

= 1

60±

50

= 1

0085

554

712

776

5.2

713.

08.

021

5.6

192.

842

4312

4.0

II

800

UW 6

-10

± 7

0 =

140

± 2

5 =

50

659

379

9987

0.0

814.

68.

021

0.9

508.

155

1111

2.0

IIUW

6-2

70

= 1

40±

50

= 1

0096

968

999

870.

081

4.6

8.0

210.

915

6.0

5511

161.

0II

900

UW 6

-10

± 7

0 =

140

± 2

5 =

50

684

401

101

973.

091

5.8

8.0

214.

057

8.0

6915

130.

0II

UW 6

-20

± 7

0 =

140

± 5

0 =

100

1016

733

101

973.

091

5.8

8.0

214.

017

6.0

6915

190.

0II

1000

UW 6

-10

± 7

5 =

150

± 2

5 =

50

721

436

104

1077

.010

17.8

8.0

215.

460

9.3

8536

151.

0II

UW 6

-20

± 7

5 =

150

± 5

0 =

100

1061

776

104

1077

.010

17.8

8.0

215.

419

4.6

8536

219.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 247

Page 249: e BOA Expansion Joints Guide 29.3

248

40UW

16-

11±

22

= 4

36

= 7

242

614

171

70.0

48.3

2.9

184.

016

.127

2.1

IUW

16-

20±

22

= 4

85

= 1

7057

629

171

70.0

48.3

2.9

184.

04,

.127

2.8

II

50UW

16-

11±

26

= 5

35

= 7

042

614

171

84.0

60.3

3.2

173.

022

.039

2.6

IUW

16-

20±

26

= 5

85

= 1

7058

630

171

84.0

60.3

3.2

173.

05.

139

3.2

II

65UW

16-

11±

30

= 6

32

= 6

442

614

171

107.

076

.13.

216

5.0

35.0

663.

4I

UW 1

6-20

± 3

0 =

60

± 8

6 =

172

616

331

7110

7.0

76.1

3.2

165.

07.

266

4.7

II

80UW

16-

11±

34

= 6

32

= 6

442

614

171

120.

088

.93.

616

6.0

44.0

834.

2I

UW 1

6-20

± 3

4 =

68

± 8

7 =

174

616

331

7112

0.0

88.9

3.6

166.

09.

083

5.9

II

100

UW 1

6-11

± 3

5 =

70

± 2

7 =

54

488

141

7114

5.5

114.

34.

015

8.0

65.0

126

6.6

IUW

16-

20±

35

= 7

76

= 1

5268

834

171

145.

511

4.3

4.0

158.

011

.712

69.

2II

125

UW 1

0-11

± 4

3 =

86

± 2

7 =

54

486

140

7017

2.0

139.

74.

013

2.0

71.0

183

7.7

IUW

10-

20±

43

= 8

78

= 1

5669

635

070

172.

013

9.7

4.0

132.

013

.018

311

.0II

150

UW 1

0-11

± 3

8 =

76

± 3

5 =

70

566

221

6120

1.0

168.

34.

511

4.0

41.0

260

8.4

IUW

10-

20±

38

= 7

76

= 1

5277

643

161

201.

016

8.3

4.5

114.

011

.026

014

.4II

200

UW 1

0-11

± 4

6 =

92

± 2

5 =

50

432

181

7125

6.0

219.

14.

514

7.0

130.

043

010

.6I

UW 1

0-20

± 4

6 =

92

± 7

3 =

146

702

471

7125

6.0

219.

14.

514

7.0

20.0

430

18.7

II

250

UW 1

0-11

± 3

9 =

78

± 2

2 =

44

442

211

5131

1.0

273.

05.

013

2.0

133.

066

011

.3I

BO

A T

ype

UW

PN

10

TLBm

AIda

des

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

Bello

ws

Wel

d en

dsSp

ring

rate

�30

%Axial movementat 1000 full load cycles

Lateral movement at 1000 full load cycles

Total length

Center-to-center distanceof the bellows

Active length

Outside ∅

Outside ∅

Thickness

Axial

Lateral

Effective area of bellows

Weight

Execution

DNTy

pe

Exec

utio

n l (

page

113

)Ex

ecut

ion

ll (p

age

113)

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 248

Page 250: e BOA Expansion Joints Guide 29.3

249

UW 1

0-20

± 3

9 =

78

± 5

3 =

106

702

471

5131

1.0

273.

05.

013

2.0

29.0

660

23.4

II

300

UW 1

0-11

± 4

2 =

84

± 2

0 =

40

452

216

5636

4.0

323.

95.

616

2.0

217.

091

015

.7I

UW 1

0-20

± 4

2 =

84

± 5

2 =

104

742

506

5636

4.0

323.

95.

616

2.0

44.0

910

33.7

II

350

UW 1

0-11

± 5

5 =

110

± 3

3 =

66

578

295

105

398.

035

5.6

5.6

181.

914

1.1

1103

25.0

IUW

10-

20±

60

= 1

20±

75

= 1

5075

853

911

340

1.6

355.

65.

622

6.6

55.2

1103

52.0

II

400

UW 1

0-11

± 6

0 =

120

± 2

8 =

56

590

272

112

450.

840

6.4

6.3

218.

425

2.9

1420

33.0

IUW

10-

20±

65

= 1

30±

50

= 1

0077

042

611

645

2.6

406.

46.

324

0.8

119.

114

2056

.0II

450

UW 1

0-11

± 6

0 =

120

± 2

5 =

50

602

265

115

505.

245

7.0

6.3

224.

734

5.6

1797

38.0

IUW

10-

20±

65

= 1

30±

50

= 1

0078

244

311

950

6.6

457.

06.

325

4.3

147.

417

9764

.0II

500

UW 1

0-11

± 5

5 =

110

± 2

2,5

= 4

558

430

595

557.

650

8.0

6.3

330.

048

4.2

2202

46.0

IUW

10-

20±

75

= 1

50±

50

= 1

0076

447

213

056

0.2

508.

06.

332

3.9

203.

422

0281

.0II

600

UW 1

0-11

± 4

5 =

90

± 1

8 =

36

608

310

100

662.

061

1.4

8.0

548.

911

05.6

3141

62.0

IUW

10-

20±

75

= 1

50±

50

= 1

0078

851

213

466

3.2

611.

48.

034

2.8

559.

431

4111

8.0

II

700

UW 1

0-10

± 9

0 =

180

± 2

5 =

50

550

279

109

767.

271

1.2

8.0

239.

880

4.6

4243

104.

0II

UW 1

0-20

± 9

0 =

180

± 5

0 =

100

730

499

109

767.

271

1.2

8.0

239.

825

9.8

4243

129.

0II

800

UW 1

0-10

± 1

00 =

200

± 2

5 =

50

562

289

111

871.

281

2.8

8.0

245.

599

1.7

5511

127.

0II

UW 1

0-20

± 1

00 =

200

± 5

0 =

100

742

519

111

871.

281

2.8

8.0

245.

531

8.2

5511

155.

0II

900

UW 1

0-10

± 1

05 =

210

± 2

5 =

50

594

298

114

975.

291

4.0

10.0

236.

111

30.6

6915

155.

0II

UW 1

0-20

± 1

05 =

210

± 5

0 =

100

830

534

114

975.

291

4.0

10.0

236.

136

4.0

6915

208.

0II

1000

UW 1

0-10

± 1

05 =

210

± 2

5 =

50

556

328

116

1078

.210

16.0

10.0

249.

012

17.1

8536

159.

0II

UW 1

0-20

± 1

05 =

210

± 5

0 =

100

736

584

116

1078

.210

16.0

10.0

249.

039

5.1

8536

204.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 249

Page 251: e BOA Expansion Joints Guide 29.3

250

40UW

16-

11±

22

= 4

36

= 7

242

614

171

70.0

48.3

2.9

184.

016

.127

2.1

IUW

16-

20±

22

= 4

85

= 1

7057

629

171

70.0

48.3

2.9

184.

04,

.127

2.8

II

50UW

16-

11±

26

= 5

35

= 7

042

614

171

84.0

60.3

3.2

173.

022

.039

2.6

IUW

16-

20±

26

= 5

85

= 1

7058

630

171

84.0

60.3

3.2

173.

05.

139

3.2

II

65UW

16-

11±

30

= 6

32

= 6

442

614

171

107.

076

.13.

216

5.0

35.0

663.

4I

UW 1

6-20

± 3

0 =

60

± 8

6 =

172

616

331

7110

7.0

76.1

3.2

165.

07.

266

4.7

II

80UW

16-

11±

34

= 6

32

= 6

442

614

171

120.

088

.93.

616

6.0

44.0

834.

2I

UW 1

6-20

± 3

4 =

68

± 8

7 =

174

616

331

7112

0.0

88.9

3.6

166.

09.

083

5.9

II

100

UW 1

6-11

± 3

5 =

70

± 2

7 =

54

488

141

7114

5.5

114.

34.

015

8.0

65.0

126

6.6

IUW

16-

20±

35

= 7

76

= 1

5268

834

171

145.

511

4.3

4.0

158.

011

.712

69.

2II

125

UW 1

6-11

± 4

1 =

82

± 2

6 =

52

494

144

7417

3.0

139.

74.

017

3.0

95.0

183

8.9

IUW

16-

20±

41

= 8

76

= 1

5270

435

474

173.

013

9.7

4.0

173.

017

.018

312

.2II

150

UW 1

6-11

± 3

6 =

72

± 3

1 =

62

562

209

6920

3.0

168.

34.

518

6.0

110.

026

010

.7I

UW 1

6-20

± 3

6 =

72

± 5

9 =

118

712

359

6920

3.0

168.

34.

519

6.0

43.0

260

15.3

II

200

UW 1

6-11

± 3

3 =

66

± 2

3 =

46

454

217

5725

8.0

219.

14.

528

5.0

183.

043

013

.5I

UW 1

6-20

± 3

3 =

66

± 5

2 =

104

674

437

5725

8.0

219.

14.

528

5.0

44.0

430

21.5

II

250

UW 1

6-11

± 3

7 =

74

± 2

1 =

42

468

224

6431

5.0

273.

05.

033

2.0

302.

066

020

.0I

BO

A T

ype

UW

PN

16

TLBm

AIda

des

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

Bello

ws

Wel

d en

dsSp

ring

rate

�30

%Axial movementat 1000 full load cycles

Lateral movement at 1000 full load cycles

Total length

Center-to-center distanceof the bellows

Active length

Outside ∅

Outside ∅

Thickness

Axial

Lateral

Effective area of bellows

Weight

Execution

DNTy

pe

Exec

utio

n l (

page

113

)Ex

ecut

ion

ll (p

age

113)

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 250

Page 252: e BOA Expansion Joints Guide 29.3

251

UW 1

6-20

± 3

7 =

74

± 5

2 =

104

728

484

6431

5.0

273.

05.

033

2.0

65.0

660

32.5

II

300

UW 1

6-11

± 4

0 =

80

± 1

8,5

= 3

746

421

767

367.

032

3.9

5.6

336.

041

3.0

910

24.4

IUW

16-

20±

40

= 8

52

= 1

0476

451

767

367.

032

3.9

5.6

336.

078

.091

042

.5II

350

UW 1

6-11

± 4

5 =

90

± 3

3 =

66

602

330

9040

1.6

355.

65.

628

3.3

184.

110

9431

.0I

UW 1

6-20

± 5

0 =

100

± 5

0 =

100

731

457

9140

2.4

355.

65.

632

6.0

110.

710

9452

.0II

400

UW 1

6-11

± 5

0 =

100

± 3

0 =

60

594

316

9645

4.4

406.

46.

332

5.5

296.

514

2041

.0I

UW 1

6-20

± 5

0 =

100

± 5

0 =

100

776

500

9445

4.4

406.

46.

332

5.5

119.

114

2066

.0II

450

UW 1

6-11

± 5

0 =

100

± 2

7,5

= 5

560

232

010

050

8.2

457.

06.

341

4.0

460.

518

0150

.0I

UW 1

6-20

± 5

5 =

110

± 5

0 =

100

797

518

9650

8.2

457.

06.

333

5.9

144.

818

0175

.0II

500

UW 1

6-11

± 5

5 =

110

± 2

0 =

40

572

255

135

561.

050

8.0

6.3

560.

411

45.7

2195

60.0

IUW

16-

20±

60

= 1

20±

50

= 1

0081

453

010

256

1.2

508.

06.

338

1.8

193.

021

9588

.0II

600

UW 1

6-11

± 6

0 =

120

± 1

6,5

= 3

357

224

514

566

5.0

609.

68.

067

1.4

2079

.231

4187

.0I

UW 1

6-20

± 6

0 =

120

± 5

0 =

100

878

591

105

665.

260

9.6

8.0

383.

222

1.0

3141

145.

0II

700

UW 1

6-10

± 6

5 =

130

± 2

5 =

50

652

358

112

767.

471

3.6

10.0

485.

310

05.8

4229

138.

0II

UW 1

6-20

± 6

5 =

130

± 5

0 =

100

942

648

112

767.

471

3.6

10.0

485.

331

3.7

4229

188.

0II

800

UW 1

6-10

± 7

0 =

140

± 2

5 =

50

674

374

118

872.

881

5.2

10.0

531.

913

13.3

5519

167.

0II

UW 1

6-20

± 7

0 =

140

± 5

0 =

100

978

678

118

872.

881

5.2

10.0

531.

940

8.5

5519

227.

0II

900

UW 1

6-10

± 7

5 =

150

± 2

5 =

50

696

394

120

976.

891

4.0

10.0

512.

014

28.0

6910

192.

0II

UW 1

6-20

± 7

5 =

150

± 5

0 =

100

1010

708

120

976.

891

4.0

10.0

512.

045

2.0

6910

262.

0II

1000

UW 1

6-10

± 8

0 =

160

± 2

5 =

50

722

414

126

1080

.610

18.0

12.0

591.

618

47.0

8536

226.

0II

UW 1

6-20

± 8

0 =

160

± 5

0 =

100

1062

754

126

1080

.610

18.0

12.0

591.

656

8.6

8536

310.

0II

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 251

Page 253: e BOA Expansion Joints Guide 29.3

252

40UW

25-

11±

16

= 3

50

= 1

0051

223

959

69.0

48.3

2.9

232

827

2.1

lUW

25-

20±

16

= 3

79

= 1

5863

235

959

69.0

48.3

2.9

232

427

2.9

ll

50UW

25-

11±

18

= 3

46

= 9

250

623

656

83.0

60.3

3.2

231

1138

2.6

lUW

25-

20±

18

= 3

75

= 1

5062

635

656

83.0

60.3

3.2

231

538

3.2

ll

65UW

25-

11±

23

= 4

46

= 9

252

224

464

106.

076

.13.

223

218

653.

5l

UW 2

5-20

± 2

3 =

46

± 7

5 =

150

642

364

6410

6.0

76.1

3.2

232

865

5.0

ll

80UW

25-

11±

23

= 4

40

= 8

049

823

252

118.

588

.93.

618

220

834.

2l

UW 2

5-20

± 2

3 =

46

± 7

5 =

150

668

402

5211

8.5

88.9

3.6

182

783

5.9

ll

100

UW 2

5-11

± 2

7 =

54

± 3

5 =

70

558

221

6114

5.0

114.

34.

022

040

125

6.6

lUW

25-

20±

27

= 5

56

= 1

1266

833

161

145.

011

4.3

4.0

220

2012

59.

2ll

125

UW 2

5-11

± 3

3 =

66

± 3

6 =

72

576

230

7017

4.0

139.

74.

024

259

183

9.0

lUW

25-

20±

33

= 6

58

= 1

1669

635

070

174.

013

9.7

4.0

242

2518

312

.3ll

150

UW 2

5-11

± 3

5 =

70

± 2

9 =

58

580

218

7820

5.0

168.

34.

528

811

026

013

.6l

UW 2

5-20

± 3

5 =

70

± 5

3 =

106

730

368

7820

5.0

168.

34.

528

840

260

17.2

ll

200

UW 2

5-11

± 3

2 =

64

± 2

2 =

44

454

217

5725

8.0

219.

16.

328

518

243

015

.0l

UW 2

5-20

± 3

2 =

64

± 5

0 =

100

676

439

5725

8.0

219.

16.

328

544

430

25.6

ll

250

UW 2

5-11

± 3

6 =

72

± 2

0 =

40

468

224

6431

5.0

273.

06.

333

230

266

022

.0l

BO

A T

ype

UW

PN

25

TLBm

AIda

des

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

Bello

ws

Wel

d en

dsSp

ring

rate

�30

%Axial movementat 1000 full load cycles

Lateral movement at 1000 full load cycles

Total length

Center-to-center distanceof the bellows

Active length

Outside ∅

Outside ∅

Thickness

Axial

Lateral

Effective area of bellows

Weight

Execution

DNTy

pe

Exec

utio

n l (

page

113

)Ex

ecut

ion

ll (p

age

113)

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 252

Page 254: e BOA Expansion Joints Guide 29.3

253

UW 2

5-20

± 3

6 =

72

± 5

0 =

100

728

484

640.

227

3.0

6.3

332

6566

036

.1ll

300

UW 2

5-11

± 3

8 =

76

± 1

8 =

36

464

217

6736

7.0

323.

97.

133

645

291

026

.0l

UW 2

5-20

± 3

8 =

76

± 5

0 =

100

764

517

6736

7.0

323.

97.

133

678

910

46.8

ll

pre

ferr

ed s

erie

s

29.3_UK_Kap_06T11-UW.qxp:Kap_6_11_UW_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 253

Page 255: e BOA Expansion Joints Guide 29.3

254

BO

A T

ype

EX

FP

N2.

5

Mov

emen

t*Be

llow

sFl

ange

Sprin

g ra

te

�30

%

Axial

Lateral

Total length

Active length

Raised face ∅

Thickness

Hole ∅

Bolt circle ∅

Outside ∅

Clearance ∅

Outside ∅

Numberof holes

Axial

Lateral

Weight

DNTy

pe

TLAI

dadm

gD

bk

nd

CxCy

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/m

mkg

50±

40

= 8

32

= 6

422

016

179

.860

8014

014

110

414

246

3.1

65±

47

= 9

28

= 5

623

016

110

2.6

8010

416

014

130

414

2310

3.9

80±

49

= 9

28

= 5

624

016

711

6.0

9011

519

016

150

418

3115

.56.

0

100

± 5

0 =

100

± 2

2 =

44

240

167

140.

811

213

621

016

170

418

3226

6.8

125

± 5

6 =

112

± 2

1 =

42

240

163

169.

013

716

624

018

200

818

3036

8.9

150

± 5

9 =

118

± 1

8 =

36

240

159

200.

216

519

626

520

225

818

2951

10.9

175

± 5

9 =

118

± 1

5 =

30

235

150

228.

219

023

029

522

255

818

2971

14.7

200

± 5

9 =

118

± 1

4 =

28

245

160

253.

021

525

432

022

280

818

3295

15.6

250

± 6

0 =

120

± 1

1 =

22

240

151

309.

626

831

037

524

335

1218

3415

720

.4

300

EXF

± 5

9 =

118

± 9

= 1

822

514

236

0.2

218

362

440

1639

512

2234

254

19.1

350

± 6

0 =

120

± 8

,5 =

17

205

152

395.

235

040

049

016

445

1222

3830

624

.2

400

± 6

3 =

126

± 8

= 1

621

015

744

7.2

400

450

540

1649

516

2237

364

27.0

450

± 7

7 =

154

± 1

4 =

28

335

251

502.

045

350

059

516

550

1622

6130

534

.3

500

± 8

1 =

162

± 1

3,5

= 2

634

025

655

3.6

503

553

645

1660

020

2261

354

37.5

600

± 6

5 =

130

± 9

= 1

834

024

865

8.0

604

656

755

2070

520

2613

011

3357

.9

700

± 6

4 =

128

± 7

= 1

433

023

876

1.4

705

760

860

2081

024

2614

519

0267

.7

750

± 6

4 =

128

± 6

= 1

231

021

882

6.0

766

820

920

2086

524

3014

425

8477

.2

Exec

utio

n EX

F (p

age

116)

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 254

Page 256: e BOA Expansion Joints Guide 29.3

255

800

± 6

9 =

138

± 7

= 1

433

524

386

6.0

807

864

971

2092

024

3014

423

0480

.8

900

± 6

6 =

132

± 5

,5 =

11

315

223

969.

090

896

710

7120

1020

2430

161

3782

90.0

1000

± 7

0 =

140

± 5

,5 =

11

320

228

1073

.010

1010

7211

7120

1120

2830

162

4470

99.2

pre

ferr

ed s

erie

s*

Mov

emen

t ei

ther

axi

al o

r la

tera

l for

100

0 cy

cles

, at

20°

C

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 255

Page 257: e BOA Expansion Joints Guide 29.3

256

50EX

UF±

27

= 5

51

= 1

0228

517

352

79.8

6080

140

1411

04

1435

33.

165

± 3

5 =

70

± 1

07 =

214

460

331

5910

2.6

8010

416

014

130

414

302

4.5

80±

27

= 5

104

= 2

0857

544

654

116.

090

115

190

1615

04

1847

17.

0

100

± 3

8 =

76

± 1

13 =

226

565

431

6014

0.8

112

139

210

1617

04

1842

28.

012

46

= 9

100

= 2

0053

038

765

169.

013

716

624

018

200

818

363

10.0

150

± 5

0 =

100

± 8

6 =

172

520

368

7019

9.0

165

196

265

2022

58

1836

512

.017

54

= 1

08±

71

= 1

4249

033

074

226.

419

023

029

522

255

818

337

15.0

200

± 5

9 =

118

± 6

7 =

134

490

328

7625

3.0

215

254

320

2228

08

1833

917

.025

64

= 1

28±

58

= 1

1649

532

283

309.

026

831

037

524

335

1218

3213

22.0

300

EXUF

± 4

3 =

86

± 3

6 =

72

500

347

6936

2.0

318

362

440

1639

512

2294

4424

.035

47

= 9

35

= 7

047

034

472

396.

035

040

049

016

445

1222

8952

27.0

400

± 4

9 =

98

± 3

3 =

66

475

246

7544

8.0

400

450

540

1649

516

2289

6630

.045

51

= 1

02±

25

= 5

046

029

977

502.

045

350

059

516

550

1622

9211

535

.0

500

± 3

2 =

64

± 2

0 =

40

520

378

5855

4.0

503

553

645

1660

020

2223

823

138

.0

600

± 3

5 =

70

± 1

7 =

34

515

363

6165

8.0

604

656

755

2070

520

2623

835

758

.0

700

± 3

8 =

76

± 1

5 =

30

490

335

6376

2.0

705

760

860

2081

024

2624

257

068

.0

750

± 3

8 =

76

± 1

2 =

24

460

309

5982

4.0

766

820

920

2086

524

3024

078

575

.0

BO

A T

ype

EX

UF

PN

2.5

Mov

emen

t*Be

llow

sFl

ange

Sprin

g ra

te�

30%

Axial

Lateral

Total length

Center-to-center distanceof the bellows

Raised face ∅

Thickness

Hole ∅

Bolt circle ∅

Active length

Outside ∅

Clearance ∅

Outside ∅

Number of holes

Axial

Lateral

Weight

DNTy

pe

TLBm

Alda

dmg

Db

kn

dCx

Cym

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

m

mN/

mm

N/m

mkg

EXUF

Exec

utio

n EX

UF (p

age

116)

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 256

Page 258: e BOA Expansion Joints Guide 29.3

257

800

± 4

1 =

82

± 1

2 =

24

465

308

6586

6.0

807

864

971

2092

024

3024

086

781

.0

900

± 4

4 =

88

± 1

0 =

20

435

276

6796

9.0

908

967

1071

2010

2024

3024

213

5591

.0

1000

± 4

6 =

92

± 1

0 =

20

430

269

6910

73.0

1010

1072

1171

2011

2028

3024

317

7710

0.0

* M

ovem

ent

eith

er a

xial

or

late

ral f

or 1

000

cycl

es,

at 2

0°C

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 257

Page 259: e BOA Expansion Joints Guide 29.3

258

50EX

40

= 8

25

= 5

030

012

880

.050

542

2310

0.9

65±

47

= 9

23

= 4

630

013

410

2.5

6569

223

151.

080

± 4

9 =

98

± 2

3 =

46

300

134

116.

080

842

3124

1.2

100

± 5

0 =

100

± 1

8 =

36

300

134

141.

010

010

42

3239

1.7

125

± 5

6 =

112

± 1

8 =

36

300

146

169.

012

512

92

3046

2.0

150

± 5

9 =

118

± 1

6 =

32

300

144

200.

015

015

42

2964

2.4

175

± 5

9 =

118

± 1

3 =

26

300

140

228.

017

517

92

2988

2.7

200

± 5

9 =

118

± 1

2 =

24

300

142

253.

020

020

42

3212

13.

225

60

= 1

20±

10

= 2

030

013

630

9.5

250

254

234

201

4.1

300

± 5

9 =

118

± 8

= 1

630

013

036

3.0

300

304

234

316

4.8

350

± 6

0 =

120

± 7

,5 =

15

300

132

395.

035

035

63

3839

66.

7

400

± 6

3 =

126

± 7

= 1

430

013

644

7.0

400

406

337

475

7.6

450

± 7

7 =

154

± 1

4 =

28

420

252

502.

044

945

74

6130

513

.7

500

± 8

1 =

162

± 1

4 =

28

420

256

554.

050

050

84

6135

415

.3

600

± 6

5 =

130

± 9

= 1

842

024

865

8.0

602

610

413

011

3321

.0

700

± 6

4 =

128

± 7

= 1

442

023

876

1.5

703

711

414

519

0225

.0

750

± 6

4 =

128

± 6

= 1

242

021

882

4.0

750

758

414

425

7427

.5

BO

A T

ype

EX

WP

N2.

5

Mov

emen

t*Be

llow

sW

eld

end

Axial

Lateral

Total length

Active length

Thickness

Outside ∅

Clearance ∅

Outside ∅

Axial

Lateral

Weight

DNTy

pe

TLAI

dadm

des

CxCy

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

N/m

mkg

EXW

Exec

utio

n EX

W (p

age

117)

Sprin

g ra

te

�30

%

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 258

Page 260: e BOA Expansion Joints Guide 29.3

259

800

± 6

9 =

138

± 7

= 1

442

024

486

6.0

805

813

414

423

0428

.5

900

± 6

6 =

132

± 6

= 1

242

022

496

9.0

906

914

416

137

8232

.5

1000

± 7

0 =

140

± 5

= 1

042

022

810

73.0

1008

1016

416

244

7036

.0

pre

ferr

ed s

erie

s*

Mov

emen

t ei

ther

axi

al o

r la

tera

l for

100

0 cy

cles

, at

20°

C

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 259

Page 261: e BOA Expansion Joints Guide 29.3

260

50EX

UW±

27

= 5

51

= 1

0239

717

352

79.8

5054

235

31.

165

± 3

5 =

70

± 1

07 =

214

556

331

5910

2.6

6569

230

21.

880

± 3

9 =

78

± 1

41 =

282

667

434

6711

6.0

8084

239

12.

5

100

± 3

8 =

76

± 1

13 =

226

657

431

6014

0.8

100

104

242

22.

812

46

= 9

100

= 2

0060

638

765

169.

012

512

92

363

3.6

150

± 5

0 =

100

± 8

6 =

172

594

368

7019

9.0

150

154

236

54.

417

54

= 1

08±

71

= 1

4256

433

074

226.

417

517

92

337

5.8

200

± 5

9 =

118

± 6

7 =

134

562

328

7625

3.0

200

204

233

96.

325

64

= 1

28±

58

= 1

1656

932

283

309.

025

025

42

3213

8.3

300

± 4

3 =

86

± 3

6 =

72

586

347

6936

2.0

300

304

294

449.

035

47

= 9

35

= 7

058

434

472

396.

035

025

63

8952

11.2

400

± 4

9 =

98

± 3

3 =

66

585

346

7544

8.0

400

406

389

6612

.045

51

= 1

02±

25

= 5

054

429

977

502.

044

945

74

9211

512

.8

500

± 3

2 =

64

± 2

0 =

40

600

378

5855

4.0

500

508

423

823

114

.4

600

± 3

5 =

70

± 1

7 =

34

596

363

6165

8.0

602

610

423

835

718

.4

700

± 3

8 =

76

± 1

5 =

30

580

335

6376

2.0

703

711

424

257

021

.6

750

± 3

8 =

76

± 1

2 =

24

568

309

5982

4.0

750

758

424

078

523

.2

BO

A T

ype

EX

UW

PN

2.5

Mov

emen

t*Be

llow

sW

eld

end

Sprin

g ra

te�

30%

Axial

Lateral

Total length

Center-to-center distanceor the bellows

Active length

Clearance ∅

Thickness

Outside ∅

Outside ∅

Axial

Lateral

Weight

DNTy

pe

TLBm

AIda

dmde

sCx

Cym

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

kg

EXUW

Exec

utio

n EX

UW (p

age

117)

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 260

Page 262: e BOA Expansion Joints Guide 29.3

261

800

± 4

1 =

82

± 1

2 =

24

549

308

6586

6.0

805

813

424

086

729

.6

900

± 4

4 =

88

± 1

0 =

20

539

276

6796

9.0

906

914

424

213

5532

.8

1000

± 4

6 =

92

± 1

0 =

20

530

269

6910

73.0

1008

1016

424

317

7736

.0

* M

ovem

ent

eith

er a

xial

or

late

ral f

or 1

000

cycl

es,

at 2

0°C

29.3_UK_Kap_06T12-EXF.qxp:Kap_6_12_EXF_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 261

Page 263: e BOA Expansion Joints Guide 29.3

(pag

e 11

8)

262

1/2

"16

2545

250

190

3016

2335

110

4.5

0.6

3/4

"16

2545

250

190

3020

2743

120

7.5

0.9

1"16

2545

250

190

3025

3448

130

9.5

1.0

1 1/

4 "

1625

4525

019

030

3542

6214

018

.01.

51

1/2

"10

2545

260

190

3540

4868

200

21.0

1.9

2"10

2545

260

190

3553

6085

220

31.0

2.6

BO

A S

mal

l exp

ansi

on

join

t Ty

pe

Za

Movement at 5000full load cycles

Movement at 1000full load cycles

Total length

Dimensions

Diameter

Spring rate± 30%*

Effective area

Weight

DNPN

TLB

Cd

DE

CxA

mm

mm

mm

mm

mm

mm

mm

mm

mN/

25m

mcm

2kg

usua

lly a

vaila

ble

fro

m s

tock

*sp

ring

rate

for

25m

m o

f co

mp

ress

ion

29.3_UK_Kap_06T13-KlKo.qxp:Kap_6_13_Kleinko_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 262

Page 264: e BOA Expansion Joints Guide 29.3

263

1/2

"16

2524

037

4214

1614

04.

60.

53/

4 "

1625

230

4651

1520

160

7.5

0.7

1"16

2523

050

5717

2518

09.

80.

91

1/4

"16

2525

064

7320

3619

017

.81.

21

1/2

"10

2525

070

7920

4021

021

.41.

4

2"10

2527

087

9825

5123

035

.72.

1

BO

A S

mal

l exp

ansi

on

join

t Ty

pe

Ga

Movement(compression)

Total length

Jaw span

Dimensions

Spring rate± 30%*

Effective area

Weight

DNPN

TLSW

BC

dCx

Am

mm

mm

mm

mm

mm

mm

N/25

mm

cm2

kg

usua

lly a

vaila

ble

fro

m s

tock

*sp

ring

rate

for

25m

m o

f co

mp

ress

ion

(pag

e 11

9)

29.3_UK_Kap_06T13-KlKo.qxp:Kap_6_13_Kleinko_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 263

Page 265: e BOA Expansion Joints Guide 29.3

(pag

e 12

0)

264

1516

1816

419

852

1215

1836

524.

00.

5318

1618

168

206

5414

1821

4166

5.5

0.67

2216

1817

820

857

1722

2545

887.

40.

8128

1618

183

215

6020

2831

5410

011

.31.

24

3516

2529

022

565

2535

4070

110

17.2

1.93

4216

2530

523

471

2942

4780

170

25.3

2.45

BO

A S

mal

l exp

ansi

on

join

t Ty

pe

I

Movement(compression)

Total length

Dimensions

Diameter

Spring rate± 30%*

Effective area

Weight

DNPN

TLB

CF

dD

ECx

Am

mm

mm

mm

mm

mm

mm

mm

mm

N/25

mm

cm2

kg

usua

lly a

vaila

ble

fro

m s

tock

*sp

ring

rate

for

25m

m o

f co

mp

ress

ion

29.3_UK_Kap_06T13-KlKo.qxp:Kap_6_13_Kleinko_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 264

Page 266: e BOA Expansion Joints Guide 29.3

265

29.3_UK_Kap_06T13-KlKo.qxp:Kap_6_13_Kleinko_Tab_UK.qxp 30.10.2009 14:54 Uhr Seite 265

Page 267: e BOA Expansion Joints Guide 29.3

(pag

e 12

1)

266

BO

A A

xial

ste

el e

xpan

sio

n jo

int

Typ

e 71

79 0

0X M

S/M

EP

N16

Nominal axial movement capacity

Total length

Weight

Effective area

Axial spring rate

Outside ∅

Outside ∅

DN

Bl g

es∅

DM

S

ME

MS

M

Em

∅Da

Acx

mm

mm

mm

kgm

mcm

2N/

mm

1225

323

380.

635

6.4

4348

438

380.

835

6.4

2274

543

381.

134

6.0

24

1525

325

3

2838

4

00.

635

6.4

4348

440

4

4338

4

00.

835

6.4

2274

545

381.

134

6.0

24

1825

278

33

438

4

00.

635

6.4

4348

393

44

938

4

00.

835

6.4

2274

498

381.

134

6.0

24

2225

270

38

40

0.6

356.

443

4838

538

4

00.

835

6.4

2274

490

381.

134

6.0

24

2828

301

45

48.3

0.8

429.

489

5044

645

48

.31.

342

9.4

4472

486

45

48.3

1.4

419.

127

3528

334

56

57

1.2

5115

.084

5249

456

5

72.

051

15.0

4274

529

562.

251

14.7

37

Bello

ws

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 266

Page 268: e BOA Expansion Joints Guide 29.3

267

4229

342

62

63.

51.

558

19.5

9053

507

62

63.

52.

358

19.5

4575

592

62

63.

52.

857

19.1

40

5438

399

802.

474

31.8

9972

559

803.

674

31.8

5012

075

480

5.2

7430

.936

6544

486

101.

63.

994

52.4

133

8272

610

1.6

6.4

9452

.467

8046

508

114.

34.

710

567

.514

685

748

114.

37.

810

567

.573

120

888

114.

311

.210

465

.271

100

5759

514

48.

013

611

4.0

216

105

910

144

13.4

136

114.

010

816

011

4014

420

.413

511

0.0

87

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 267

Page 269: e BOA Expansion Joints Guide 29.3

268

61`

`28

± 8

.5±

0.6

514

883

0.6

9.5

4516

1 1/

4``

32±

8.5

± 0

.715

889

0.9

15.0

4221

1 1/

2``

33±

8.5

± 0

.717

095

1.2

19.5

4525

2``

41±

10.

0.8

201

114

1.8

32.0

6138

101/

2``

16±

4.5

± 0

.35

109

560.

35.

542

193/

4``

20±

6.0

± 0

.45

124

650.

46.

454

231`

`26

± 8

.0±

0.5

515

287

0.6

9.5

9832

1 1/

4``

28±

8.5

± 0

.65

167

980.

915

.083

341

1/2`

`29

± 8

.5±

0.6

579

104

1.2

19.5

8941

2``

37±

9.5

± 0

.75

207

120

1.9

32.0

105

59

61`

`28

± 8

.5±

0.6

514

683

0.7

9.5

4516

1 1/

4``

32±

8.5

± 0

.715

689

1.0

15.0

4221

1 1/

2``

33±

8.5

± 0

.716

895

1.4

19.5

4525

2``

41±

10.

0.8

199

114

2.1

32.0

6138

101/

2``

10±

3.0

± 0

.25

9445

0.2

2.6

5612

3/4`

`20

± 6

.0±

0.4

512

265

0.5

6.4

5423

1``

26±

8.0

± 0

.55

150

870.

79.

598

321

1/4`

`28

± 8

.5±

0.6

516

598

1.1

15.0

8334

1 1/

2``

29±

8.5

± 0

.65

177

104

1.4

19.5

8941

2``

37±

9.5

± 0

.75

205

120

2.1

32.0

105

59

BO

A A

xial

ste

el e

xpan

sio

n jo

int

Typ

e 71

60/7

162

00S

-TI/

RI

Nom

inal

mov

emen

t cap

acity

1)

Sprin

g ra

te2)

�axaxial

�lat lateral

Total length

Effectivearea

Weight

All-aroundvibration

Female thread(DIN 2999)

Installationlength bellows

Axialspringrate

Lateralspringrate

PNTy

peDN

BL g

esBL

mA

C xC y

mm

mm

mm

mm

mm

kgcm

2N/

mm

N/m

m

7160 00S-TI 7160 00S-RI

Type

716

0 (p

age

122)

Type

716

2 (p

age

123)

Bello

ws

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 268

Page 270: e BOA Expansion Joints Guide 29.3

269

101/

2``

16-

± 0

.35

119

660.

45.

537

.0-

3/4`

`20

0.4

512

970

0.5

6.4

48.0

-1`

`26

0.5

515

287

0.7

9.5

98.0

-1

1/4`

`28

0.6

516

798

1.0

15.0

83.0

-1

1/2`

`29

0.6

517

910

41.

519

.589

.0-

2``

37-

± 0

.75

207

120

2.4

32.0

105.

0-

101/

2``

10-

± 0

.25

9950

0.2

2.6

50.0

-3/

4``

20-

± 0

.45

127

700.

66.

448

.0-

1``

26-

± 0

.55

150

870.

89.

598

.0-

1 1/

4``

28-

± 0

.65

165

981.

215

.083

.0-

1 1/

2``

29-

± 0

.65

177

104

1.5

19.5

89.0

-2`

`37

0.7

520

512

02.

732

.010

5.0

-

1)Th

ese

valu

es a

re e

ither

axi

al,

or la

tera

l, or

as

vib

ratio

n2)

Div

erge

nce

±30

%

7162 00S-TI 7162 00S-RI

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 269

Page 271: e BOA Expansion Joints Guide 29.3

61`

`28

± 8

.5±

0.6

519

483

0.7

9.5

4516

1 1/

4``

32±

8.5

± 0

.720

889

1.1

15.0

4212

1 1/

2``

33±

8.5

± 0

.722

295

1.4

19.5

4525

2``

41±

10.

0.8

259

114

2.0

32.0

6138

103/

4``

20±

6.0

± 0

.45

166

650.

56.

454

231`

`26

± 8

.0±

0.5

519

887

0.7

9.5

9832

1 1/

4``

28±

8.5

± 0

.65

217

981.

115

.083

341

1/2`

`29

± 8

.5±

0.6

523

110

41.

419

.589

412`

`37

± 9

.5±

0.7

526

512

02.

132

.010

559

61`

`28

± 8

.5±

0.6

518

683

0.7

9.5

4516

1 1/

4``

32±

8.5

± 0

.719

289

1.1

15.0

4221

1 1/

2``

33±

8.5

± 0

.720

895

1.4

19.5

4525

2``

41±

10.

0.8

241

114

2.0

32.0

6138

103/

4``

20±

6.0

± 0

.45

154

650.

56.

454

231`

`26

± 8

.0±

0.5

519

087

0.7

9.5

9832

1 1/

4``

28±

8.5

± 0

.65

201

981.

115

.083

341

1/2`

`29

± 8

.5±

0.6

521

710

41.

419

.589

412`

`37

± 9

.5±

0.7

524

712

02.

132

.010

559

103/

4``

20-

± 0

.45

171

700.

66.

448

.0-

1``

26-

± 0

.55

198

870.

89.

598

.0-

270

BO

A A

xial

ste

el e

xpan

sio

n jo

int

Typ

e 71

60/7

162

00S

-TA

/RA

PNTy

peDN

BL g

esBL

mA

C xC y

mm

mm

mm

mm

mm

kgcm

2N/

mm

N/m

m

Type

716

0 (p

age

122)

Type

716

2 (p

age

123)

7160 00S-RA7160 00S-TA

Nom

inal

mov

emen

t cap

acity

1)

Sprin

g ra

te2)

�axaxial

�lat lateral

Total length

Effectivearea

Weight

All-aroundvibration

Male thread(DIN 2999)

Installationlength bellows

Axialspringrate

Lateralspringrate

Bello

ws

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 270

Page 272: e BOA Expansion Joints Guide 29.3

1 1/

4``

28-

± 0

.65

217

981.

315

.083

.0-

1 1/

2``

29-

± 0

.65

231

104

1.7

19.5

89.0

-2`

`37

0.7

526

512

02.

632

.010

5.0

-

103/

4``

20-

± 0

.45

159

700.

66.

448

.0-

1``

26-

± 0

.55

190

870.

89.

598

.0-

1 1/

4``

28-

± 0

.65

201

981.

315

.083

.0-

1 1/

2``

29-

± 0

.65

217

104

1.7

19.5

89.0

-2`

`37

0.7

524

712

02.

632

.010

5.0

-

1)Th

ese

valu

es a

re e

ither

axi

al,

or la

tera

l, or

as

vib

ratio

n2)

Div

erge

nce

±30

%

716200S-TA

7162 00S-RA

271

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 271

Page 273: e BOA Expansion Joints Guide 29.3

272

1015

10±

3.0

± 0

.25

9845

0.2

2.6

5612

1810

± 3

.0±

0.2

598

450.

22.

656

1222

20±

6.0

± 0

.45

122

650.

56.

454

2328

20±

6.0

± 0

.45

124

650.

56.

454

2335

26±

8.0

± 0

.55

150

870.

79.

598

32

1015

10-

± 0

.25

103

500.

22.

650

.0-

1810

0.2

510

350

0.2

2.6

50.0

-22

20-

± 0

.45

127

700.

66.

448

.0-

2820

0.4

512

970

0.6

6.4

48.0

-35

26-

± 0

.55

156

870.

89.

598

.0-

BO

A A

xial

ste

el e

xpan

sio

n jo

int

Typ

e 71

60/7

162

00S

-LF

PNTy

peDN

BL g

esBL

mA

C xC y

mm

mm

mm

mm

mm

kgcm

2N/

mm

N/m

m

7160 00S-LF 7162 00S-LF

1)Th

ese

valu

es a

re e

ither

axi

al,

or la

tera

l, or

as

vib

ratio

n2)

Div

erge

nce

±30

%

Type

716

0 (p

age

124)

Type

716

2 (p

age

124)

Nom

inal

mov

emen

t cap

acity

1)

Sprin

g ra

te2)

�axaxial

�lat lateral

Total length

Effectivearea

Weight

All-aroundvibration

Installationlength bellows

Axialspringrate

Lateralspringrate

Bello

ws

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 272

Page 274: e BOA Expansion Joints Guide 29.3

273

29.3_UK_Kap_06T14-Axial.qxp:Kap_6_14_axial_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 273

Page 275: e BOA Expansion Joints Guide 29.3

274

7 Vibration absorbers

With regard to sound retension and vibration absorption we take up the topicof mechanical oscillation within the range of frequency up to the audible limit.

Mechanical oscillations are generated in aggregates and transferred by themedium. However, they are mainly transferred over the pipes throughout theentire pipeline system. Vibrations spread in this way are considered as annoy-ing disturbance by the surrounding environment, and on the other hand thematerials subjected to such vibrations are highly stressed.

In pipelines which are laid without sound retension or vibration absorbers, breakages and stoppages can, therefore, occur very soon, endangering theoperational safety and the economic efficiency of the plant.

BOA vibration absorbers are used where pipelines and installations are to beprotected against vibrations/ oscillations or tensions. The use of BOA vibra -tion absorbers improves the operating stability, the life time and the comfortof your installations.

Vibration absorbers and soundretension expansion joints are veryflexible pipeline elements which,due to their design, can reduce apart of the energy of a vibratingsystem. The opposite picture showsthe oscillogram of such a reducedvibration.

7.1 General

Spectrum of mechanical oscillation

Frequency v in Hz

Earth-quake

Ground vibrations

Infrasonic sound

Lower audible limit

16 Hz

Piano

Audible sound

Standard pitch

440 Hz

Upperaudible limit20.000 Hz

29.3_UK_Kap_07.qxp:UK_02_Kap_07.qxp 30.10.2009 14:46 Uhr Seite 274

Page 276: e BOA Expansion Joints Guide 29.3

275

BOA vibration absorbers are successfully used in the following areas:• connection of pipelines to rotating and oscillating machines• pumps, compressors, engines, burners, etc. • domestic installations, industrial plants• heating installations, climate control units, ventilating fans, heat recovery

equipment• gas and water plants, sewage installations

7.2 Technical data• Two different types are available, Alpha-C without longitudinal limit bars,

Epsilon-C provided with limit bars.• Design of the basic element according to our long proved BOA practice as

multi-layered bellows made of high-grade chrome-nickel steel (up to PN 16:all layers in 1.4571; PN 25: inner and outer layer in 1.4571, intermediate layers in 1.4541)

• The multi-ply execution guarantees soft bellows of high flexibility (low springrate) with optimal absorbing capacity – at least equal in effectiveness com-pared with rubber expansion joints but with a sensibly longer life span.

• Thanks to the high-grade quality of the bellows material, BOA vibrationabsorbers are suitable for high media or ambient temperature from – 180°Cup to + 550°C (for temperatures over 120°C ask for metal cushions for thelimit bars instead of rubber).

• Almost all types are provided with vanstoned movable flanges ensuringeasy installation and no contact of the medium with the carbon steel flanges but with the stainless / austenitic steel bellows material only.

• Flanges (and tie-bars of the type Epsilon-C) are made of carbon steel andare galvanized and passivated (except for Epsilon PN 25).

29.3_UK_Kap_07.qxp:UK_02_Kap_07.qxp 30.10.2009 14:46 Uhr Seite 275

Page 277: e BOA Expansion Joints Guide 29.3

276

7.3 Sound absorbing expansion joints

Type 7951 00S • Sound absorbing expansion joint: bellows and borders in 1.4571 (up to DN

50), in 1.4541 (from DN 65); both sides movable flanges made of carbon steel, with inner sleeve made of wire tissue (up to DN 150)(DVGW approved: from DN 20 up to DN 150)

(bis DN50) ohr aus

(bis DN50), stangen DN150), nur

Alpha-C Epsilon-C

29.3_UK_Kap_07.qxp:UK_02_Kap_07.qxp 30.10.2009 14:46 Uhr Seite 276

Page 278: e BOA Expansion Joints Guide 29.3

277

page

BOA ALPHA-C 278

BOA EPSILON-C 280

BOA Sound absorbing expansion joint Type 7951 00S 282

BOA Sound absorbing expansion joint Type 7951 DFS 284

7.4 Tables standard programme

Type 7951 DFS • Sound absorbing expansion joint: bellows and borders in 1.4571 (up to DN

50), in 1.4541 (from DN65); both sides movable flanges made of carbon steel, with carbon steel tie rods, with inner sleeve made of wire tissue (up to DN 150), only for vibration absorption.(DVGW approved: from DN 20 up to DN 150)

29.3_UK_Kap_07.qxp:UK_02_Kap_07.qxp 30.10.2009 14:46 Uhr Seite 277

Page 279: e BOA Expansion Joints Guide 29.3

(pag

e 27

6)

278

4013

093

68.0

5068

130

1410

04

1477

3527

.42.

450

130

9381

.060

8014

014

110

414

5745

40.7

3.0

6513

091

103.

580

104

160

1413

04

1457

7768

.53.

580

130

7511

8.0

9012

019

016

150

418

5113

886

.65.

810

013

080

139.

011

014

421

016

170

418

4814

512

9.4

7.0

125

130

7716

8.5

137

174

240

1820

08

1858

290

188.

69.

215

013

072

195.

016

120

026

520

225

818

9877

026

6.0

12.0

617

513

064

228.

019

023

029

522

255

8M

16

100

983

347.

013

.520

013

062

250.

021

325

632

022

280

818

9812

2843

7.4

17.3

250

130

6330

4.0

263

308

375

2433

512

1812

127

9566

2.3

22.8

300

130

6335

6.0

313

361

440

2439

512

2213

243

4492

8.3

31.5

350

200

127

397.

035

040

049

026

445

1222

153

1721

1086

.944

.540

020

012

744

9.0

400

453

540

2849

516

2215

221

9914

05.3

53.4

450

200

127

503.

045

350

859

528

550

1622

151

2761

1787

.061

.650

020

012

755

5.0

503

558

645

3060

020

2217

338

4521

89.6

71.2

200

130

6525

4.0

213

256

340

2629

58

2216

224

2044

1.8

24.9

250

130

5830

8.0

263

308

395

2835

012

2217

048

0067

2.4

34.8

300

130

5935

9.0

313

360

445

2840

012

2220

063

8092

8.3

39.2

1035

020

011

939

8.0

350

400

505

3046

016

2224

030

4610

86.9

57.4

400

200

119

450.

040

045

356

532

515

1626

239

3889

1405

.372

.8

BO

A A

LPH

A-C

Bello

ws

Flan

ge**

Total length

Active length

Outside ∅

Clearance ∅

Raised face ∅

Outside ∅

Thickness

Bolt circle ∅

Axial

Lateral

Effective area

Weight

Number of holes

Hole ∅or thread

TLAI

dadm

gD

bk

nd

CxCy

Am

mm

mm

mm

mm

mm

mm

mm

mm

mm

N/m

mN/

mm

cm2

kg

PNDN

Sprin

g ra

te±

30%

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 278

Page 280: e BOA Expansion Joints Guide 29.3

279

450

200

119

505.

045

350

861

532

565

2026

298

6144

1787

.083

.850

020

011

955

6.0

503

558

670

3462

020

2630

977

6521

85.4

98.5

4013

087

69.0

5068

150

1611

04

1813

386

29.8

4.3

5013

083

82.0

6080

165

1812

54

1813

913

342

.05.

965

130

8310

5.0

8010

418

518

145

418

130

244

70.3

7.1

8013

079

118.

090

120

200

2016

08

1812

029

688

.68.

510

013

071

141.

011

014

422

022

180

818

114

476

131.

911

.012

513

070

172.

013

717

425

024

210

818

155

910

191.

615

.215

013

070

197.

516

120

028

524

240

822

148

1175

269.

318

.516

175

130

6622

9.0

190

230

315

2627

08

2221

826

2035

4.3

23.8

200

130

6225

3.0

213

256

340

2629

512

2231

455

8544

5.6

25.5

250

130

5530

6.5

263

308

405

3235

512

2649

814

593

672.

440

.030

013

049

361.

031

336

146

032

410

1226

570

2952

592

8.3

47.7

350

200

101

399.

035

040

052

036

470

1626

437

7537

1086

.977

.540

020

010

145

2.0

400

453

580

3852

516

3051

011

293

1405

.399

.145

020

010

150

6.0

453

508

640

4258

520

3050

614

121

1787

.012

5.0

500

200

101

556.

050

355

871

544

650

2033

771

2612

421

81.3

159.

2

pre

ferr

ed s

erie

s**

= s

tand

ard

exe

cutio

n ga

lvan

ized

and

pas

siva

ted

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 279

Page 281: e BOA Expansion Joints Guide 29.3

280

4013

097

6750

6818

02

x 12

211

130

1210

04

1435

3.5

5013

097

8160

8018

02

x 12

221

140

1211

04

1445

3.7

6513

083

104

8010

418

02

x 12

241

160

1213

04

1494

4.5

8013

079

117

9011

818

02

x 12

271

190

1415

04

1812

16.

510

013

089

142

110

142

180

2 x

1229

121

014

170

4M

16

190

7.6

125

130

8917

013

717

218

02

x 12

323

240

1620

08

1824

99.

715

013

074

200

161

198

200

2 x

1639

026

518

225

818

734

14.4

617

513

074

228

190

228

200

2 x

1642

029

520

255

8M

16

983

18.0

200

130

7325

421

525

420

02

x 16

445

320

2028

08

M 1

612

2819

.725

013

065

310

268

308

200

3 x

1650

1-

2233

512

M 1

627

9528

.730

013

071

365

318

361

200

3 x

1656

6-

2239

512

M 2

031

9035

.935

020

012

739

735

040

029

04

x 16

-62

022

445

1222

1721

80.0

400

200

127

449

400

453

290

4 x

16-

670

2249

516

2221

9988

.445

020

012

750

345

350

829

06

x 16

725

-22

550

1622

2761

100.

050

020

012

755

550

355

829

06

x 16

775

-22

600

2022

3845

107.

8

200

130

6925

621

525

420

03

x 16

466

-25

295

8M

20

2060

30.8

250

130

6531

226

830

820

04

x 16

-39

525

350

12M

20

4694

43.0

300

130

6236

531

836

120

06

x 16

570

-26

400

12M

20

1008

473

.210

350

200

119

398

350

400

290

6 x

1663

5-

2546

016

2230

4696

.040

020

011

945

040

045

329

08

x 16

695

-25

515

1626

3889

111.

3

BO

A E

PS

ILO

N-C

Bello

ws

Tie

rod

Total length

Active length

Outside ∅

Clearance ∅

Raised face ∅

Length

Number xthread

Largest flangedimension

Bolt circle ∅

Number of holes

∅ Hole or thread

Lateralspring rate±30%

Weight

Width

Thickness

TLAI

dadm

gL

n x

MD

Bb

kn

dCy

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mN/

mm

kg

PNDN

Flan

ge**

(pag

e 27

6)

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 280

Page 282: e BOA Expansion Joints Guide 29.3

281

450

200

119

505

453

508

290

10 x

16

745

-25

565

2026

6144

125.

750

020

011

955

650

355

829

012

x 1

680

0-

2562

020

2677

6514

1.4

4013

087

6950

6818

02

x 12

231

150

1611

04

1886

5.8

5013

082

8360

8018

02

x 12

246

165

1812

54

1813

37.

365

130

8210

580

104

180

2 x

1226

618

518

145

418

244

8.4

8013

078

119

9011

818

02

x 12

281

200

2016

08

1829

610

.110

013

078

143

112

142

200

2 x

1634

722

020

180

818

476

13.7

125

130

7317

213

717

220

02

x 16

377

250

2221

08

1888

118

.215

013

073

202

165

198

200

3 x

1641

3-

2224

08

M 2

012

8523

.316

175

130

6623

019

022

820

03

x 16

443

-25

270

8M

20

2665

30.3

200

130

6325

721

525

420

04

x 16

-35

026

295

12M

20

5585

36.9

250

130

6231

226

830

820

06

x 16

532

532

2635

512

M 2

413

224

70.4

300

130

5236

531

836

120

08

x 16

587

587

3041

012

M 2

430

167

95.1

350

200

101

399

350

400

290

8 x

1665

0-

3047

016

2675

3712

4.4

400

200

101

452

400

453

290

12 x

16

710

-30

525

1630

1129

314

6.9

450

200

101

506

453

508

290

15 x

16

770

-30

585

2030

1412

116

9.7

500

200

101

556

503

558

290

16 x

16

845

-30

650

2033

2612

421

3.2

4013

084

6850

*18

82

x 12

245

150

1511

04

1811

36.

150

122

8281

60*

188

2 x

1226

016

515

125

418

194

6.8

8016

011

010

890

*22

82

x 12

285

200

2016

08

1824

012

.510

016

011

014

611

2*

250

2 x

1637

523

520

190

822

392

18.3

25*

125

170

110

174

137

*25

03

x 16

400

400

2022

08

2646

340

.615

016

011

020

416

5*

250

3 x

1643

043

020

250

826

795

45.7

200

170

120

259

215

*25

06

x 16

490

490

2031

012

2615

0158

.225

018

011

431

726

8*

270

8 x

1655

555

529

370

1230

2325

100.

630

018

310

536

931

5*

270

9 x

1661

061

034

430

1630

5580

131.

9

pre

ferr

ed s

erie

s*

= w

eld

ed e

xecu

tion

** =

sta

ndar

d e

xecu

tion

galv

aniz

ed a

nd p

assi

vate

d

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 281

Page 283: e BOA Expansion Joints Guide 29.3

(pag

e 27

6)

282

2013

± 0

.713

01.

334

6.3

4525

14±

0.7

140

1.8

429.

580

3215

± 0

.715

02.

251

15.0

7540

15±

0.8

155

2.5

5820

.010

06

5020

± 1

.118

02.

874

32.0

9565

20±

1.1

200

4.5

9353

.013

080

22±

1.1

200

6.0

105

68.0

140

100

22±

0.8

200

6.6

130

110.

016

012

525

± 1

.125

010

.215

816

0.0

220

150

28±

1.0

250

11.4

187

230.

025

0

2013

± 0

.713

51.

934

6.3

4525

14±

0.7

145

2.4

429.

580

1032

15±

0.7

155

3.4

5115

.075

4015

± 0

.816

03.

958

20.0

100

5020

± 1

.118

55.

474

32.0

95

2010

± 0

.412

01.

934

6.3

5525

10±

0.4

125

2.4

429.

511

032

11±

0.5

135

3.4

5115

.095

4011

± 0

.414

03.

958

20.0

110

1650

15±

0.6

160

5.2

7432

.012

0

So

und

ab

sorb

ing

exp

ansi

on

join

t Ty

pe

7951

00S

Nominal axialmovement capacity

All-aroundvibration

2)

Total length

Weight

Axialspring rate

1)

Flange connectiondimension

Outside ∅

Effective area

±

ax±

Blm

∅ D

aA

Cx

mm

mm

mm

kgm

mcm

2 N/

mm

PNDN

Bello

ws

DIN 2501

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 282

Page 284: e BOA Expansion Joints Guide 29.3

283

6520

± 1

.120

56.

493

53.0

130

8022

± 1

.121

08.

010

568

.014

010

022

± 0

.821

08.

813

011

0.0

160

125

25±

1.1

260

13.2

158

160.

022

015

028

± 1

.026

015

.818

723

0.0

250

1) Di

verg

ence

±30

%2)

Thes

e va

lues

are

eith

er a

xial

or a

s a

vibr

atio

n

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 283

Page 285: e BOA Expansion Joints Guide 29.3

(pag

e 27

7)

284

20±

0.7

130

170

160

2.1

346.

325

± 0

.714

018

017

02.

742

9.5

32±

0.7

150

200

180

3.1

5115

.040

± 0

.815

521

018

03.

458

20.0

50±

1.1

180

240

210

4.4

7432

.06

65±

1.1

200

260

230

5.8

9353

.080

± 1

.120

029

023

08.

310

568

.010

0.8

200

310

230

8.8

130

110.

012

1.1

250

340

290

15.0

158

160.

015

1.0

250

365

290

16.2

187

230.

0

20±

0.7

135

185

160

2.8

346.

325

± 0

.714

519

517

03.

342

9.5

1032

± 0

.715

522

018

04.

351

15.0

40±

0.8

160

230

190

4.8

5820

.050

± 1

.118

526

522

07.

174

32.0

20±

0.4

120

185

150

2.8

346.

325

± 0

.412

519

515

03.

342

9.5

32±

0.5

135

220

160

4.3

5115

.040

± 0

.414

023

017

04.

858

20.0

1650

± 0

.616

026

519

06.

874

32.0

So

und

ab

sorb

ing

exp

ansi

on

join

t Ty

pe

7951

DFS

Lateral vibration

Total length

Max. height

Max. length

Effective area

Flange connectiondimension

Weight

Outside ∅

±

BlD1

Lm

∅ D

aA

mm

mm

mm

mm

kgm

mcm

2

PNDN

Bello

ws

DIN 2501

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 284

Page 286: e BOA Expansion Joints Guide 29.3

285

65±

1.1

205

285

240

9.1

9353

.080

± 1

.121

030

024

011

.710

568

.010

0.8

210

320

240

12.5

130

110.

012

1.1

260

350

300

20.6

158

160.

015

1.0

260

385

300

24.1

187

230.

0

29.3_UK_Kap_07T01-ALPHA.qxp:Kap_7_04_ALPHA C_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 285

Page 287: e BOA Expansion Joints Guide 29.3

286

8 Rubber expansion joints

8.1 GeneralRubber expansion joints can be used in all industrial applications such as:

• chemical plants• heating systems• air conditioning• ship building• pipeline construction

Due to their extensive chemical resistance, they can be used in pipelinesystems carrying various media such as:

• hot water• cool water• warm water• compressed air• cooling water• sea water• acid solutions• alkaline solutions• oil• oil-containing media• etc.

depending on the rubber quality (refer to material table 8.3).

Rubber expansion joints are particularly suited to:

• compensate mechanical vibrations• compensate axial and lateral movements• compensate installation misalignments • noise reduction

Rubber expansion joints with tie rods supported by rubber mountings areespecially suited to reduce noise and to compensate movements in plantswhere it is difficult to install pipe anchors to withstand pressure thrust.

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:06 Uhr Seite 286

Page 288: e BOA Expansion Joints Guide 29.3

287

8.2 Technical dataThe bellows of rubber expansion joints consist of an inner and outer elastomerlayer and several intermediate layers made of Nylon-cord tissues.

The Nylon-cord or Aramid layers ensure high resistance against internal pres-sure and vacuum.

The rubber expansion joints with bellows type A, B, D and S are fitted with loose flanges; the bellows type A, B and D can also be equipped withscrewed sockets. The steelwire reinforced rims of the bellows with loose flange design have a sealing effect.

The rubber expansion joints with bellows type C have fully modeled rubberflanges with loose back flanges.

Types of bellows:

8.3 Materials

Rubber expansion joints can be run through by various media, if the maxi-mum permissible operating conditions are respected. The various types ofbellows and their various materials are suitable for the following flow media:

Bellows A (313) + D (323)

inner layer

reinforcement

outer layer

inner layer

reinforcement

outer layer

Chloroprene

Nylon-cord

Chloroprene

EPDMT

Nylon-cord spec.

EPDMT

black(point)

red(circle)

• cold and warm water• water with minor chemical

additives

• hot waterdesign test in accordancewith DIN 4809

Color code Media *) Composite Material

Type A (313) Type B (303) Type C Type D (323)

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:06 Uhr Seite 287

Page 289: e BOA Expansion Joints Guide 29.3

inner layer

reinforcement

outer layer

inner layer

reinforcement

outer layer

PTFE

Nylon-cord

Chloroprene

EPDM

Nylon-cord

EPDM

brown(point)

• universal

Color code Media *) Composite Material

*) basic recommendation, if in doubt, ask for table of chemical resistances

Bellows B (303)

red(point)

• acidic water• waste water• hot water

• acidic water• waste water• hot water

*) basic recommendation, if in doubt, ask for table of chemical resistancesOther elastomer qualities on request.

Bellows C

288

inner layer

reinforcement

outer layer

inner layer

reinforcement

outer layer

inner layer

reinforcement

outer layer

EPDM

Nylon-cord

EPDM

Nitrile

Nylon-cord

Chloroprene

Hypalon

Nylon-cord

Chloroprene

green(point) • chemicals

*) basic recommendation, if in doubt, ask for table of chemical resistances**) according to KTW recommendation 1.3.13 Federal Health Administration

red(point)

yellow(point)

• acidic water• waste water• hot water

• oils• fuels• gases• drinking water **)

inner layer

reinforcement

outer layer

inner layer

reinforcement

outer layer

EPDM

Nylon-cord

EPDM

Nitrile

Nylon-cord

Chloroprene

red(point)

Color code Media *) Composite Material

yellow(point)

• oils• fuels• gases

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:06 Uhr Seite 288

Page 290: e BOA Expansion Joints Guide 29.3

Bellows type B, D, C Bellows type A Permissible absolute DN 32 - DN 300 / 16 bar DN 25 – DN 500 / 16 barpressure (PN) DN 350 - DN 500 / 10 bar DN 25 – DN 250

DN 600 - DN 2000 / 5 bar *) according to DIN 48096 bar / 110°C10 bar / 100°C

Vacuum stability DN 32 - DN 150 / 0,6 bar DN 32 – DN 500pabs. DN 200 - DN 500 / 0,8 bar 0,1 bar at tR(at room temperature) DN 600 - DN 2000 / on request 0,4 bar up to 70°CPressure reduction up to 70°C � 100% PNat temperature from 70°C to 130°C � 70% PNTest pressure 1,5 x PNBursting pressure 3 x PN

289

nces

nces

These bellows types can be used at the following permissible pressure ranges:

The various bellows materials have the following permissible operating temperatures:

Rubber quality Color code Permissible operating temperature

Chloroprene

EPDMT

EPDM

Nitrile

Hypalon

EPDM withPTFE-coating

black -(point)

red -(circle)

red -(point)

yellow -(point)

green -(point)

brown -(point)

-10°C up to +70°Cshort term + 90°C

-10°C up to +90°C (short time 110°C)(from DN 600 up to 90°C)

-10°C up to +110°C

-10°C up to + 90°C

-10°C up to +110°C

-10°C up to +130°C

ncesration

8.4 Pressure and temperature

*) higher operating conditions on request

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 289

Page 291: e BOA Expansion Joints Guide 29.3

290

8.5 Reductions

The movements given in the tablesare non concurrent movements. Themovement capacity is either axial orlateral or angular.

If concurrent movements occur (e.g.axial and lateral), the sum of the frac-tions of each movement must notexceed 100%.

The following combinations of con-current movements are permissible:• �ax expanded with lateral movement or• �ax expanded with angular rotation.

Example 1. Technical data

Type 3140 00S-A-EPDMnominal value �ax expanded = 10 mm �100%nominal value �lat = ± 15 mm �100%,if axial and lateral movements do not occur simultaneously.

2. Applicationactual value �ax expanded = 5 mm �50% of the axial nominal value,rest capacity for �lat = 50% of the nominal value, i.e., �lat = ±7,5 mm.Total capacity of the expansion joint = 100%

�lat. or �ang.

�ax

(exp

ande

d)

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 290

Page 292: e BOA Expansion Joints Guide 29.3

291

Type 3140 00S-A-EPDMTType 3140 00S-D-EPDMTRubber expansion joint with loose flangesboth sides for axial or lateral movementcompensation or vibration absorption.

Type 3840 DFS-A-EPDMTType 3840 DFS-D-EPDMTRubber expansion joint with loose flangesboth sides and sound absorbing tie rodrestraint for lateral movement compensa-tion or vibration absorption.

MaterialsBellows: inner layer EPDM

outer layer EPDMreinforcement: Nylon-cord (special)

Flanges: carbon steel, galvanziedTie rods: carbon steel, galvanzied

(with rubber support)

Permissible operating conditionsOperating pressure:Absolute pressure max. 16 barVacuum on requestTemperature -10°C up to 110 °CTest pressure 1.5 x operating pressure

8.6 Type designation

Type 3140 00S-A-...Type 3140 00S-D-...Rubber expansion joint with loose flanges both sides for axial or lateralmovement compensation or vibrationabsorption.

Type 3840 DFS-A-...Type 3840 DFS-D-...Rubber expansion joint with loose flanges both sides and sound absorbingtie rod restraint for lateral movementcompensation or vibration absorption.

MaterialsBellows: Inner layer Outer layer

EPDM EPDMChloroprene ChloropreneNitrile ChloropreneReinforcement: Nylon-cord

Flanges: carbon steel, galvanizedTie rods: carbon steel, galvanized

(with rubber support)

Permissible operating conditionsOperating pressure:Absolute pressure max. 16 barVacuum on requstTemperature

-10°C up to 90 °C EPDM*-10°C up to 90 °C Nitrile-10°C up to 70 °C Chloroprene

Test pressure 1.5 x operating pressure(*short time 110 °C)

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 291

Page 293: e BOA Expansion Joints Guide 29.3

292

In heating installations according to DIN 4809:10 bar up to max. 100°C6 bar up to max. 110°C

Type 3840 DFS-...

Type 3140 00S-B-PTFERubber expansion joint with loose flanges both sides for axial or lateralmovement compensation or vibrationabsorption.

Type 3840 DFS-B-PTFERubber expansion joint with loose flanges both sides and sound absorb -ing tie rod restraint for lateral move-ment compensation or vibrationabsorption.

Pressure reduction factorsup to 70°C: 100% PNfrom 70°C up to 110°C: 70% PN

Type 3140 00S-...

Type 3140 00S-B-EPDMRubber expansion joint with looseflanges both sides for axial or lateralmovement compensation or vibra -tion absorption.

Type 3840 DFS-B-EPDMRubber expansion joint with looseflanges both sides and sound ab -sorbing tie rod restraint for lateralmovement compensation or vibra -tion absorption.

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 292

Page 294: e BOA Expansion Joints Guide 29.3

293

ording

oose lateral

vibration

oose absorb -

move-on

MaterialsBellows: inner layer EPDM

outer layer EPDMreinforcement: Nylon-cord

Flanges: carbon steel, galvanizedTie rods: carbon steel, galvanized

(with rubber support)

Permissible operating conditionsOperating pressure:Absolute pressure

max. 16 bar up to DN 300max. 10 bar up to DN 350

Vacuum on requestTemperature -10°C up to 90 °C*Test pressure 1.5 x operating pressure(*short time 110 °C)

Pressure reduction factorsup to 70°C: 100% PNfrom 70°C up to 110°C: 70% PN

MaterialsBellows: inner layer PTFE

outer layer Chloroprenereinforcement: Nylon-cord

Flanges: carbon steel, galvanziedTie rods: carbon steel, galvanzied

(with rubber support)

Permissible operating conditionsOperating pressure:Absolute pressure

max. 16 bar up to DN 150max. 10 bar up to DN 200

Vacuum DN 100 up to DN 150 pabs

0.6 barfrom DN 200 pabs 0.8 bar

Temperature -10°C up to 130 °CTest pressure 1.5 x operating pressure

Pressure reduction factorsup to 70°C: 100% PNfrom 70°C up to 110°C: 70% PN

Type 3140 00S-B-... Type 3840 00S-B-...

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 293

Page 295: e BOA Expansion Joints Guide 29.3

294

Type 3160 00S-A-...Type 3160 00S-D-...Rubber expansion joint with screwedsockets (female thread) for axial or later -al movement compensation or vibrationabsorption.

MaterialsBellows: Inner layer: Outer layer:

EPDM EPDMChloroprene ChloropreneNitrile ChloropreneReinforcement: Nylon-cord

Screw connection: GGG-40, galvanzied

Permissible operating conditionsOperating pressureAbsolute pressure10 barVacuum on requestTemperature

-10°C up to 90°C - EPDM*-10°C up to 90°C - Nitrile-10°C up to 70°C - Chloroprene

Test pressure 1.5 x operating pressure(*short time 110°C)

Pressure reduction factorsup to 70°C: 100% PNfrom 70°C up to 110°C: 70% PN

Type 3160 00S-A-EPDMTType 3160 00S-D-EPDMTType 3160 00S-B-EPDMRubber expansion joint with screwedsockets (female thread) for axial or later -al movement compensation or vibrationabsorption.

MaterialsBellows: inner layer EPDM

outer layer EPDMreinforcement: Nylon-cord (special)

Screw connection: GGG-40 (galvanized)

Permissible operating conditionsOperating pressureAbsolute pressure 10 barVacuum on requestTemperature -10°C up to 110°CTest pressure 1.5 x operating pressure

In heating installations according toDIN 4809:10 bar up to max. 100°C6 bar up to max. 110°C

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 294

Page 296: e BOA Expansion Joints Guide 29.3

295

Type 3160 00S-A-D-B...Execution A

Type 3160 00S-A-D-B...Execution B

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 295

Page 297: e BOA Expansion Joints Guide 29.3

296

Type 3140 00S-C-...Rubber expansion joint with looseflanges both sides for axial or lateralmovement compensation or vibrationabsorption.

Execution with tie rod restraint onrequest.

MaterialsBellows: inner layer EPDM or Nitrile

outer layer EPDM or Nitrilereinforcement: Nylon-cord

Rubber flanges with loose back flanges made of carbon steel, galvanizedTIe rods: carbon steel, galvanzied

(with rubber support)

Permissible operating conditionsOperating pressureAbsolute pressure

max. 16 bar up to DN300max. 10 bar up to DN350

Vacuum on request

Temperature -10°C up to 90°CTest pressure 1,5 x operating pressure

Pressure reduction factorsup to 70°C: 90% PNfrom 70°C up to 90°C: 70% PN

Type 3140 00S-C-...

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 296

Page 298: e BOA Expansion Joints Guide 29.3

297

Page

BOA Type 3140 00S-D-... / 3840 DFS-D... PN6 299PN10 300PN16 302

BOA Type 3140 00S-A-... / 3840 DFS-A... PN6 304PN10 305PN16 307

BOA Type 3140 00S-B-EPDM / 3840 DFS-B-EPDM PN6 309PN10 310PN16 312

BOA Type 3140 00S-B-PTFE / 3840 DFS-B-PTFE PN6 314PN10 315PN16 317

BOA Type 3140 00S-C-... PN6 318PN10 319

BOA Type 3160 00S-A-... / -D... PN10 320

BOA Type 3160 00S-B-EPDM PN10 321

8.7 Tables standard programme

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 297

Page 299: e BOA Expansion Joints Guide 29.3

29.3_UK_Kap_08.qxp:UK_02_Kap_08.qxp 30.10.2009 15:07 Uhr Seite 298

Page 300: e BOA Expansion Joints Guide 29.3

299

Typ

e 31

40 0

0S-D

-.../

3840

DFS

-D-.

..P

N6

4031

4000

S-D

-12

25±

25

± 3

515

06.

575

34.5

6913

014

100

412

--38

40DF

S-D-

----

± 2

5--

150

6.5

7534

.569

235

1410

04

1218

8

5031

4000

S-D

-12

25±

25

± 3

515

07.

096

46.0

8714

014

110

412

--38

40DF

S-D-

----

± 2

5--

150

7.0

9646

.087

245

1411

04

1218

8

6531

4000

S-D

-12

25±

25

± 3

015

07.

511

566

.010

916

014

130

412

--38

40DF

S-D-

----

± 2

5--

150

7.5

115

66.0

109

265

1413

04

1218

8

8031

4000

S-D

-12

25±

25

± 3

015

07.

013

073

.511

819

016

150

416

--38

40DF

S-D-

----

± 2

5--

150

7.0

130

73.5

118

295

1615

04

1618

8

100

3140

00 S

-D-

1225

± 2

25

150

8.5

154

99.0

147

210

1617

04

16--

3840

DFS-

D---

--±

25

--15

08.

515

499

.014

731

516

170

416

188

125

3140

00 S

-D-

1225

± 2

20

150

11.0

176

124.

017

724

018

200

816

--38

40DF

S-D-

----

± 2

5--

150

11.0

176

124.

017

734

518

200

816

188

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 299

Page 301: e BOA Expansion Joints Guide 29.3

300

Typ

e 31

40 0

0S-D

-.../

3840

DFS

-D-.

..P

N10

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

4031

4000

S-D

-12

25±

25

± 3

515

06.

575

34.5

6915

016

110

416

--38

40DF

S-D-

----

± 2

5--

150

6.5

7534

.569

255

1611

04

1618

8

5031

4000

S-D

-12

25±

25

± 3

515

07.

096

46.0

8716

516

125

416

--38

40DF

S-D-

----

± 2

5--

150

7.0

9646

.087

270

1612

54

1618

8

6531

4000

S-D

-12

25±

25

± 3

015

07.

511

566

.010

918

516

145

416

--38

40DF

S-D-

----

± 2

5--

150

7.5

115

66.0

109

290

1614

54

1618

8

8031

4000

S-D

-12

25±

25

± 3

015

07.

013

073

.511

820

018

160

816

--38

40DF

S-D-

----

± 2

5--

150

7.0

130

73.5

118

305

1816

08

1618

8

100

3140

00 S

-D-

1225

± 2

25

150

8.5

154

99.0

147

220

1818

08

16--

3840

DFS-

D---

--±

25

--15

08.

515

499

.014

732

518

180

816

188

125

3140

00 S

-D-

1225

± 2

20

150

11.0

176

124.

017

725

018

210

816

--38

40DF

S-D-

----

± 2

5--

150

11.0

176

124.

017

737

518

210

816

190

150

3140

00 S

-D-

1225

± 2

20

150

11.5

200

142.

020

228

518

240

820

--38

40DF

S-D-

----

± 2

5--

150

11.5

200

142.

020

241

018

240

820

190

200

3140

00 S

-D-

1225

± 2

15

150

14.0

252

195.

026

334

020

295

820

--38

40DF

S-D-

----

± 2

5--

150

14.0

252

195.

026

346

520

295

820

190

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 300

Page 302: e BOA Expansion Joints Guide 29.3

301

250

3140

00 S

-D-

1225

± 2

10

200

15.0

317

246.

032

339

522

350

1220

--38

40DF

S-D-

----

± 2

5--

200

15.0

317

246.

032

355

022

350

1220

250

300

3140

00 S

-D-

1225

± 2

10

200

14.0

366

295.

037

244

526

400

1220

--38

40DF

S-D-

----

± 2

5--

200

14.0

366

295.

037

260

026

400

1220

250

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 301

Page 303: e BOA Expansion Joints Guide 29.3

302

Typ

e 31

40 0

0S-D

-.../

3840

DFS

-D-.

..P

N16

4031

4000

S-D

-12

25±

25

± 3

515

06.

575

34.5

6915

016

110

416

--38

40DF

S-D-

----

± 2

5--

150

6.5

7534

.569

255

1611

04

1618

8

5031

4000

S-D

-12

25±

25

± 3

515

07.

096

46.0

8716

516

125

416

--38

40DF

S-D-

----

± 2

5--

150

7.0

9646

.087

270

1612

54

1618

8

6531

4000

S-D

-12

25±

25

± 3

015

07.

511

566

.010

918

516

145

416

--38

40DF

S-D-

----

± 2

5--

150

7.5

115

66.0

109

290

1614

54

1618

8

8031

4000

S-D

-12

25±

25

± 3

015

07.

013

073

.511

820

018

160

816

--38

40DF

S-D-

----

± 2

5--

150

7.0

130

73.5

118

305

1816

08

1618

8

100

3140

00 S

-D-

1225

± 2

25

150

8.5

154

99.0

147

220

1818

08

16--

3840

DFS-

D---

--±

25

--15

08.

515

499

.014

732

518

180

816

188

125

3140

00 S

-D-

1225

± 2

20

150

11.0

176

124.

017

725

018

210

816

--38

40DF

S-D-

----

± 2

5--

150

11.0

176

124.

017

737

518

210

816

190

150

3140

00 S

-D-

1225

± 2

20

150

11.5

200

142.

020

228

518

240

820

--38

40DF

S-D-

----

± 2

5--

150

11.5

200

142.

020

241

018

240

820

190

200

3140

00 S

-D-

1225

± 2

15

150

14.0

252

195.

026

334

020

295

1220

--38

40DF

S-D-

----

± 2

5--

150

14.0

252

195.

026

346

520

295

1220

190

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 302

Page 304: e BOA Expansion Joints Guide 29.3

303

250

3140

00 S

-D-

1225

± 2

10

200

15.0

317

246.

032

340

522

355

1224

--38

40DF

S-D-

----

± 2

5--

200

15.0

317

246.

032

356

022

355

1224

250

300

3140

00 S

-D-

1225

± 2

10

200

14.0

366

295.

037

244

526

400

1220

--38

40DF

S-D-

----

± 2

5--

200

14.0

366

295.

037

262

526

400

1220

253

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 303

Page 305: e BOA Expansion Joints Guide 29.3

304

Typ

e 31

40 0

0S-A

-.../

3840

DFS

-A-.

..P

N6

2531

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6410

016

754

10--

3840

DFS

-A-

----

± 1

5--

130

6.5

7029

.064

205

1675

410

168

3231

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6412

014

904

12--

3840

DFS

-A-

----

± 1

5--

130

6.5

7029

.064

225

1490

412

168

4031

40 0

0 S-

A-10

25±

15

± 2

013

08.

075

36.0

6913

014

100

412

--38

40 D

FS-A

---

--±

15

--13

08.

075

36.0

6923

514

100

412

168

5031

40 0

0 S-

A-10

25±

15

± 2

013

08.

595

47.5

8714

014

110

412

--38

40 D

FS-A

---

--±

15

--13

08.

595

47.5

8724

514

110

412

168

6531

40 0

0 S-

A-10

25±

15

± 2

013

09.

012

060

.010

916

014

130

412

--38

40 D

FS-A

---

--±

15

--13

09.

012

060

.010

926

514

130

412

168

8031

40 0

0 S-

A-10

25±

15

± 1

713

08.

513

075

.011

819

016

150

416

--38

40 D

FS-A

---

--±

15

--13

08.

513

075

.011

829

516

150

416

168

100

3140

00

S-A-

1025

± 1

14

130

11.5

150

96.0

147

210

1617

04

16--

3840

DFS

-A-

----

± 1

5--

130

11.5

150

96.0

147

315

1617

04

1616

8

125

3140

00

S-A-

1525

± 1

14

130

12.5

180

120.

017

724

018

200

816

--38

40 D

FS-A

---

--±

15

--13

012

.518

012

0.0

177

345

1820

08

1616

8

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 304

Page 306: e BOA Expansion Joints Guide 29.3

305

Typ

e 31

40 0

0S-A

-.../

3840

DFS

-A-.

..P

N10

2531

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6411

516

854

12--

3840

DFS

-A-

----

± 1

5--

130

6.5

7029

.064

220

1685

412

168

3231

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6414

016

100

416

--38

40 D

FS-A

---

--±

15

--13

06.

570

29.0

6424

516

100

416

168

4031

40 0

0 S-

A-10

25±

15

± 2

013

08.

075

36.0

6915

016

110

416

--38

40 D

FS-A

---

--±

15

--13

08.

075

36.0

6925

516

110

416

168

5031

40 0

0 S-

A-10

25±

15

± 2

013

08.

595

47.5

8716

516

125

416

--38

40 D

FS-A

---

--±

15

--13

08.

595

47.5

8727

016

125

416

168

6531

40 0

0 S-

A-10

25±

15

± 2

013

09.

012

060

.010

918

516

145

416

--38

40 D

FS-A

---

--±

15

--13

09.

012

060

.010

929

016

145

416

168

8031

40 0

0 S-

A-10

25±

15

± 1

713

08.

513

075

.011

820

018

160

816

--38

40 D

FS-A

---

--±

15

--13

08.

513

075

.011

830

518

160

816

168

100

3140

00

S-A-

1025

± 1

14

130

11.5

150

96.0

147

220

1818

08

16--

3840

DFS

-A-

----

± 1

5--

130

11.5

150

96.0

147

325

1818

08

1616

8

125

3140

00

S-A-

1525

± 1

14

130

12.5

180

120.

017

725

018

210

816

--38

40 D

FS-A

---

--±

15

--13

012

.518

012

0.0

177

375

1821

08

1616

8

150

3140

00

S-A-

1520

± 1

10

130

13.0

204

143.

020

228

518

240

820

--38

40 D

FS-A

---

--±

15

--13

013

.020

414

3.0

202

410

1824

08

2017

0

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 305

Page 307: e BOA Expansion Joints Guide 29.3

306

Typ

e 31

40 0

0S-A

-.../

3840

DFS

-A-.

..P

N10

200

3140

00

S-A-

1520

± 1

10

130

15.5

256

191.

026

334

020

295

820

--38

40 D

FS-A

---

--±

15

--13

015

.525

619

1.0

263

465

2029

58

2017

0

250

3140

00

S-A-

1515

± 1

813

016

.531

024

3.5

323

395

2235

012

20--

3840

DFS

-A-

----

± 1

5--

130

16.5

310

244.

032

355

022

350

1220

170

300

3140

00

S-A-

1515

± 1

813

015

.535

729

0.5

372

445

2640

012

20--

3840

DFS

-A-

----

± 1

5--

130

15.5

357

291.

037

260

026

400

1220

170

350

3140

00

S-A-

2535

± 1

820

016

.042

533

8.0

422

505

2846

016

20--

3840

DFS

-A-

----

± 1

5--

200

16.0

425

338.

042

267

028

460

1620

253

400

3140

00

S-A-

2535

± 1

820

016

.547

438

8.0

479

565

3251

516

24--

3840

DFS

-A-

----

± 1

5--

200

16.5

474

388.

047

973

032

515

1624

253.

0

450

3140

00

S-A-

2535

± 1

820

017

.552

143

8.0

525

615

3456

520

24--

3840

DFS

-A-

----

± 1

5--

200

17.5

521

438.

052

578

034

565

2024

253

500

3140

00

S-A-

2535

± 1

820

017

.556

948

4.0

576

670

3862

020

24--

3840

DFS

-A-

----

± 1

5--

200

17.5

569

484.

057

683

538

620

2024

253

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 306

Page 308: e BOA Expansion Joints Guide 29.3

307

Typ

e 31

40 0

0S-A

-.../

3840

DFS

-A-.

..P

N16

2531

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6411

516

854

14--

3840

DFS

-A-

----

± 1

5--

130

6.5

7029

.064

220

1685

414

168

3231

40 0

0 S-

A-10

25±

15

± 2

013

06.

570

29.0

6414

016

100

418

--38

40 D

FS-A

---

--±

15

--13

06.

570

29.0

6424

516

100

418

168

4031

40 0

0 S-

A-10

25±

15

± 2

013

08.

075

36.0

6915

016

110

418

--38

40 D

FS-A

---

--±

15

--13

08.

075

36.0

6925

516

110

418

168

5031

40 0

0 S-

A-10

25±

15

± 2

013

08.

595

47.5

8716

516

125

418

--38

40 D

FS-A

---

--±

15

--13

08.

595

47.5

8727

016

125

418

168

6531

40 0

0 S-

A-10

25±

15

± 2

013

09.

012

060

.010

918

516

145

418

--38

40 D

FS-A

---

--±

15

--13

09.

012

060

.010

929

016

145

418

168

8031

40 0

0 S-

A-10

25±

15

± 1

713

08.

513

075

.011

820

018

160

818

--38

40 D

FS-A

---

--±

15

--13

08.

513

075

.011

830

518

160

818

168

100

3140

00

S-A-

1025

± 1

14

130

11.5

150

96.0

147

220

1818

08

18--

3840

DFS

-A-

----

± 1

5--

130

11.5

150

96.0

147

325

1818

08

1816

8

125

3140

00

S-A-

1525

± 1

14

130

12.5

180

120.

017

725

018

210

818

--38

40 D

FS-A

---

--±

15

--13

012

.518

012

0.0

177

375

1821

08

1816

8

150

3140

00

S-A-

1520

± 1

10

130

13.0

204

143.

020

228

518

240

822

--38

40 D

FS-A

---

--±

15

--13

013

.020

414

3.0

202

410

1824

08

2217

0

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 307

Page 309: e BOA Expansion Joints Guide 29.3

308

Typ

e 31

40 0

0S-A

-.../

3840

DFS

-A-.

..P

N16

200

3140

00

S-A-

1520

± 1

10

130

15.5

256

191.

026

334

020

295

12M

20--

3840

DFS

-A-

----

± 1

5--

130

15.5

256

191.

026

346

520

295

12M

2017

0

250

3140

00

S-A-

1515

± 1

813

016

.531

024

3.5

323

405

2235

512

M24

--38

40 D

FS-A

---

--±

15

--13

016

.531

024

3.5

323

560

2235

512

M24

170

300

3140

00

S-A-

1515

± 1

813

015

.535

729

0.5

372

460

2641

012

M24

--38

40 D

FS-A

---

--±

15

--13

015

.535

729

0.5

372

625

2641

012

M24

183

350

3140

00

S-A-

2535

± 1

820

016

.042

533

8.0

422

520

3547

016

M24

--38

40 D

FS-A

---

--±

15

--20

016

.042

533

8.0

422

680

3547

016

M24

263

400

3140

00

S-A-

2535

± 1

820

016

.547

438

8.0

479

580

3552

516

M27

--38

40 D

FS-A

---

--±

15

--20

016

.547

438

8.0

479

740

3552

516

M27

253

450

3140

00

S-A-

2535

± 1

820

017

.552

143

8.0

525

640

4058

520

M27

--38

40 D

FS-A

---

--±

15

--20

017

.552

143

8.0

525

800

4058

520

M27

253

500

3140

00

S-A-

2535

± 1

820

017

.556

948

4.0

576

715

4065

020

M30

--38

40 D

FS-A

---

--±

15

--20

017

.556

948

4.0

576

875

4065

020

M30

253

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mm

mm

mm

mTL

Ada

dig

Db

kn

ML

Type

314

0 OO

S-...

(pag

e 29

2)Ty

pe 3

840

DFS-

... (p

age

292)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 308

Page 310: e BOA Expansion Joints Guide 29.3

309

Typ

e 31

40 0

0S-B

-EP

DM

/384

0 D

FS-B

-EP

DM

PN

6

3231

40 0

0 S-

B-5

10

958.

070

33.0

6912

014

904

12--

3840

DFS

-B-

----

± 8

--95

8.0

7033

.069

225

1490

412

128

4031

40 0

0 S-

B-5

10

958.

070

33.0

6913

014

100

412

--38

40 D

FS-B

---

--±

8--

958.

070

33.0

6923

514

100

412

128

5031

40 0

0 S-

B-5

10

105

8.5

9244

.587

140

1411

04

12--

3840

DFS

-B-

----

± 8

--10

58.

592

44.5

8724

514

110

412

148

6531

40 0

0 S-

B-6

12±

10

± 1

511

59.

011

265

.010

916

014

130

412

--38

40 D

FS-B

---

--±

10

--11

59.

011

265

.010

926

514

130

412

148

8031

40 0

0 S-

B-6

12±

10

± 1

513

08.

512

475

.011

819

016

150

416

--38

40 D

FS-B

---

--±

10

--13

08.

512

475

.011

829

516

150

416

168

100

3140

00

S-B-

1018

± 1

15

135

11.5

149

94.0

147

210

1617

04

16--

3840

DFS

-B-

----

± 1

2--

135

11.5

149

94.0

147

315

1617

04

1616

8

125

3140

00

S-B-

1018

± 1

15

170

12.5

185

119.

017

724

018

200

816

--38

40 D

FS-B

---

--±

12

--17

012

.518

511

9.0

177

345

1820

08

1620

8

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 309

Page 311: e BOA Expansion Joints Guide 29.3

310

Typ

e 31

40 0

0S-B

-EP

DM

/384

0 D

FS-B

-EP

DM

PN

10

3231

40 0

0 S-

B-5

10

958.

070

33.0

6914

016

100

416

--38

40 D

FS-B

---

--±

8--

958.

070

33.0

6924

516

100

416

128

4031

40 0

0 S-

B-5

10

958.

070

33.0

6915

016

110

416

--38

40 D

FS-B

---

--±

8--

958.

070

33.0

6925

516

110

416

128

5031

40 0

0 S-

B-5

10

105

8.5

9244

.587

165

1612

54

16--

3840

DFS

-B-

----

± 8

--10

58.

592

44.5

8727

016

125

416

148

6531

40 0

0 S-

B-6

12±

10

± 1

511

59.

011

265

.010

918

516

145

416

--38

40 D

FS-B

---

--±

10

--11

59.

011

265

.010

929

016

145

416

148

8031

40 0

0 S-

B-6

12±

10

± 1

513

08.

512

475

.011

820

018

160

818

--38

40 D

FS-B

---

--±

10

--13

08.

512

475

.011

830

518

160

818

168

100

3140

00

S-B-

1018

± 1

15

135

11.5

149

94.0

147

210

1617

04

16--

3840

DFS

-B-

----

± 1

2--

135

11.5

149

94.0

147

325

1617

04

1616

8

125

3140

00

S-B-

1018

± 1

15

170

12.5

185

119.

017

724

018

200

816

--38

40 D

FS-B

---

--±

12

--17

012

.518

511

9.0

177

375

1820

08

1621

0

150

3140

00

S-B-

1018

± 1

15

180

13.0

209

202.

028

528

518

240

820

--38

40 D

FS-B

---

--±

12

--18

013

.020

920

2.0

285

410

1824

08

2022

0

200

3140

00

S-B-

1425

± 2

15

205

15.5

252

263.

034

034

020

295

820

--38

40 D

FS-B

22

--20

515

.525

226

3.0

340

465

2029

58

2025

0

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 310

Page 312: e BOA Expansion Joints Guide 29.3

311

250

3140

00

S-B-

1425

± 2

15

240

16.5

318

323.

039

539

522

350

1220

--38

40 D

FS-B

22

--24

016

.531

832

3.0

395

550

2235

012

2028

0

300

3140

00

S-B-

1425

± 2

15

260

15.5

364

372.

044

544

526

400

1220

--38

40 D

FS-B

22

--26

015

.536

437

2.0

445

600

2640

012

2030

0

350

3140

00

S-B-

1625

± 2

7,5

295

13.0

422

422.

050

550

528

460

1620

--38

40 D

FS-B

22

--29

513

.042

242

2.0

505

670

2846

016

2036

3

400

3140

00

S-B-

1625

± 2

7,5

310

15.0

474

479.

056

556

532

515

1624

--38

40 D

FS-B

22

--31

015

.047

447

9.0

565

730

3251

516

2436

3

450

3140

00

S-B-

1625

± 2

7,5

335

16.0

525

525.

061

561

534

565

2024

--38

40 D

FS-B

22

--33

516

.052

552

5.0

615

780

3456

520

2440

3

500

3140

00

S-B-

1625

± 2

7,5

350

17.0

576

576.

067

067

038

620

2024

--38

40 D

FS-B

22

--35

017

.057

657

6.0

670

835

3862

020

2440

3

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 311

Page 313: e BOA Expansion Joints Guide 29.3

312

Typ

e 31

40 0

0S-B

-EP

DM

/384

0 D

FS-B

-EP

DM

PN

16

3231

40 0

0 S-

B-5

10

958.

070

33.0

6914

016

100

416

--38

40 D

FS-B

---

--±

8--

958.

070

33.0

6924

516

100

416

128

4031

40 0

0 S-

B-5

10

958.

070

33.0

6915

016

110

416

--38

40 D

FS-B

---

--±

8--

958.

070

33.0

6925

516

110

416

128

5031

40 0

0 S-

B-5

10

105

8.5

9244

.587

165

1612

54

16--

3840

DFS

-B-

----

± 8

--10

58.

592

44.5

8727

016

125

416

148

6531

40 0

0 S-

B-6

12±

10

± 1

511

59.

011

265

.010

918

516

145

416

--38

40 D

FS-B

---

--±

10

--11

59.

011

265

.010

929

016

145

416

148

8031

40 0

0 S-

B-6

12±

10

± 1

513

08.

512

475

.011

820

018

160

818

--38

40 D

FS-B

---

--±

10

--13

08.

512

475

.011

830

518

160

818

168

100

3140

00

S-B-

1018

± 1

15

135

11.5

149

94.0

147

210

1617

04

16--

3840

DFS

-B-

----

± 1

2--

135

11.5

149

94.0

147

325

1617

04

1616

8

125

3140

00

S-B-

1018

± 1

15

170

12.5

185

119.

017

724

018

200

816

--38

40 D

FS-B

---

--±

12

--17

012

.518

511

9.0

177

375

1820

08

1621

0

150

3140

00

S-B-

1018

± 1

15

180

13.0

209

202.

028

528

518

240

820

--38

40 D

FS-B

---

--±

12

--18

013

.020

920

2.0

285

410

1824

08

2022

0

200

3140

00

S-B-

1425

± 2

15

205

15.5

252

263.

034

034

022

295

1220

--38

40 D

FS-B

22

--20

515

.525

226

3.0

340

465

2229

512

2025

0

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 312

Page 314: e BOA Expansion Joints Guide 29.3

313

250

3140

00

S-B-

1425

± 2

15

240

16.5

318

323.

039

540

524

355

1224

--38

40 D

FS-B

22

--24

016

.531

832

3.0

395

560

2435

512

2428

0

300

3140

00

S-B-

1425

± 2

15

260

15.5

364

372.

044

546

028

410

1224

--38

40 D

FS-B

22

--26

015

.536

437

2.0

445

625

2841

012

2431

3

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 313

Page 315: e BOA Expansion Joints Guide 29.3

314

Typ

e 31

40 0

0S-B

-PT

FE/3

840

DFS

-B-P

TFE

PN

6

8031

40 0

0 S-

B-3

7,5

130

8.5

124

75.0

118

190

1615

04

16--

3840

DFS

-B-

----

± 5

--13

08.

512

475

.011

829

516

150

416

168

100

3140

00

S-B-

36

± 5

± 7

,513

511

.514

994

.014

721

016

170

416

--38

40 D

FS-B

---

--±

5--

135

11.5

149

94.0

147

315

1617

04

1616

8

125

3140

00

S-B-

36

± 5

± 7

,517

012

.518

511

9.0

177

240

1820

08

16--

3840

DFS

-B-

----

± 5

--17

012

.518

511

9.0

177

345

1820

08

1620

0

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 314

Page 316: e BOA Expansion Joints Guide 29.3

315

Typ

e 31

40 0

0S-B

-PT

FE/3

840

DFS

-B-P

TFE

PN

10

8031

40 0

0 S-

B-3

7,5

130

8.5

124

75.0

118

200

1816

08

16--

3840

DFS

-B-

----

± 5

--13

08.

512

475

.011

830

518

160

816

168

100

3140

00

S-B-

36

± 5

± 7

,513

511

.514

994

.014

722

018

180

816

--38

40 D

FS-B

---

--±

5--

135

11.5

149

94.0

147

325

1818

08

1616

8

125

3140

00

S-B-

36

± 5

± 7

,517

012

.518

511

9.0

177

250

1821

08

16--

3840

DFS

-B-

----

± 5

--17

012

.518

511

9.0

177

375

1821

08

1621

0

150

3140

00

S-B-

36

± 6

± 7

,518

013

.020

914

0.0

202

285

1824

08

20--

3840

DFS

-B-

----

± 6

--18

013

.020

914

0.0

202

410

1824

08

2022

0

200

3140

00

S-B-

712

± 8

± 7

,520

515

.525

218

8.0

263

340

2029

58

20--

3840

DFS

-B-

----

± 8

--20

515

.525

218

8.0

263

465

2029

58

2025

0

250

3140

00

S-B-

712

± 8

± 7

,524

016

.531

823

6.0

323

395

2235

012

20--

3840

DFS

-B-

----

± 8

--24

016

.531

823

6.0

323

550

2235

012

2028

0

300

3140

00

S-B-

814

± 1

7,5

260

15.5

364

287.

037

244

526

400

1220

--38

40 D

FS-B

---

--±

10

--26

015

.536

428

7.0

372

600

2640

012

2030

0

350

3140

00

S-B-

814

± 1

629

513

.042

233

5.0

422

505

2846

016

20--

3840

DFS

-B-

----

± 1

2--

295

13.0

422

335.

042

267

028

460

1620

363

400

3140

00

S-B-

814

± 1

631

015

.047

438

5.0

479

565

3251

516

24--

3840

DFS

-B-

----

± 1

2--

310

15.0

474

385.

047

973

032

515

1624

363

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 315

Page 317: e BOA Expansion Joints Guide 29.3

316

Typ

e 31

40 0

0S-B

-PT

FE/3

840

DFS

-B-P

TFE

PN

10

450

3140

00

S-B-

816

± 1

633

516

.052

543

5.0

525

615

3456

520

24--

3840

DFS

-B-

----

± 1

2--

335

16.0

525

435.

052

578

034

565

2024

403

500

3140

00

S-B-

816

± 1

635

017

.057

648

0.0

576

670

3862

020

24--

3840

DFS

-B-

----

± 1

2--

350

17.0

576

480.

057

683

538

620

2024

403

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 316

Page 318: e BOA Expansion Joints Guide 29.3

317

Typ

e 31

40 0

0S-B

-PT

FE/3

840

DFS

-B-P

TFE

PN

16

8031

40 0

0 S-

B-3

7,5

130

8.5

124

75.0

118

200

1816

08

16--

3840

DFS

-B-

----

± 5

--13

08.

512

475

.011

830

518

160

816

168

100

3140

00

S-B-

36

± 5

± 7

,513

511

.514

994

.014

722

018

180

816

--38

40 D

FS-B

---

--±

5--

135

11.5

149

94.0

147

325

1818

08

1616

8

125

3140

00

S-B-

36

± 5

± 7

,517

012

.518

511

9.0

177

250

1821

08

16--

3840

DFS

-B-

----

± 5

--17

012

.518

511

9.0

177

375

1821

08

1621

0

150

3140

00

S-B-

36

± 6

± 7

,518

013

.020

914

0.0

202

285

1824

08

20--

3840

DFS

-B-

----

± 6

--18

013

.020

914

0.0

202

410

1824

08

2022

0

TLA

dadi

gD

bk

nM

Lm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

mm

Type

314

0 OO

S-...

(pag

e 29

3)Ty

pe 3

840

DFS-

... (p

age

293)

Nom

inal

mov

emen

t ca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Outside ∅

Inside ∅

Raised face ∅

Raised face

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Thread

Tie rods

DNTy

pe

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 317

Page 319: e BOA Expansion Joints Guide 29.3

318

Typ

e 31

40 0

0S-C

-...

PN

6

DNTy

pe

600

2030

± 2

425

015

.071

081

2.8

1870

520

2670

020

30±

20

± 3

,525

018

.081

092

7.1

1881

024

2680

020

30±

20

± 3

300

20.0

920

1060

.420

920

2430

900

2030

± 2

2,5

300

20.0

1020

1168

.420

1020

2430

1000

2030

± 2

2,5

300

20.0

1160

1289

.020

1120

2830

1200

3140

00S

-C-

2030

± 2

235

020

.013

2015

11.3

2513

4032

3314

0020

30±

20

± 2

350

25.0

1530

1682

.725

1560

3636

1600

2030

± 2

235

030

.017

3019

19.0

2517

6040

3618

0020

30±

20

± 1

,540

030

.019

4021

97.1

2519

7044

3920

0020

30±

20

± 1

400

30.0

2140

2325

.025

2180

4842

Nom

inal

mov

emen

tca

paci

tyRu

bber

bel

low

sFl

ange

TLA

daD

bk

nd

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

mAxialexpanded

Axial com -pressed

Lateral

Angular

Total length

Raised face

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

(pag

e 29

6)

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 318

Page 320: e BOA Expansion Joints Guide 29.3

319

Typ

e 31

40 0

0S-C

-...

PN

10

DNTy

pe

600

2030

± 2

425

015

.071

081

2.8

1872

520

3070

020

30±

20

± 3

,525

018

.081

092

7.1

1884

024

3080

020

30±

20

± 3

300

20.0

920

1060

.420

950

2433

900

2030

± 2

2,5

300

20.0

1020

1168

.420

1050

2833

1000

2030

± 2

2,5

300

20.0

1160

1289

.020

1160

2836

1200

3140

00S

-C-

2030

± 2

235

020

.013

2015

11.3

2513

8032

3914

0020

30±

20

± 2

350

25.0

1530

1682

.725

1590

3642

1600

2030

± 2

235

030

.017

3019

19.0

2518

2040

4818

0020

30±

20

± 1

,540

030

.019

4021

97.1

2520

2044

4820

0020

30±

20

± 1

400

30.0

2140

2325

.025

2230

4848

TLA

daD

bk

nd

mm

mm

mm

°m

mm

mm

mm

mm

mm

mm

m

(pag

e 29

6)

Nom

inal

mov

emen

tca

paci

tyRu

bber

bel

low

sFl

ange

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Raised face

Outside ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 319

Page 321: e BOA Expansion Joints Guide 29.3

320

Typ

e 31

60 0

0S-A

-.../

-D-.

..P

N10

Rubb

er b

ello

ws

TLda

diSW

1SW

2m

mm

mm

mm

mm

inch

mm

mm

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Female threadDIN2999

Outside ∅

Jaw span

Execution

Exec

utio

n A

(pag

e 29

5)Ex

ecut

ion

B (p

age

295)

Nom

inal

mov

emen

tca

paci

tyDN

Type

1531

60 0

0S-A

-10

25±

15

± 2

022

875

Rp 1

/281

36B

3160

00S

-D-

1225

± 2

35

248

75Rp

1/2

8136

B

2031

60 0

0S-A

-10

25±

15

± 2

022

875

Rp 3

/481

36B

3160

00S

-D-

1225

± 2

35

248

75Rp

3/4

8136

B

2531

60 0

0S-A

-10

25±

15

± 2

020

075

Rp 1

8160

A31

60 0

0S-D

-12

25±

25

± 3

522

075

Rp 1

8160

A

3231

60 0

0S-A

-10

25±

15

± 2

020

075

Rp 1

1/4

8160

A31

60 0

0S-D

-12

25±

25

± 3

522

075

Rp 1

1/4

8160

A

4031

60 0

0S-A

-10

25±

15

± 2

020

075

Rp 1

1/2

8160

A31

60 0

0S-D

-12

25±

25

± 3

522

075

Rp 1

1/2

8160

A

5031

60 0

0S-A

-10

25±

15

± 2

020

095

Rp 2

102

72A

3160

00S

-D-

1225

± 2

35

220

96Rp

210

272

A

6531

60 0

0S-A

-10

25±

15

± 2

020

012

0Rp

2 1

/212

488

A31

60 0

0S-D

-12

25±

25

± 3

522

011

5Rp

2 1

/212

488

A

8031

60 0

0S-A

-10

25±

15

± 2

020

013

0Rp

313

510

2A

3160

00S

-D-

1225

± 2

35

220

130

Rp 3

135

102

A

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 320

Page 322: e BOA Expansion Joints Guide 29.3

321

Typ

e 31

60 0

0S-B

-EP

DM

PN

10

DNTy

pe

155

10

193

70Rp

1/2

8136

B

205

10

193

70Rp

3/4

8136

B

255

10

165

70Rp

181

60A

325

10

165

70Rp

1 1

/481

60A

4031

60 0

0S-B

-EPD

M

58

± 8

± 1

016

570

Rp 1

1/2

8160

A

505

10

175

92Rp

210

272

A

656

12±

10

± 1

519

011

2Rp

2 1

/212

488

A

806

12±

10

± 1

520

012

4Rp

313

510

2A

TLda

diSW

1SW

2m

mm

mm

mm

mm

inch

mm

mm

Exec

utio

n A

(pag

e 29

5)Ex

ecut

ion

B (p

age

295)

Rubb

er b

ello

ws

Axialexpanded

Axial com -pressed

Lateral

Angular

Total length

Female threadDIN2999

Outside ∅

Jaw span

Execution

Nom

inal

mov

emen

tca

paci

ty

29.3_UK_Kap_08T01-DFS.qxp:Kap_8_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 321

Page 323: e BOA Expansion Joints Guide 29.3

322

9 Dismantling pieces

9.1 General

During pipe installation, especially when components are to be replaced forservicing and maintenance, it is essential to leave an axial gap for easy installa-tion of the units.

The BOA dismantling piece is completely maintenance free, ageing resistantand makes mounting and demounting considerably easier.

Using the spring rate of the bellows, a gap is automatically generated whileloosing the connection screws. Components can easily and quickly be removed.The other way round, a mounting gap previously set is closed by definitelyrestraining the bellows.

As the movable component consists of a one-piece bellows, the BOA disman -tling piece remains 100% tight after as much mountings and demountings asyou like. In the component itself, no supplementary seals are necessary. Onlythe piping components have to be provided with appropriate gaskets.

Thanks to the extreme flexibility ofthe multi-ply bellows, a minor flangemisalignment during pipe installationcan be compensated without tight -ness problems. Possible radialdivergences: ≤ DN 500 = ca. ± 10 mm> DN 500 = ca. ± 5 mm

During installation, the BOA dismantling piece is at one side flanged to the pipeend and then, using the special tie rods, pulled to the components. In mountedposition, the BOA dismantling piece is restrained. While demounting the piece,only the connecting bolts must be released. The dismantling piece will springback and generate automatically the gap, necessary for easy demounting andlater reinstallation of the components.

29.3_UK_Kap_09.qxp:UK_02_Kap_09.qxp 30.10.2009 14:46 Uhr Seite 322

Page 324: e BOA Expansion Joints Guide 29.3

323

Reaction forceWhen using unrestrained dismantling pieces, the following remarks are to beconsidered:

The bellows put under pressure tends to return in its smooth tube shape. Areaction force "F" is resulting, which can be calculated with the help of theformulae in section 2.6. This reaction force must be compensated by the pipeconstruction, or taken in account by the layout of the anchor points. If axialmovements occur, the spring rate has also to be considered (displacementrate x movement, values are listed in 9.3).

ed fory installa-

sistant

whileremoved.itely

disman -ngs asy. Only

o the pipemounted

he piece, springting and

Inner sleevesInners sleeves are required if high-frequency vibrations or turbulencesin the medium are expected. Theyare also recommended if the follo-wing flow speed is exceeded (at DN >150):• gaseous: 8 m/s• liquid: 3,5 m/sPay attention to the flow direction!

Underground installationBOA dismantling pieces are suitablefor underground installation whenequipped with outside protectionsleeves.

Inner sleeve

Flow direction

Protection tube for underground installation

29.3_UK_Kap_09.qxp:UK_02_Kap_09.qxp 30.10.2009 14:46 Uhr Seite 323

Page 325: e BOA Expansion Joints Guide 29.3

324

9.2 Technical data

Variant I

• BOA proved bellows construction, multi-ply, made of high-grade chrome-nickel steel (1.4571)

• floating flanges (except for DN> 1000), made of carbon steel with epoxypowder coating EP-P. RAL 5005, blue

• restraining elements made of carbon steel, galvanized

Variant II

• BOA proved bellows construction, multi-ply, made of high-grade chrome-nickel steel (1.4571)

• floating flanges (except for DN> 1000), made of 1.4301 steel• threaded rods made of A2• screws and nuts made of A4

Execution

• without tie rods, not for/ for underground installation

29.3_UK_Kap_09.qxp:UK_02_Kap_09.qxp 30.10.2009 14:46 Uhr Seite 324

Page 326: e BOA Expansion Joints Guide 29.3

325

9.3 Tables standard programme

• with tie rods, not for/ for underground installation

• with tie rods, with at one-side passing threaded bolts

29.3_UK_Kap_09.qxp:UK_02_Kap_09.qxp 30.10.2009 14:46 Uhr Seite 325

Page 327: e BOA Expansion Joints Guide 29.3

BO

A-D

ism

antl

ing

pie

ceP

N10

-wit

hout

tie

ro

ds

DNTy

p

4015

518

020

550

6815

016

110

418

26.3

212

5.2

5015

518

020

560

8016

518

125

418

37.9

158

6.6

6515

518

020

580

104

185

1814

54

1864

.816

67.

580

175

200

225

9011

520

020

160

818

82.4

111

9.4

100

175

200

225

112

139

220

2218

08

1812

2.4

153

11.4

125

175

200

225

137

166

250

2421

08

1818

2.5

107

14.2

150

175

200

225

165

196

285

2424

08

2225

7.3

130

18.0

175

195

220

245

190

230

315

2627

08

2233

5.3

116

23.0

200

195

220

245

215

254

340

2629

58

2242

4.2

252

25.9

250

195

220

245

268

310

395

2835

012

2264

2.5

280

32.3

300

195

220

245

318

362

445

2840

012

2289

2.0

253

37.9

350

205

230

255

350

400

505

3046

016

2210

81.0

403

54.5

400

205

230

255

400

450

565

3251

516

2613

93.0

460

68.9

450

225

250

275

453

500

615

3256

520

2617

76.0

417

76.5

500

235

260

285

503

553

670

3462

020

2621

73.0

1178

90.4

600

235

260

285

604

656

780

3672

520

3030

88.0

1403

120.

0

700

AKFS

-U23

526

028

570

576

089

530

840

2430

4174

.014

3512

7.5

800

AKFS

-U26

529

031

580

786

410

1532

950

2433

5450

.011

0517

6.9

Tota

l len

gth

Bello

ws

Flan

ge

L1L2

L3dm

gD

bk

nd

ACx

m

Deliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective area

Axial spring rate �30%

Weight

mm

mm

mm

mm

mm

mm

mm

mm

mm

cm2

N/m

mkg

326

Type

AKFB

-U

(pag

e 32

4)(p

age

324)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:55 Uhr Seite 326

Page 328: e BOA Expansion Joints Guide 29.3

327

900

265

290

315

908

967

1115

3410

5028

3368

67.0

1291

206.

7

1000

265

290

315

1010

1072

1230

3411

6028

3684

63.0

1940

258.

1

1100

*AK

FS-U

280

305

330

1112

*13

4034

1270

3236

1027

9.0

650

275.

1

1200

*AK

FS-U

300

325

350

1212

*14

5538

1380

3239

1215

5.0

850

355.

9

pre

ferr

ed s

erie

s*=

wel

ded

exe

cutio

n

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 327

Page 329: e BOA Expansion Joints Guide 29.3

BO

A-D

ism

antl

ing

pie

ceP

N16

-wit

hout

tie

ro

ds

DNTy

p

40AK

FB-U

155

180

205

5068

150

1611

04

1826

.321

25.

250

155

180

205

6080

165

1812

54

1837

.915

86.

665

155

180

205

8010

418

518

145

418

64.8

166

7.5

8017

520

022

590

115

200

2016

08

1882

.418

79.

4

100

175

200

225

112

139

220

2218

08

1812

2.4

153

11.4

125

175

200

225

137

166

250

2421

08

1818

2.5

240

14.2

150

175

200

225

165

196

285

2424

08

2225

7.3

254

18.0

175

195

220

245

190

230

315

2627

08

2233

5.3

200

23.0

200

195

220

245

215

254

340

2629

512

2242

4.2

382

25.2

250

205

230

255

268

310

405

3235

512

2664

2.5

495

39.6

300

225

250

275

318

362

460

3241

012

2689

2.0

1152

48.1

350

235

260

285

350

400

520

3647

016

2610

81.0

1656

70.4

400

245

270

295

400

450

580

3852

516

3013

93.0

1880

87.5

450

245

270

295

453

500

640

4258

520

3017

76.0

1721

110.

1

500

255

280

305

503

553

715

4465

020

3321

73.0

1781

145.

2

600

275

300

325

604

656

840

4877

020

3630

88.0

2120

209.

3

700

275

300

325

705

760

910

3684

024

3641

74.0

1858

162.

7

800

295

320

345

807

864

1025

3895

024

3954

50.0

1668

227.

3

L1L2

L3dm

gD

bk

nd

ACx

mm

mm

mm

mm

mm

mm

mm

mm

mm

mcm

2N/

mm

kg

328

AKFB

-U

Tota

l len

gth

Bello

ws

Flan

ge

Deliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective area

Axial spring rate �30%

Weight

Type

(pag

e 32

4)(p

age

324)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 328

Page 330: e BOA Expansion Joints Guide 29.3

329

900

265

290

315

908

967

1115

3410

5028

3368

67.0

1291

206.

7

1000

265

290

315

1010

1072

1230

3411

6028

3684

63.0

1940

258.

1

1100

*AK

FS-U

280

305

330

1112

*13

4034

1270

3236

1027

9.0

650

275.

1

1200

*AK

FS-U

300

325

350

1212

*14

5538

1380

3239

1215

5.0

850

355.

9

*= w

eld

ed e

xecu

tion

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 329

Page 331: e BOA Expansion Joints Guide 29.3

330

BO

A-D

ism

antl

ing

pie

ceP

N10

-wit

h ti

e ro

ds

DNTy

p

4015

518

020

550

684x

M16

x300

150

1611

04

1826

.321

26.

450

155

180

205

6080

4xM

16x3

0516

518

125

418

37.9

158

7.8

6515

518

020

580

104

4xM

16x3

0518

518

145

418

64.8

166

8.8

8017

520

022

590

115

4xM

16x3

3020

020

160

818

82.4

111

10.7

100

175

200

225

112

139

4xM

16x3

3022

022

180

818

122.

415

312

.712

517

520

022

513

716

64x

M16

x335

250

2421

08

1818

2.5

107

15.5

150

175

200

225

165

196

4xM

20x3

4028

524

240

822

257.

313

020

.217

519

522

024

519

023

04x

M20

x370

315

2627

08

2233

5.3

116

25.3

200

195

220

245

215

254

4xM

20x3

7034

026

295

822

424.

225

228

.225

019

522

024

526

831

04x

M20

x370

395

2835

012

2264

2.5

280

34.6

300

195

220

245

318

362

4xM

20x3

7044

528

400

1222

892.

025

340

.335

020

523

025

535

040

04x

M20

x385

505

3046

016

2210

81.0

403

56.9

400

205

230

255

400

450

4xM

24x3

9556

532

515

1626

1393

.046

072

.645

022

525

027

545

350

05x

M24

x425

615

3256

520

2617

76.0

417

80.2

500

235

260

285

503

553

5xM

24x4

4067

034

620

2026

2173

.011

7895

.4

600

235

260

285

604

656

7xM

27x4

5078

036

725

2030

3088

.014

0312

9.4

700

235

260

285

705

760

8xM

27x4

4089

530

840

2430

4174

.014

3513

8.0

800

265

290

315

807

864

8xM

30x4

7510

1532

950

2433

5450

.011

0519

0.9

Tota

l len

gth

Bello

ws

Tie

rod

Flan

ge

L1L2

L3dm

gn

x M

x L

Db

kn

dA

Cxm

Deliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Number xthread xlength

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective area

Axialspring rate�30%

Weight

mm

mm

mm

mm

mm

mm

mm

mm

mm

cm2

N/m

mkg

Type

AKFB

-Z

(pag

e 32

5)(p

age

325)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 330

Page 332: e BOA Expansion Joints Guide 29.3

331

900

265

290

315

908

967

10xM

30x4

8011

1534

1050

2833

6867

.012

9122

4.4

1000

265

290

315

1010

1072

10xM

33x4

9012

3034

1160

2836

8463

.019

4028

0.2

1100

*AK

FS-Z

280

305

330

1112

*12

xM33

x510

1340

3412

7032

3610

279.

065

030

2.4

1200

*AK

FS-Z

300

325

350

1212

*12

xM36

x540

1455

3813

8032

3912

155.

085

039

1.1

pre

ferr

ed s

erie

s*=

wel

ded

exe

cutio

n

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 331

Page 333: e BOA Expansion Joints Guide 29.3

332

BO

A-D

ism

antl

ing

pie

ceP

N16

-wit

h ti

e ro

ds

DNTy

p

40AK

FB-Z

155

180

205

5068

4xM

16x3

0015

016

110

418

26.3

212

6.4

5015

518

020

560

804x

M16

x305

165

1812

54

1837

.915

87.

865

155

180

205

8010

44x

M16

x305

185

1814

54

1864

.816

68.

880

175

200

225

9011

54x

M16

x325

200

2016

08

1882

.418

710

.6

100

175

200

225

112

139

4xM

16x3

3022

022

180

818

122.

415

312

.712

517

520

022

513

716

64x

M16

x335

250

2421

08

1818

2.5

240

15.5

150

175

200

225

165

196

4xM

20x3

4028

524

240

822

257.

325

420

.217

519

522

024

519

023

04x

M20

x365

315

2627

08

2233

5.3

200

25.3

200

195

220

245

215

254

4xM

20x3

6534

026

295

1222

424.

238

227

.525

020

523

025

526

831

04x

M24

x395

405

3235

512

2664

2.5

495

43.2

300

225

250

275

318

362

4xM

24x4

1546

032

410

1226

892.

011

5251

.935

023

526

028

535

040

04x

M24

x435

520

3647

016

2610

81.0

1656

74.3

400

245

270

295

400

450

4xM

27x4

5558

038

525

1630

1393

.018

8092

.945

024

527

029

545

350

05x

M27

x470

640

4258

520

3017

76.0

1721

117.

0

500

255

280

305

503

553

5xM

30x4

9071

544

650

2033

2173

.017

8115

4.1

600

275

300

325

604

656

6xM

33x5

2584

048

770

2036

3088

.021

2022

3.2

700

275

300

325

705

760

8xM

33x5

0091

036

840

2436

4174

.018

5818

0.6

800

295

320

345

807

864

12xM

36x5

3010

2538

950

2439

5450

.016

6826

1.9

L1L2

L3dm

gn

x M

x L

Db

kn

dA

Cxm

mm

mm

mm

mm

mm

mm

mm

mm

mm

cm2

N/m

mkg

AKFB

-Z

Tota

l len

gth

Bello

ws

Tie

rod

Flan

geDeliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Number xthread xlength

Outside ∅

Thickness

Bolt circle ∅

Number of holes

Hole ∅

Effective area

Axialspring rate�30%

Weight

Type

(pag

e 32

5)(p

age

325)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 332

Page 334: e BOA Expansion Joints Guide 29.3

333

900

295

320

345

908

967

12xM

36x5

3511

2540

1050

2839

6867

.032

6729

1.5

1000

315

340

365

1010

1072

12xM

39x5

6512

5542

1170

2842

8463

.032

5039

1.3

1100

*AK

FS-Z

290

315

340

1112

*12

xM39

x550

1355

4212

7032

4210

279.

078

539

5.0

1200

*AK

FS-Z

310

335

360

1212

*12

xM45

x590

1485

4813

9032

4812

155.

098

050

2.4

*= w

eld

ed e

xecu

tion

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 333

Page 335: e BOA Expansion Joints Guide 29.3

334

BO

A-D

ism

antl

ing

pie

ceP

N10

-wit

h ti

e ro

ds

with

at

one-

sid

e p

assi

ng t

hrea

ded

bol

ts

DNTy

p

40AK

-Z27

530

032

550

684x

M16

x333

150

1611

04

1826

.321

210

.650

275

300

325

6080

4xM

16x3

3116

518

125

418

37.9

158

14.2

6527

530

032

580

104

4xM

16x3

3118

518

145

418

64.8

166

15.8

8027

530

032

590

115

4xM

16x3

2520

020

160

818

82.4

111

18.5

100

275

300

325

112

139

4xM

16x3

2522

022

180

818

122.

415

322

.812

527

530

032

513

716

64x

M16

x323

250

2421

08

1818

2.5

107

30.4

150

325

350

375

165

196

4xM

20x3

8128

524

240

822

257.

313

038

.817

532

535

037

519

023

04x

M20

x375

315

2627

08

2233

5.3

116

46.1

200

325

350

375

215

254

4xM

20x3

7134

026

295

1222

424.

225

252

.225

032

535

037

526

831

04x

M20

x343

395

2835

012

2264

2.5

280

64.6

300

325

350

375

318

362

4xM

20x3

4344

528

400

1222

892.

025

373

.335

032

535

037

535

040

04x

M20

x337

505

3046

016

2210

81.0

403

94.9

400

350

375

400

400

450

4xM

24x3

9656

532

515

1626

1393

.046

011

9.3

450

350

375

400

453

500

5xM

24x3

9661

532

565

2026

1776

.041

713

9.9

500

350

375

400

503

553

5xM

24x3

9467

034

620

2026

2173

.011

7816

4.9

600

375

400

425

604

656

7xM

27x4

1978

036

725

2030

3088

.014

0321

0.9

700

375

400

425

705

760

8xM

27x4

1389

530

840

2430

4174

.014

3525

4.8

800

425

450

475

807

864

8xM

30x4

4710

1532

950

2433

5450

.011

0534

6.1

Tota

l len

gth

Bello

ws

Tie

rod

Flan

ge

L1L2

L3dm

gn

x M

x L

Db

kn

dA

Cxm

Deliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Number xthread xlength

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅

Effective area

Axialspring rate�30%

Weight

mm

mm

mm

mm

mm

mm

mm

mm

mm

cm2

N/m

mkg

Type

AK-Z

(pag

e 32

5)(p

age

325)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 334

Page 336: e BOA Expansion Joints Guide 29.3

335

900

425

450

475

908

967

10xM

30x4

4111

1534

1050

2833

6867

.012

9140

6.2

1000

450

475

500

1010

1072

10xM

33x4

7212

3034

1160

2836

8463

.019

4048

4.0

*110

045

047

550

011

12*

12xM

33x4

5013

4028

1270

3236

1028

0.0

650

590.

8

*120

050

052

555

012

12*

12xM

36x4

9614

5538

1380

3239

1215

5.0

850

728.

1

*= w

eld

ed e

xecu

tion

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 335

Page 337: e BOA Expansion Joints Guide 29.3

336

BO

A-D

ism

antl

ing

pie

ceP

N16

-wit

h ti

e ro

ds

with

at

one-

sid

e p

assi

ng t

hrea

ded

bol

ts

DNTy

p

40AK

-Z27

530

032

550

684x

M16

x333

150

1611

04

1826

.321

210

.650

275

300

325

6080

4xM

16x3

3116

518

125

418

37.9

158

14.2

6527

530

032

580

104

4xM

16x3

3118

518

145

418

64.8

166

15.8

8027

530

032

590

115

4xM

16x3

2520

020

160

818

82.4

187

18.5

100

275

300

325

112

139

4xM

16x3

2522

022

180

818

122.

415

322

.812

527

530

032

513

716

64x

M16

x323

250

2421

08

1818

2.5

240

30.4

150

325

350

375

165

196

4xM

20x3

8128

524

240

822

257.

325

438

.817

532

535

037

519

023

04x

M20

x375

315

2627

08

2233

5.3

200

46.4

200

325

350

375

215

254

4xM

20x3

7534

026

295

1222

424.

238

252

.225

032

535

037

526

831

04x

M24

x371

405

3235

512

2664

2.5

495

75.2

300

325

350

375

318

362

4xM

24x3

5946

032

410

1226

892.

011

5293

.035

032

535

037

535

040

04x

M24

x359

520

3647

016

2610

81.0

1656

127.

5

400

350

375

400

400

450

4xM

27x3

8858

038

525

1630

1393

.018

8016

1.7

450

350

375

400

453

500

5xM

27x4

1064

042

585

2030

1776

.017

2121

0.7

500

350

375

400

503

553

5xM

30x3

9671

544

650

2033

2173

.017

8127

0.4

600

375

400

425

604

656

6xM

33x4

1984

048

770

2036

3088

.021

2036

5.5

700

375

400

425

705

760

8xM

33x3

9191

036

840

2436

4174

.018

5834

3.1

800

425

450

475

807

864

12xM

36x4

4110

2538

950

2439

5450

.016

6845

5.9

L1L2

L3dm

gn

x M

x L

Db

kn

dA

Cxm

mm

mm

mm

mm

mm

mm

mm

mm

mm

cm2

N/m

mkg

AK-Z

Tota

l len

gth

Bello

ws

Tie

rod

Flan

geDeliverylength

Installationlength

Max. length

Clearance ∅

Raised face ∅

Number xthread xlength

Outside ∅

Thickness

Bolt circle ∅

Number ofholes

Hole ∅

Effective area

Axialspring rate�30%

Weight

Type

(pag

e 32

5)(p

age

325)

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 336

Page 338: e BOA Expansion Joints Guide 29.3

337

900

425

450

475

908

967

12xM

36x4

3511

2540

1050

2839

6867

.032

6753

4.3

1000

450

475

500

1010

1072

12xM

39x4

5012

5542

1170

2842

8463

.032

5070

0.4

*110

045

047

550

011

12*

12xM

39x4

4013

5542

1270

3242

1028

0.0

785

803.

3

*120

050

052

555

012

12*

12xM

45x5

0414

8548

1390

3248

1215

5.0

980

1041

.4

*= w

eld

ed e

xecu

tion

29.3_UK_Kap_09T01-PN.qxp:Kap_9_Tab_UK.qxp 30.10.2009 14:56 Uhr Seite 337

Page 339: e BOA Expansion Joints Guide 29.3

338

10 Rectangular, unreinforced expansion joints

The company SFZ, located in Chassieu near Lyon, France, is membre of theBOA Group. Since 1962 SFZ designs and manufactures expansion joints forvarious application fields, even for high sensitive areas like nuclear engineer -ing. Along with circle shaped axial, universal, lateral, gimbal and pressurebalanced expansion joints, it is the product segment of rectangular expan -sion joints that perfectly completes the production range of BOA Group.Rectangular expansion joints are manufactured with dimensions of up toseveral meters. They are produced in the most various high-grade materialsand their angles are either rectangular, rounded or in "camera corner" shape.

Materials: stainless steel, nickel alloys, aluminium, titanium, etc.Masse: from 50 up to 7000 mm (even larger constructions are

possible on demand).Pressures: from vacuum up to over 100 barTemperature ranges: from – 200°C up to +1200°C

SFZ uses EJMA for the design of unreinforced, U-shaped rectangular bellows.For other shapes, an internal calculation mode is applicated.

Special construction of an expansion joint according tocustomer’s requirements.

Special construction of an expansion joint according tocustomer’s requirements.

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 338

Page 340: e BOA Expansion Joints Guide 29.3

339

Sophisticated tools and the hydro forming process are used to shape theconvolutions of SFZ expansion joints bellows.

Different U-shaped bellows are manufactured, with low, flat or high profile.These shapes are used to give structure to expansion joints with rectangularor rounded angles. SFZ is hydro forming stainless steel with wall thicknessfrom 1,2 to 2 mm.

Convolution shape

s

Overview of the U-profiles

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 339

Page 341: e BOA Expansion Joints Guide 29.3

340

U - shape

Low profile (45mm x 35-40mm)

Flat profile (100mm x 80-90mm)

High profile (240mm x 300mm)

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 340

Page 342: e BOA Expansion Joints Guide 29.3

341

"Camera Corner" shape

Cutting the shape

Assembling the shape

Forming the shape

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 341

Page 343: e BOA Expansion Joints Guide 29.3

342

"2S" shape

The "2S" shape has been developed by SFZ for the low pressure segmentand high flexibility.

Cut into the convolution to show the 2S shape.

Picture of one convolution in 2S shape, applied to round corner rectangularexpansion joint.

Universal rectangular expansion joint for exhaust pipe.

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 342

Page 344: e BOA Expansion Joints Guide 29.3

343

Single or double mitre corner

Angle shapes

"Camera corner"

Rounded corner

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 343

Page 345: e BOA Expansion Joints Guide 29.3

344

SFZ is manufacturing weld ends and flanges according to customer require-ments. Technical adaptations of the connecting pieces may be arranged be -tween the customer and SFZ, especially to achieve the requested stability oflarge dimension pipelines.Expansion joints of dimensions from 300 x 300 mm up to 4000 x 4000 mmare manufactured, even larger dimensions on request.

Custom-made expansion joints

Example of a rectangular SFZ expansion joint.

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 344

Page 346: e BOA Expansion Joints Guide 29.3

345

References

Pressure Temperature Load cyclesDimension

CustomerL H

Axial Lateral

mm mmRobatel 532 635 0,02/-1 20° 3.2 1000CIAT 598 228 0.3 270° 4 1000Rhone Cornière 800 800 Atm 650° -7 1000SICN 1150 1250 9mB 110° 5 1000ZIEMAN-SECATEN 1570 600 1 400° 17.5 0.3 1000Sideco 1576 735 1.5 70° 30 5 1000Robatel 1610 1310 0,02/-1 60° 3.2 1000Cellier 2056 1615 200mb 80° 10 1000ELYO 2100 1400 0.04 150° 7 2.6 1000CMI 2337 1737 2.25 100° 5 1000Polysius 2415 1928 Atm 200° 50 1000Foure lagadec 3165 1495 Atm 400° -30 1000Haden 3270 3130Haden 3280 3555CDR 4144 1054 0.17 480° 109 16 300Polysius 7505 3305 Atm 200° 30 1000

29.3_UK_Kap_10.qxp:UK_02_Kap_10.qxp 30.10.2009 14:46 Uhr Seite 345

Page 347: e BOA Expansion Joints Guide 29.3

11 Installation instructions

11.1 General safety recommendationsPrior to assembly and commissioning, the assembly and start-up instructionsmust be carefully read and strictly observed. Necessary assembly, start-up,and maintenance work may be performed only by qualified and authorizedstaff.

MaintenanceAxial, lateral and angular expansion joints as well as dismantling pieces andrubber expansion joints are maintenance free.

CAUTION!• Prior to assembly and maintenance the pipe system must be

- depressurized- cooled down and- emptied.

Otherwise there is a high risk of accidents!

Transport, packaging and storage• Immediately upon receipt, the shipment must be checked for completeness.• Any shipping damage must be reported to the carrier and to the manufacturer.• In case of intermediate storage we recommend to make use of the original pack-

aging material.

Permissible ambient conditions during storage and transportation:- ambient temperature: - 4°C up to + 70°C- relative humidity: up to 95%

Axial, lateral and angular expansion joints as well as dismantling pieces andrubber expansion joints must be protected against dampness, humidity, dirt,shocks and damage.

WarrantyA warranty claim requires proper assembly and commissioning in accordancewith the assembly and start-up instructions.

Necessary assembly, commissioning and maintenance work may only be per-formed by qualified and authorized staff.

Assembly• Anchor points and pipe guides must be firmly installed prior to filling and

pressure testing the system.• Expansion joints must not be stressed by torsion, especially not expansion

joints with socket attachement.

346

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 346

Page 348: e BOA Expansion Joints Guide 29.3

347

• The steel bellows must be protected against damage and dirt (e.g. welding chips,plaster or mortar splatter).

• Steam pipelines should be installed in such a way that water hammers are avoid -ed. This is achieved by means of a sufficiently designed drainage, by correctinsulation, by avoiding water pockets and by installing the pipeline with sufficientinclination.

• Expansion joints with inners sleeves must be installed with consideration given tothe flow direction.

• Avoid the installation of expansion joints in the immediate proximity of pressurereducers, superheated steam coolers and shut-down valves if high frequency vibra-tions are to be expected due to turbulence. Otherwise, special precautions must betaken (e.g. heavy-walled sleeves, perforated disks, cooling-off sections, etc.).

• If high frequency vibrations or turbulence or higher flow speed are to be expected inthe medium, we recommend the installation of expansion joints with inner sleeves.

• Inner sleeves are also recommended for expansion joints with DN ≥ 150 if theflow speed of the air, gas or steam media exceeds 8 m/s, or 3 m/s in the case ofliquid media.

Operating pressureNOTE• The permissible operating pressure results in the nominal pressure consider -

ing the reduction factors given in section 6.2 "Reductions".• At higher temperatures, the nominal pressure has to be adapted according

to the reduction factors given in section 6.2 "Reductions".

Dampf / Gas

Flüssigkeit

0

1

2

3

4

5

6

7

8

9

10

50 100 150 200 250 300

NNNNeeeennnnnnnnwwwweeeeiiiitttteeee DDDDNNNN

SSSS ttttrrrr öööö

mmmmuuuu nnnn

gggg ssssgggg eeee

ssss cccchhhh wwww

iiii nnnndddd iiii

gggg kkkkeeee iiii

ttttvvvv

[[[[ mmmm//// ssss

]]]]

Nominal diameter DN

Flow

vel

ocity

v [m

/s]

Steam/gas

Liquid

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 347

Page 349: e BOA Expansion Joints Guide 29.3

348

Start-up and checkBefore starting-up make sure that

- the pipeline is installed with sufficient inclination to avoid water pockets,- there is sufficient drainage,- pipe anchors and pipe supports/ guides are completely installed prior to

filling and pressure testing the system,- the expansion joint is not stressed by torsion, especially not expansion

joints with socket attachement,- the flow direction has been observed for expansion joints with inner sleeves,- the steel bellows is free of dirt, welding chips, plaster or mortar splatter or

any other soiling; clean if necessary,- all screwed connections are tightened properly,- in general, special care or measures should be taken to avoid corrosion

damages, e.g. in water treatment, or to avoid galvanic corrosion in copper and galvanized pipes.

InsulationExpansion joints may be insulated together with the complete pipeline.• If no coating is provided, protect the bellows by means of a suitable cover to

avoid insulation material dropping into the convolutions.• If the expansion joint will be installed under plaster, the bellows absolutely

requires protection to avoid that plaster and other building material negative-ly affects the free movement of the bellows. The utilization of expansionjoints with a standard bellows cover is essential.

Unacceptable operating modes- The limit values given in section 6 "Standard programme" must not be

exceeded.- Swing supports or suspensions installed adjacent to the expansion joints

are not allowed.- Cleaning the newly installated pipeline with steam should not be done to

avoid water hammers and unacceptable vibration stimulating the bellows.

System start-upCAUTION• During pressure testing and operation, the permissible test pressure or

operating pressure for the expansion joint must not be exceeded.• Excessive pressure peaks as a consequence of valves closing too quickly,

water hammers, etc. are not permitted. • Avoid contact with aggressive media.• Steam pipelines must be started in such a way that condensate can drain off

in time.

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 348

Page 350: e BOA Expansion Joints Guide 29.3

349

11.2 Axial expansion joints / dismantling pieces

Description of axial expansion joints and their application fields Axial expansion joints are suited to compensate for axial expansion move-ments in straight pipeline sections. In addition, they are used:

- to absorb mechanical vibrations and reduce sound conducted through solids on pumps and compressors,

- as flexible seals at the end of jacketed pipes in district heating systems,- to compensate for thermal expansion movements and vibrations in flue gas

conduits of boilers and engines,- as disassembly aids for pumps, fittings and plate heat exchangers,- as gas-tight wall penetrations of pipelines in nuclear power stations and

ship building,- in boilers and pressure vessels to compensate for differential expansion.

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 349

Page 351: e BOA Expansion Joints Guide 29.3

350

Fig. 1

As a precondition for the various applications of axial expansion joints, suitableanchors and axial guides/ supports must be present. The application must belimited to the rated conditions as stated in the technical data sheets and therating plates that are mounted to each expansion joint.

These assembly and start-up instructions are valid for the types listed on page351, fig. 2.

Special care or measures should be taken to avoid corrosion damages, e.g. inwater treatment, or to avoid galvanic corrosion in copper and galvanizedpipes.

Description of dismantling pieces and their application fields The assembly of pipeline systems as well as the disassembly and re-assemblyof components (valves, shut-off valves, pumps, etc.) for maintenance purposesrequires an axial gap for a comfortable assembly and disassembly of the com-ponents. Installation inaccuracies often occur due to offset flange positions. Inaddition, the pipes are submitted to thermal expansion during the operation ofsuch systems. Therefore, so-called dismantling pieces are installed betweenpipes and components.

Weld end

BellowsInner sleeve

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 350

Page 352: e BOA Expansion Joints Guide 29.3

351

Fig. 2Connection type:1 weld end 6 threaded socket, male thread (A)2 flange, welded 8 press fitting5 flange, van-stone 10 brazing fitting LF6 threaded socket, female thread (I) 11 threaded nipple, welded

Type overview BOA Group Axial expansion joints / Dismantling pieceswithout pretension Connection type 50% pretensioned Connection typeFS 2 ZA 1FB 5 GA 11W 1 I 6Alpha-C 5EXF 5EXW 1

AKFB-U1 5AKFB-U2 5AKFS-U1 2AKFS-U2 2

AKFB-Z1 5AKFB-Z2 5AKFS-Z1 2AKFS-Z2 2

7179 00X MS 87179 00X ME 8

7160 00S TI, RI 67160 00S TA, RA 67160 00S LF 10

7162 00S TI, RI 67162 00S TA, RA 67162 00S LF 10

7951 00S 57951 DFS 5

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 351

Page 353: e BOA Expansion Joints Guide 29.3

352

11.2.1 Installation advices

Pipe guides, pipe supports• Provide inclination for condensate drainage.• Align pipeline and install the pipe guides according to fig. 3, 4 and 5.

NOTESliding or roller supports are the safest measures to avoid buckling and liftingof the pipelineCAUTIONSwing supports or suspensions are not acceptable adjacent to expansionjoints!

Fig. 3

• L1 = max. 2 x DN + /2 [mm]• L2 = 0.7 x L3 [mm]• L3 = 400 x DN [mm] valid only for steel pipelines • = movement capacity of the expansion joint [mm]• L3 is the distance between the pipe supports according to the above for-

mula. If buckling must be anticipated, the distance L3 must be reducedaccording to the diagram in fig 5.

DN L1 [mm] L2 [mm] L3 [mm]

15 30 + 1050 1550

20 40 + 1200 1750

25 50 + 1400 2000

32 64 + 1550 2250

40 80 + 1750 2500

50 100 + 1950 2800

65 130 + 2250 3200

80 160 + 2500 3550

100 200 + 2800 4000

125 250 + 3100 4450

Anchor Pipe support/Guide Pipe support/Guide Anchor

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 352

Page 354: e BOA Expansion Joints Guide 29.3

353

Fig. 4 (only valid for steel pipelines)

Fig. 5

DN L1 [mm] L2 [mm] L3 [mm]

150 300 + 3450 4900

200 400 + 3950 5650

250 500 + 4400 6300

300 600 + 4850 6900

350 700 + 5200 7450

400 800 + 5600 8000

450 900 + 5900 8450

500 1000 + 6250 8900

600 1200 + 6850 9800

700 1400 + 7450 10600

800 1600 + 7900 11300

Maximum positioning distance for steel pipelines 1)

Nominal diameter DN1) with standard shedule wall thickness acc.to DIN 2458

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 353

Page 355: e BOA Expansion Joints Guide 29.3

Anchors• Install main anchors at locations where the pipeline changes direction.• Each pipe section that is to be compensated for must be reduced in length

by anchors.- Only one expansion joint is allowed between two anchors.- Main anchors must be installed at locations where the pipeline changes

direction. They must absorb the pressure thrusts of the expansion joints as well as the frictional forces of the pipe supports/ guides.

- Intermediate anchors must be installed if the movement capacity of one axial expansion joint is not sufficient to compensate for the entire expan-sion of a long pipeline and if several axial expansion joints are required.

- In the case of vacuum operation, the anchors must be capable of with-standing compression and tensile forces.

Fig. 6

Fig. 7

354

Anchor

Pipe support/guide

Pipe support/guide

Anchor AnchorPipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Anchor

Anchor

Anchor

AnchorIntermediate anchor Pipe support/

GuidePipe support/Guide

Pipe support/Guide

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 354

Page 356: e BOA Expansion Joints Guide 29.3

355

Vibration compensation• The expansion joint should be installed as closely as possible to the vibrat -

ing aggregate to make use of its entire absorption capacity.• The vibration absorbers should be installed as closely as possible to the

vibration source to avoid resonating of other parts of the system.• Primarily it must be assured that the vibration amplitude has a lateral effect,

i.e. perpendicular to the vibration absorber axis.• A pipe anchor should be mounted directly behind the expansion joint which

is to be installed without pretension.

CAUTIONIf unrestrained expansion joints are used, the thrust must be taken intoaccount.Fig. 8

Anchor

Vibrations inall directions

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 355

Page 357: e BOA Expansion Joints Guide 29.3

356

PretensionAll common expansion joints must be installed pretensioned by 50% of theirmovement capacity (for heating systems: overall length of expansion jointplus 50%, and for cooling systems: overall length of expansion joint minus50% of the movement).If an expansion joint is not installed at the lowest operating temperature of aheating system or at the highest operating temperature of a cooling system(e.g. replacement at pipe that is still warm) it must be individually preten -sioned (see fig. 10).

Fig. 9

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 356

Page 358: e BOA Expansion Joints Guide 29.3

357

Pretension diagram

Fig. 10

Example to the diagramAn axial expansion joint is utilized to compensate for a pipeline measuring 22 m inlength. The lowest temperature is – 15°C. The highest temperature is +165°C. Themaximum anticipated thermal movement equals 50 mm at the temperature differenceof 180°C. If the expansion joint is installed at the lowest temperature it shall be preten-sioned (expanded) by 50% of this movement (25 mm). During operation, the expan -sion joint will then be compressed by the thermal movement of 50 mm. When theexpansion joint is installed, special care should be taken to assure correct pretension.If the temperature at the time of installation is not – 15°C but +20°C, the correspond -ing thermal movement of the pipeline is 9 mm (see fig. 10). This amount must be subtracted from the original pretension value of the expansion joint: 25 – 9 = 16 mm.

Total anticipated movement of expansion joint in mm

Pre-stressing of expansion joint in mm

Ther

mal

Exp

ansi

on o

f pip

elin

e at

inst

alla

tion

tem

pera

ture

leve

l in

mm

Leng

th o

f pip

elin

e in

mm

Temperature difference in °C betweeninstallation temperature and lowest temperature

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 357

Page 359: e BOA Expansion Joints Guide 29.3

358

The pretension diagram (fig. 10) allows to determine the correct pretensionvalue as follows:

1. Temperature difference between installation temperature and lowest temperature: -15°C up to + 20°C = 35°C.

2. Length of pipeline to be compensated for: 22 m.3. Draw a straight line from the point "Length of pipeline 22 m" to the " 0°C"

point. 4. Draw a vertical line from the "35°C" point towards the beam coming from

"22 m".5. Draw a horizontal line from this intersection to the line "Thermal expansion

of pipeline in mm"; the result is, as stated above, 9 mm.6. Draw a straigth line from the "9 mm" point to "Total anticipated movement",

this equals 50 mm, and go further to "Pre-stressing of expansion joint in mm".The intersection shows a pre-stressing of 16 mm. This is the value by whichthe axial expansion joint is to be expanded during installation.

Installation of flanged expansion joints• Align pipe axes and flange bolt holes.

- ensure flanges are parallel,- ensure gaskets are on center,- tighten bolts crosswise

• Make sure that the expansion joint is not exposed to torque.• Ensure that bellows are free of objects (dirt) that hinder free movements.

Fig. 11

Connection:TI (malleable cast iron, female thread)TA (malleable cast iron, male thread)RI (gunmetal, female thread)

RA (gunmetal, male thread)EI (stainless steel, female thread)LF (brazing fitting)

correct

wrong wrong

wrong

correct

AnchorPipe support/guide

Pipe support/guide

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 358

Page 360: e BOA Expansion Joints Guide 29.3

359

Installation of pipes with pressfittingsAxial expansion joints of type 7179 00X are suitable for the compensation ofaxial movements in straight pipelines and are especially developed for theMapress system. With the connection elements welded on both sides, fastand proper assembly is possible at site.When expansion joints are installed in HVAC systems, the installationinstructions of the Mapress company must be absolutely observed.

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 359

Page 361: e BOA Expansion Joints Guide 29.3

360

Installation of expansion joints with threaded sockets (pretensioned)• Due to the screw connection, a maximum operating pressure of 4 bar is

permissible for gas pipelines.• Rubber seals must not be lubricated or greased.• Oxygen conduits must never get in contact with oil or grease. Otherwise

there is high danger of explosion!• Pipe axes must be aligned.• Make sure that the expansion joint is not exposed to torque during installation.• After installation, make sure that the bellows convolutions are free of dirt.

Fig. 12

Description of fig. 12:• Prior to installation, the threaded sockets/ brazing fittings must be un

scre wed from the expansion joint. The individual parts, particularly the back disks and the seals, are to be kept safely.

• The threaded sockets/ brazing fittings must be screwed in/ brazed in with-out bellows and seals. It is of particular importance that the bellows is notthermically overstressed during brazing. Ensure a gap of the dimension"Overall length bellows + 2x seal thickness" between the threaded sockets/brazing fittings.

• The seal areas of the threaded sockets/ brazing fittings must be parallel toeach other and perpendicular to the pipe axis.

• After installing the threaded sockets/ brazing fittings, the bellows – togetherwith the disks fitted in, the seals and the sockets pulled back - is placed at"expansion joint length" between the threaded sockets/ brazing fittings andtightened by screwing the sockets.

Installation

length+ 2x seals

Installationlength

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 360

Page 362: e BOA Expansion Joints Guide 29.3

361

Materials of expansion joints with threaded sockets

Permissible operating temperature for:Type 7160 00S - malleable cast iron max. 300°C

- gunmetal max. 225°C

Type 7162 00S (with protective jacket) max.180°C

Fig. 13

1 bellows: stainless steel, 1.4571

2 support ring: stainless steel, 1.4301

3 threaded socket: Type T: malleable cast iron, galvanizedType R: gunmetalType E: stainless steel, 1.4571Type LF: brazing fitting

4 gasket Klinger C-4400

5 protective jacket Type T: carbon steel, galvanized, soft solderedType R: brass, soft solderedType E: stainless steelType L: brass, soft soldered

1 3 2 4 3 5 3 2 1 4 3

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 361

Page 363: e BOA Expansion Joints Guide 29.3

362

Dismantling pieces

NOTEDepending on the nominal diameter,the installation length EL of the dis-mantling piece must be max. 50 mmlonger than the unrestrained totallength TL.

• Install anchor points on each side: With unrestrained expansion jointsthe thrust must be absorbed by theanchors.

Installation• Flange one side of the dismantling

piece to the pipe end (fig. 14). Onthe other side, pull the dismantlingpiece towards the components(valve, shut-off valve, pumps, etc.)either with long bolts (unrestrained)or with the delivered threaded rods(restrained) (fig.15). When installedcorrectly, the dismantling piece isrestrained (fig. 16).

Disassembly• Untie the long bolts or threaded

rods. The dismantling piece swingsback, creating a gap, which isnecessary for comfortable assemb-ly and disassembly of the compo-nents.

Fig. 14

Fig. 15

Fig. 16

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 362

Page 364: e BOA Expansion Joints Guide 29.3

363

Angular expansion joints are suited forthe compensation of both, long pipe -line sections of district heating sys -tems as well as short boiler and turb -ine room pipelines of plane and three-dimensional pipeline systems.

A minimum of two and a maximum ofthree angular expansion joints form astatically defined articulated systemand represent one construction unit.Their function depends on the angularmovement of the steel bellows whichis stated in section 6, table "Angularexpansion joints", as "Angular move-ment at 1000 full load cycles".

11.3 Angular and lateral expansion joints

Description of angular expansion joints and their application fields Due to the angular movement of the steel bellows, angular and lateral expan -sion joints are suited to compensate for expansion movements which occurvertically to the longitudinal axis of the expansion joint.The application must be limited to the rated conditions as stated in our techni-cal data sheets and the rating plates that are mounted to each expansion joint.These assembly and start-up instructions are valid for the types listed on p. 366, fig. 22.

Special care or measures should be taken to avoid corrosion damages, e.g. inwater treatment, or to avoid galvanic corrosion in copper and galvanized pipes.

Fig. 17

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 363

Page 365: e BOA Expansion Joints Guide 29.3

364

The longer the distance L1 betweentwo angular expansion joints (fig. 17),the larger is the expansion movementthat can be compensated for by thesystem and the smaller are the dipla-cement forces. The axial pressurethrusts originating from the internalpressure are transferred through thehinges. The pivoting axes of the hingesare on the center line of the bellows(fig. 17).

Angular gimbal expansion jointsabsorb the thrust through their roundor square gimbal design. This results inthree-dimensional angular movementsaround the X and Z axes (fig. 18).

The function of the lateral expansionjoints is based on the angular move-ment of the steel bellows, as withangular expansion joints. They are alsosuited for the installation within limitedspaces. The movement capacitydepends on the face-to-face lengthor center-to-center distance of thebellows: the longer the distance be -tween the bellows, the larger is thelateral movement capacity (fig. 19).

A longer center-to-center distancereduces the displacement forces of theexpansion joint.

Lateral expansion joints are indepen-dent expansion systems, representinga complete double hinge system.

Description of lateral expansion joints and their application fields

Fig. 18

Fig. 19

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 364

Page 366: e BOA Expansion Joints Guide 29.3

365

Special features:• Very low anchor loads as the hinge

anchors transfer the pressure thrustresulting from the internal pressure.

• Less demands on the pipe sup-ports/guides.

Even swing hangers may be accept -able.

Depending on their ability to compen-sate for expansion movements, thereare two basic types:

• expansion joints with lateral move-ment compensation on one plane(fig. 20).

• expansion joints with lateral move-ment compensation on a circularplane (fig. 21).

Fig. 20

Fig. 21

Movement in onedirection

Movement in twodirections

FP (Anchor)

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 365

Page 367: e BOA Expansion Joints Guide 29.3

Type overview

AWT 1 Epsilon-C 5AFS 2 7951 DFS 5AFB 5

KAWT 1KAFS 2KAFB 5

LW 1LFS 2LFB 5

366

Angular, gimbal and lateral

expansion joints

Connection ConnectionSound absorbingexpansion joints andvibration absorbers

Type of connection:1 weld end2 flange, welded5 flange, van-stone

Permissible operating temperature:for standard version: max 300°C

11.3.1 Installation advices

Pipe guides, pipe supports• When installing angular (fig. 23) or lateral (fig. 24) expansion joints which

allow an expansion movement laterally on only one plane, observe that thedirection of the pipe expansion and the movement capacity of the expansionjoints match (perpendicular to the axis of the pin axis). For the maximummovement capacity (angular, lateral) see section 6.Angular and lateral expansion joints do not have high demands on the pipesupports and guides. For short pipe routings such as in turbine room pipe -lines, pipe supports and guides may not be necessary at all.

Fig. 22

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 366

Page 368: e BOA Expansion Joints Guide 29.3

367

• Compensate for the weight of the pipe (incl. medium and insulation) as wellas for wind and additional loads by suitable pipe suspensions or supports.The expansion joint’s movement must not be hindered!

• In long pipelines, a pipe guide should be installed on either side of the hingesystem or lateral expansion joint.

Anchors• Only one hinge system or lateral expansion joint is allowed between two

anchors. The anchors must absorb the inherent resistance of the expansionjoint, resulting from the bending resistance of the bellows and the pin frictionof the hinge supports as well as the frictional forces of the guides/supports.

NOTEPipe guides with excessive frictional resistance resulting from a too high surfa-ce pressure, dirt, or rust deposits may block and cause considerable pressurepeaks in the pipe, its anchors and connections.

Fig. 23 Fig. 24

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 367

Page 369: e BOA Expansion Joints Guide 29.3

368

Two pin I-system

Arrangements of hinged expansion joints

Two pin gimbal I-system

Three pin Z2a-system

Three pin I-system

Three pin U-system

Three pin Z2b-system

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 368

Page 370: e BOA Expansion Joints Guide 29.3

369

Vibration compensation with lateral expansion jointsLateral expansion joints with ball joint design are suited to compensate formechanical lateral vibrations in one lateral circular plane, generated by pumps,compressors and other power engines (fig. 25).

If the engine is firmly mounted to its concrete foundation, the installation ofone lateral expansion joint is sufficient in most cases. If the engine is mountedto a flexible foundation, two lateral expansion joints should be provided form -ing a 90° L-system (fig. 26) to compensate for vibrations in all directions.Directly behind the expansion joint, install an anchor which is independent ofthe flexible foundation.

• Expansion joints should always be installed as closely as possible to thesource of vibration – but without pretension!

Three pin gimbal L-system

Fig. 25 Fig. 26

lateral vibrations universal vibrations

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 369

Page 371: e BOA Expansion Joints Guide 29.3

370

CAUTIONAs a rule, vibrations of very high frequencies due to turbulent flows, occuring,for example, behind safety valves, reducing and shut-down valves as well asvibrations caused by oscillating gas or liquid columns can not be compensatedfor.

PretensionAngular and lateral expansion joints are usually installed with 50% pretensionof their movement capacity. It is advisable to carry out the pretension at thecompletely installed system.• Observe the installation temperature of the pipes, in particular for out-door

pipelines.• If the installation temperature differs from the lowest design temperature,

reduce the pretension in accordance with the pretension diagram (fig. 27).

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 370

Page 372: e BOA Expansion Joints Guide 29.3

371

ccuring,well aspensated

tensionat the

t-door

ture,g. 27).

Fig. 27

Pretension diagram

Total anticipated movement of expansion joint in mm

Pre-stressing of expansion joint in mm

Ther

mal

Exp

ansi

on o

f pip

elin

e at

inst

alla

tion

tem

pera

ture

leve

l in

mm

Leng

th o

f pip

elin

e in

mm

Temperature difference in °C betweeninstallation temperature and lowest temperature

Applicable for pipelines of St. 35 material

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 371

Page 373: e BOA Expansion Joints Guide 29.3

372

Example to the diagram

Hinge system or lateral expansion joint for a pipeline measuring 140 m inlength:The lowest temperature is -7°C. The highest temperature is +293°C. The maxi-mum anticipated thermal movement equals 500 mm at the temperature diffe-rence of 300°C. The hinge system or expansion joint is to be pretensioned by 50% (e.g. actingin opposite direction of the pipeline movement) of the total movement, thisequals 250 mm. When the hinge system or expansion joint is installed, special care should betaken to assure correct pretension. If the temperature at the time of installationis not -7°C but +20°C, the corresponding thermal movement of the pipeline is45 mm (see fig. 27). This amount must be subtracted from the original preten-sion value of the hinge system or expansion joint:250 – 45 = 205 mm.The pretension diagram (fig. 27) allows to determine the pretension immediate-ly without any calculation:

1. Temperature difference between installation temperature and lowest temperature: +20°C – (-7°C) = 27°C.

2. Length of pipeline to be compensated for: 140 m3. Draw a vertical line from the "27°C" point towards the beam coming from

"0 - 140m".4. Draw a horizontal line from this intersection to the line "Thermal expansion

of pipeline in mm"; the result is, as stated above, 45 mm.5. Draw a straight line from the "45mm" point to "Total anticipated movement",

this equals 500 mm, and go further to "Pre-stressing of hinge system /expansion joint in mm".

The intersection shows a pretension of 205 mm. This is the value by which thehinge system/ lateral expansion joint is to be pretensioned during installation.

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 372

Page 374: e BOA Expansion Joints Guide 29.3

373

11.4 Rubber expansion joints

Description of rubber expansion joints and their application fields Rubber expansion joints are particularly suited for• the compensation of mechanical vibrations• axial and lateral movement compensation• the compensation of installation inaccuracies • sound absorption.The application must be limited to the rated conditions as stated in our techni-cal data sheets and the rating plates that are mounted to each expansion joint.These assembly and start-up instructions are valid for the types listed on p. 374, fig. 28.

NOTEFor the technical and operating design of rubber expansion joints, the instruc-tions of section 8.2 up to 8.4 are valid.

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 373

Page 375: e BOA Expansion Joints Guide 29.3

374

Type overview

Type Material Connection Remarks

3160 00S - B - EPDM threaded sockets

3160 00S - A - EPDM threaded sockets3160 00S - D - EPDMT

ChloropreneNitrile

3140 00S - B - EPDM loose flanges 1) DN 80 up to DN 500: PTFE 1) bellows made of EPDM

with PTFE-coating

3140 00S - A - EPDM loose flanges3140 00S - D - EPDMT

ChloropreneNitrileHypalon

3160 00S - S - EPDM loose flanges

3840 DFS - B - EPDM loose flanges 1) DN 80 up to DN 500: PTFE 1) bellows made of EPDM

with PTFE-coating

3840 DFS - A - EPDM loose flanges3840 DFS - D - EPDMT

ChloropreneNitrileHypalon

3140 00S - C - EPDM rubber flanges other elastomer Nitrile qualities upon request

Fig. 28

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 374

Page 376: e BOA Expansion Joints Guide 29.3

375

Safety instructionsAdditional to the general safety instructions, the following instructions are to beobserved:• Make sure that rubber expansion joints ar not affected by the dead weight of

the pipeline. The axial and lateral or angular movements stated in the tablesin section 8.7 must not be exceeded.

• During welding, the rubber expansion joints must be protected against heat -ing and welding chips.

• Do not paint or insulate rubber expansion joints.• The sealing faces of the rubber expansion joints must not be coated with

grease, oil, graphite, Molykote or similar substances.• Rubber expansion joints must be installed at accessible positions for perma-

nent visual inspection and easy replacement.

11.4.1 Installation instructions

The permissible installation length for the neutral position must range betweenthe supplied length (BL) and the supplied length minus A/2 (BL*).The movements that are stated in section 8.7 "Tables standard programmeRubber expansion joints" apply to this range of installation lengths. • The rubber expansion joints should be installed in a pre-stressed manner

taking into account the permissible operating length so that they are almoststress-free during operating conditions.

Fig. 29

BL = supplied lengthBL* = BL – A/2ax = permissible movement (A, BL, BL*, ax refer to section 8.7 "Tablesstandard programme Rubber expansion joints".)

expanded neutral compressed

between

and

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 375

Page 377: e BOA Expansion Joints Guide 29.3

376

Correct combination of sealing surfaces

The flanges of the rubber expansion joints have threaded holes.• For the installation of the bolts refer to fig. 30

Position and torque of bolts DN 25 – DN 500for type A (313), type D (323) and type B (303)

The sealing effect is achieved by an even compression of the sealing rim.Therefore, we recommend the following installation sequence:• Tighten 4 bolts crosswise against 4 spacers of A/2 thickness.• Tighten the remaining bolts without an excess of torque.• Remove spacers.• After the installation of the expansion joints

(3840 DFS-A-..., 3840 DFS-B-..., 3840 DFS-D-...), it is recommended thatthe hex bolts are checked by turning them manually.

• All tie rods should be checked for a uniform fit and tightened, if necessary.

Fig. 30 solution: weld pipe flushwith flange and grindsealing

solution: install interme-diate ring with gasket

correct wrong wrong

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 376

Page 378: e BOA Expansion Joints Guide 29.3

377

DN Type A Type D Type B25 6,5 -- --32 6,5 -- 840 8 6,5 850 8,5 7 8,565 9 7,5 980 8,5 7 8,5

100 11,5 8,5 11,5125 12,5 11 12,5150 13 11,5 13

200 15,5 14 15,5250 16,5 15 16,5

300 15,5 14 15,5350 16 -- 13

400 16,5 -- 15450 17,5 -- 16

500 17,5 -- 17

Fig. 32

Fig. 31

Table “A”-dimensions

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:46 Uhr Seite 377

Page 379: e BOA Expansion Joints Guide 29.3

378

Position and torque of bolts DN 600 – DN 1000for type C

DN Type C

600 15700 15800 20900 20

1000 201200 251400 301600 301800 302000 30

Fig. 34Fig. 33

Fig. 35

Pipe supports, pipe guides

Table "A"-dimensions

L1 = max. 2 x DN + /2 [mm]L2 = 0.7 x L3 [mm]L3 = 400 x DN [mm] applicable only for steel pipelines = movement capacity of the expansion joint [mm]

A

A/2

Anchor AnchorPipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

Pipe support/Guide

AnchorPipe support/Guide

Pipe support/Guide

Anchor

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:47 Uhr Seite 378

Page 380: e BOA Expansion Joints Guide 29.3

379

Recommended security factor: S = 3.

According to Euler, the length factor β depends on the anchor support/ guidearrangement along the pipeline:

Diagram

Fig. 36

For a quick determination of the maximum possible support/ guide distance,please refer to diagram (fig. 36) which is based on the following assumptions:• β = 1, swing support of the pipeline on the pipe supports/ guides, i.e. no

moment transfer,• E = 210’000 N/mm2, for steel pipelines• Da and s of welded standard pipes according to DIN 2458 with standard

schedule wall thickness,• p = pT = 1,43 x PN, as the maximum permissible test pressure according to

the pressure equipment directive,• Fc = 0, i.e. axial expansion joints in neutral position during pressure testing.

This assumption is conservative as the pretensioned expansion joints wouldreduce the buckling tendency. Nevertheless, with very small nominal diametersthe testing revealed higher buckling forces during operation than during pres-sure testing, due to comparably high displacement forces at expansion jointscompressed to the permissible maximum.

Xβ = 1

X Xβ = 0,7

= Xβ = 0,5

= X = Anchor= = pipe support/guide

Nominal diameter DN

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:47 Uhr Seite 379

Page 381: e BOA Expansion Joints Guide 29.3

380

AnchorsAxial expansion joints• Each section of the pipe that should be compensated must be limited by

anchors.• Only one expansion joint is permitted between two anchors.• Anchors must also be placed at locations where the pipeline changes direc-

tion. They must be able to withstand the axial thrust and the friction forces ofthe pipe guides and supports.

Restrained expansion jointsRestrained rubber expansion joints have a noise-absorbing external restraintwhich is designed to withstand pressure thrusts.• Depending on the application, the pipe anchors must be designed differently:• If the expansion joint is used to compensate for vibrations, the pipe anchors

must avoid resonance.• If the expansion joint is used as a lateral expansion joint, the pipe anchors

must be able to withstand the friction forces of the pipeline and the very lowdisplacement forces.

Vibration compensation• Rubber expansion joints that are used as vibration or noise-absorbing ele-

ments should be installed as close as possible to the vibrating aggregate.• A pipe anchor should be mounted directly after the expansion joint. This

anchor must be able to withstand the full pressure thrust of an unrestrainedexpansion joint (see fig. 37).

• If restrained expansion joints are used, pipe guides should be installed inorder to avoid resonance of the adjacent pipeline (see fig. 38).

NOTE• Expansion joints that are used to compensate for vibrations should be

installed without pretension.

Fig. 37 Fig. 38

Vibrations in all directions

Pipe guide

Pipe guideVibrations in all directions

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:47 Uhr Seite 380

Page 382: e BOA Expansion Joints Guide 29.3

381

System filling

• Pipe anchors and pipe supports/ guides must be completely installed priorto filling and pressure testing the system.

• The permissible test pressure of the expansion joint must not be exceeded.The pressure should be raised gradually.

Ship engineering

Fire sleeves are required for:fuel, lubrication, hydraulic oil, bilge, ballast and sea water cooling systems.

Fire sleeves are not required for:fresh water cooling systems, sanitary systems without connection to the hull,ballast pipes outside of machine rooms, compressed air systems.

Expansion joints with threaded sockets

These expansion joints are delivered pre-assembled and with lubricated seal -ing sufaces. When installing, screw in the screw parts manually until they fit close to thesealing rim. Then tighten by 1 or 2 turns with an adequate tool to ensure thesealing of the screwed connection.

ed by

s direc-forces of

straint

ifferently:anchors

nchorsvery low

ng ele-egate.This

strained

ed in

be

Fig. 39

Type 3160-00S-A-... Type 3160-00S-B-... Type 3160-00S-D-...

29.3_UK_Kap_11.qxp:UK_02_Kap_11.qxp 30.10.2009 14:47 Uhr Seite 381

Page 383: e BOA Expansion Joints Guide 29.3

382

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 382

Page 384: e BOA Expansion Joints Guide 29.3

383

12 Annex / Standards

12.1 Symbols used in pipe construction

Axial expansion joint

Angular expansionjoint

Universal expansionjoint

Lateral expansionjoint

Gimbal expansionjoint

Pressure balanced expansion joint

Not insulated pipeline

Insulated pipeline

Flexible pipe

Pipe with flow direction indicator

Pipe crossing without connection

Pipe crossing with connection

Pipe branch withconnection

Apparatus (without rotating parts)

Apparatus (with rotating parts)

Socket connection

Flange joint

Screwed connection

Coupling

Anchor

Vertical holding device(support)

Suspended holdingdevice (suspension)

Spring suspension

Spring support

Slideway

Suspended pipe slideway

Roller guide

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 383

Page 385: e BOA Expansion Joints Guide 29.3

384

12.2 Table on guide analyses and characteristic strength values

Unalloyed steel 1.0254 P235T1 St 37.01.0427 C22G1 C 22.3

General structural steel 1.0038 S235JRG2 St 37-21.0050 E295 St 50-21.0570 S355J2G3 St 52-3

Temp. resistant unalloyed steel 1.0460 C22G2 C 22.8

Temperature resistant steel 1.0305 P235G1TH St 35.81.0345 P235GH H I1.0425 P265GH H II1.0481 P295GH 17 Mn 41.5415 16Mo3 15 Mo 31.7335 13CrMo4-5 13 CrMo 4 41.7380 10CrMo9-10 10 CrM0 9 10

Stainless 1.4301 X5CrNi18-10 X 5 CrNi 18 10austenitic steel 1.4306 X2CrNi19-11 X 2 CrNi 19 11

1.4541 X6CrNiTi18-10 X 6 CrNiTi 18 101.4571 X6CrNiMoTi17-12-2 X 6 CrNiMoTi 17 12 21.4404 X2CrNiMo17-12-2 X 2 CrNiMo 17 12 21.4435 X2CrNiMo18-14-3 X 2 CrNiMo 18 14 31.4465 X1CrNiMoN25-25-2 X 2 CrNiMoN 25 25 21.4539 X1NiCrMoCu25-20-5 X 2 NiCrMoCu 25 20 51.4529 X1NiCrMoCuN25-20-7 X 2 NiCrMoCu 25 20 6

High temperature 1.4948 X6CrNi18-11 X 6 CrNi 18 11resistant austenitic steel 1.4919 X6CrNiMo17-13 X 6 CrNiMo 17 13

1.4958 X5NiCrAlTi31-20 X 5 NiCrAlTi 31 20

Heat resistant steel 1.4828 X15CrNiSi20-12 X 15 CrNiSi 20 12(AISI 309)

1.4876 X10NiCrAlTi32-21 UNS N 08800Incoloy 800 ASTM B409/408/407

(1.4876H) X10NiCrAlTi32-20 UNS N 08810Incoloy 800H ASTM B409/408/407

Material Material no Short form Short form group according to according according

DIN EN 10027 to DIN EN 10027 to DIN 17006(old)

– – – –

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 384

Page 386: e BOA Expansion Joints Guide 29.3

385

* Strength values at room temperature

Documentation Upper apparent Tensile Breaking Impact temperature yielding point strength elongation value

level min. Rm min. min.* * *

ReH / RPO, 2 Rm A5 A80 AV (KV)

DIN EN 10217 300 235 350-480 23DIN EN 10216 350 240 410-540 20 31

DIN EN 10025 300 235 340-470 21-26 27295 470-610 16-20355 490-630 17-22 27 / -20°C

VdTÜV-W350 480 240 410-540 20 31

DIN 17175 480 235 360-480 23 34DIN EN 10028 480 235 360-480 25 27 / 0°CT1/T2 480 265 410-530 23 27 / 0°C

500 295 460-580 22 27 / 0°C530 275 440-590 24 31570 300 440-590 20 31600 310 480-630 18 31

DIN EN 10088 550 230 540-750 45 45550 200 520-670 45 45550 220 520-720 40 40550 240 540-690 40 40550 240 530-680 40 40550 240 550-700 40 40

SEW 400 550 255 540-740 30VdTÜV-W421 400 220 520-720 40 40VdTÜV-W502 400 300 600-800 40

DIN 17459 600 185 500-700 40 38 60205 490-690 35 33 60170 500-750 35 33 80

DIN EN 10095 1000 230 500-750 22

DIN EN 10095 600 210 500-750 30VdTÜV-W 412 VdTÜV-W 434 950 170 450-700 30

– ° C N/mm2 N/mm2 % % J

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 385

Page 387: e BOA Expansion Joints Guide 29.3

386

Nickel- based alloys 2.4360 NiCu 30 Fe UNS N 04400Alloy 400/ Monel ASTM B127/164/165

2.4602 NiCr 21 Mo 14 W UNS N 06022Alloy C-22 ASTM B575/622/574

2.4605 NiCr 23 Mo 16 Al UNS N 06059Alloy 59 ASTM B575/574/622

2.4610 NiMo 16 Cr 16 Ti UNS N 06455Alloy C-4 ASTM B575/574/622

2.4816 NiCr 15 Fe UNS N 06600Alloy 600 ASTM B168/166/167

2.4819 NiMo 16 Cr 15 W UNS N 10276Alloy C-276 ASTM B575/574/622

2.4856 NiCr 22 Mo 9 Nb UNS N 06625Alloy 625 ASTM B443/446/444

2.4858 NiCr 21 Mo UNS N 08825Alloy 825 ASTM B424/425/423

Pure nickel 2.4068 LC-Ni 99.2 UNS N 02201ASTM B162/160/161

Copper 2.0090 SF-Cu

Copper tin alloys 2.1020 CuSn6 (Bronze) UNS ~ C 519002.1030 CuSn8 UNS C 52100

Copper zinc alloys 2.0250 CuZn20 UNS C 240002.0321 CuZn37 (Messing) UNS C 27200

Copper beryllium alloys 2.1247 CuBe2

Aluminium 3.0255 Al 99.5

Aluminium forging alloy 3.3535 AlMg 33.2315 AlMgSi 1

Titanium 3.7025 Ti

Tantalum - Ta

Werkstoff-Tabelle

Material Material no Short form UNS-Code group according to ASTM Standard

DIN EN 10027

– – – –

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 386

Page 388: e BOA Expansion Joints Guide 29.3

387

(Continued from tab. 12.2)

DIN 17750 425 195 ≤485 35 80 / 20°CVdTÜV-W263- 600 310 ≥690 45 150 / 20°CVdTÜV-W479- 450 340 ≥690 40 225 / 20°CVdTÜV-W505DIN 17750 400 305 ≥700 35 96 / 20°CVdTÜV-W424DIN EN 10095 450 200 550-750 30 150 / 20°CVdTÜV-W305DIN 17750 800 310 ≥750 30VdTÜV-W400DIN EN 10095 600 410 ≥800 30 100 / 20°CVdTÜV-W499DIN 17750 450 225 550-750 30 80 / 20°CVdTÜV-W432

DIN 17750 600 80 340-450 40VdTÜV-W345

DIN 17670 250 45 ≥200 42

DIN 17670 250 300 350-410 55DIN 17670 250 ≤300 370-450 60

DIN 17670 ≤150 270-320 48DIN 17670 ≤180 300-370 48

DIN 17670 ≤250 390-520 35

DIN 1712 ≤55 65-95 40

DIN 1725 150 80 190-230 20DIN 1725 ≤85 ≤150 18

DIN 17850 250 180 290-410 30 62VdTÜV-W230

VdTÜV-W382 250 150 >225 35

* Strength values at room temperature

Documentation Upper apparent Tensile Breaking Impact temperature yielding point strength elongation value

level min. Rm min. min.* * *

ReH / RPO, 2 Rm A5 A80 AV (KV)

– ° C N/mm2 N/mm2 % % J

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 387

Page 389: e BOA Expansion Joints Guide 29.3

388

Germany USA

Material Short code UNS/ASTM no. standard Grade

1.0254 P235T1 ~ A106 / A53 A1.0427 C22G1 _

1.0038 S235JRG2 A252 / A500 / A5701.0050 E295 _1.0570 S355J2G3 ~ A714 3

1.0460 C22G2 _

1.0305 P235G1TH A106/A178/A179/A53 A1.0345 P235GH K 02202/A285/A414 A,B,C1.0425 P265GH K 02402/A283/A285 C1.0481 P295GH A106/A414/A555/A662 C,F,E,B1.5415 16Mo3 A204 A,B,C1.7335 13CrMo4-5 A182/A234/A387 F1.7380 10CrMo9-10 A182/A217/A541/A873 F22

1.4301 X5CrNi18-10 AISI 3041.4306 X2CrNi19-11 AISI 304 L1.4404 X2CrNiMo17-12-2 AISI 316 L1.4435 X2CrNiMo18-14-3 AISI 316 L1.4465 X1CrNiMoN25-15-2 N 083101.4529 X1NiCrMoCuN25-20-7 A 3511.4539 X1NiCrMoCu25-20-5 N 089041.4541 X6CrNiTi18-10 AISI 3211.4571 X6CrNiMoTi17-12-2 AISI 316 Ti

1.4948 X6CrNi18-11 AISI 304H / S304801.4919 X6CrNiMo17-13 AISI 316 H1.4958 X5NiCrAlTi31-20

1.4828 X15CrNiSi20-12 AISI 3091.4876 X10NiCrAlTi32-21 N 08800/B409/B408/B407(1.4876H) X10NiCrAlTi32-20 N 08810/B409/B408/B4072.4360 NiCu 30 Fe N 04400/B127/B164/B1652.4602 NiCr 21 Mo 14 W N 06022/B575/B574/B6222.4610 NiMo 16 Cr 16 Ti N 06455/B575/B574/B6222.4816 NiCr 15 Fe N 06600/B168/B166/B1672.4819 NiMo 16 Cr 15 W N 10276/B575/B574/B6222.4856 NiCr 22 Mo 9 Nb N 06625/B443/B444/B4462.4858 NiCr 21 Mo N 08825/B424/B425/B423

12.3 International standards / comparison table

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 388

Page 390: e BOA Expansion Joints Guide 29.3

389

Great Britain

marking marking marking

France Russia

~ S360 (S;ERW) – –– – –

En 40 B S235JRG2 ~ St 3 psE 295 A 50-2 ~ St 5 ps

En 50 D S355J2G3 ~ 17GS / 17 G1S

– – –

~ 320 / ~ 360 – –141 - 360 A 37 CP –151 - 400 A 42 C P ~ 16K / ~ 20K

224 - 460 B A 48 CP 14G216 Mo 3 / ~ 243 15 D 3 –

13 CrMo 4 - 5/ ~ 620 13 CrMo 4-5 ~ 12ChM / ~ 15ChM10 CrMo 9 -10/ ~ 622 10 CrMo 9-10 12Ch8

304 S 15 Z6 CN 18- 09 08Ch18N10304 S 11 Z2 CN 18-10 03Ch18N11316 S 11 Z2 CND 17-12 –316 S 13 Z3 CND 17-12-03 03Ch17N14M3

– – 02Ch25N22AM2-PT– – –

904 S 13 Z2 NCDU 25-20 –321 S 13 Z6 CNT 18-10 08Ch18N10T320 S 31 Z6 CNDT 17-12 08Ch16N11M3T

304 S 51 – –316 S 50 - 53 – –

NA 15 H Z8 NC 33-21 –

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 389

Page 391: e BOA Expansion Joints Guide 29.3

390

1 kp 9,81 N

1 at 0,981 bar

1 kpm 9,81 Nm

1 kp / mm2 9,81 N / mm2

1 Mpa 1 . 106 Pa = 10 bar

1 bar 1 . 105 Pa = 100 kPa

12.4 Conversion tables

1 100 1000 0.75 750

1 . 10-2 1 10 7.5 . 10-3 7.5

1 . 10-3 0.1 1 7.5 . 10-4 0.75

1.33 1.33 . 102 1.33 . 103 1 1000

1.33 . 10-3 1.33 . 10-1 1.33 1 . 10-3 1

1 . 103 1 . 105 1 . 106 750 7.5 . 105

1013 1.01 . 105 1.06 . 106 760 7.6 . 105

981 9.81 . 104 9.81 . 105 735.6 7.36 . 105

9.81 . 10-2 9.81 98.1 7.36 . 10-2 73.6

68.9 6.89 . 103 6.89 . 104 51.71 5.17 . 104

Pressure units used in vacuum engineering

mbar

Pa (Nm-2)

dyn cm-2 (µb)

Torr (mm Hg)

micron (µ)

bar

atm

at (kp cm-2)

mm WS (kp m-2)

psi

mbar Pa (Nm -2) dyn cm -2 (µb) Torr (mm Hg) micron (µ)

0.1 N / mm2 14.5038 lb / inch2

1 kp / cm2 14.2233 lb / inch2

1 Pascal 14.5038 . 10-5 lb / inch2

1 kPascal 14.5038 . 10-2 lb / inch2

1 Millipascal 14.5038 . 10-8 lb / inch2

1 bar 14.5038 lb / inch2

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 390

Page 392: e BOA Expansion Joints Guide 29.3

391

1 . 10-3 9.87 . 10-4 1.02 . 10-3 10.2 1.45 . 10-2

1 . 10-5 9.87 . 10-6 1.02 . 10-5 0.102 1.45 . 10-4

1 . 10-6 9.87 . 10-7 1.02 . 10-6 1.02 . 10-2 1.45 . 10-5

1.33 . 10-3 1.32 . 10-3 1.36 . 10-3 13.6 1.93 . 10-2

1.33 . 10-6 1.32 . 10-6 1.36 . 10-6 1.36 . 10-2 1.93 . 10-5

1 0.987 1.02 1.02 . 104 14.5

1.013 1 1.03 1.03 . 104 14.7

0.981 0.968 1 1 . 104 14.22

9.81 . 10-5 9.68 . 10-5 1 . 10-4 1 1.42 . 10-3

6.89 . 10-2 6.8 . 10-2 7.02 . 10-2 702 1

General pressure units

mbar

Pa (Nm-2)

dyn cm-2 (µb)

Torr (mm Hg)

micron (µ)

bar

atm

at (kp cm-2)

mm WS (kpm-2)

psi

bar atm at (kp cm-2) mm WS (kpm-2) psi

1 1 . 10-1 7.5 . 10-1 9.87 . 10-1 7.5 . 102

10 1 7.5 9.87 7.5 . 103

1.33 1.33 . 10-1 1 1.32 103

1.01 1.01 . 10-1 7.6 . 10-1 1 7.6 . 102

1.33 . 10-3 1.33 . 10-4 1 . 10-3 1.32 . 10-3 1

Conversion of throughput units

mbar l s-1

Pa m3 s-1

Torr l s-1

atm cm3 s-1

lusec

mbar l s-1 Pa m3 s-1 Torr l s-1 atm cm3 s-1 lusec

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 391

Page 393: e BOA Expansion Joints Guide 29.3

392

1 2.20462

0.453592 1

Weight kg pound

kg

pound

1 0.001 1 . 10-9 6.1 . 10-5 3.531 . 10-8

1000 1 1 . 10-6 0.061 3.531 . 10-5

1 . 109 1 . 106 1 61023.7 35.3147

16387 16.387 1.6387 . 10-5 1 5.787 . 10-4

2.832 . 107 2.832 . 104 0.0283169 1728 1

Volume mm3 cm3 m3 inch3 feet3

mm3

cm3

m3

inch3

feet3

1 1 . 10-6 0.00155 1.0764 . 10-5

1 . 106 1 1550 10.7639

645.16 6.452 . 10-4 1 6.944 . 10-3

92903 0.092903 144 1

Area mm2 m2 inch2 feet2

mm2

m2

inch2

feet2

1 5/9(°F-32) K-273.159/5°C+32 1 9/5K-459.67

°C+273.15 5/9(°F+459.67) 1

Temperature ºC ºF ºK

° C

° F

° K

1 0.001 0.03937 0.00328

1000 1 39.3701 3.2808

25.4 0.0254 1 0.0833

304.8 0.3048 12 1

Length mm m inch feet

mm

m

inch

feet

Area

Volume

Weight

Temperature

Length

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 392

Page 394: e BOA Expansion Joints Guide 29.3

393

1 0.101972 5.7101

10.1972 1 55.991

0.1751 0.01786 1

Spring characteristics N/mm kg/mm Ib/inch

N/mm

kg/mm

Ib/inch

1 3.28084 39.3701

0.3048 1 12

0.0254 0.083333 1

Acceleration m/s2 ft/s2 inch/s2

m/s2

ft/s2

inch/s2

1 9.80665 980665 2.20462

0.101972 1 1 . 105 0.224809

1.01972 . 10-6 1 . 10-5 1 2.24809 . 10-6

0.453592 4.44822 444822 1

Force kp N Dyn Ibf

kp

N

Dyn

Ibf

1 0.001 3.61273 . 10-8 6.2428 .10-5

1000 1 3.61273 . 10-5 0.062428

2.76799 . 107 27679.9 1 1728

16018.5 16.0185 578.704 . 10-6 1

Density g/m3 kg/m3 Ib/inch3 Ib/ft3

g/m3

kg/m3

Ib/inch3

Ib/ft3

1 0.101972 0.737561 8.85073

9.80665 1 7.233 86.796

1.35582 0.138255 1 12

0.112985 0.0115213 0.08333 1

Moments Nm kp . m Ibf . ft Ibf . inch

Nm

kp . m

Ibf . ft

Ibf . inch

Force

Density

Moments

Spring characteristics

Acceleration

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 393

Page 395: e BOA Expansion Joints Guide 29.3

394

12.5 Corrosion table

Technical informationAll information, data and tables arebased on information and documenta-tion provided by the raw materialsmanufacturer or our many years'experience in the field. This informa -tion does not claim to be completeand is strictly for guidance only. Wecannot accept any liability in this respect. If the user of our products is uncertain in any way about theintended use of our products, werecommend that he carries out hisown tests.

It must also be remembered that allthe details concerning chemicals arebased on analytically pure substancesand never on media mixtures. All therelevant conditions must be observed.

The chemical behaviour of a hose orspring material often also depends onthe pipe material upstream. All sur -faces exposed to the medium must betaken into account, i.e. if there is atendency towards corrosion, but thesurface likely to corrode is very small,the corrosive attack can penetratevery quickly.

Surface films, deposits, ferritic chips,etc. can both prevent corrosion (e.g.thick films) and encourage corrosion(e.g. chloride-enriched deposits).Ferritic chips can even be referred toas true corrosion triggers.

Information on the following corrosion tableThe corrosion rate is expressed as aweight loss per unit of area and time,e.g. g/mm2h or as a reduction inthickness per unit of time, e.g.mm/year. The corrosion rate is usedfor laboratory tests, whereas thethickness reduction is more useful forpractical assessments.

In the tables on the following pages,the corrosion rate or corrosion beha-viour of the various materials is divided into resistance classes 0–3,based on the same corrosive attack.The meaning of the stages is given inthe following table:

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 394

Page 396: e BOA Expansion Joints Guide 29.3

395

Resistance stage

0

1

2

3

Thicknessreduction mm/year

≤ 0.11

>0.11 ... ≤1.1

>1.1 ... ≤11.0

>11

Resistance

Resistant under normal operating conditions.

In many cases, resistant undernormal operating conditions, but should only be used if otherspecific material properties do not allow the use of a stage 0material.

Medium resistance. Can only be used in cases of exception.

Not resistant. Cannot be used at all.

Meaning of the abbreviations used in the tables

L = risk of pitting corrosionS = risk of stress crack corrosionSchm = molten, meltsKonz = concentrated substanceSP = boiling (boiling point)tr = dry (anhydrous)fe = moistwh = contains waterwL = aqueous solutionges = saturatedkg = cold saturatedhg = hot saturated> 50 = greater than 50≤ 50 = smaller than or equal to 50≤ 0.1 = smaller than or equal to 0.1( ) = different literature information or uncertain values

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 395

Page 397: e BOA Expansion Joints Guide 29.3

396

Pitting corrosionPitting is a special type of corrosion inelectrolytes containing halogen. The risk of pitting depends on severalfactors.

The pitting tendency increases with- increasing concentration of chloride

ions- increasing temperature- increasing electro-chemical potential

of the steel in the electrolytes con -cerned

The pitting tendency is reduced by- adding molybdenum (increasing

contents of molybdenum in the steelreduces the risk of pitting, e.g. Mocontents between 2% and around 5%)

- higher chromium contents. The higher the chromium content (>20%),the more effective even a small quan-tity of Mo can be.

Preventing pitting- reduction of the electro-chemical

potential in the electrolyte concerned,e.g. by cathodic protection.

Stress crack corrosionStress crack corrosion is one of the typesof corrosion that needs several factors atthe same time to be triggered:- a specific corrosion agent, e.g. chlo -

rides or alkaline media- critical system parameters (temperature,

concentration, limit stress)- a material susceptible to stress crack

corrosion- static and/or dynamic mechanical ten -

sile load

Stress crack corrosion is one of the mostunpleasant forms of corrosion, because itusually leads suddenly and very quicklyto crack damage in components of anykind. The typical phenomenon is inter-crystalline or transcrystalline, undistortedand usually ramified cracks. Often thereis a forced rupture of the component at the end of the crack. Stress crack corro- sion starting from pitting corrosion, butalways from a local, active weak spot, isalso known. Stress crack corrosion canoccur in non-ferrous metals in the sameway as with austenitic mate rials.

Information on types of corrosion

29.3_UK_Kap_12.qxp:UK_02_Kap_12.qxp 30.10.2009 14:47 Uhr Seite 396

Page 398: e BOA Expansion Joints Guide 29.3

397

Acetanilide (Antifebrin) <114 0

Acetate 20 0 0 0 0

Acetate dehydrate 100 20 1 1 0 0 0 0 0 0 1 1 1 0100 SP 0 0 0 0 2 3 2 0

98 <54 0 0 0 099 <40 0 0 0 0

Acetic anhydride alle 20 1 0 0 0 1 1 0 0 0 3 0 0 0100 60 3 0 0 0 1 1 0 1100 100 3 0 0 0 2 2 0100 SP 3 0 0 1 3 1 0 0

Acetone 100 20 1 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0L 0L 0 1 0 0 0 1 1 1 0 0

all <SP 1 0L 0L 0 1 0 0 0

Acetylene tr 20 0 0 0 0 0 3 3 3 0 0tr 200 2 2 0fe 20 1tr 100 <150 0 0 0

Acetylene dichloride wL 5 20 3tr 100 20 1L 0L 0 0 0 0 0 0tr 100 SP 2L 1L 0 0 0 0 0 0schm 100 700 0 0 3fe 100 20 0 0 0 0 3

Acetylenetetrachloride tr 100 20 0 0 0 0 0 0 0 0tr 100 SP 0 0 0 0 0 1 1 3fe SP 1 1 3 3

Acytelene cellulose <100 20 1 1 1 0 0

Acytelene chlorid 20 1L 0L 1 2 2 3 3 3 0SP 1L 0L 2 2 2 3 3 3 0

Adhesive, neutral 20 (0) 0 0 0 0 0 1 0 0 0sour 20 (1) 0 0 0 (2)

SP 0 0

Adipic acid all 100 0 0200 0 0

Aethan 20 0 0 0

Aktivine 0.5 20 3 1L 0L 0 10.5 SP 3 1L 0L 0 3

Alanine 20 0 0 0

Allylalkohol 100 25 0 0 0 0 1100 SP 1

Allylchloride 100 25 0 0 0 0

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 399: e BOA Expansion Joints Guide 29.3

398

Alum 100 20 2 0 0 2 0 0 2 3 3 1wL 10 20 2 0 0 1 1wL 10 <80 3 0 0 1wL 10 SP 3 1 0 1

hg SP 3 2 1

Aluminuim Schm 100 750 3 3 3 3 3 3 3 3

Aluminuim acetate wL 3 20 3 0 0 0 0wL 100 100 3 0 0 1wL all 20 1wL kg 20 0 0 0 2 2 2 1 2wL kg SP 0 0 1

hg SP 0 0 1 2

Aluminuim chloride wL 5 20 3 2L 1L 1 1 1 1 0 2 3 2 05 50 3 2L 1L 1 1 1 1 0 3 3 3 05 100 3 0

10 20 3 3L 2L 1 1 1 1 0 3 3 3 0 310 100 3 010 150 3 020 20 3 1 1 1 1 1 3 3 320 150 3 3

wL 25 20 3 3L 2L 1 1 1 1 0 3 3 3 025 60 3 025 100 3 230 150 3 340 122 3 380 100 3 3

Aluminium fluorid wL 5 25 3 2 2 1 0 0 0wL 10 25 3 3 3 1 1 1 1 0 0

Aluminiumformiate 20 2 3 3 0 0

Aluminium hydroxide ges 20 1 0 0 1 0 0 0 0 0 0ges SP 2 0 0 0

wL 2 20 3 0 0 1 0 0 0 0 1wL 10 20 3 0 0 1 0 0 0 1

Aluminium na-sulphate wL 10 <SP 1

Aluminium nitrate 20 0 0wL 10 20 0 0 2wL 10 50 3

Aluminium oxyde 20 1 0 0 0 0 0 0 0 0 0 0 0 2

Aluminium sulphate wL 10 20 3 0 0 0 0 0 0 0 2 2 1 0 310 SP 3 1 0 1 2 1 1 1 3 3 3 3 350 SP 3 2 1 1 0 3 3 3 3 3

Amber acid 20 0

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 400: e BOA Expansion Joints Guide 29.3

399

Ammonia tr 10 20 0 0 0 2 1 0 0 0 0 0 0 0 0fe 20 0 0 0 3 0 0 0 3 3 3 0wL 10 20 0 0 0 0 0 0 3 3 3 0wL 10 SP 0 0 3 1 1 0wL 30 20 0 0 0 0wL 30 SP 0 0 1 1wL 50 20 0 0 0 0wL 50 SP 0 0 1 1wL 100 20 0 0 0 0 0wL 100 SP 0 0 1 1

Ammonium alume wL 100 20 3 0 0wL 100 SP 3 3 2

Ammonia bicarbonate all 20 0 0 2 2 1 3 3 3 0 0wL all hot 0 0 2 2 0 3 3 3 0 0

Ammonia bifluoride wL 100 20 3 0 0 020 80 3 0 0 0

Ammonia bromide wL 5 25 3 0 0 2 0 3 3 3 2wL 10 SP 3 1LS 1LS 1wL 10 25 3 1LS 1LS 1 3

Ammonia carbonate wL 20 20 0 0 0 0 0 0 0 0 2 2 2wL 20 SP 0 0 1 0 0 0 1 3 3 3wL 50 20 0 0 0 0 0 0 0wL 50 SP 0 0 1 0 0 0 1

Ammonia chloride wL 25 20 3 1LS 0LS 0 0 0 0 3 3 3 0 2wL 25 SP 3 2LS 1LS 1 1 1 0 3wL 50 20 3 1LS 0LS 1 0 1 0 0 0wL 50 SP 3 2LS 1LS 1 1 1 0

Ammonia fluoride wL 20 80 3 2LS 2LS 0 3 3 3

Ammonia formate wL 10 20 0wL 10 70 0

Ammonia hydroxyde 100 20 0 0 0 3 0 0 0 3 3 3 1

Ammonia nitrate wL 100 20 3 0 0 3 0 3 3 3 0100 SP 3 0 0 3 0 3 3 3 0

10 25 3 0 0 3 0 3 3 3

Ammonia oxalate 10 20 1 0 0 010 SP 3 1 0 0

Ammonia perchlorade wL 10 20 0LS 0LS 1wL 10 SP 0LS 0LS 1wL all <70 0LS 0LS 1

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 401: e BOA Expansion Joints Guide 29.3

Medium

400

Ammonia persulphate wL 5 20 3 0 0 3 3 1 0 0 2 210 25 3 1 1 3 3 0 2 3 310 30 3 1 1 3 3 0 2 3 320 20 320 100 3

Ammonia phosphate 5 25 0 1 0 1 1 0 0 2 2 2 010 20 0 1 0 3 3 3 110 60 1 1 0 3

Ammonia rhodanide 5 20 3 0 0 0 0 0 05 70 3 0 0 0 0 0 0

Ammonia sulphate wL 1 0 0 1 1 1 0 0 2 2 2 0 2LwL 5 0 0 1 1 1 0 0 2 3 2 0 2LwL 10 20 1 0 1 1 2 0 1 3 3 3 0 2LwL 10 SP 2 0 2 1 2 0 2 3 3 3 0 3LwL 100 20 0 0 0 1 1 0wL 100 SP 1 0 0 1 2 0

Ammonia sulphite wL 100 20 2 0 0 3 3 3 2 3 3 3wL 100 SP 3 0 0 3 3 2 2 3 3 3

Ammoniumfluorsilikat wL 20 40 3 1 0 0

Ammoniummolybdat 100 100 0

Amoniacal copper chloride wL 1 20 1wL 10 20 3wL 20 20 3

Amyl acetate 100 20 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 1 0

Amyl alcohol 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 0 1

Amyl chloride 100 20 1 0LS 0LS 1 1 1 0 0 0 2100 SP 1LS 0LS

Amylmercaptan 100 20 0 0 0 0100 160 0 0 0

Aniline 100 20 0 0 1 0 0 3 3 3 0100 180 1 1 2 3

Aniline cholours 2 2 2

Anilinhydrochloride wL 5 20 3 3 0wL 20 100 0

Aniline sulphite wL 10 20 1L100 20 0

Antimony Schm 100 650 3 3 3 0 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 402: e BOA Expansion Joints Guide 29.3

Medium

401

Antimony chloride tr 20 0 3 3 0 3wL 100 1 0 3

Apple acid wL 20 2 0 0 2 1 1 0 0 3 2 2 0 0wL <50 90 3 0 0 2 1 1 0 0 3 2 2 0 0wL <50 100 3 0 0 2 1 1 0 0 3 2 2 0 0

Arsenic acid wL 65 3 0 0Schm 110 3 2 1

Asphalt 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Atmosphere Land -20 0 0 0 0 0 0 0 0 0 0 0 0 0Indust. bis 1 0 0 0 1 0 0 0 0 1 0 0 1Sea 30 2 0LS 0S 0 0 0 0 0 0 1 0 0 2

Azo benzene 20 0 0 0 0 0 0 0 0 0 0

Barium carbonate 20 3 0 0 1 0 0 0 1

Barium chloride Schm 100 1000 3L 3L 1wL 10 SP 1L 0L 1 1 1 1 0 2 3 3wL 25 SP 1L 0L 1 0 0

Barium hydroxyde fest 100 20 0 0 0 0 1 1 0 0 1 1 1 3wL all 20 0 0 1 1 1 0 0 1 1 1 3wL all SP 0 0 1

100 815 1 1 0wL kg 20 0 0 0 0 1 1 0wL hg SP 0 0 0 0 1 3

50 100 0 1 1 0

Barium nitrate wL all 40 0 0 1 0 2 0 0wL all SP 0 0 1 0 2 0 0Schm 600 0 0 0wL 20 0 0 0 1 1 2 0 0wL >100 3 0 0 1 0 2 0 0

Barium sulphate 25 1 0 0 1 1 0 0 0 0 0 0

Barium sulphite 25 2 0 0 2 3 3 3

Beer 100 20 0 0 0 0 0 0 0 0 1 0 0 0100 SP 0 0 0 0 0 0 0 0

Beer condiment 20 SP 3 1 3 1

Beet sugar syrup 20 (1) 0 0 0 0

Benzene acid wL all 20 0 0 0 0 0wL 10 20 1 0 0 0 0 0 0 0 1 1 1 0 0wL 10 SP 3 0 0 0 0 0 2 0 3wL ges 20 0 0 0 0 0

Benzene chloride tr 100 20 0fe 100 20 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 403: e BOA Expansion Joints Guide 29.3

Medium

402

Benzene, non-sulfureos 100 20 0 0 0 0 0 0 1 0 0100 SP 0 0 1 1 1 1 1 1 1 1

Benzene sulphonal acid 91,3 140 3 3 3 1 392 200 3 3 3 0 3

Blood (pure) 36 0S 0

Bonder solubilzing 98 0 0

Borax wL 1 20 0 0 0 0 0 0wL ges 20 1 0 0 0 0 0 0 0 0 0 0wL ges SP 3 0 0 0 0 0 0 1Schm 3 3 0

Boric acid wL 1 20 3 0 0 1 1 1 0 0 0 0wL 4 20 3 0 0 1 1 1 0 0 0 0wL 5 20 3 0 0 1 1 1 0 0 0 0wL 5 100 3 0 0 2 1 2 0 0 1 2 1 0 0wL ges 20 3 0 0 0 1 1 0 0 0wL all 20 3 0 0 0 0wL all <SP 3 0 0 0 0 0 0

10 20 3 0 0 1 1 1 0 0 0

Boron 20 0 0

Brandy 20 0 0 1SP 0 0 3

Bromide water 0,03 20 0L 0L0,3 20 1L 1L

1 20 3L 3L

Bromine tr 100 20 3L 3L 3L 0 0 0 1 0 0 0 0 2 3tr 100 <65 3L 3L 3L 0 0 1 0 3tr 100 <370 3L 3L 3L 2 3fe 100 20 3L 3L 3L 0 0 3 3 2 3 1 0 3fe 100 50 3L 3L 0 3 3

Butadiene 100 30 0 0 0 0 0 0 020 0 0 0 0 0 0 0 0

Butane 100 20 0 0 0 0 0 0100 120 0 0 1

Butter 20 0 0 0 0 0 0 0 1 2 1 0 0

Butter acid 25 20 3 1 2 1 2 1 0 1 025 60 3 1 2 0 050 20 3 2 0 0

Butter acid 50 60 3 2 0 1ges 20 3 0 0 2 0 0ges SP 3 2 0 2 0 1

Buttermilk 20 0 0 0 0 0 0 0 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 404: e BOA Expansion Joints Guide 29.3

Medium

403

Butyl alcohol 100 20 0 0 0 1 1 1 0 0 0 0 0 0 0100 SP 0 0 0 2 2 0 0 0

Butyl acetate 20 0 0 1 0 0 0SP 1

Cadmium Schm 100 350 1 2 2Schm 100 400 2 2

Calcium Schm 100 800 3 3 3

Calciumbisulphite wL ges 20 3 0 0 0 3 1 0ges SP 3 2 0 020 20 0 0 020 SP 1 0 0

Calcium carbonate 20 0 0 0 0 0 0 0

Calium chlorate 100 20 0 0LS 0LS 1 1 1 0 1 1wL 10 20 0LS 0LS 1 1 1 0 1 1wL 10 100 2LS 1LS 1 1 1 0 1 1wL 100 100 2LS 1LS 1 1 1 0 1 1

Calcium Chloride wL 10 20 3 0S 0S 0 0 0 0 0 1 3 1 0 3wL 25 20 3 0L 0L 0 0 0 0 1 3 2 0 3wL 25 SP 3 0LS 0LS 0 0 0 3 0 3

ges 20 3 0L 0L 1 1 0 0 0 3 0 3ges SP 3 1L 0L 2 0 0 0 3 1L 3

Calcium hydroxyde <50 20 0 0 1 1 1 1 0 1 0 0 0 3<50 <SP 0 0 1 1 1 1 0 1 0 3ges 20 0 0 0 0 1 1 0 3ges SP 0 0 0 0 2 2 0 3

Calcium hypochloride wL 10 25 3 3LS 0LS 3 1 1 3 1 0 315 50 3 3LS 0LS 1 0 320 25 3 3LS 0LS 0 1 3 1 0 320 50 3 3LS 0LS 1 0 3

ges <40 3 2LS 1LS 0 0 3

Calcium nitrate 20 100 0 0 0 050 100 0 0 0 0

Schm 100 148 0 0 0 0

Calcium sulphate fe 20 1 0 0 0 0 0 0 0 0(Gypsum) SP 3 0 0 1 1

Calcium sulphite wL ges 20 0 0 0 1ges SP 0 0 0 1

Camphor 20 (0) 0 0 0 0 0 0 0 0 0

Carbon dioxide tr 100 20 0 0 0 0 0 0 0 0 0 0 0 0tr 100 <540 0 0 0 0 0 0 0 0 3 0tr 100 700 3 1tr 100 1000 3 3tr all <760fe 15 25 0 0 1 1 1 0 0 0 0 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 405: e BOA Expansion Joints Guide 29.3

Medium

404

Carbon dioxide fe 20 25 1 0 0 0 1 2 1 3fe 100 25 2 0 0 1 1 1 0 0 0 0 3

Carbon oxide, 100 atü 100 20 0 0 0 0 0 0 0 0100 <540 3 (0) 3 (1) (3) 0 2 1

Carbon tetrachloride tr 100 20 0 0L 0L 0 0 0 0 0 0 0 0 0tr 100 75 0L 0L 0tr 100 SP 1 0L 0L 0 0 0 0 0 2fe 20 0 0L 0L 0 0 1 2 1 0 1fe SP 1 1L 1L 3 3 2 2 3 1 3

Carnallite wL kg 20 3 0L 0L 0 0kg SP 3 2LS 1LS 0 0

Castor oil 100 20 (0) 0 0 0 0 0 0 0 0 0 0 0 0100 100 (2) 0 0 0 0 0 0 0 0 0 0 0 0

Cement fe 20 3

Cheese 20 0 0

Chloramin 20 3 1L 0L 0 00,5 SP 3 1L 0L 0 0

Chlorine tr 100 20 0 0L 0L 0 0 0 0 0 0 0 3 0tr 100 100 0 0L 0L 0 0 0 0 0 0 3 0tr 100 <250 3 0L 0L 0 0 0 1 3 3 3tr 100 <400 3 2L 1L 0 0 0 1 3 3tr 100 500 3L 3L 2L 1 1 0 2 1 3 3fe 99 20 3L 3L 3L 0 2 1 0 3 3 2 0 3fe 99 100 3L 3LS 3LS 1 3 3 3 1 3

Chlorine benzene 100 20 0 0LS 0LS 1 1 1 1 0 1 1100 SP 0LS 0LS 1 1 1 1 0 2

Chlorine calcium fe 20 3 1LS 1LS 1 1 3 1 3wL 1 20 3 2LS 0LS 0 3wL 5 20 3 1LS 0LS 0 3 0 3wL 5 100 3 3LS 3LS 0 1 3

Chlorine dioxide tr 70 2 2 0 0 3 3wL 0,5 20 3 3 3 1 3 3wL 1 65 3 3 3 2 3 3

Chlorine sulphinated acid tr 100 20 1LS 0LS 0 0 0 0 0 0 3 0fe 99 20 3 2LS 0LS 3 1 1 3 3wL 10 20 3 3 3 3 0 0 3 3

Chlorine vinegar acid Mono- 50 20 3 3 3 1 1 2 3 3 3Konz 20 3 3 3 1 1<70 SP 3 2 1

Di- 100 100 3Tri- >10 20 3 0L 0L 0 0

SP 3 3 1

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 406: e BOA Expansion Joints Guide 29.3

405

Medium

Chlorine water ges 20 3 1LS 1LS 0 0 3ges 90 3 2LS 2LS 1 3

Chloroform fe 99 20 3 0LS 0LS 0 0 0 0 0 0 0 3fe 99 SP 3 0LS 0LS 0 0 0 0 0 1 1 3

Chocolate 20 0 0 0 0 0 0 0 0 (0) (0) (0) 0 0120 0 0 0 0 0 0 0 0 (0) (0) (0) 0 0

Chromic alum wL ges 20 3 1 0 1 0 0 3 3wL ges SP 3 3 3 2 3 3wL 10 20 3 0 0 0 3 1

Chromium acid wL 5 20 3 0 0 3 3 3 1 0 3 3 3 0 15 90 3 3 3 3 3 1 3 3 3 0

10 20 3 0 0 2 2 2 1 0 3 3 3 0 110 SP 3 3 3 3 3 3 1 0 3 3 3 0 350 20 3 3 3 2 2 2 1 3 3 3 0 250 SP 3 3 3 3 3 3 1 3 3 3 0 3

Chromium sulphate ges 20 2 0 0 0 0 0 0 090 3 3 2 0 0 1 0 0

Cider 20 0 0 1

Cinammon acid 100 20 3

Cocoa SP 2 0 0 0 0 0 0 0 0 0 0 0 0

Coffee wL 20 0 0 0 0 0 0 0 0 0 0 0 0 0SP 2 0 0 0 0 0 0 0 0 0 0 0 0

Copper acetate wL 20 (3) 0 0 (1) (1) (1) 3 3SP (3) 0 0 3 3

Copper-II-chloride wL 1 20 3 1LS 0LS 0 1 0wL 1 SP 3 3LS 3LS 0wL 5 20 3 2LS 1LS 3 1 2 3 2 0 3wL 40 20 3 3 3 3 1wL 40 SP 3 3 3 3 3 3 0wL ges 20 3 3 3 3

Copper-II-cyanide wL 10 20 2 0 0 0wL 10 SP 3 0 0 1wL hg SP 3 0 0 3 3 3 1 3 3

Copper-II-nitrate wL 50 20 0 0 3 3 3 0 1 (2) (3) (2) 0 3wL 50 SP 0 0 3 3 1 0wL ges 20 0 0 3 3 3 0 1 3 0 3

Copper-II-sulphate all 20 3 0 0 2 2 2 0 (1) (3) (1) 0 3(copper vitriol) all <SP 3 0 0 3 3 3 0 0 3 0 3

Cotton seed oil 25 0 0 0 0 0 1 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 407: e BOA Expansion Joints Guide 29.3

Medium

406

Creosote 20 0 0 0 0 1SP 3

Creosote 100 20 0 0 0 1 0100 SP 0 0

Crude oil 100 20 1 0 0 0 0 0 0 0100 100 1 0 0 1 0 0 1100 400 3 3 3 3

Cyanide baths 25 00

Developer (Photo) 20 0L 0L

Dichlorethene 100 <50 3 2L 1L 1 0100 SP 0

Dichlorethylene tr <100 <30 0 0L 0L 0 0 0 0 0 0tr 100 SP 0L 0L 0 1

<100 <700 3wh 105 3wh 1:1 <SP

Dichlorethylene 100 20 0 0L 0L 0 0100 SP 0L 0L 2 0 1

Diesel oil 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Diesel oil, S <1% 100 20 0L 0L 0 0 0 0 0 0 1 0 0 0100 100 0 0L 0L 2 0 0 0 0 1 1 1 0 1

Diphenyl 100 20 0 0S 0S 0 0 0 0 0 0 0 0 0 0100 400 0 0S 0S 0 0

Dripping 20 0 0

Dye liquoralkaline or neutral 20 0 0 0 0

SP 0 0 0 0organic sour 20 0 0 0 1

SP 0 0 0 1heavily sulphuric 20 3 1 0 0 0

SP 3 3 1 0slightly sulphuric 20 0 0 0 0

SP 3 0 0

Ether 100 20 0 0 0 1 0 0 0100 SP 0 0 0 0 0

all SP 0 0 0 0 0

Etherial oilCitrus oil 20 0 0 0 0 0 0 0Eucalyptus oil SP 0 0 0 0 0 0 0Caraway seed oil 20 0 0 0 0 0 0 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 408: e BOA Expansion Joints Guide 29.3

Medium

407

Ethyl acetate 20 1 0 0 2 1 1 0 0 0 1all <SP 1 0 0 2 1 1 2 2 235 120 1 0 0 1 0 2 2 2

100 20 1 0 0 2 1 1 0 1 0 1100 SP 1 0 0 2 1 1 2 2 2

Ethyl alcohol 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0denaturalized 96 20 1 0 0 0 0 0 0 0 0 0 0 0 0

96 SP 2 0 0 0 0 0 0 0 0 0

Ethyl benzene 115 0 0 0 0 0 0

Ethyl chloride 20 0 0L 0L 0 0 0 0 1 2 2 2 0 1SP 0L 0L 1 3 3 3 0

tr 20 0 0L 0L 0 0 0 0 1 0 0tr SP 0L 0L 1 0 1fe SP 1 0 3wL 25 20 0 0 0 0 1 0wL 50 25 0 0 0 0 1 0wL 70 25 0 0 0 0 1 0wL 100 25 0L 0L 0 0 0 0 1 0wL 5 25 0L 0L 0 0 0 0 0 0 2

Ethylene 20 0 0 0

Ethylene bromide 20 0L 0L 0SP 0L 0L 3

Ehtylene diamide Hydrochloride 100 SP 3 2

Ethylene chloride tr 100 20 0 0L 0L 0 2 0 2 3 2 0 0wL 100 50 3 1L 1L 1 0 3tr 100 SP 0L 0L 0 0fe 100 20 3wL 100 SP 3

20 1 0 0

Ethylene glycol 100 20 0 0 0 1 1 1 0 1 2 2 0100 120 0

Ethylene oxyde 20 0 0 0

Exhaust gas

Exhaust gas (diesel) tr 600 3 0L 0L 0 0 0 0 0 1(Flue gas) tr 600 3 0L 0L 0 0 0 3

900 3 0 0 01100 3 0 0

Fatty acid, high technology 100 60 3 0 0 0 0 0 0 0 0 2 1 0 1100 150 3 0 0 0 1 0 0 0 0 0 3100 235 3 2 0 0 1 0 0 0 3 3 3 0 3100 300 3 3 0 0 1 0 0 0 3 3 3 0 3

Ferro-gallic-ink 20 0 0L 0L 1

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 409: e BOA Expansion Joints Guide 29.3

Medium

408

Fluorbor ether 100 50 0

Fluorine tr 100 20 0 0 0 0 0 0 0 0 0 0 0 3tr 100 200 0 1LS 1LS 0 0 0 3 3tr 100 500 3 0 0 3 3fe 100 20 3 3 2 0 0 0 3 3 3 3

Formic acid 10 20 3 0 0 0 0 0 0 010 SP 3 1 0 2 0 0 0 350 20 3 0 0 0 050 SP 3 3 1 0 080 20 3 0 0 2 0 0 0 1 080 SP 3 3 2 2 1 0 0 0 2

100 20 3 0 0 3 0 1 1 1 0100 SP 3 1 1 3 0

Formic aldehyde 10 20 3 0 0 2 0 0 110 70 3 1 0 240 20 3 0 0 0 0 0 0 0 140 SP 3 0 0 1 0

Freon 100 -40 0 0 0 0 0 0 0 0 0 0 0100 0 0 0 0 0 0 0 0 0 0 0

Fruit acid 20 (1) 0 0 0 0 0 0 0 (0) 0SP (2) 0 0 (0) (0) 1 3 1

Fruit juce 20 1 0 0 0 1 3 1 0SP 1 0 0 0

Fuel, benzene tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0tr SP 0 0 0 0 0 0 0 0 0 0 0 0 0wh 20 0 0 0 0 0 0 0 0 0 0 0 0 3wh SP 0 0 0 0 0 0 0 0 0 0 0 0 3

Fural 100 25 2 0 0 2 0100 SP 3 2

Furaldehyde 20 2 0 0 1 3 1 0SP 3 0 0 3

Gallic acid wL 1 20 0 0wL <50 100 2 0

100 20 2 0 0 0100 SP 3 0 0 3

Gelatine wL 80 1 0 0 0 0 0 0 0 0 1 0 0 0<40 50 1 1 0 0 0 0

Glass Schm 100 1200 1 1 1

Glucose 20 0 0 0 1 0

Glutamine acid 20 1 0 0 080 3 1 1 1

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 410: e BOA Expansion Joints Guide 29.3

Medium

409

Glycerin 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0100 SP 1 0 0 0 0 0 0 0 1 0 0 0 0

Glykol acid 20 3 1 1 0 0 1SP 3 3 3 0 0 1

Gum (raw) 20 1 0 0 0 0 0 0 0 0 0 0 0 0

Heavy fuel 100 20 0L 0L 2 0 0 0 0 0 0 0 0 0

Hexamethylenetetramine wL 20 60 1 0 0 0wL 80 60 2 0

Hydrobromic acid 20 3 3 3 3 3 2 3 2 3 2 3

Hydrocarbon, pure 20 0 0 0 0 0 0

Hydrochloric acid 0.2 20 3 1LS 1LS (1) 0 00.2 50 3 2LS 3LS 0 0

1 50 3 3 3 0 01 100 3 3 3 3 (1)

10 20 3 3 3 (2) 1 1

Hydrofluosilic acid 5 40 3 1L 1L 1 (1) 3100 20 3 1L 2L 1 1 3 1 3100 100 3 2L 2L 1 2 3

Hydrocyanic acid 20 20 3 0 0 2 1 1 0 0 3 3 3 0 0

Hydrogen 100 20 0 0 0 0 0 0 0100 300 1 0 0 0 0 0 0100 500 3 0 0 0 3 0

Hydrogen fluoride 5 20 1 3 3 0 0 0 0 0 3 3 3100 500 3 3 3 1 2 2 3 1 3 3 3 3

Hydrogen fluoride acid all 20 3 3L 3L 1 1 1 1 1 3 3 3 3 3HF-Alkylation 10 20 3 3L 3L 1 1 1 1 0 2 3 2 3 3

80 20 1 1 1 1 1 1 1 3 390 30 1 0 1 1 3 3

Hydrogen superoxide all 20 0 0 1 1 1 0 0 2 1 030 20 0 0 0 1 2 130 70 0 0 0 1 2 185 <70 0 0 0all SP 2 2 0 0 3 1

Hydroquinone 20 1 1 0 0 0

Hydroxylamine sulphate wL 10 20 0 0wL SP 0 0

Hypochlorous acid 20 0 3

Illuminating gas 20 (1) 0 0 0 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 411: e BOA Expansion Joints Guide 29.3

410

Inert gas tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0fe 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Ink 100 20 1 0L 0L 0 3100 SP 1L 1L 3

Insulin 100 <40 0 0 0 0

Iod tr 100 20 0 0L 0L 0 0 0 3 3 3 3 0100 300 1 0L 0L 3 0 0 2 3

fe 100 20 3 3L 2L 3 3 1 3

Iod, alcohol 7% 20 3 1L 0L 3 3 3 3

Iod hydrogene acid wL 20 3 3 3 3

Iodoform, steam tr 60 0 0 0 0fe 20 3 0L 0L 0

Iod tincture 20 2L 0L 3

Iron-II-chloride tr 100 20 0 3 3 3 2 0 0wL 10 20 3 3 3 3 3 1 1 3 1 0 3

Iron-III-chloride tr 100 20 0 0L 0L 2 2 2 1 0 3 3 3 0 3wL 10 Sp 3 3L 3L 2 0wL 50 20 3 3L 3L 2 1 0wL 50 <SP 3 3L 3L 3 0

Iron-III-nitrate wL 10 20 3 0 0 0wL all 20 3 0 0wL all SP 3 0 0

Iron phosphate 98 0 0( Bonder )

Iron-II-sulphate wL all 20 0 0 0 1 1 1 3 1 1wL SP 0 0 3 1 1 3

Iron-III-sulphate wL <30 20 3 0 0 0 3 3 3 3<30 <65 3 0 0 0<30 80 3 1 0 3 3 3 3<30 SP 3 1 0

Isopropyl nitrate 20 0

Kerosene 100 20 (0) 0 0 0 0 0 0 0 (0) (0) (0)

Lactic acid wL 1 20 1 0 0 0 2 1 0 01 SP 0 0 0 3

10 20 0 0 (1) 0 0 1 2 1 0 010 SP 3 2 3 3 (2) 1 0 350 20 0 0 1 0 0 0 050 SP 2 1 (1) (0) 0 380 20 0 0 0 080 SP 2 1 0 3

100 SP 2 1 0 3

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 412: e BOA Expansion Joints Guide 29.3

411

Laquer (also varnish) 20 (1) 0 0 0 0 0 0 0 0 0100 0 (1)

Lead 100 360 (0) (2) (1) (2) 2 0 0600 (0) (2) (1) (3) 0

Lead acetate wL 10 20 0 0 0wL all SP 0 0

Lead nitrate wL 20 0 0wL 100 0 0 0wL 50 20 0 0 3

Lead suggar all 20 0 0 1 1 2 0 2 0 3all SP 0 0 1 1 2 0 2 0 3

Lead vinegar, basic wL all 20 0 0 1 1 2 0 2 3 2 3wL all SP 0 0 1 1 2 0 2 3 2 3

Lime-milk 20 0 0 0 0 0 0 0 0 0 0SP (0) 0 0 0 0 0 0 0 0 0

Lemon acid wL 5 20 2 1 0 0 0 0 0 0 0 0konz. SP 3 2 2 2 2 1 0 2 0 3

Lemonade 20 (1) 0 0 0 0

Linseed oil 20 0 0 0 0 0 0 0 0 1 1 0 0200 (0) 0 0 0 0 0 0 (0) 0

+ 3% H2SO4 200 (3) 1 0 0 0 0 0

Lithium Schm 400 (0) 0 0 0 0 0

Lithium chloride wL kg 3 3 1LS 0 1 0 0 0 0

Lysoform 20 0 0 0 0 0SP 0 0 0 0 0

Lysol 5 20 (2) 0 0 0 0 0 0 05 SP (3) 0 0 0 0 0 0

Magnesium Schm 650 3 3 3 3 3 3 3 3 3 3 0 3

Magnesium carbonate 10 SP (0) 1 0 0 1ges 20 (0) 0 0 0 1

Magnesium chloride tr 100 20 0 0L 0L 0 0 3wL 5 20 3 0LS 0LS 0 0 0 2 0 2wL 5 SP 3 2LS 2LS 0 0 0 2 0 3wL 50 20 3 2LS 1LS 0 0 0 0 3wL 50 SP 3 2LS 2LS 0 0 0 0 3

Magnesium hydroxyde 20 0 0 0 0 0 0 0 0 0 (0) 0 0 3

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 413: e BOA Expansion Joints Guide 29.3

Medium

412

Magnesium sulphate 0.10 20 (0) 0 0 35 20 2 0 0 1 1 1 0 0 0 3 0 0 0

10 SP 3 0 0 1 0 025 SP 3 0 0 1 150 SP 3 0 0 1 0 0

Malonate acid 20 1 1 1 1 1 1 1 1 150 1 1 1 1 1 1

100 3 3 3 3 3 3

Manganese dichloride 5 100 3 0LS 0LS 1 1 1 0 3 0 010 SP 3 0LS 0LS 1 1 1 0 3 050 20 3 0LS 0LS 0 3 050 SP 3 0LS 0LS 0 3 0

Meat 20 0 0

Methyl acetate 60 SP (0) 0

Methyl alcohol <100 20 (1) 0 0 0 0 0 0 0 0 0 0 0 0100 SP (1) 1 1 0 0 0 0 0 0 0 0 0 1

Methyl chloride tr 100 20 0 0 0 0 0 0 0 0 0 0 0 0 0fe 20 2 0LS 0LS 0 0 0 0 3

Milk fresh 20 (0) 0 0 0 1 0 0 0 (0) (2) 0 070 (1) 0 0 2 2 0 0 0 (0)

sour 20 (1) 0 0sour SP (3) 0 0

Mercury 100 20 0 0 0 0 (3) 0 0 0 3 3 3 (1)100 50 0 0 0 0 3 0 0 3100 370 (0) 3 0 0 3

Mercury chloride 0.1 20 3 0S 0S 0 3 0 0 0 3 3 3 30.1 SP 3 1S 0S 1 3 1 0 0 3 3 3 3

0.74 SP 3 2S 2S 1 0 310 <80 1 3

Mercury cyanide wL 20 (3) 0 0 3 (3) 3 2 0 3 3 3

Mercury nitrate 20 (3) 0 0 (3) 3 3 3 3

Molybdenum acid wL 10 25 1

Monochloracetic acid wL all 20 3 3 3 (1) 2 (1) 3 1 3 330 80 3 3 3 (1) (2) 3 3 3 3 3

Mustard 20 2 0L 0L

Natural gas 100 20 0 0 0 0 0 0 0 0

Naphtene 100 20 0 0 0 0 0 0 0 0 0

Nickel chloride 10 20 3 1LS 1LS 1 1 1 0 0 3 3 110 <60 3 1LS 1LS 0 0 080 <95 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 414: e BOA Expansion Joints Guide 29.3

413

Nickel nitrate wL <10 20 3 0 0 3 3 0 0 0 3 0 310 25 3 0 0 3 3 0 0 1 3 0 3

<100 30 3 0 0 3 3 3 0 1 3 0 3

Nickel sulfate wL 20 3 0 0 (3) (1) (1) 0 (1) 0 2 1<60 SP 3 0 0 (3) (1) 0 1

10 25 3 0 0 2 2 2 0 0 0 3

Nitric acid 1 20 3 0 0 0 0 3 3 3 01 SP 3 0 0 2 2 3 3 3 0

10 20 3 0 0 2 1 2 1 0 3 3 3 0 210 65 3 0 0 3 2 0 3 3 3 010 SP 3 0 0 3 3 1 3 3 3 015 20 3 0 0 (1) 015 SP 3 0 0 3 025 20 3 0 0 0 025 65 3 0 0 0 025 SP 3 0 0 3 040 20 3 0 0 0 040 65 3 0 0 1 040 SP 3 0 0 3 050 20 3 0 0 0 050 65 3 1 050 SP 3 1 1 3 065 20 3 0 0 0 065 SP 3 (0) 2 3 090 20 3 0 0 1 090 SP 3 2 2 3 099 20 (1) 1 2 3 099 SP 3 3 3 0

Konz. 20 3 0 0 05 25 3 0 0 1 0 2 0 2

Nitro acid 5 20 0 05 75 1

Nitro benzene 100 100 1 1 1 1 1 0

Nitro gas tr alle 540 0 3 3

Nitrogen 100 20 0 0 0 0 0 0 0 0 0 0 0 0100 200 0 0 0 0 0 0 0100 500 0 1 1 3100 900 1 3

Nitrogen oxide NOx tr 100 20 0 0 3 3 3 0 0 0 0 0fe 100 20 3

Nitrohydrochlorid acid 20 3 3 3L 3L 3 3 3 3 3 3 3 2 3

Novocaine 20 0 0

Oil 20 0 0 0 0 0 0SP (0) 0 0 (0) (0) (1)

Medium

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 415: e BOA Expansion Joints Guide 29.3

Medium

414

Oil acid, tech. 20 (1) 0 0 0 0 0 0 1 (0) 0150 (2) 0 0 0 0 (0) (2) 1 1 0180 3 1 0 1 0 (0) 3 (1) 3235 3 2 0 (0) (0) 3 3

Oxalic acid wL 2 20 3 0 0 2 1 1 1 0 0 2 1 0 02 80 3 0 0 1 1 1 0 3 15 20 3 0 0 2 1 1 1 0 0 15 80 3 1 0 0 3 2

10 20 3 1 0 2 1 1 1 0 (0) 2 1 2 310 SP 3 3 2 2 1 1 0 0 1 3 (3)30 20 3 3 3 2 1 1 1 030 SP 3 3 3 1 1 1 1 350 20 3 3 3 2 1 1 1 050 SP 3 3 3 2 1 1 1 1 3

Oxygen 100 -185 (0) 0 0 0 0 0 0100 20 0 0 0 0 0 0 0100 500 (1) 0 0 0 3 3

Palmitic acid 100 20 0 0 0 0 0 0 0 1 2 1 0 0

Paraffin Schm 120 (0) 0 0 0 0 0 0 0 0 0 0 0 0

Perchloroethylene wL 100 20 0 0L 0L 0 0 0 0 0 0 1 1 0 3100 SP (3) 0L 0L 0 0 0 0 0 (0) (0) (0) 0 3

Petrol tr 20 0 0 0 0 0 0 0 0 0 0 0 0 0tr SP 0 0 0 0 0 0 0 0 0 0 0 0 0

Petroleum (kerosine) 20 0 0 0 0 0 0 0 0 0 1 0 0 0100 0 0 0 (2) 0 0 0 0 (0) (1) (0) 0

Petroleum ether 100 20 0 0100 SP 0 0

Petrolium / fuel 100 20 0 0 0 0 0 0 0100 SP 0 0 0

Phenic acid rein 100 SP 3 1 0 0 0 1 1 0 3(Phenol) wL 90 SP 3 1 0 0 (0) 1 0 3

roh 90 20 (1) 0 0 0 0 0 1 1 1 090 SP 3 1 0 (0) 1 350 20 (1) (1) 0 0 0 050 70 3 1 (1) 0 1 1

Phenolsulphonic acid 30 20 (0) 0 0 0 030 120 0 0

Phosphor tr 20 0 0 0 0

Phosphor penta chloride tr 100 20 (0) (0) 1100 60 (0) (0) 1

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 416: e BOA Expansion Joints Guide 29.3

Medium

415

Phosphorous acid wL 1 20 3 0 0 0 1 0 0 0 2 3 3 0 3chem. pure 5 20 3 0 0 0 1 1 0 0 2 3 3 0 3

10 20 3 0 0 2 1 1 0 0 2 3 3 0 310 80 3 0 0 0 130 20 3 0 0 0 1 0 1 1 1 030 SP 3 1 1 (2) (1) 1 2 2 (1) 350 20 3 0 0 0 0 0 0 (0) 150 SP 3 2 1 (2) 3 3 2 1 (0) 380 SP 3 3 3 3 (0) 1 2 1 3 1

Phosphorous acid <30 25 3 0 0 0 1technical <30 SP 3 0 0 1 3

50 25 3 0 0 0 150 SP 3 3 2 2 385 25 3 0 0 0 385 SP 3 3 3 1 3

Pineapple juice 25 0 0 0 0 0 0 085 1 1 0 0

Pit water (sour) 20 3 0 0 3 2 1 2

Potassium Schm 100 100 0 0 0 0 0600 (0) 0 0800 (0) 0 0

Potassium acetate Schm 100 292 3 0 0 3wL 20 (1) 0 0 0 0 0 1 1

Potassium bi-chromate wL 25 40 3 0 0 1 1 1 1 1 3 3 3 025 SP 3 0 0 1 3 3 3 (0)

Potassium bi-fluoride wL ges 20 0L 0L

Potassium bi-tartrate wL kg 3 0 0 0 0(Cream of tartar) wL hg 3 3 1 1 1

Potassium bromide wL 5 20 3 0L 0L 0 0 0 0 0 15 30 3 0L 0L 0 0 1 1 0 0 0 0 2

Potassium carbonate Schm 100 1000 3 3LS 3LS 0 3wL 50 20 2 0 0 0 0 0 0 0 1 3 1 0 3wL 50 SP 3 3 3 0 0 0 1 3

Potassium chlorate wL 5 20 (2) 0L 0 1 1 1 0 (1) (1) (1) 0 0ges SP 3 0L 0 3 3 3 0 0 1 0 1

Potassium chloride wL 5 85 (2) 0L 0L 1 1 2 0 1 1 2 1 0 330 20 (1) 0L 0L 0 0 0 0 1 1 2 1 0 330 SP 2 1L 0L 0 0 0 1 (2) (2) (1) 0 3

Potassium chromate wL 10 20 0 0 0 0 1 0 0 0 0 0 010 SP (1) 0 0 0 0

<30 30 0 0 0 1 0 0

Potassium chrom. sulph. wL ges 20 3 1 0 1 0 0 3 3ges SP 3 3 3 2 (1) 3 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 417: e BOA Expansion Joints Guide 29.3

Medium

416

Potassium cyanate Schm 100 750 3 3wL 10 20 (0) 0 0 (1) 3 3 (0) 1

Potassium cyanide wL 10 SP 3 0 0 3 3 3 3

Potassium hydroxide wL 20 20 0 0 0 0 0 0 0 1 2 1 0 320 SP 0S 0S 0S 0 0 1 1 1 3 0 3

Potassium hydroxide 50 20 0S 0S 0S 0 0 1 1 0 350 SP 0S 3 3 0 0 3 1 1 3 3 3hg 0S 0S 0S 1 3

Schm 100 360 3 3 3 0 3 3 3 3

Potassium hypochloride wL all 20 3 2L 0L 3 3 3 3 0 0 3all SP 3L 3L 3 3 3 3 1 0 3

Potassium iodide wL 20 (0) 0L 0L 3 3 1 0 0 3SP (0) 0L 0L 3 3 1 0 0 3

Potassium nitrate wL 25 20 0 0 0 1 1 1 0 1 0 0 0 (0)(Saltpetre) 25 SP 0 0 1 1 0 1 0 (0) 0

ges 20 0 0 0 1 1 1 1ges SP 2 0 0 1

Potassium nitrite all SP 1 0 0 1 0 0 1 0 1 1 1

Potassium oxalate all 20 0 0 0 0 0 0all SP 0 0 0 0 0 0

Potassium perchlorade wL 25 20 175 50 1

Potassium permanganate wL 10 20 0 0 0 0 (1) 0all SP 3 1 1 0 1 1 0 1 0 0 0

Potassium persulphate wL 10 25 (3) 0 0 (3) (3) 0 0 (3) (3) (3)

Potassium sulphate 10 25 0 0 (1) 1 0 1 0 0 (1)all SP 0 0 0

wL 5 20 3 2 0 0wL 5 90 3 3 3 3

Propane 100 20 (0) 0 0 0 0 0 0 0 0 0 0 0 0

Pyrogallol all 20 (0) 0 0 0 (0) 0all 100 3 (0) 0 1 (0) 0

Quinine-bi-sulphate tr 20 3 3 1 1 0 0 0 0

Quinine sulphate tr 20 3 0 0 1 0 0 0 0

Resina (natural) 100 20 0 0 0 0 1 0100 300 3 0L 0L 1 1

Salycilic acid tr 100 20 1 0 0 0 0 0wL 1 80 (3) 0 0 0 0 (1) (1) 0

ges 20 (3) 0 0 0 0 1

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 418: e BOA Expansion Joints Guide 29.3

Medium

417

Sea water 20 (1) 0LS 0LS 0 0 0 0 0 0 (0) 0 0 (0)50 (1) 1LS 0LS 0 0 0 0 0 (0) (1) 0 0 (0)SP (2) 2LS 1 0 0 0 0 0 (1) (1) (0) 0 (1)

Sewages ( w.o. H2SO4) <40 0 0 0 0 0 0 0 2 3 2 0 3( with H2SO4) <40 0 0 3 3 3 0 3

Silver bromide 100 20 3 2LS 2LS 1 0 0 3 3 3 0 3wL 10 25 3 0LS 0LS 0 0

Silver chloride wL 10 20 3 3LS 3LS 0 1 3 3 3 0 3

Silver nitrate wL 10 20 3 0 0 3 3 1 0 1 3 3 3 0 3wL 10 SP 3 0 0 3 0wL 20 20 3 0 0 1 0Schm 100 250 2 0 0

Sodium 100 20 0 0 0 0100 200 0 0 0 (1)100 600 (3) 0 0

Sodium acetate wL 10 20 0 0 0 0 0 0 0 0 0 0ges SP (2) 0 0 (1) 0

Sodium aluminate wL 20 0 0 0

Sodium bi-carbonate wL 10 20 0 0 0 1 1 1 0 0 1 2 1 0 010 SP (1) 0 0 120 SP 1

Sodium bi-sulphite 10 20 3 0 0 0 1 3 1 (0)10 SP 3 2 0 350 20 3 0 0 0 0 1 3 1 (0)50 SP 3 0 0 (0)

Sodium bromide wL all 20 3 3LS 2LS 0 3all SP 3 3LS 2LS 1 3

Sodium carbonate wL 1 20 0 0 01 75 1L 0 0 0 0 0 1 2 1 0

kg 20 0 0 3kg SP 3 0 0 3

Schm 900 3 3 3 (0)

Sodium chlorate 30 20 2 0LS 0LS 030 SP 3 0LS 0LS (0)

Sodium chloride wL 3 20 (1) 0LS 0LS 1 0 1 0 (0) 33 SP (2) 0LS 0LS 1 0 1 1 (0)

10 20 (2) 0LS 0LS 1 0 1 0 1 2 1 0 110 SP (3) 0LS 0LS 1 0 1 1 1kg 20 (2) 0LS 0LS 1 0 1 0 0 2kg SP (2) 2LS 0LS 1 0 1 1 (0) 2

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 419: e BOA Expansion Joints Guide 29.3

Medium

418

Soap wL 1 20 0 0 0 0 1 0 0wL 1 75 0 0 0 1 0wL 10 20 0 0wL 100 0 0 0 0 3

Sodium citrate wL 3.5 20 0 0 1 1 0 0 0 0 3

Sodium cyanide Schm 100 600 (1) 3 3 3 3 3wL ges 20 3 0 0 3 3 3 3 0 3

Sodium dichromate wL ges 20 0 0 3 3 3 0

Sodium fluoride 10 20 (0) 0LS 0LS 0 0 0 0 (3)10 SP (0) 0LS 0LS 0 0kg 20 0LS 0LS 0 0

Sodium hydroxide fest 100 320 (3) 3 3 0 1 0 0 3wL 5 20 0 0 0 0 0 0 0 0 0 1 (0) 0 3

5 SP 0 0 0 0 0 1 2 1 0 325 20 0 0S 0S 0 0 0 0 0 0 325 SP 2 1S 1S 0 0 0 1 1 0 350 20 0 1S 1S 0 0 0 0 0 0 350 SP 2 2S 2S 0 0 0 1 1 0 3

Sodium hyposulfite all 20 2 0 0 1 1 1 0 0 2 0all SP 2 0 0 1 1 1 0 1 2 0

Sodium nitrate Schm 100 320 3 0 0 1 3 0wL 5 20 (2) 0 0 1 1 0 0 0 0wL 10 20 1 0 0 1 1 0 0 1 1 2 1 0 0wL 30 20 1 0 0 1 1 0 0 1 0wL 30 SP (1) 0 0 1 1 0 0

Sodium nitrite wL 100 20 0 0 2 2 2 1 0 0 0

Sodium perborate wL ges 20 (1) 0 0 1 1

Sodium perchlorate wL 10 20 (2) 0LS 0LS 010 SP (3) 0LS 0LS 0

Sodium peroxide wL 10 20 3 0 0 0 0 1 1 1 3 3 3wL 10 SP 3 0 0 1 0 1 1 1 3 3 3

Sodium phosphate wL 10 20 0 0 0 0 1 2 1 0 (0)10 50 0 0 (0) (0)10 SP 0 0 3 (1)

Sodium pochloride 10 25 (1) 1LS 0LS (0) (0) (0) 2 3 (1) 0 3(javel water) 10 50 (3) 1LS 0LS (0) 1 1 0 3

Sodium salicylate (Aspirin) wL ges 20 0 0

Sodium silicate ges 20 0 0 0 0 0 0 0 0 1 0 0 (2)

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:47 Uhr

Page 420: e BOA Expansion Joints Guide 29.3

Medium

419

Sodium sulfate wL 10 20 3 0 0 0 0 0 0 0 0 0 0 0 010 SP 3 0 0 130 20 3 0 0 1 030 SP 3 0 0 1kg 3 0 0 1 1 0 0 0hg 3 0 0 0 0 0 0 0 1

Sodium sulfide wL 20 20 3 0 0 1 3 0 0 2 1 2 0 320 SP 3 0 0 (0) 1 0 350 SP 3 0 0 3 (0) 1 0

wL kg 20 3 (0) (0) 1 1 3 0hg 3 3 1 0 3

Sodium sulfite wL 10 20 (3) 0 0 0 (1) (3) (1) 050 20 (3) 0 0 050 SP 0 0

Sodium thiosulfate wL 1 20 1 0 0 0 0 025 20 3 0 0 0 0 025 SP 3 0L 0L 0 1

100 20 3 0 0 1 1 1 2

Sodium triphosphate wL 10 20 110 SP 125 50 1

Soft soap 20 0 0

Spinning bath <10 80 3 2 1 0 3<10 80 3 3 3 0 3

Steam fe 100 2 0 0 0 0 0 0 0 0 0 0 0 1fe 200 2 0 0 0 0 0 0 0 0 2 0 0 1tr 150 0 0 0 0 0 0 0 0 0 0 0 0 1tr 600 2 0 0 2 1

Stearic acid 100 20 1 0 0 0 0 0 0 0 1 2 1 0 0100 80 3 0 0 0 0 0 0 3100 130 3 0 0 1 0 0 0

Sugar wL 20 1 0 0 0 0 0 0 0 0 0 0wL SP 1 0 0 0 0 0 1 0 0 0

Sulphite lye 20 0 080 2 0

140 3 0

Sulphur tr 100 20 0 0 0 0 0 1 0 1 0 0Schm 100 130 (1) 0 0 3 3 (0) 0 0 3 3 3 0Schm 100 445 3 2 2 0 (0)fe 20 3 1 0 3 3 3 3 3 0

Sulphur chlorine tr 100 30 0 0LS 0LS 0 0 (0) (0) (0) 0 3tr 100 SP 0LS 0LS 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:48 Uhr

Page 421: e BOA Expansion Joints Guide 29.3

Medium

420

Sulphur dioxide tr 100 20 0 0 0 1 0 0 0 0 0tr 100 400 1 2 0 3tr 100 800 3 3 2 3fe 20 2 0 0 1 3 1 0 1

400 3 1 1 3 0

Sulphur acid 1 20 3 1 0 0 1 1 0 0 1 0 11 70 3 1 0 2 1 0 (0)1 SP 3 1 1 1 3

10 20 3 2 1 1 1 0 2 1 110 20 3 2 1 1 1 0 2 1 110 70 3 2 2 2 2 0 (3)40 20 3 1 1 1 0 2 3 2 1 180 20 3 3 3 1 0 (1) 3 1 3 296 20 1 0 0 1 2 0 0 1 3 296 SP 3 3 3 3 3 3 3 3 3 3 3 3 3

Sulphur hydrogen tr 100 20 1 0 0 0 1 1 0 0 0 0 0 0 0H2S tr 100 100 3 0 0 0 0

tr 100 >200 3 0 0 0tr 100 500 0tr 20 3 0 0 1 0 0 0 3 2 3 0 0

Sulphur monoxyde 100 20 1 0 0 (0) (0) 1 0 1 1 0100 SP 2 0 0 (0) (0) 0

Sulphur trioxide S03 fe 100 20tr 100 20 3 3 3 2 0 0 0 0 3 0

Sulphurous acid S02 fe 200 3 2 0 3 3 0 0 0 3 3 3 0 2(Gas) fe 300 3 2 0

fe 500 3 2 0fe 900 3 3 2

Sulphurous acid wL 1 20 3 0 0 2 2 1 0 1H2S03 wL 5 20 3 0 0 1 0 1 1 1 0 1

wL 10 20 3 0 0 0 0wL ges 20 2 0 0 2 0 1 3

Tannic acid wL 5 20 2 0 0 0 0 0 0 1 0 0 05 SP 3 0 0

10 20 2 0 0 1 1 1 0 0 0 1 0 0 010 SP 3 0 050 20 3 0 0 0 0 0 1 050 SP 3 0 0

Tar 20 0 0 0 0 0 0 0 1 0 0 1SP 2 0 0 0 1 0 0 1

Tin Schm 100 300 2 0 0 3 3 3 0 3Schm 100 400 3 1 1Schm 100 500 3 3 3Schm 100 600 3 3 1

Tin chloride 20 3 1LS 1LS 3 3 0 3SP 3 3LS 3LS 1 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:48 Uhr

Page 422: e BOA Expansion Joints Guide 29.3

Medium

421

Titaniuim sulphate 10 20 110 SP 1

Toluene 100 20 0 0 0 0 0 0 0 0100 SP 0 0 0 0 0 0 0 0

Tri-chloro acetic acid >10 20 3 3 050 20 3 3 0 0 050 100 3 3 1

Trilene tr 100 20 0 0L 0L 0 0 0 0 0 0tr 100 70 0L 0L 0 3tr 100 SP 0L 0L 0 0 1 1 1 3fe 20 2 0L 0L 0 0 1 2 1 3fe SP 3 1L 0L 0 0 1 2 1 3

Trinitrophenol 20 (0) 0 0 0 0 0 0 0 (0) (0) (0) 0 0200 3 0 0 0 0 0

Trinitrophenol Schm 100 150 3 3wL 3 20 3 0 0 1

25 20 3 0 0 3 (1) 3 3 3ges 20 3 0 0 3 3 3 2 0 3 3 3

Turpentine oil 100 20 0 0 0 0 1 0 0 0100 SP 1 0 0 0 1 0 0 0

Tyoglykolacid 20 1SP 1

Urea 100 20 0 0 0 0 0 0 0 0100 150 3 1 0 1 3 1 0 3

Uric acid wL konz 20 0 0 0 1 0 0 0 0 3wL konz 100 0 0 0 1 0 0 0 0 3

Urine 20 0L 0L 0 0 140 0L 0L 0

Vaseline 100 ≤SP 0 0 0 0

Vegetable soup SP 0 0

Vinegar 20 0 0 1 3 1 0SP 0 0 3 3 3 3

Vinegar acid 10 20 3 0 0 2 1 1 0 0 1 3 1 0 010 SP 3 2 0 1 1 0 0 0 220 20 3 0 0 2 1 1 0 0 0 020 SP 3 0 0 1 1 0 0 0 250 20 3 0 0 2 1 1 0 0 0 1 050 SP 3 3 0 2 1 1 0 0 3 0 280 20 3 0L 0L 1 1 0 0 1 080 SP 3 3L 0L 1 2 1 0 0 299 20 3 0L 0L 2 1 2 0 0 0 099 SP 3 1L 1L 2 1 1 0 0 0

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:48 Uhr

Page 423: e BOA Expansion Joints Guide 29.3

Medium

422

Vinyl chloride 20 0 0 0 0 0400 1 1 1

WaterH20 dest. 20 0 0 0 0 0 0 0dest. SP 1 0 0 0 0 0 0 0 0 0 1River water 20 0 0 0 0 0 0 0River water SP 0 0 0 1Tap water hard ≤SP 1 0 0 0 1Tap water soft ≤SP 0 0 0 0 1 0 1Tap water alkaline ≤SP 2 0 0 0 3Pit water sour 20 1 0 0 1 1 2 2Pit water sour 20 1 0 0 2 2 3 3Mineral water 20 1 0 0 3Rainwater flowing 20 2 0 0 0 0 1Rainwater still 20 3Sweat 20 1 0 0 3Sea water 20 1 0LS 0LS 0 0 0 0 0 0 0 0 0 1

SP 2 2LS 1LS 0 0 0 0 0 1 1 0 0 3

Water condensate, pure <200 0 0 0 0 0 0 0 0 0 0 0 0plus CO2 <200 2 1 1 0 1 0plus O2 <200 2 1 0 1 0 0plus C1 <200 2 2LS 2LS 2plus NH3 <200 2 0 3 2 0

Wattle wL 20 2 0 0 0 0 0 0SP 3 0 0 0 0 0

Whiskey 20 3

Wine acidity wL 3 20 0 0 0 0 0wL 10 20 1 0 0 1 1 1 0 0 0 2 0 0 2wL 10 SP 3 0 0 2 2 2 0 1 3 3 0 2wL 25 20 0 0 0 0 0 0 2wL 25 SP 1 0 1 0 1 0 3wL 50 20 0 0 0 0 2wL 50 SP 1 0 1 0 3wL 75 20 0 0 0 0 2wL 75 SP 2 2 1 0 3wL all 1 0 3

Wine vinegar wL 5 20 0 0 0 0 0 0 1 1 1 0

Wine, white & red 20 2 0 0 2 0 0 0 3 3 3SP 3 0 0 3 0 0 0 3 3 3

Xylene 20 0 0 0 0SP 0 0 0 0

Yoghurt 0 3

Zinc Schm 100 500 3 3 3 3 3 3

Zinc chloride wL 5 20 3 3LS 2LS 1 1 1 0 0 2 3 2 0 3wL 5 SP 3 3LS 2LS 1 2 2 0 1 2 3 2 0 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:48 Uhr

Page 424: e BOA Expansion Joints Guide 29.3

Medium

423

Zinc silicone sulfide wL 30 20 0wL 30 65 2wL 40 20 0wL 50 65 3

Zinc sulphate wL 10 20 2 0 0 1 1 1 0 0 1 3 1 0 1wL 25 SP 3 0 0 1 1 1 0 1 2 0 3wL hg 20 0 0 1 1 1 0 1 1 0 1wL hg SP 0 0 1 3

Conc

entra

tion

%

Tem

pera

ture

(°C)

Unal

loye

d st

eel

18/8

-Ste

el

18/8

+M

o-St

eel

Nick

el

Mon

el 4

002.

4360

Inco

nel 6

002.

4816

Inco

loy

825

2.48

58

Hast

ello

y C

2.48

19

Copp

er

Tom

bak

Bron

ce

Tita

nium

Alum

iniu

m

29.3_UK_Kap_13_Korrosionstab.qxp:03_Ratgeber_Metallbälge_UK 30.10.2009 14:48 Uhr

Page 425: e BOA Expansion Joints Guide 29.3

424

Personal notes

29.3_UK_Kap_14.qxp:UK_02_Kap_12.qxp 30.10.2009 14:48 Uhr Seite 424

Page 426: e BOA Expansion Joints Guide 29.3

425

Personal notes

29.3_UK_Kap_14.qxp:UK_02_Kap_12.qxp 30.10.2009 14:48 Uhr Seite 425

Page 427: e BOA Expansion Joints Guide 29.3

426

12.6 Subsidiaries / Holding Companies / Agencies

BOA BKT GmbH Balg- und Kompensatoren-TechnologieLorenzstrasse 2–6D-76297 StutenseePhone +49 (0)7244 99-0Fax +49 (0)7244 99-372E-Mail [email protected] www.boa-bkt.com

BOA AGKompensatorenMetallschläuche und MetallbälgeStation-Ost 1CH-6023 Rothenburg, SwitzerlandPhone +41 (0)41 289 41 11Fax +41 (0)41 289 42 02E-Mail [email protected] www.boa.ch

Subsidiaries/Holding Companies:

Flexible Solutions Group France SASImmeuble OdysséeBâtiment D2–12 Chemin des FemmesF-91300 MASSYPhone +33 (0)1 69 10 88 29Fax +33 (0)1 69 34 48 56E-Mail [email protected] www.fsg-france.fr

BOA Nederland B.V.Postbus 214NL-5000 AE TilburgPhone +31 (0)13 535 06 25Fax +31 (0)13 536 40 85E-Mail [email protected] www.boanederland.nl

American BOA Inc.P.O. Box 1301US-Cumming, Georgia 30028Phone +1 800 856 4580Fax +1 770 889 0661E-Mail [email protected] www.americanboa.com

Agencies:in all important industrial countries

BOA Metallschlauch GmbHMagdeburger Strasse 2D-06484 DitfurtPhone +49 (0)3946 811 269Fax +49 (0)3946 811 270E-Mail [email protected] www.boa-metallschlauch.de

Famas S.A.ul. Kopernika 36PL-90 553 LódzPhone +48 42 6648 400Fax +48 42 6648 401E-Mail [email protected] www.famas.com.pl

29.3_UK_Kap_14.qxp:UK_02_Kap_12.qxp 04.11.2009 15:47 Uhr Seite 426

Page 428: e BOA Expansion Joints Guide 29.3

Exp

ansi

on

Join

ts G

uid

e

Expansion JointsGuide

www.boagroup.com

Additional sites in:Buenos Aires, ArgentinaWien, AustriaEmbu – São Paolo, BrazilShanghai, ChinaPlzen, CzechiaChassieu, FranceFère-en-Tardenois, FrancePort Elizabeth, South Africa

BOA Holding GmbHLorenzstrasse 2–6D-76297 StutenseeGermanyPhone +49 (0)72 44 99 0Fax +49 (0)72 44 99 [email protected]

www.boagroup.com

Expansion Joints, Metal HosesMetal Bellows, Plastics Components

Station-Ost 1CH-6023 Rothenburg, Switzerland

Phone +41 (0)41 289 41 11Fax +41 (0)41 289 42 02

[email protected]

www.boa.ch

29.3_UK_00_Umschlag.qxp:29.3_DE_00_Umschlag.qxp 05.11.2009 9:21 Uhr Seite 1