e- elt’s view of stellar environments

38
E-ELT’s View of Stellar Environments Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013

Upload: fayola

Post on 16-Mar-2016

38 views

Category:

Documents


0 download

DESCRIPTION

AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013. E- ELT’s View of Stellar Environments. Gaël Chauvin - IPAG/CNRS - Institute of Planetology & Astrophysics of Grenoble/France In Collaboration with ESO-PST, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: E- ELT’s View of  Stellar Environments

E-ELT’s View of Stellar Environments

Gaël Chauvin

- IPAG/CNRS - Institute of Planetology

& Astrophysics of Grenoble/France

In Collaboration with ESO-PST, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortium

AO4ELT3 CONFERENCE. FLORENCE, ITALY, 26-31 MAY 2013

Page 2: E- ELT’s View of  Stellar Environments

OutlineE-ELT’s View of Stellar Environments

I- The E-ELT project• Telescope, Discovery Window, Other Projects• Instrumentation Road Map

II- Stellar Environments• Disks• Exoplanets• Evolved Stars

Page 3: E- ELT’s View of  Stellar Environments

• 40-m class telescope: largest optical-infrared telescope in the world.

(GMT = 25m; TMT = 30m) • Segmented primary mirror. • Adaptive optics assisted telescope. • Diffraction limited performance: 12mas@K-band Wide field of view: 7arcmin.

• Mid-latitude site (Amazones/Chile). Fast instrument changes. VLT level of operations efficiency.

The E-ELT ProjectThe Telescope

Page 4: E- ELT’s View of  Stellar Environments

50m2 400m2 600m2 1200m2 (JWST: 25m2)2 µm 50mas 18mas 14mas 10mas (JWST: 68mas)

E-ELT & other competitive projects

Discoveries by opening a new parameter space

• Increased Sensitivity

• Spatial resolution (10 mas scale)

The E-ELT Project

Page 5: E- ELT’s View of  Stellar Environments

- VLT & VLTI 2nd & 3rd generation PRIMA, K-MOS, SPHERE, MUSE, ESPRESSO, GRAVITY…

2012 2014 2016 2018 2020 2022 2024 2026 2028

- GAIA

- GMT

- Cheops

- JWST- EChO/PLATO/FINESS?

Ground: Harps N/S, SOPHIE, NaCo, VISIR, CRIRES, WASP…

Timeline: current/future missions

- ALMA (ACA)

- E-ELT

- TMT

Space: Spitzer, Herschel, Kepler, CoRoT

- SKA

The E-ELT Project

- TESS

Page 6: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

Page 7: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

• 1st Light Instruments

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO XAO: Extreme-AO

Page 8: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

• 2nd Pool Instruments

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO XAO: Extreme-AO

Page 9: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

• XAO Instrument

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO XAO: Extreme-AO

Page 10: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

• Various AO Flavors

SCAO: single-conjugated AO MCAO: Multi-Conjugated-AO LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO XAO: Extreme-AO

Page 11: E- ELT’s View of  Stellar Environments

Instruments- First Light

AO Mode λ (µm) Resolution FoV / Sampling Add. Mode

E-CAM – 2023

SCAO,MCAO

- IMG- MRS

0.8 – 2.4 BB, NB3000

53.0” / 3 mas Astrometry 40masCoronography

E-IFU – 2023

SCAO, LTAO

- IFU 0.5 – 2.4 400010 00020 000

0.5×1.0” / 4mas5.0×10.0” / 40mas

Coronography

E-MIDIR – 2024/2028

SCAO, LTAO

- IMG- MRS- IFU

3 – 133 - 133 - 5

BB, NB5000100 000

18” / 12 mas

0.4”×1.5” / 4 mas

CoronographyPolarimetry

E-HIRES- 2024/2028

SCAO - HRS 0.37 – 0.710.84 – 2.50

200 000120 000

0.82”0.027”×0.5”

Polarimetry

E-MOS- 2024/2028

MOAO

SlitsIFUsIFUs

0.37 – 1.40.37 – 1.40.8 – 2.45

300- 25005000 – 30 0004000 – 10 000

6.8” / 0.1”420’ / 0.3”2” / 40mas

Multiplex ~ 400Multiplex ~100Multiplex ~10Imaging?

E-PCS- 2027/2030

XAO EPOLIFS

0.6 – 0.90.95 – 1.65 125 – 20 000

2.0” / 2.3 mas0.8“ / 1.5 mas

CoronographyPolarimetry

Instrument RoadmapThe E-ELT Project

• Science Priority / Stellar Environments

Low Medium High

Page 12: E- ELT’s View of  Stellar Environments

OutlineE-ELT’s View of Stellar Environments

I- The E-ELT project• Telescope, Discovery Window, Other Projects• Instrumentation Road Map

II- Stellar Environments• Disks• Exoplanets• Evolved Stars

Page 13: E- ELT’s View of  Stellar Environments

Stellar Environments1/ Circumstellar Disks

Artist’s View ESO-PR-0942

Page 14: E- ELT’s View of  Stellar Environments

1/ DisksKey Scientific Questions

. Star/disk Evolutiono Accretion, photo-evaporation, o Jets & Windso Magnetic Fields

. Disk Structure & Dynamics (Gas & Dust)

. Chemistry: Water & Organics

in Planet-Forming Zones

. Planetary Formationo Initial conditions

. Planets/Disk interactions Fomalhaut ALMA/HSTBowler et al. 12

Page 15: E- ELT’s View of  Stellar Environments

Probing Planet-forming Regions

snow line

E-MIDIR VLT/CRIRESE-IFU, E-HIRES

1/ Disks

ALMA

1 Lsun

@100 pc

Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr

E-ELT : 10 mas x 100pc = 1 AU

Page 16: E- ELT’s View of  Stellar Environments

Co-rotation radiusMagnetospheric radius

dust sublimation

crystallization

snow line

E-MIDIR VLT/CRIRESE-IFU, E-HIRES

1/ Disks

ALMA

1 Lsun

@100 pc

Distance 0.01 0.1 1.0 10.0 100.0 [AU] Temperature 3000 1000 300 100 30 [K] Time 0.4 days 2 weeks 1 yr 30 yr 1000 yr

Spectro-astrometry

Star – disk interactions

E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU

Page 17: E- ELT’s View of  Stellar Environments

Zanni & Ferreira 09

E-IF

U, E

-HIR

ES &

E-M

IDIR

Star – disk interactions

MHD star – disk simulations

R/Ro

1/ Disks

E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro

Star/Disk evolution under the microscope…• Geometry of Accretion Channels• Inner Disk Properties (Warp, asymmetries…)• Role of Magnetic Fields (Config., Reconnection)• Jet L aunching Zone, Stellar & Disk Winds

Page 18: E- ELT’s View of  Stellar Environments

Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr)Gap at 18 AU (sub-mm continuum emission Brown e al. 07)

• E-ELT-MIDIR simulations of 12CO line emission at 4.7µm of SR21.o Left: Continuum subtracted and velocity channel co-addedo Right: Velocity map with a resolving power of 100 000 (3 km/s)

32 AU

Gas Dynamics in planet-forming zones

E-M

IDIR

1/ Disks

Page 19: E- ELT’s View of  Stellar Environments

Water & Organics• Distribution and Dynamics • Disk cooling & Planetesimals formation• Organic/Prebiotic chemistry (CH4, C2H2, HCN…)• Isotopic Fractionation• Transfer to Terrestrial Planets

E-M

IDIR . Keck-NIRSPEC

. high HRS (R = 25 000) in L-band.

. Detection of H20 and OH radicals MIR lines

. Hot (800K) water from the inner AUs

DR Tau, AS 205 N; Salyk et al. 08

1/ DisksGas Dynamics in planet-forming zones

Page 20: E- ELT’s View of  Stellar Environments

Asymmetries/Spirals in proto-planetary disks

• E-MIDIR simulations of high-contrast imaging at 10 µm.• Jupiter footprint at 20 AU (@100pc) from G-star,• Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU)• ELT-MIR very competitive with JWST

Observing the Dusty Disk Structures1/ Disks

E-M

IDIR

Page 21: E- ELT’s View of  Stellar Environments

1/ DisksE-

MID

IR

Asymmetries/Spirals in proto-planetary disks

• E-MIDIR simulations of high-contrast imaging at 10 µm.• Jupiter footprint at 20 AU (@100pc) from G-star,• Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU)• ELT-MIR very competitive with JWST

Observing the Dusty Disk Structures

Page 22: E- ELT’s View of  Stellar Environments

1/ DisksE-

MID

IR

Asymmetries/Spirals in proto-planetary disks

• E-MIDIR simulations of high-contrast imaging at 10 µm.• Jupiter footprint at 20 AU (@100pc) from G-star,• Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU)• ELT-MIR very competitive with JWST

Observing the Dusty Disk Structures

Page 23: E- ELT’s View of  Stellar Environments

E-M

IDIR

1/ DisksAsymmetries/Spirals in proto-planetary disks

• E-MIDIR simulations of high-contrast imaging at 10 µm.• Jupiter footprint at 20 AU (@100pc) from G-star,• Gap detection at a few mJy/as2 at 0.1-0.2” (10 – 20 AU)• ELT-MIR very competitive with JWST

Observing the Dusty Disk Structures

Page 24: E- ELT’s View of  Stellar Environments

Stellar Environments2/ Exoplanets

Artist’s View ESO-PR-1106

Page 25: E- ELT’s View of  Stellar Environments

2/ ExoplanetsKey Scientific Questions

. Architecture of Exoplanetary Systems?

. Formation & Evolution Processes

. How does it depend on the Host properties?

(Mass, Age, Composition…)

. How frequent are the Telluric planets in the HZ?

. Physics & Atmosphere of Exoplanets?

(Telluric & Giant)

. Bio-Signatures Discovery & Conditions favorable for Life?

Page 26: E- ELT’s View of  Stellar Environments

Expected planet population detected by Doppler spectroscopy with:o HARPS on the ESO 3.6-metre (precision 1 ms−1),

2/ ExoplanetsExploration of Telluric Planets

observed

corrected

Predicted (Mordasini et al. 09)Observed (Mayor et al. 11)

Page 27: E- ELT’s View of  Stellar Environments

Expected planet population detected by Doppler spectroscopy with:o HARPS on the ESO 3.6-metre (precision 1 ms−1; left), o ESPRESSO on the VLT(precision 10 cms−1; middle)o and HIRES on the E-ELT(precision 1 cms−1; right).

> HIRES, required to detect Earth-like planets in HZ of solar-type stars

2/ ExoplanetsE-

HIRE

S

Exploration of Telluric Planets

Page 28: E- ELT’s View of  Stellar Environments

• Simulations: 1.8 MEarth Exo-Earth in HZ (P=145 days) around a bright and low-activity K1V star.

• RV precision: 2cm/s. Limitations: instr. noise, stellar oscillations, granulation and activity.

• Detailed observing strategy: 3 meas./night, every 3 nights over 8 months

• Periodogram: 3σ detection (red)

2/ ExoplanetsTwin Earth Discovery

E-HI

RES

Page 29: E- ELT’s View of  Stellar Environments

2/ ExoplanetsE-

HIRE

S, E

-MID

IR, E

-PCS

Planetary Atmospheres• Reflected, Transmitted or Emitted light of Exoplanets• Strongly or non-strongly irradiated planets• Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths) - Geometric Albedos - Chemical Composition (H20, CH4, CO, CO2, NH3…) - Atmosphere’s Dynamics . Inversion, . Vertical Mixing, . Circulation, . Evaporation,• Imprints of Formation Mechanisms?

Knutson et al. 09

Spitzer

No Thermal InversionThermal inversion

Page 30: E- ELT’s View of  Stellar Environments

E-IF

U, E

-M

IDIR

, E-

PCS

2/ ExoplanetsImaging Planetary Systems

HR8799; Marois et al. 10Bpic; Lagrange et al. 10

Physics of Giant Planets (down to Super-Earths)• Observables: Luminosity, Teff & Gravity• Atmospheric properties • Orbital properties: a, e, i,• Complementarity RV, Astr… > Access Dynamical Mass

Page 31: E- ELT’s View of  Stellar Environments

SPHERE

E-PCS

GAIA

Mesa et al. 11Kasper et al. 10Lattanzi & Sozzetti 10

E-IFU/MIDIR

E-IF

U, E

-M

IDIR

, E-

PCS

2/ ExoplanetsImaging Planetary Systems

Physics of Giant Planets (down to Super-Earths)• Observables: Luminosity, Teff & Gravity• Atmospheric properties • Orbital properties: a, e, i,• Complementarity RV, Astr… > Access Dynamical Mass

Page 32: E- ELT’s View of  Stellar Environments

Physics of Giant Planets (down to Super-Earths)• Observables: Luminosity, Teff & Gravity• Atmospheric properties • Orbital properties: a, e, i,• Complementarity RV, Astr… > Access Dynamical Mass

Formation/Evolution Theories• L – Mass Relation• Gas Accretion Phase

E-IF

U, E

-M

IDIR

, E-

PCS

2/ ExoplanetsImaging Planetary Systems

Accretion Shock

No Accretion Shock

Mordasini et al. 12

Page 33: E- ELT’s View of  Stellar Environments

E-IF

U, E

-M

IDIR

, E-

PCS

2/ ExoplanetsImaging Planetary Systems

Physics of Giant Planets (down to Super-Earths)• Observables: Luminosity, Teff & Gravity• Atmospheric properties • Orbital properties: a, e, i,• Complementarity RV, Astr… > Access Dynamical Mass

Formation/Evolution Theories• L – Mass Relation• Gas Accretion Phase

Planetary System Architecture• Dynamical stability• Planet-disk interactions

Bpic b; ESO PR 0842

Page 34: E- ELT’s View of  Stellar Environments

Stellar Environments3/ Evolved Stars

Eta Car (HST/WFPC2)

VLT/NaCo (L’, Bra, Pfg)

N. Smith/NASA

Chesneau et al. 08

1’’

Page 35: E- ELT’s View of  Stellar Environments

3/ Evolved starsEnvironments• Disks, Outflows and Shocks Structure & Physical conditions

(Excitation, kinematics, density , temperature).• Interacting binary systems: cataclysmic variables and symbiotic systems

Archeology of Planetary systems> Photospheric abundances of polluted white dwarfs> Fe, Si, Ca, C , O, Mg abundances• Frequency of terrestrial planet building• Bulk chemistry of solid planetary bodies• Mass constraints for exoplanetary

building blocks• Frequency of water-rich exo-asteroids• Constraints on habitable environments

Farihi et al. 2010

Page 36: E- ELT’s View of  Stellar Environments

Conclusions• Stellar environments under the Microscope

> Unique Spatial resolution & sensitivity> Offering a versatile instrumentation

(wavelengths coverage, modes, spatial/spectral resolution…)

> Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...)> Mostly aimed at Characterizing , but not only…

• Incredible Machine for Disks, Exoplanets & Evolved stars> Star/Disk Evolution Processes> Disk Structure, Composition & Chemistry (Water & Organics)> Gas/Dust components in planet-forming Regions> Telluric and Giant Planets Characterization

(frequency, physics, atmosphere & formation)> Twin Earth in RV & Imaging Super-Earths> Conditions favorable for Life

Page 37: E- ELT’s View of  Stellar Environments
Page 38: E- ELT’s View of  Stellar Environments

E-IF

U, E

-HIR

ES &

E-M

IDIR

. VLT/CRIRES, CO emission lines at 4.7µm (< 2 AU)

AS 205 N, Pontopiddan et al. 11

1/ DisksStar – disk interactions

E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro

Star/Disk evolution under the microscope…• Geometry of Accretion Channels• Inner Disk Properties (Warp, asymmetries…)• Role of Magnetic Fields (Config., Reconnection)• Jet L aunching Zone, Stellar & Disk Winds